
The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 2023, 78(10), 1753�1762
https://doi.org/10.1093/gerona/glad137
Advance access publication 12 June 2023
Original Article

Epigenetic and Metabolomic Biomarkers for Biological 
Age: A Comparative Analysis of Mortality and Frailty Risk
Lieke M.�Kuiper, MSc, MA,1,2,  Harmke A.�Polinder-Bos, PhD,1,  Daniele�Bizzarri, MSc,3,4,   
Dina�Vojinovic, PhD,3,5,  Costanza L.�Vallerga, PhD,1,  Marian�Beekman, PhD,3,   
E. T.�DollØ, PhD,6,  Mohsen�Ghanbari, PhD,5,  Trudy�Voortman, PhD,5,7,   
Marcel J. T.�Reinders, PhD,3,4,  W. M. Monique�Verschuren, PhD,2,8,  P. Eline�Slagboom, PhD,3,9,   
Erik B.�van den Akker, PhD,3,4,  and Joyce B. J.�van Meurs, PhD1,10,*,

1Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. 
2Center for Nutrition, Prevention and Health Services, Bilthoven, The Netherlands. 
3Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands. 
4Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands. 
5Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands. 
6Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. 
7Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands. 
8Julius Center for Health Sciences and Primary Care Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. 
9Max Planck Institute for the Biology of Ageing, Cologne, Germany. 
10Department of Orthopaedics and Sports Medicine, Erasmus MC, Rotterdam, The Netherlands.
*Address correspondence to: Joyce B. J. van Meurs, PhD. E-mail: j.vanmeurs@erasmusmc.nl

Decision Editor: David�Le Couteur, MBBS, FRACP, PhD (Biological Sciences Section)

Abstract 
Biological age captures a person�s age-related risk of unfavorable outcomes using biophysiological information. Multivariate biological age 
measures include frailty scores and molecular biomarkers. These measures are often studied in isolation, but here we present a large-scale 
study comparing them. In 2 prospective cohorts (n = 3�222), we compared epigenetic (DNAm Horvath, DNAm Hannum, DNAm Lin, DNAm epi-
TOC, DNAm PhenoAge, DNAm DunedinPoAm, DNAm GrimAge, and DNAm Zhang) and metabolomic-based (MetaboAge and MetaboHealth) 
biomarkers in re�ection of biological age, as represented by 5 frailty measures and overall mortality. Biomarkers trained on outcomes with 
biophysiological and/or mortality information outperformed age-trained biomarkers in frailty re�ection and mortality prediction. DNAm GrimAge 
and MetaboHealth, trained on mortality, showed the strongest association with these outcomes. The associations of DNAm GrimAge and 
MetaboHealth with frailty and mortality were independent of each other and of the frailty score mimicking clinical geriatric assessment. 
Epigenetic, metabolomic, and clinical biological age markers seem to capture different aspects of aging. These �ndings suggest that mor-
tality-trained molecular markers may provide novel phenotype re�ecting biological age and strengthen current clinical geriatric health and 
well-being assessment.
Keywords: DNA methylation, Frailty, Mortality

Age is the most prominent risk indicator for common chronic 
diseases, frailty, and mortality (1�3). However, there are large 
interindividual differences in the biological aging process and 
rate of functional decline. Hence, standardized markers that 
re�ect biological age and can provide aging rate phenotypes to 
be studied in depth are needed in aging research. Geriatricians 
use the comprehensive geriatric assessment (CGA) to identify 
the medical, social, and functional needs of older patients (4) 
and determine whether invasive treatments are suitable for 
older patients (5). Although considered the gold standard for 
treating frail patients (4), CGA is time- and resource-consum-
ing, and primarily narrative based (4). To date, no consensus 
exists for a multivariate molecular biomarker to accurately 
capture the complexity of the aging process and serve as a bi-

ological age phenotype for aging research or an overall health 
indicator in the clinic.

