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CHAPTER 1
General introduction

L’unica gioia al mondo è cominciare. È bello vivere perché vivere è cominciare,
sempre, ad ogni istante. Quando manca questo senso: -prigione, malattia, abitudine,
stupidità-, si vorrebbe morire.

Cesare Pavese, Il mestiere di vivere: Diario 1935-1950
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Quoting Sir Patrick Geddes, ”The leaf is the chief product and phenomenon of Life:
this is a green world, with animals comparatively few and small, and all dependent
upon the leaves. By leaves we live” (Macdonald, 2020). These words, which reson-
ated over a century ago in an auditorium at Dundee University, beautifully metaph-
orize how photosynthesis is the biochemical process directly or indirectly sustaining
most life on Earth. Photosynthesis indeed provides most organisms with the energy
allowing their survival and growth, and the oxygen required to utilize it. However, not
all plants are equal when it comes to their photosynthesis, with some performing it
in much more efficient ways. What exactly determines the photosynthetic efficiency
of plants, i.e. which genetic, biochemical, and physiological factors are important,
remains to be described in detail. This thesis focuses on a plant with high photosyn-
thetic light-use efficiency, the little-known Hirschfeldia incana, and presents findings
on the genetic background of its performance. The work presented in this thesis
pushes the boundaries of our understanding of photosynthesis a little further, contrib-
uting to the growing body of knowledge on the most important biochemical process
on Earth.

1.1 An historical perspective on photosynthesis

The long history of photosynthesis research is made of countless contributions by
many researchers over the world that have shaped our understanding of this fun-
damental process. A number of excellent publications have been dedicated to this
fascinating topic and present a very detailed reconstruction of many events in the
history of photosynthesis research (e.g., Govindjee et al. (2005); Nickelsen (2015a)).
While not aiming at a comparable level of detail, this section summarizes the key
events leading to the discovery and understanding of photosynthesis.

The history of photosynthesis starts at the very dawn of plant science, with one
of the earliest recorded experiments in the field. In the 17th century Jan Baptist van
Helmont conducted the famous ’willow tree’ experiment, already proposed almost
200 years earlier by Nicholas of Cusa. Searching for the the matter required for tree
growth, he followed the growth of a willow seedling in well-weighed soil over a period
of five years, providing the growing tree nothing but rain water. Noticing that after
five years the weight of the tree had substantially increased by around 75 kg while
the weight of the soil had only decreased by grams, van Helmont concluded that the
water used for irrigation, instead of the soil, had determined the growth of the willow
tree (Van Helmont, 1652; Krikorian and Steward, 1968). In the following decades,
Edme Mariotte and Stephen Hales proposed that plants and their leaves obtain nour-
ishment from the air (Pennazio, 2011). Hales also highlighted the roles of leaves
in transpiration and gas exchange (Hales, 1727; Loomis, 1960; Hill, 2012), and was
the first to hypothesize a role for light in plant growth. More attention was drawn
to air and gaseous exchange by Joseph Priestley’s experiments. Towards the end
of the 18th century, he observed that plants have the ability to “restore” air that had
been made unfit for animal life by the burning of candles, and theorized about plants’
ability to restore phlogiston, the “burning principle”, thus hinting at oxygen formation
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by plants (Priestley, 1776; Geerdt, 2007). Around the same time, Jan Ingen-Housz
was the first to robustly link the phlogiston production by plants to solar radiation.
Albeit mostly neglected by the scientific community, Ingen-Housz was therefore the
first to study and report on the process of photosynthesis (Ingen-Housz, 1779; Gest,
2000; Geerdt, 2007; Magiels, 2010). Notably, he also observed plant respiration in
the dark and abandoned the alchemy-bound phlogiston paradigm for that of modern
chemistry proposed by Antoine de Lavoisier in 1789 (de Lavoisier and Cuchet, 1789;
Gest, 2000).

The 18th and 19th centuries witnessed further advancements in photosynthesis
research. Jean Senebier’s observations in 1782 demonstrated that plants absorb
carbon dioxide from the air, which contributed to the gradual shift of the scientific
community from the phlogiston theory to oxygen chemistry (Senebier, 1782; Hill,
2012). Nicholas-Théodore de Saussure delivered in 1804 a conclusive demonstra-
tion that water is directly involved in photosynthesis by showing that growing plants
gain more in weight than can be explained by the assimilation of the carbon in the
absorbed carbon dioxide (de Saussure, 1804). Furthermore, de Saussure is cred-
ited with developing a conceptual framework for the source and supply pathways
of every major elemental component of plants, thus largely advancing the under-
standing of plant nutrition and growth (Hill, 2012). Julius Robert von Mayer, in 1845,
described the conversion of light energy into chemical energy by plants by reporting
that plants converted “light power” into “chemical power” (von Mayer, 1845; Devlin,
1969). Roughly forty years later, in 1882, Theodor Wilhelm Engelmann’s work on
a filamentous alga and aerotactic bacteria confirmed that the conversion of light en-
ergy to chemical energy occurs in the chloroplasts (Drews, 2005; Hintz, 2021). A few
years passed until Charles Barnes proposed the term “photosyntax”, or alternatively
“photosynthesis”, to describe the formation of complex carbon compounds under the
influence of light (Barnes, 1893).

In the early 20th century, significant breakthroughs improved our understanding
of photosynthesis. Frederick Frost Blackman introduced the concept of limitations
in photosynthesis in 1905, based on his findings on the response of photosynthesis
to light and temperature (Blackman, 1905). Richard Willstatter and his co-authors’
studies on the structure and chemistry of chlorophyll culminated in 1915 with a sys-
tematic overview on chlorophylls (Willstätter, 1915) and the award of the Nobel Prize
for Chemistry (Nobel Lectures in Chemistry, 1966). Following their experiments with
intermittent light, Robert Emerson and William Arnold proposed in 1931 the separ-
ation of photosynthesis into light-dependent and light-independent reactions (Emer-
son and Arnold, 1932). Robert Hill’s discovery in 1937 that the “light phase” of photo-
synthesis can operate independently from the “dark phase” is credited with the start
of the “modularization” of photosynthesis research (Hill, 1937; Nickelsen, 2015b,c).
On the side of the light reactions, Edward D. McAlister and Jack Myers revealed in
1940 an inverse relationship between chlorophyll fluorescence emission and CO2
uptake (McAlister and Myers, 1940), while in 1941 Samuel Ruben and colleagues
used heavy oxygen (18O) to demonstrate that the oxygen generated during photo-
synthetic reactions originates from water (Ruben et al., 1941). Furthermore, Daniel
Arnon and co-authors in 1954 identified ATP as the product of light-dependent pho-
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tosynthetic phosphorylation(Arnon et al., 1954). On the side of the dark reactions, in
1956 Melvin Calvin, Andrew Benson, and James Bassham employed radioactively
labeled 14CO2 in 1956 to elucidate the pathway of carbon assimilation in photosyn-
thesis (Bassham et al., 1954), leading to Calvin’s Nobel Prize-winning work (Calvin,
1962). Later years saw further contributions to the elucidation of light reactions, as
Robert Emerson and co-workers published key articles in the late 1950s indicating
the presence of two separate photochemical systems in photosynthesis (Emerson
et al., 1957; Emerson and Chalmers, 1958; Emerson and Rabinowitch, 1960). Fol-
lowing this, Robin Hill and Fay Bendall proposed the theoretical “Z scheme” model for
the photosynthetic light reactions in 1960, providing a framework for understanding
the coordination of two photosystems operating in tandem (Hill and Bendall, 1960;
Govindjee et al., 2017). In 1966, the alternative photosynthetic pathway of C4 plants
was described for the first time by Marshall D. Hatch and Charles R. Slack (Slack
and Hatch, 1967).

Photosynthesis research has been developing from the 1960s to the present date
at such a high rate that it would be impossible to cite all key developments in a
concise way (as an example, see the 36-fold increase in published field measure-
ments of photosynthesis in 1994 as compared to 1984 reported in Long et al. (1996)).
Nevertheless, a few fundamental developments must be cited in order to deliver an
informative overview of the foundations of modern photosynthesis research. Gas-
exchange measurements in photosynthesis gained prominence in the 1970s, with
the book published in 1971 by Zdeněk Šesták, Jiri Čatský and Paul G. Jarvis, laying
the foundations for the widespread adoption of gas-exchange methods (Šesták et al.,
1971). The issue of the limited portability of gas-exchange instrumentation (Koch
et al., 1971) started being tackled with the development of the first truly portable gas
analysis system in 1972 (Schulze, 1972). Further major progresses in gas-exchange
measurements of photosynthesis were achieved in 1980, when Graham D. Farquhar,
Susanne von Caemmerer, and Joe A. Berry integrated various aspects of carbon as-
similation into the widely known biochemical model for parameterizing gas exchange
in leaves (Farquhar et al., 1980). Bernard Genty and colleagues, in 1989, linked
the quantum yield of photosynthetic electron transport with chlorophyll fluorescence
quenching, opening avenues for measuring photosynthetic light-use efficiency with
measurements of chlorophyll fluorescence (Genty et al., 1989). These pivotal dis-
coveries and developments in the measurement of photosynthesis have shaped the
research field, providing a foundation for further exploration of this vital biological pro-
cess. Over the past sixty years, photosynthesis has been studied across scales, from
the microscopic to the planetary ones, leading to the vast knowledge base available
nowadays (Janssen et al., 2014; Ryu et al., 2019).

1.2 Photosynthesis, crop yield, and their improvement

The works summarized in the previous section, along with countless others accumu-
lating over the hundreds-years history of photosynthesis research, have contributed
to our broad understanding of photosynthesis biochemistry and its ecophysiology.
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This is apparent from the hundreds of pages dedicated to photosynthesis across
plant physiology textbooks (Taiz et al., 2015; Willey, 2016; Lambers and Oliveira,
2019), as well as the vast production of whole books dedicated to photosynthesis
itself (Pessarakli, 2016; Becklin, 2021; Blankenship, 2021; Ruban et al., 2022; Shar-
wood, 2023). However, our knowledge on photosynthesis has not plateaued. If
indeed the key molecular, biochemical and physiological components of photosyn-
thesis are nowadays well described, two avenues for future research are wide open:
understanding the impact of the changing climate on photosynthetic processes, and
enhancing the efficiency of photosynthesis as means for supporting the sustainable
intensification of agriculture by increasing the productivity, or yields, of major crops
(Murchie et al., 2009).

1.2.1 Improving crop yield via (genetic engineering of) photosynthesis

“Global change” is a holistic term referring to the large-scale changes the biosphere
is experiencing due to the interaction of its physico-chemical and biological compon-
ents with modern human societies (Steffen, 2005; Cuff and Goudie, 2009; Cornell
et al., 2012). Among the challenges faced by humanity as a result of global change,
the combined effect of population growth and insufficient increase of yields for the
most prominent staple crops poses a particularly prominent issue to society, which
is increasingly more investigated by the plant sciences community (Ray et al., 2013).
Technological innovations and plant breeding had a significant impact on agricultural
production over the 20th century, resulting in spectacular yield increases for major
crops. However, yield increases appear to have slowed, if not come to a halt, in the
21st century (Ray et al., 2012, 2013; Schauberger et al., 2018). The causes for the
limited increase of crop yields, often referred to as yield stagnation, are complex and
a comprehensive analysis of them would be beyond the scope of this thesis. Nev-
ertheless, it is important to note that these causes can be divided into two major
groups: causes preventing the increase of yield potential and causes impeding the
realization of current yield potentials (van Ittersum et al., 2013). Realizing yield po-
tential, i.e. the yield that a crop can attain if optimal management practices are put in
place, and without biotic and abiotic stresses, remains an important goal even within
technologically advanced areas of the world such as Europe (Schils et al., 2018).
Additionally, realizing the yield potential of current crops will likely not be enough
to meet the ever-increasing demand for food predicted for the next twenty to thirty
years and beyond (Tian et al., 2021). Therefore, an increase in yield potential will be
essential in meeting future global demands for food production.

Yield potential for a crop is firstly determined by the amount of incident solar radi-
ation over a cropping season (Monteith, 1977; Zhu et al., 2010), a factor that cannot
be substantially modified by human intervention. Two of the three additional determ-
inants of yield potential, namely the efficiency of light interception and the efficiency
of partitioning carbohydrates into harvestable organs, have been improved in crop
plants to be very close to their theoretical maxima (Zhu et al., 2010; Long et al., 2015).
However, the remaining determinant of yield potential, which is photosynthesis, has
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not followed a similar pattern of improvement. In fact, the efficiency of photosynthetic
energy conversion still has the potential to be improved by more than 50% (Zhu et al.,
2010; Foulkes et al., 2022; Roney and Walker, 2023). The concept of increasing crop
yield through genetic enhancement of photosynthesis was already proposed in the
late 1980s (Austin, 1989). This idea quickly spread within the scientific community
(El-Sharkawy and Cock, 1990; Mehta and Sarkar, 1992; Mehta et al., 1992; Aus-
tin, 1993; Zeng-ping et al., 1995; Lawlor, 1995; Prasad et al., 1996), and its first
practical applications emerged in the early 21st century, albeit with mostly mixed res-
ults (Ruan et al., 2012). In the last fifteen years, more promising results have been
obtained through a series of studies conducted on multiple crop species, demon-
strating increased photosynthesis and, in some cases, improved yield as a result
of genetic engineering of single or restricted sets of genes (Rosenthal et al., 2011;
Kromdijk et al., 2016; South et al., 2019; Wang et al., 2020; De Souza et al., 2022;
López-Calcagno et al., 2020, 2019; Yoon et al., 2020). However, the inconsistency
of results across multiple seasons (De Souza et al., 2022), species (Garcia-Molina
and Leister, 2020), or growing conditions (Ruiz-Vera et al., 2022) serves as a stark
reminder of the challenges in improving the highly complex trait of photosynthesis
to achieve significant yield increases (Flexas, 2016; Sinclair et al., 2019; Passioura,
2020; Araus et al., 2021). These challenges are increasingly recognized within the
photosynthesis research community, with a more holistic view of the photosynthetic
processes being proposed as an approach to address them (Wu et al., 2019; Kohli
et al., 2020; Zhu et al., 2022; Harbinson and Yin, 2023; Wu et al., 2023).