Simultaneously, consensus is lacking on the operational-
ization of frailty in research practice, leading to the intro-
duction of a variety of frailty measures with their own 
approaches (2,6�10). The frailty index (FI) assesses frailty 
as an accumulation of de�cits over a wide range of health 
domains (11), while the frailty phenotype (FP), also known 
as Fried frailty (2), is a widely used measure that focuses on 
physical frailty. Recently, the FP has been translated into a 
continuous score called continuous frailty phenotype (CFP) 
(7). The Tilburg Frailty Indicator (TFI) is metric combining 
the physical, psychological, and social domains (8). Finally, 
the�Multidimensional Prognostic Index (MPI) (9) quanti�es 
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the CGA, providing information on the medical, social, and 
functional status of participants.

Furthermore, several attempts have been made to cap-
ture the discrepancy between an individual�s chronological 
age and their age based on biological and clinical informa-
tion, known as biological age, in a biomarker. In the past 
2 decades, large-scale molecular data were used to develop 
several molecular markers of biological age based on, for 
example, telomeres, DNA methylation (DNAm), and metab-
olomics (12). Well-known are the DNAm or epigenetic aging 
clocks. These epigenetic aging clocks are biomarkers based on 
methylation values at a combination of speci�c CpG sites by 
which chronological age is best re�ected. The �rst-generation 
epigenetic aging clocks, DNAm Horvath (13) and DNAm 
Hannum (14), DNAm Lin (15) were trained on chronolog-
ical age and outperformed other aging biomarkers, such as 
telomere length, in the re�ection and prediction of the aging 
process (12). To develop a mitotic-age biomarker that is cor-
related with chronological age, DNAm epiTOC was trained 
on chronological age using CpGs that map to Polycomb group 
target gene promoters, which are constitutively unmethylated 
in fetal tissue (16). Since physiological de�cits resulting from 
and contributing to aging do not develop in a regular, clock-
like manner, the second-generation epigenetic aging bio-
markers trained CpG-models on outcomes that incorporate 
information on biopsychology or mortality, or both. DNAm 
DunedinPoAm (17) was trained on the Pace of Aging (18), 
a score based on 18 biomarkers measured 3 times between 
the ages of 26 and 38 years. DNAm PhenoAge was trained 
on a multi-system proxy for physiological dysregulation (19). 
DNAm GrimAge (20) and DNAm Zhang (21) were trained 
on mortality risk. More recently, metabolomics-based aging 
biomarkers were established using a nuclear magnetic reso-
nance platform (22,23). These biomarkers of biological age 
were trained on either chronological age (MetaboAge (24)) 
or mortality (MetaboHealth (25)).

Previous studies have shown that second-generation aging 
biomarkers outperform the �rst-generation epigenetic aging 
biomarkers in re�ecting frailty, physical health outcomes, 
cognitive and physical capacity, and prediction of overall 
mortality (26�28). However, the performances of the newly 
developed metabolomic biological age biomarkers have not 
been compared with either the �rst- or second-generation epi-
genetic aging biomarkers. Moreover, whether epigenetic and 
metabolomic aging biomarkers capture different aspects of 
the aging process is unknown. Lastly, it is unclear whether 
aging biomarkers have added value to the CGA and, thus, 
their possible clinical applicability.

The current study compares the re�ection of biological age 
of the �rst and second-generation epigenetic and metabolo-
mic aging biomarkers by determining their association with 
5 different frailty scores and with mortality. These outcomes 
largely re�ect the aging process.

Method
Study Cohorts
The current study is a nested cohort study of data from 
the second and third cohorts of the population-based 
Rotterdam Study (RS) (29) and the second generation of 
the Leiden Longevity Study (LLS) (30). In the RS (29)1�347 
participants were grouped into 2 subcohorts based on the 
platform of their epigenetic data, 450K-data (n = 611) or 

EPIC-data (n = 736). From the LLS, 1� 875 participants 
with metabolomic information were selected as the exter-
nal validation cohort for our �ndings of whom in a subco-
hort of 591 participants additional information on DNAm 
was available. A more detailed description of both cohorts 
and inclusion criteria can be found in the Supplementary 
Methods.