1.2.2 A case for natural variation and Hirschfeldia incana

One holistic way towards increasing crop yields via photosynthetic improvement
would be utilizing natural genetic variation. This approach, based on exploring the
genetic diversity present within crop species and their wild relatives, is not a new
concept (Frankel, 1977; Poehlman and Quick, 1983; Austin, 1989). However, it was
not until the early 2000s that advancements in technology enabled the systematic
exploration of natural genetic variation, leading to a surge in interest in this area
(Skovmand et al., 2001a,b; Maloof et al., 2001; Ramanatha Rao and Hodgkin, 2002;
Gur and Zamir, 2004). The intersection of natural genetic variation and photosyn-
thesis as means to enhance crop yield potential has particularly gained traction over
the past decade (Lawson et al., 2012; Huang and Han, 2014; van Bezouw et al.,
2019; Huang et al., 2022; Sharwood et al., 2022; Theeuwen et al., 2022).

Many studies have focused on exploring natural variation within crops, model
species, and even trees, thereby predominantly examining intra-specific variation
(Theeuwen et al., 2022; Taylor et al., 2022). However, there has been an increasing
emphasis on investigating the potential of crop wild relatives. These wild plant taxa,
characterized by their relatively close genetic relationship to cultivated crops and har-
boring useful traits from a breeding perspective, have gained attention as potential
resources for crop breeding efforts (Maxted et al., 2006). In the past two decades,
the use of crop wild relatives has already allowed for a better understanding and the
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harnessing of the determinants of key crop traits (Brozynska et al., 2016; Sharma
et al., 2020; Zhang and Batley, 2020; Quezada-Martinez et al., 2021; Bohra et al.,
2022).

Based on the idea of investigating traits beyond the restricted genetic variability of
crops, the focus of my research lies on inter -specific natural genetic variation for pho-
tosynthesis within the Brassicaceae family. This plant family comprises economically
important crop species, crop wild relatives (Quezada-Martinez et al., 2021), and the
well-known model plant species Arabidopsis thaliana (Koornneef and Meinke, 2010),
along with several species exhibiting intriguing photosynthetic characteristics. Re-
cent studies have highlighted the presence of C3-C4 intermediate photosynthetic
traits in certain Brassicaceae species (Triesch et al., 2022; Guerreiro et al., 2023),
as well as variation in photosynthesis rates and dynamics among key Brassica crops
(Taylor et al., 2020). Furthermore, the exceptional photosynthetic performance un-
der high irradiance of Hirschfeldia incana, a member of the Brassicaceae family, was
reported over four decades ago (Canvin et al., 1980).

1.3 Key definitions for photosynthesis research

The term “photosynthetic performance”, while descriptive, is too general to be accep-
ted within the scientific community. At a closer look, it would be more appropriate to
present Hirschfeldia incana as a species with high photosynthetic light-use efficiency
under high irradiance (Garassino et al., 2022). Widely accepted definitions for both
photosynthetic light-use efficiency and high irradiance do not exist. Therefore, this
section will provide such definitions as they were employed throughout the research
project resulting in this thesis.

1.3.1 Defining high irradiance

Irradiance is primarily a radiometric concept, representing the radiant power received
by a surface per unit area, measured in W/m2 in SI units (International Organization
for Standardization [ISO], 2022). However, in the context of plant science and pho-
tosynthesis research, irradiance is defined as the quantity of photons received by
a surface per unit area and unit time, measured in mol m−2s−1 (Incoll et al., 1981;
Salisbury, 1991). The quantity defined in this way encompasses the totality of the
electromagnetic spectrum, parts of which are not used by plants to drive their pho-
tosynthetic machinery. Therefore, irradiance is commonly defined in plant science
in terms of photosynthetically active radiation (PAR), which encompasses the wave-
band from 400 to 700 nm. The combination of these two definitions results in the
most common measure for irradiance in plant science and photosynthesis research,
photosynthetic photon flux density (PPFD), measured as the quantity of photons in
the 400-700 nm wavelength received by a surface per unit of area and time, and is
generally expressed as µmol m−2 s−1 (Alados et al., 1996). While PPFD is an im-
portant measure of incident irradiance, it cannot represent the amount of radiation
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available for photosynthesis over time. This has beeen overcome by the introduc-
tion of the daily light integral (DLI), a measure widely employed in horticultural re-
search (Faust et al., 2005; Van Iersel et al., 2010; Kjaer et al., 2012; Dou et al., 2018;
Gavhane et al., 2023). DLI is defined as the total photosynthetic photon flux density
delivered over the course of one day, obtained by multiplying PPFD by the duration
of the irradiance exposure period. It is measured in mol m−2 d−1 (Faust and Logan,
2018).

Currently, no universally accepted definition exists for the concept of high irradi-
ance or “high light”. A review of studies conducted in highly controlled environments
(i.e., growth chambers) reveals that the term “high light” has been associated to irradi-
ance values ranging between 400 and 2000 µmol m−2 s−1 (Lichtenthaler and Burkart,
1999; Kouřil et al., 2013; Szymańska et al., 2017; van Rooijen et al., 2018; Balfagón
et al., 2019). However, observations conducted in natural environments can be extra-
polated to apply to artificial lighting and deliver a coherent definition of high irradiance.
DLIs measured in warm-temperate areas during the months with the highest solar
irradiance range between 60 and 65 mol m−2 d−1, consistent with year-long obser-
vations at the equator (Ritchie, 2010). Therefore, high irradiance can be defined as
irradiance levels that enable the achievement of such DLIs or even higher. For typical
conditions in highly controlled environments, such as climate-controlled plant growth
chambers, with 12 hours of illumination and a “square” irradiance profile (i.e., with
irradiance going from zero to its maximum value in the span of seconds), a PPFD
of 1504 µmol m−2 s−1 would result in a DLI of 65 mol m−2 d−1. Thus, irradiance condi-
tions exceeding 1500 µmol m−2 s−1 applied in typical controlled-environment settings
can be referred to as high irradiance or equivalently as “high light”. The same reas-
oning can be adapted to define case-specific high irradiance conditions that remain
comparable at the DLI level.

1.3.2 Defining photosynthetic efficiency and capacity

Given the multiplicity of scales at which photosynthesis research is conducted, ran-
ging from the molecular to the ecosystem scale, it is not surprising that different
definitions for the “efficiency” of photosynthesis co-exist. In agronomic settings, pho-
tosynthetic efficiency is usually defined in terms of radiation use efficiency (RUE).
RUE is calculated as the ratio between the biomass accumulated and radiating en-
ergy absorbed by a plant, and is expressed in g MJ−1 (Sinclair and Muchow, 1999).
In the field of remote sensing, photosynthetic light-use efficiency (LUE) is generally
defined as the ratio of net primary productivity (NPP) to absorbed photosynthetically
active radiation. Since NPP is defined as the amount of carbon produced by primary
producers per unit area and time, this measure of LUE is expressed in grams of plant-
assimilated carbon per absorbed MJ of photosynthetically active radiation (Medlyn,
1998; Gitelson and Gamon, 2015).

In photosynthesis research conducted at the leaf or sub-leaf level, thus mostly fo-
cused on biophysical and physiological aspects, the concept of photosynthetic light-
use efficiency is often taken to mean the quantum yield (Φ) of photosynthesis. Given
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that the quantum yield for any light-dependent process is defined as the rate at which
that process occurs relative to the rate of photon absorption by the system (Skillman,
2008), the quantum yield of photosynthesis is usually identified with the quantum
yield for photosynthetic CO2 fixation (ΦCO2), i.e. the mol of CO2 assimilated per mol
of absorbed photons (Hogewoning et al., 2012). It is worth pointing out that very of-
ten literature reports the maximum quantum yield of photosynthesis, i.e. the quantum
yield measured under light-limited conditions corresponding to low irradiances (Sing-
saas et al., 2001). Considering that with increasing irradiance factors intrinsic to
the photosynthetic process (such as the biochemical characteristics of Ribulose-1,5-
bisphosphate carboxylase/oxygenase, or RuBisCo) will reduce the photosynthetic
quantum yield (Genty and Harbinson, 2004), photosynthetic LUE at high irradiances
expressed in terms of ΦCO2 might be misinterpreted. This is due to the fact that a
high irradiance ΦCO2 for a given plant will necessarily be lower than the maximum
ΦCO2 for the same plant, i.e. the value most researchers would be used to working
with, and this could lead to wrongly categorizing the plant. Another parameter that
is often employed as a proxy for photosynthetic quantum yield is the quantum yield
of photosystem II (ΦPSII), the first component in the photosynthetic electron trans-
port chain, measured based on chlorophyll fluorescence (Genty et al., 1989). This
measurement is affected by the same relationship to increasing irradiance (Yin et al.,
2011), and can therefore be prone to the same misinterpretation issues.

A more univocal definition of the photosynthetic LUE of plants can be achieved
by relying on their maximum CO2 assimilation rate (Pmax), or photosynthetic capacity.
Pmax is defined as the CO2 assimilation that can be measured when the photosyn-
thetic apparatus of a plant is completely saturated by light (Marshall and Biscoe,
1980). A plant can sustain a high Pmax only if its photosynthetic quantum yield at
high, saturating irradiances is also high. High photosynthetic quantum yield at sat-
urating irradiances results in higher CO2 assimilation rates at non-saturating irradi-
ances above the range of irradiances which are strictly light-limiting, and thus Pmax
can be a good description of the overall photosynthetic light-use efficiency of plants
outside the strictly light-limited zone of irradiances.

1.4 Multidisciplinary approaches to resolve the complex-
ity of photosynthesis

The biochemical and physiological complexity of photosynthesis is well-recognized,
and has been addressed in the past forty years in different ways by photosynthesis
researchers. While some researchers focused on the simultaneous multi-functional
measurements of photosynthetic processes (e.g. Hogewoning et al. (2012)) oth-
ers made use of increasingly detailed mathematical models to try and parametrize
what could not be measured (Stirbet et al., 2020). Recently, modelling efforts have
advanced from trying to interpret and predict physiological alterations of photosyn-
thesis as a response to differing environmental parameters, to predicting the effect
of specific genetic modifications to improve photosynthesis (Zhu et al., 2007), and to
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compiling prioritized lists of bottleneck processes and underlying genes for genetic
engineering (Long et al., 2006; Ort et al., 2011, 2015). The limited success achieved
so far in increasing photosynthesis and crop yields by targeted engineering of single
genetic components of the photosynthetic machinery, however, demonstrates that
the genetic basis of the process is highly complex (van Bezouw et al., 2019). In
addition to the challenges posed by complexity of the genetic determinants of photo-
synthesis, researchers working to increase crop productivity by means of improved
photosynthesis will face challenges due the impact of global climate change on the
multi-faceted interaction between photosynthesis and the environment (Tkemaladze
and Makhashvili, 2016; Armstrong et al., 2023; Verslues et al., 2023). Indeed, while
studies evaluating increases in temperature and drought predicted by current climate
change models have shown that those can exert a major disruptive force on photo-
synthetic dynamics (King et al., 2006; Ruiz-Vera et al., 2013; Gray et al., 2016; Huang
et al., 2019), global climate change will also increase the frequency of extreme cli-
matic event that will further threaten the crop productivity by, between other effects,
further hampering photosynthetic CO2 assimilation (Way et al., 2021; Brestic et al.,
2021).

The level of complexity of the interactions between photosynthesis, global change,
and crop yields is increasingly appreciated within the scientific community, and it is
now established that the most promising, if not the only, way to address them and
realize the much-needed yield increases with photosynthesis is the result of multi-
disciplinary research efforts (Araus et al., 2021; Zhu et al., 2022; Zenda et al., 2023).
The swift development of high-throughput plant phenotyping technologies combined
with the improvement of (DNA) sequencing technologies and bioinformatics tools
has made large-scale studies aimed at unraveling the genetic determinants of pho-
tosynthetic traits possible (van Bezouw et al., 2019; Theeuwen et al., 2022). Techno-
logical development, however, has progressed for other disciplines as well, offering
promising tools for further expanding the scope of multidisciplinary photosynthesis
research. Advancements in sequencing technology and data analysis have largely
benefited the field of transcriptomics, making detailed studies of the transcriptional
signature of photosynthetic responses possible in many plant species (Miller et al.,
2017; Xiong et al., 2019; Loudya et al., 2021; An et al., 2022; Han et al., 2023), as
well as the study of photosynthetic responses to novel agronomic practices (Song
et al., 2020; Zhu et al., 2023; Chai et al., 2023). In the context of genomics and tran-
scriptomics, the development of pangenomics approaches aimed at surpassing the
compression of large sets of genomic and transcriptomic sequences into single con-
sensus assemblies has opened up new avenues for the identification of novel genetic
variants for crop improvement (Tao et al., 2019; Zanini et al., 2022; Li et al., 2022;
Chapman et al., 2022) and will allow for the exploration of photosynthesis-related
genes and transcriptional patterns from a novel perspective. The development of
more accurate and quantitative mass spectrometry technologies and methods has
enabled advanced studies of the photosynthetic protein machinery at unprecedented
resolutions (Fan et al., 2019; Lande et al., 2020; Wang et al., 2021; Zimmer et al.,
2021), as well as the response of photosynthetic proteomes to differences in envir-
onmental parameters such as light quality and irradiance (Flannery et al., 2021a,b).
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These technologies, combined with newly developed or largely improved ones
that allow for the resolution of structures of photosynthetic proteins, highly precise
gene editing, and even guided evolution of photosynthetic components (Zhu et al.,
2022) are providing the photosynthesis research community with an unpreceden-
ted wealth of data. This presents researchers with the possibility to follow multi-
disciplinary approaches in their quest to unravel the complexity of the relationship
between photosynthesis and crop productivity (Araus et al., 2021; Zhu et al., 2022;
Zenda et al., 2023).