DNA Methylation
Genome-wide DNAm data was obtained from whole blood. 
In 687 RS participants and the LLS, we analyzed the samples 
using Illumina In�nium Human Methylation 450�K (450K) 
array (31,32). In the other 737 RS samples, we used Illumina 
In�nium MethylationEPIC BeadChip v1 manifest B5 (EPIC) 
arrays (33). The quality control procedures are described in 
the Supplementary Methods.

Metabolomics
Metabolomic biomarkers from EDTA plasma were measured 
using high-throughput NMR metabolomics (Nightingale 
Health Ltd., Helsinki, Finland; biomarker quanti�cation ver-
sion 2016) (23). This technique quanti�es over 200 metabolic 
measures, including routine lipids, lipoprotein subclass pro�l-
ing with lipid concentrations within 14 subclasses, fatty acid 
composition, and various low-molecular-weight metabolites 
in molar concentration units (22,23).

Biomarkers of Biological Aging
We calculated DNAm Horvath (13), DNAm Hannum (14), 
DNAm Lin (15), DNAm epiTOC (16), DNAm PhenoAge 
(19), DNAm DunedinPoAm (17), DNAm GrimAge (20), 
and DNAm Zhang (21) using the coef�cients, R and Python 
scripts, and packages provided by the researchers who devel-
oped these measures and the R methylclock package (34). To 
calculate epigenetic aging biomarkers, missing information 
for 3� 339 CpG sites on the EPIC array and 2� 831 sites in 
RS and 1�638 in LLS on the 450K-array was imputed with 
the mean value from the GOLD consortium, as previously 
described (35). Unfortunately, 2 out of the 10 CpG-sites 
needed to calculate DNAm Zhang were missing on both our 
EPIC arrays as in the GOLD consortium. For these 2 CpGs, 
we imputed the mean value from the 450K-subcohort, where 
information on all 10 CpGs was present. The metabolomic 
biomarkers were used to compose MetaboAge (24) and 
MetaboHealth (25). MetaboAge and MetaboHealth were 
calculated using MiMIR (36), the dedicated R-shiny package, 
on the raw metabolomic biomarkers (24,25)

Finally, we calculated the chronological age-independent 
part of the above-mentioned variables that we de�ned as the 
biomarkers of biological aging to use in all analyses in this 
study. We did so by taking the residual from the linear regres-
sion model of chronological age on the before-mentioned 
epigenetic and metabolomic variables. The presented bio-
markers, thus, represent the chronological age-independent 
part of the biomarkers.

Assessment of Mortality
Based on a linkage with the mortality registry of the munici-
pality and the digitally connected medical records of the GPs 
working in the study area, we gathered information on the 
vital status of the participants on a bimonthly basis (37). The 
information on the vital status of participants in Rotterdam 
was last updated on the 20th of October 2022.
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The vital status of the participants in the LLS was updated 
in January 2021 through the Personal Records Database, 
which is managed by the Dutch governmental service for 
identity information (38).

Frailty Assessment
We used interviews, physical examinations, blood sampling, 
and general practitioners� records to obtain information 
on the participants� frailty. Using this information, we con-
structed the FP (2), CFP (7), FI (6), TFI (39), and MPI (9). 
A more detailed description of the construction of these 5 
frailty measures and the literature-described cut-offs to clas-
sify participants as either frail or nonfrail can be found in the 
Supplementary Methods.