1.5 Rationale and outline of this thesis

The research culminating in this thesis stems from the unprecedented possibilities for
multi-disciplinary research on photosynthesis described above. The project I under-
took was the first to start within a larger research initiative on exploring Hirschfeldia
incana for its high photosynthetic light-use efficiency at high irradiance. Thus, I first
focused on establishing genomics, transcriptomics, and phenomics resources that
would then serve as the foundation for studies on the genetic and physiological de-
terminants of the species’ photosynthetic LUE. I then made use of the established
resources to compare H. incana to a number of its relatives from the Brassicaceae
family, testing the hypothesis that differences in photosynthetic LUE among the spe-
cies, especially under high irradiances, could be explained in terms of physiological
and underlying genetic differences. While naturally far from delivering a full explana-
tion of these differences, this thesis presents the most relevant discoveries I made on
the photosynthetic LUE of H. incana and its genomic, transcriptomic, physiological,
and, ultimately, genetic determinants.

Prior to this work, the remarkable photosynthetic characteristics of H. incana had
only been succinctly reported in 1980 (Canvin et al., 1980), while the species was
marginally recognized by the scientific community for its status as a nuisance weed
and metal accumulator (Lee et al., 2004; Auguy et al., 2013). H. incana, however,
presents a number of characteristics making it the perfect candidate for studies on
photosynthetic capacity and efficiency, and a valuable addition to studies on natural
genetic variation in photosynthesis. Therefore, in Chapter 2, co-authors and I ex-
pand the case for greater focus on exploring and exploiting natural genetic variation
in photosynthesis presented in this introduction. We discuss how we need to identify
which photosynthetic traits to target, first and foremost at the leaf level, if we are
to commit significant energies to increasing the photosynthesis of major crops. We
propose maximum photosynthetic rate (Pmax, or photosynthetic capacity) as an ex-
cellent trait for the improvement of crop photosynthesis, provided its genetic basis is
elucidated. To achieve this ambitious goal, we propose the use of naturally occurring
species with high photosynthetic capacity as models for exploring the physiological
and genetic basis of high photosynthetic efficiency. After reviewing literature for re-
ports of such species, we identify Brassicaceae species H. incana (L.) Lagr.-Foss.
as a promising candidate, and proceed to describe the basic biology, evolutionary
history, and photosynthetic characteristics of the species. Based on the number of
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highlighted positive characteristics, we conclude that H. incana has the potential to
be an excellent model species for studies aiming at understanding natural genetic
variation in photosynthetic light-use efficiency.

In Chapter 3, I lay the foundation for the use of H. incana as a plant model spe-
cies for studies on photosynthetic light-use efficiency. After confirming the species’
exceptional photosynthetic LUE and capacity by comparing it to a selection of relat-
ives from the Brassicaceae species, co-authors and I present the results of the H.
incana genome sequencing project, enabling comparative genomics and transcrip-
tomics. We describe how H. incana has extensively diversified from those of close
relatives Brassica rapa and Brassica nigra through large chromosomal rearrange-
ments, species-specific transposon activity, and differential retention of duplicated
genes. Considering the pivotal role of gene duplication in driving evolution of traits
improving plant performance in challenging environments, we investigate whether
variation in copy number for a selection of genes involved in photosynthesis and/or
photoprotection correlates with their expression in H. incana, B. nigra, and B. rapa,
and with the higher photosynthetic capacity of these species compared to that of Ara-
bidopsis thaliana. Being able to show that this holds true for six of nine tested genes,
and having excluded a general effect of overexpression of photosynthetic genes, we
conclude that the role of copy number variation on the expression of genes potentially
playing a role in photosynthetic light-use efficiency appears important and should be
subjected to a broader investigation. We also point out how such future investigations
will benefit from the constructed genome assembly and annotation of H. incana.

Following up on the suggestion of a greater focus on transcriptional patterns
of genes potentially related to photosynthetic light-use efficiency, in Chapter 4, I
present the results of a study conducted on the transcriptomes of H. incana, B. nigra,
B. rapa, and A. thaliana plants grown under contrasting low and high irradiance con-
ditions. After describing how I designed and constructed a growth system capable of
consistently and reliably growing plants with “super-natural” irradiance, i.e. resulting
in DLIs higher than reported anywhere so far, co-authors and I present report on the
results of the comparative analysis of gene expression we performed using a panpro-
teome to identify homology relationships between genes of the different species. We
report that as expected all four species actively regulate genes associated with the
photosynthetic process in response to high irradiance, and I describe unique gene
expression patterns specific to H. incana. We show how in certain cases H. incana
exhibits differential expression for specific genes not observed in the other species,
while in other cases the species achieves significantly higher transcript abundance,
sometimes independent of the irradiance treatment, via the simultaneous expres-
sion of multiple gene copies. Therefore, We conclude that H. incana has a number
of specific gene expression patterns resulting from high irradiance, and that these
patterns converge into three strategies: constitutive higher gene expression, higher
gene expression determined by multiple gene copies, and canonical differential gene
expression as a result of irradiance. Furthermore, We point out how the large data-
set generated within my study should be further analysed with focus shifting from
strictly photosynthetic genes to genes encoding to physiological processes such as
e.g. water and nutrients uptake that must be crucial in supporting high photosynthetic
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capacity.
Building on the comparative approach that has been the foundation of the work

described in previous chapters, in Chapter 5 I present the results of a phenomics-
enabled exploration of photosynthetic light-use efficiency and a set of potentially un-
derlying traits in a panel of ten Brassicaceae species representing key events in the
evolutionary history of the family. This research confirms that H. incana’s photosyn-
thetic light-use efficiency, measured as quantum yield of photosystem II or ΦPSII,
is higher than that of most species in the panel, while reporting the high photosyn-
thetic LUE of B. nigra, Brassica tournefortii, and Zahora ait-atta. Co-authors and I
furthermore describe how an analysis of twenty-one parameters encompassing six
classes of physiological and anatomical plant characteristics yielded an unexpected
correlation between ΦPSII parameters and stomatal counts, thus implying their role
in achieving high photosynthetic LUE. After discussing how this chapter presents
a number of novel methodologies to create and explore phenomics datasets, we
conclude that the dataset we generated on natural variation for photosynthesis and
underlying traits is a fundamental resource providing a foundation for future genomic
and transcriptomic dissection.

In the final chapter of this thesis, Chapter 6, I integrate all the findings described
in the previous chapters following two directions. First, I compile a description of
observed natural variation for photosynthesis and its light-use efficiency, and explain
how Hirschfeldia incana emerges as the current best performer within the family.
Then, I provide a unifying view of the results of my genomics and transcriptomics
investigations, and summarize the knowledge I have accumulated on the genetic al-
gorithm of high photosynthetic LUE. I then interpret all the findings of my work in
the context of the Leaf Economics Spectrum, speculating on additional components
of the photosynthetic algorithm of H. incana. Expanding on ecophysiological consid-
erations, I argue that key traits enabling high photosynthetic LUE can be identified
outside leaves, and make a case for a less leaf-centric perspective in photosynthesis
research. I then argue that the field of photosynthesis research, and its attemtps to
increase the yield of crops, will benefit from focusing more on non-crop species, such
as the one presented in this thesis. Finally, I reflect on why photosynthesis research
has not yet met the goal of crop yield improvement, and on what kind of perspective
change is required to enable to reach this goal. I conclude the chapter by listing
future directions for research stemming from the questions prompted by this work.
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Abstract

Despite research efforts toward improving crop photosynthetic energy conversion ef-
ficiencies over the past 40 years, photosynthetic efficiencies remain far from their
theoretical maxima. A major challenge has been that plant photosynthesis is a com-
plex process, controlled by many underlying genetic factors and highly dynamic in re-
sponse to short-term environmental changes. Recent approaches to improving pho-
tosynthesis involved model-based identification of the bottlenecks in photosynthesis
followed by their genetic modification (GM). While these approaches were successful
and inspirational, their dependency on the use of GM techniques may restrict their
implementation in some jurisdictions. We therefore suggest greater research focus
on a different, yet complementary, approach to improving photosynthetic efficiency:
the exploration and exploitation of natural genetic variation in photosynthesis. A sub-
stantial improvement in phenotyping and genotyping technology over the past dec-
ade has highlighted natural variation in photosynthetic sub-traits for crop and model
species. However, a comprehensive understanding of all the factors responsible for
photosynthetic limitations is still lacking. We therefore propose the use of high pho-
tosynthetic capacity species as models for the exploration of the physiological and
genetic basis of high photosynthetic efficiency. While most high photosynthetic ca-
pacity species are not suitable as models due to complex genetics and evolutionary
distance from crops, we have identified Brassicaceae species Hirschfeldia incana
(L.) Lagr.-Foss as a promising candidate. In this perspective paper, we describe and
advocate the use of H. incana as a model for the exploration of high maximum CO2
assimilation rates (Pmax) found in some C3 species. We describe the basic biology
and evolutionary history of the species and report preliminary data on its photosyn-
thetic characteristics. Our findings suggest H. incana is an excellent model species
for studies aiming at understanding natural genetic variation in photosynthetic effi-
ciency.
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2.1 Introduction

Improving crop plant photosynthesis was first proposed about 40 years ago (Aus-
tin, 1989) but since then progress in realizing this goal has been limited. A major
hurdle to progress has been the genetic and physiological complexity of photosyn-
thesis and the difficulty of phenotyping for photosynthesis on a large scale. High-
throughput photosynthetic phenotyping has been a challenge, creating one of the
major bottlenecks to progress in breeding for better photosynthesis. Only in the last
decade has the development of large-scale, high-throughput photosynthetic pheno-
typing technologies and advances in genotyping techniques allowed researchers to
begin to understand the genetics underlying variation in photosynthetic traits (van
Bezouw et al., 2019). Improvements in portable gas analysis systems now allow the
routine measurement of assimilation in the field, while high-throughput phenotyping
techniques—usually based on chlorophyll fluorescence—are now available for mass
measurement. Here, “high-throughput” means taking a measurement of a photosyn-
thetic property on several hundred plants per species multiple times per day rather
than in the order of 10 to 100 plants per day which is typical when using portable
gas analysis systems. These technological improvements in phenotyping have de-
pended on our enhanced understanding of photosynthetic physiology, particularly in
the use of chlorophyll fluorescence-derived parameters. More generally, there has
also been an increase in larger scale research into the genetics and scope of natural
variation of photosynthesis of the kind needed to exploit natural variation in photo-
synthesis as a path to crop yield improvement (Dann and Leister, 2017; Flood et al.,
2011; Theeuwen et al., 2022). Evidence of natural variation in photosynthetic sub-
traits has now been reported for major staple crops such as wheat (Driever et al.,
2014; Molero and Reynolds, 2020), rice (Acevedo-Siaca et al., 2020a,b; Gu et al.,
2014; Lin et al., 2018; Wang et al., 2015), maize (Strigens et al., 2013), soybean
(Burgess et al., 2020; Gilbert et al., 2011; Lopez et al., 2019), potato (Prinzenberg
et al., 2018; Xu et al., 2021), and sorghum (Ortiz et al., 2017), as well as for the
model species Arabidopsis thaliana (Prinzenberg et al., 2020; van Rooijen et al.,
2015, 2017). Even for tree species, such as Fagus sylvatica (Aranda et al., 2014),
whose photosynthetic properties are often less intensively studied than those of crop
plants and model species, there is growing interest in the natural variation of their
photosynthetic properties.

Photosynthesis is a complex process with many potential underlying genetic fac-
tors, and much remains to be discovered about the naturally occurring variability of
the process (van Bezouw et al., 2019). In particular, photosynthesis has been extens-
ively studied and understood as a steady-state process, while the kinetics of the pho-
tosynthetic response to a short-term change in the environment has been largely ig-
nored (with some exceptions, e.g., Harbinson and Woodward (1984); Pearcy (1990)).
Recently, it has been more widely recognized that slow, limiting responses to environ-
mental fluctuations over various timescales (typically ¿1 s) can result in sub-optimal
CO2 assimilation; this is particularly relevant for photosynthesis in the field, where it
is now recognized that photosynthesis may only rarely be at steady-state (Lawson
et al., 2012). The desire to increase future crop yield sustainably further complic-
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ates the challenge of yield improvement, so in addition to the obvious importance of
photosynthetic light-use efficiency (LUE or quantum yield), the efficient use of wa-
ter (Franks et al., 2015; Leakey et al., 2019; Richards et al., 1993), nitrogen (Hirel
et al., 2007; Raun and Johnson, 1999; Swarbreck et al., 2019), phosphorous (Heuer
et al., 2017; Veneklaas et al., 2012), and micronutrients (Dimkpa and Bindraban,
2016; Fageria et al., 2008; Monreal et al., 2016; Welch and Graham, 2002) for pho-
tosynthesis are increasingly recognized as important and genetically complex traits
influencing crop production sustainability. Inevitably, traits connected to the efficien-
cies of nutrient and water use will come into greater focus as part of improving crop
yields.

2.2 Photosynthetic improvement potential

As a process in vascular plants, oxygenic photosynthesis is relatively inefficient (Car-
dona et al., 2018). This inefficiency is a major factor contributing to a realized yield
productivity below the theoretical maximum in crop species (Zhu et al., 2010). The
energy conversion efficiency of C3 and C4 pathways—including that of bioenergy
crops—is only 2.4% (4.6% theoretical maximum) and 3.7% (6% theoretical max-
imum) based on the total incident solar radiation intercepted by a leaf canopy (Beadle
and Long, 1985; Monteith, 1977; Piedade et al., 1991; Zhu et al., 2008). This photo-
synthetic inefficiency, while highlighting productivity gaps between realized and the-
oretical limits, also highlights the scope for future research toward improving photo-
synthesis potential. Given these gaps, it is increasingly argued that one of the best
means available to allow the World food supply to meet the projected increases in
global food demand is through the improvement of the photosynthetic performances
of crop plants (Long et al., 2006; Murchie et al., 2009; Parry et al., 2011; Zhu et al.,
2008, 2010). This will aid with meeting increased future demand for food implied by
a global population increase alongside economic growth (Tilman et al., 2002), which
remains a significant challenge; it is expected that crop yields will need to increase
by up to 110% (Tilman et al., 2002; Zhu et al., 2010) and this should be achieved
without further expansion of the world’s land area dedicated to agricultural production
otherwise we risk further loss of biodiversity.