Assessment of Covariates
A questionnaire at baseline provided information on the 
sex and chronological age at blood sampling for all partic-
ipants. We weighted and measured participants when they 
visited the research center; based on this information, BMI 
was calculated (kg/m2). We classi�ed participants as smok-
ers or nonsmokers based on the answer to the question: 
�are you currently smoking?.� We de�ned cell counts as the 
measured white blood count percentage of lymphocytes and 
monocytes, making the percentage of granulocytes a given. 
Socioeconomic status was de�ned based on the highest level 
of attained education following UNESCO classi�cation (40).

Statistical Analysis
The biomarkers of biological aging were constructed per 
dataset by calculating the residual of a linear regression of 
chronological age on the epigenetic and metabolomics mea-
sures. Spearman�s rank correlation was used to assess the 
correlation between the biomarkers of biological aging and 
frailty scores, and a Yeo�Johnson transformation using the 
bestNormalize R-package (41) was applied to the frailty indi-
ces to increase homoscedasticity. We decided upon using Yeo�
Johnson transformations as it can incorporate zeroes (41), 
which were informative in our frailty scoring system and thus 
should not be lost in power transformations. Linear regres-
sion models were used to determine the association between 
cross-sectional continuous Yeo�Johnson transformed 
Z-scored frailty and Z-scored biological aging biomarkers. 
Standardization was performed in the subcohorts separately 
for the subcohort analyses and in the combined information 
on all participants for the analyses involving the overall study 
population. Z-scores were used to improve comparability 
of effect sizes. Logistic regression analyses were used for the 
associations with frailty as binary outcome. The linear and 
logistic regression analyses were adjusted for chronological 
age at blood sampling, sex, cell counts, BMI, and visit and 
cohort within RS. The analyses in the entire RS study popula-
tion were additionally adjusted for underlying subcohort and, 
thereby, methylation array and metabolomics batch used. 
Moreover, a sensitivity analysis was conducted, in which 
adjustments were made for smoking status and socioeco-
nomic status. Additionally, we tested for effect modi�cation 
of sex, and a sex-strati�ed sensitivity analysis was performed 
for all aforementioned analyses.

We used the R-package survival (42) to create Cox 
Proportional hazard regression models to determine the 
association between standardized aging predictors and over-
all mortality. We used chronological age at blood sampling 

as the starting point and chronological age at censoring as 
the endpoint of the analysis. We performed the analyses in 
4 models in the RS and validated only the �rst 2 models in 
LLS as the MPI was not available in the LLS. The �rst model 
adjusted for sex, cell counts, BMI, and study-speci�c covari-
ates. In the second model, we additionally adjusted for smok-
ing status and socioeconomic status. Thirdly, we adjusted for 
the same covariates as in the �rst model, but additionally 
for the MPI. The MPI mimics the CGA, as used in the clinic, 
best. Adjusting for the MPI provides an opportunity to deter-
mine the value of aging predictors beyond ongoing practice. 
Fourthly, we additionally adjusted the third model for smok-
ing status and socioeconomic status. Moreover, we performed 
sensitivity analyses to examine effect modi�cation by includ-
ing interaction terms with sex in the model. Additionally, we 
conducted survival analyses strati�ed by sex. We determined 
the association between frailty measures per standard devia-
tion increase and overall mortality with a Cox Proportional 
Hazard model with again age at blood sampling and age at 
censoring as timescale. We adjusted the analyses for the �rst 2 
abovementioned models.

To investigate the role of frailty in linking biomarkers and 
mortality, we performed a formal mediation analysis using 
the mediation R-package (43) with all-cause mortality as 
main outcome. We have �tted a parametric regression with 
Weibull distribution using the survival R-package (42) and 
a linear regression. To correct for multiple comparisons, we 
applied a Benjamini�Hochberg false discovery rate (FDR) 
correction (44). We performed all analyses in R version 4.1.3. 
Figure 1 was created with BioRender.com.