Improving photosynthesis as a means to improve crop yield was first considered
several decades ago (Gifford and Evans, 1981; Zelitch, 1975), but at that time the
technical and scientific barriers to achieving this goal were insurmountable and the
idea essentially lapsed. During the last two decades, however, the idea that improve-
ments to photosynthesis will be our best biological option for significantly improving
crop yields has come to the fore (Evans, 2013; Lawson et al., 2012; von Caemmerer
and Evans, 2010; Zhu et al., 2010). In 2012, the “Realizing Increased Photosyn-
thetic Efficiency” (ripe.illinois.edu) project initiative was formed, demonstrating an im-
portant commitment to this endeavor. While there has been some scientific debate
on whether improved leaf-level C3 photosynthesis would even translate into yield
increases (Sinclair et al., 2004, 2019), evidence from CO2 enrichment studies and
genetic modification (GM) approaches support the idea that higher photosynthetic
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efficiency will translate to better yields (Long et al., 2006; Mitchell and Sheehy, 2006;
Sheehy et al., 2008; von Caemmerer and Evans, 2010). Additionally, increased atmo-
spheric CO2 mole fraction or supplementary lighting can achieve improved photosyn-
thesis in protected cultivation, such as greenhouses, resulting in higher yields. With
field-grown crop plants, the scope for environmental modification to increase yield is
limited and therefore significant crop yield gains are likely to be more dependent on
genetic approaches. This implies that we need to find or create genetic diversity that
is coupled with photosynthesis variation.

2.3 How to improve photosynthesis

Recent approaches to improving photosynthesis have been guided by model-based
identification of the bottlenecks in photosynthesis (Poolman et al., 2000; South et al.,
2019; Zhu et al., 2010). These approaches have been successful and inspirational,
but they depend on the use of GM techniques (Driever et al., 2017; Kromdijk et al.,
2016; López-Calcagno et al., 2020; Simkin et al., 2015; South et al., 2019). The
regulatory framework on the use of GM and similar novel plant breeding techniques
(NPBT), however, can be restrictive and the commercial cultivation of NBPT-based
cultivars has been highly limited in some jurisdictions such as the European Union.
For these jurisdictions, an alternative to NPBT-based crop improvement is needed,
such as conventional plant breeding exploiting naturally occurring trait variation. In
addition to regulatory issues, GM (and similar) normally depends on an approach
involving the intelligent creation, redesign, or modification (i.e., engineering) of pho-
tosynthetic traits. In general, this approach requires a thorough knowledge of the
physiological or developmental pathway targeted for improvement. The NPBT route
to improvement is therefore likely to be limited because many photosynthetic traits
are not yet sufficiently understood for NPBT approaches to be able to be applied
successfully.

Alongside GM research, we therefore suggest greater research focus on a differ-
ent, yet complementary, approach to improving photosynthetic efficiency: the explor-
ation and exploitation of natural genetic variation in C3 photosynthesis. The natural,
intraspecies variation for photosynthetic traits in species that can be crossed with
crop plants could be used to improve crop photosynthesis via conventional plant
breeding routes, resulting in better photosynthetic assimilation rates, and, ultimately,
a higher yield potential (Lawson et al., 2012; Zhu et al., 2010). Making use of this vari-
ation in conventional breeding is more efficient if the genes or quantitative trait loci
(QTLs) underpinning the variation for photosynthetic traits have been identified. Such
genes can be further studied to understand the biology explaining the variation and
can become a target for marker-assisted breeding, gene editing or GM approaches.
On a broader scale, the physiological diversity of photosynthesis within plants and
algae represents a collection of templates or models for particular traits, such as
a very high maximum CO2 assimilation rate or exceptional qE (an important photo-
protective mechanism acting in Photosystem II, PSII). Unraveling the physiological
and genetic bases of exceptional traits is a route to building more energy-efficient
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photosynthesis, and assists in understanding the physiological and genetic limits of
genotypes with phenotypic deficiencies, such as normal maximum CO2 assimilation
rates or normal qE.

2.4 Leaves, photosynthesis, and traits

The leaf is the organizational level of the plant at which the properties, or traits, of
photosynthesis, and particularly the environmental dependency of these traits, are
commonly assessed. These leaf-level properties arise from an underlying, highly
coordinated developmental process that builds and maintains the photosynthetic ma-
chine embedded in the leaf mesophyll cells. This process also gives rise to larger-
scale leaf-structural properties that provide the diffusive pathways for efficient gas ex-
change, and the vascular tissues essential for the transport of water, nutrients, and
assimilates. Photosynthesis is a highly flexible process that is strongly influenced
in the short to long term by the environment in ways and extents that depend on
genetic differences between individuals and species. This genetic control of photo-
synthetic traits, however, is generally not understood despite the thoroughness with
which variation in photosynthetic traits is sometimes understood at the physiological
level.

Maximum CO2 assimilation rate (Pmax) is a good example of a leaf-level photosyn-
thetic trait. In vascular plants, Pmax depends on a range of other sub-traits, such as
high rates of electron transport and photosynthetic metabolism, and high stomatal
and mesophyll conductances for CO2 diffusion. These broad sub-traits can them-
selves be further refined into yet more specific sub-traits and the scaling from the
cellular level of proteins and membranes to the whole leaf is reasonably well un-
derstood. However, the genetic basis for Pmax—its genetic algorithm—is not known
despite this trait being relatively well understood from a photosynthetic physiology
perspective. Increasing Pmax through marker-assisted selection breeding, therefore,
is not currently feasible (although breeding based on phenotype selection alone is
possible). Identifying the genes responsible for variation in Pmax would make marker-
assisted breeding possible, and would also make available targets for GM or gene
editing approaches.