Results
We used 2 distinct cohorts for our analyses: the RS (29), a 
population-based study, and the LLS (30), a long-living fam-
ily study (Figure 1, Supplementary Table 1). The RS was 
separated into 2 subcohorts, where the distinguishing factor 
was the DNAm array used, either 450K (n = 611) or EPIC 
(n = 736). For the LLS, the study population consisted of 
all participants with metabolomics information (n = 1�849) 
with a multiomics subcohort (n = 584) of offspring and their 
partners from families without a family history of longevity, 
thereby selecting a subcohort closest to the population at 
large (45). We calculated the biomarkers of biological aging 
as the age-independent part of the aging biomarkers and used 
this metric in all further analyses (Methods: Biomarkers of 
biological aging).

Correlation Between Biological Aging Biomarkers
Spearman�s rank correlation coef�cients between 8 epigen-
etic and 2 metabolomic aging biomarkers were low neg-
ative to moderate positive, ranging between �0.29 and 
0.69 in the overall population (Figure 2A). The highest 
correlation was found between DNAm DunedinPoAm and 
DNAm GrimAge. The metabolomic aging biomarkers had 
the highest correlations with each other and with DNAm 
DunedinPoAm, DNAm GrimAge, and DNAm Zhang. 
The correlations between biomarkers trained on chrono-
logical age (clocks) from different molecular origins, ie, 
DNAm Horvath, DNAm Hannum, or DNAm Lin versus 
MetaboAge, were low negative to low positive, namely 0.04 
between MetaboAge and DNAm Hannum, 0.16 between 
MetaboAge and DNAm Horvath and �0.22 between 
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MetaboAge and DNAm Lin. Interestingly, these correla-
tions were lower than the associations between MetaboAge 
and the pace of aging-trained DNAm DunedinPoAm (0.21) 
and those between MetaboAge and the mortality-trained 
DNAm GrimAge (0.20) and DNAm Zhang (0.21). The mor-
tality-trained epigenetic aging biomarkers DNAm GrimAge 
and DNAm Zhang had a correlation with the metabolo-
mic-based mortality biomarker of, respectively, 0.30 and 
0.29. Comparable correlation patterns were observed 
across methylation arrays (within RS) and between RS and 
LLS cohorts (Supplementary Figure 1). Post hoc analysis 
revealed similar correlation patterns among participants 
who survived the study period and those who died, except 
for a decline in correlation between epigenetic clocks and 
MetaboAge observed in RS but not LLS (Supplementary 
Figure 2).

Frailty
Frailty measures, like the biological aging biomarkers, were 
developed to capture the individual aging process (11,12,46); 
they represent measures of biological age. We assessed the 
interchangeability of various frailty measures developed 
based on different rationales by measuring 5 different frailty 
scores in our study population: FI (6), FP (2), CFP (7), TFI 
(8,39), and MPI (9) (Supplementary Texts 1 and 2). When 

elements from these frailty measures were lacking in our data 
set, we used proxies (Supplementary Text 2).

As shown in Figure 2B, the correlation between the differ-
ent frailty measures ranged from 0.20 to 0.50. The highest 
correlation was observed between the 2 physical frailty mea-
sures, FP and CFP, and the lowest between FP and the MPI, 
the latter being the frailty measure directly derived from the 
CGA. All frailty measures were associated with an increased 
risk of overall mortality. We observed higher hazard ratios 
for broad frailty scores than for the physical frailty measures, 
yet this difference was not statistically signi�cant (Figure 2C, 
Supplementary Table 2).

We concluded that the frailty measures could not be used 
interchangeably. Therefore, we examined 10 biological aging 
biomarkers (8 epigenetic and 2 metabolomic aging bio-
markers) for their association with all 5 frailty measures. 
All biological aging biomarkers and the frailty scores were 
standardized to improve comparability. We observed that an 

Figure 1. Outline of the study and study population characteristics. 
*Smoking status was unknown for 5 Rotterdam Study participants 
(3 participants of the 450K-subcohort, 2 participants of the EPIC-
subcohort) and for 17 LLS participants, of whom 4 belonged to the 
multiomics subcohort. (A) The Rotterdam Study overall study population 
with population characteristics; (B) the Rotterdam Study 2 subcohorts, 
450K and EPIC, strati�ed by the DNA methylation array used and their 
population characteristics; (C) the external validation cohort, the Leiden 
Longevity Study with population characteristics; (D) the subcohort of the 
Leiden Longevity Study, where epigenetic information was available with 
population characteristics; and (E) we used both the overall Rotterdam 
Study population and its two subcohorts (i) to determine the correlations 
between each of the biological aging biomarkers, (ii) to perform a linear 
regression for the association between the biological aging biomarkers 
and frailty, and (iii) to determine the association between each of the 
biological aging biomarkers and all-cause mortality. We externally 
validated the correlations between the biological aging biomarkers and 
the association between the biological aging biomarkers and all-cause 
mortality in the Leiden Longevity Study and its subcohort. In A�D, BMI 
indicates body mass index; DNAm, DNA methylation; and n, size of 
the study population. Population characteristics in A�D are shown as a 
number for the population size; mean – standard deviation (range) for 
age and BMI; and number (percentage) for the number of women and 
the number of participants currently smoking.

Figure 2. Correlations between biological age measures and the 
association between biomarkers of biological aging and frailty. (A) 
Spearman�s correlation of the different biological aging biomarkers in 
1�424 Rotterdam Study participants with the histograms of epigenetic 
aging biomarkers in yellow and metabolomic-based aging biomarkers 
in blue. Labels in bold indicate aging biomarkers trained on outcomes 
including phenotypic and/or mortality information; the regular font, an 
aging biomarker trained on chronological age. Biomarkers are arranged 
by omics layer, ordered from fully age-trained to fully mortality-trained. 
Values after r = represent Spearman�s rank coef�cient; values after 
p = represent the p value; the background color is darker for higher 
correlations. epiTOC = DNAm epiTOC; GrimAge = DNAm GrimAge; 
Hannum = DNAm Hannum; Horvath = DNAm Horvath; Lin = DNAm 
Lin; mHealth = MetaboHealth; Pheno = DNAm PhenoAge; PoAM = 
DNAm DunedinPoAm; Zhan = DNAm Zhang; mAge = MetaboAge. (B) 
Spearman�s correlation between the different Yeo�Johnson-transformed 
frailty measures in the 746 Rotterdam Study participants with information 
on all 5 frailty measures. Values represent Spearman�s rank coef�cient; 
the background color is darker for higher correlations. CFP = continuous 
frailty phenotype; FI = frailty index; FP = frailty phenotype; MPI = 
Multidimensional Prognostic Index; TFI = Tilburg Frailty Indicator. 
(C) Risk of all-cause mortality per standard deviation increase of the 
Yeo�Johnson transformed FI (n cases = 130/n = 1 330), FP (n cases = 
132/n = 1 328), CFP (n cases = 69/n = 743), TFI (n cases = 129/n = 1 
328), MPI (n cases = 132/n = 1 333) in the RS overall study population. 
The �gure represents the adjusted hazard ratios and 95%-con�dence 
intervals. (D) Associations of standardized biological aging biomarkers 
with standardized FI (n = 1�341), FP (n = 1�339), CFP (n = 748), TFI (n = 
1�339), and MPI (n = 1�344) based on linear regression analyses in all 
participants for whom data on biological aging biomarkers and frailty 
were available in the overall Rotterdam Study dataset. Analyses were 
adjusted for age, sex, BMI, cell counts, subcohort, and Rotterdam 
Study cohort and visit. The �gure represents the adjusted betas and 
95%-con�dence intervals. Biomarkers are arranged by omics layer, 
ordered from fully age-trained to fully mortality-trained. DNAm Zhang is 
missing information on 2 out of 10 CpGs in the EPIC-subcohort (736 of 
the 1�347 participants). BMI = body mass index.
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