Apart from its value in breeding, understanding the genetic basis of variation
in photosynthetic traits is also a way to understand the developmental process that
builds the photosynthetic machinery and delivers the diverse range of photosynthetic
phenotypes encountered in the natural world. The evolution of photosynthetic traits
is recorded in these—as yet largely unknown—genetic underpinnings of photosyn-
thetic variation. Understanding the genetic basis of natural variation in plant pho-
tosynthesis, therefore would also give us access to the evolutionary history of pho-
tosynthetic variation in plants, and to the adaptive mechanisms that allow plants to
successfully occupy specific environmental niches (Flood, 2019; Flood et al., 2011).
This knowledge is of particular significance for agriculture given the extent and rate
of environmental change and the rapidly growing human population that demands
crop plant phenotypes to be creatively adapted.
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Technological advances in photosynthetic measurement equipment and techniques
have assisted in our understanding of photosynthetic physiology and its variation by
allowing for highly integrated and detailed measurement of photosynthesis, includ-
ing deep-phenotyping and high-throughput phenotyping. Deep phenotyping makes
possible the analysis and identification of photosynthetic bottlenecks under diverse
environmental/experimental conditions through the combined application of a range
of destructive and non-destructive measurement techniques. The same chlorophyll
fluorescence measurements that are often used in deep-phenotyping strategies are
typically used in high-throughput phenotyping for photosynthetic traits (Flood et al.,
2016, 2020; Furbank and Tester, 2011). A high-throughput phenotyping approach
can therefore provide the extensive data needed for the identification of the QTLs
contributing to variation in trait properties. These phenotyping approaches, together
with advances in genomics, make it possible to genetically compare related species
with differing photosynthetic traits, and to understand the changes leading to different
photosynthetic phenotypes. What remains is the identification of model species on
which to effectively analyze complex physiological traits like photosynthesis based
on trait function and genetics.

2.5 Photosynthetic limitation

The photosynthesis-irradiance response provides a useful handle to understand and
quantify multiple limitations acting on a leaf. When crops and other plant species
are exposed to increasing irradiances, leaf-level photosynthetic rates tend to be-
come light-saturated well below the typical, full-sunlight levels of 2000 µmol m−2 s−1

or more encountered under natural conditions (Figure 2.1) (Gitelson et al., 2015;
Gu et al., 2017; Monneveux et al., 2003; Murchie et al., 1999; Turner et al., 2003).
At strictly light-limiting irradiances, photosynthetic LUE is maximal; LUE is defined
here as the ratio between gross photosynthesis (Agross, µmol m−2 s−1) and absorbed
or incident photosynthetic photon flux density (µmol m−2 s−1). Maximum, light-limited,
photosynthetic efficiency is a complex trait and varies, inter alia, with the wavelengths
of light used, photosynthetic metabolism (especially the activity of photorespiration
Ehleringer and Björkman (1977)), state-transitions the presence of non-photosynthe-
tic pigments (Hogewoning et al., 2012), and photodamage to photosystems I and II
(e.g., Kao and Forseth (1992); Sonoike (2011)).

At irradiances above the strictly light-limited range (for a typical C3 crop plant,
up to about 100 - 200 µmol m−2 s−1) other physiological and metabolic limitations
become significant. These limitations result in a decline in overall LUE from the light-
limited maximum, and ultimately in the light saturation of photosynthesis. An implica-
tion of this is that in the absence of these constraints the photosynthesis–irradiance
relationship would be linear with a gradient equal to the light-limited slope of the pho-
tosynthesis–irradiance relationship (Figure 2.1). Although the underlying biochem-
ical components and mechanisms of achieving photosynthesis are highly conserved
among C3 species, the light-saturated assimilation rates arising from the loss of pho-
tosynthetic LUE with increasing irradiance can vary considerably among genotypes
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Figure 2.1: A non-rectangular hyperbola light response curve of gross photosynthetic
rate (Ag) with increasing irradiance for a typical, low-light adapted C3 plant leaf. “Low
light” here refers to an irradiance of 200 µmol m−2 s−1. The range of irradiances shaded in grey
is where photosynthesis is significantly light-limited. The region between the extrapolation of
the light-limited phase (solid line) and the assimilation response (dotted dash response curve
fit estimate) is where photosynthetic efficiency declines. Understanding this natural variation in
efficiency loss at saturating irradiances is key to providing research handles for future genetic
research.

and species. While a higher Pmax arises mainly from the ability to sustain a higher
LUE at very high irradiances, this high LUE at high, near light saturating irradiances
will be associated with higher light-use efficiencies and therefore assimilation rates
at lower irradiances above the strictly light-limited region of the photosynthetic light-
response curve (Harbinson and Yin, 2017). If the high Pmax, high LUE of high light-
adapted leaves is paralleled by a relatively high Pmax, and thus a still high LUE,
following adaptation to lower irradiances found deeper in the canopy, the high Pmax
phenotype will benefit not only the assimilation in those leaves exposed to a full irra-
diance but also those in more shaded parts of the canopy.

A sustained high rate of photosynthesis, which implies a high LUE for photosyn-
thesis at high irradiances, requires that all of the supply and demand side processes
can support high fluxes. A high light-saturated C3 photosynthetic rate, in terms of a
CO2 fixation rate, is usually around 30 µmol m−2 s−1, while C4 leaves typically achieve
rates of 30 - 60 µmol m−2 s−1. Some C3 leaves are capable of assimilation rates of
up to 65 µmol m−2 s−1, which is better than most C4 crops, but how these leaves



Hirschfeldia incana as a model species 41

achieve such high assimilation rates in terms of either their physiology or genetics
is not clear. The potential flux limitations to steady-state C3 leaf photosynthesis are
numerous but can be summarized into four main groups of processes. Assuming
that the product of photosynthesis is mesophyll cell carbohydrate, these four groups
can be further split into three supply-side processes and one demand-side process.
The main supply-side processes are the diffusive transport of CO2 via the stomata
and mesophyll conductive paths to the site of fixation; the light reactions with elec-
tron transport providing the reductant (NADPH) and ATP for the metabolic processes
of assimilation; and photosynthetic metabolism which fixes CO2 and produces car-
bohydrate. The demand-side process is the transport of carbohydrates to the sink
tissues and their use by the sinks. Leaves with a high photosynthetic capacity must
be able to develop high conductances for the gaseous diffusion of CO2, a high meta-
bolic capacity, and high rates of electron transport on the supply side, along with
high carbohydrate transport and sink activity to allow for sustained high photosyn-
thetic LUE at high irradiances. High photosynthetic capacity exemplar leaves offer
models within which to explore the physiological and genetic basis of high Pmax.

2.6 Naturally occurring high-photosynthetic capacity spe-
cies

A. thaliana became the model C3 plant species for plant research over the last
40 years mainly because it has many desirable characteristics for experimentation.
These include a short regeneration time, a small plant size, a limited need for growth
facilities, prolific self-fertilization, and an increasingly multidisciplinary research en-
vironment (Koornneef and Meinke, 2010). Despite the well-documented merits and
benefits of research focused on A. thaliana, there have been concerns that the focus
on A. thaliana may lose impetus as plant science research funding and community
interest in the species decline (Koornneef and Meinke, 2010). Wild-type A. thaliana
is of limited applicability in research directed toward enhancing C3 photosynthesis
by increased photosynthetic capacity because of its unexceptional photosynthetic
capacity; light-saturated assimilation rates of 6.5 - 12 µmol m−2 s−1 have been re-
ported for A. thaliana (Kaiser et al., 2016; Tanaka et al., 2013) grown at the low
growth irradiances (100 - 200 µmol m−2 s−1) typically used for this species under con-
trolled environment conditions. When grown at high irradiances (1800 µmol m−2 s−1)
A. thaliana can achieve assimilation rates of 30 µmol m−2 s−1 (Garassino et al., 2022),
which while high when compared to results obtained from this species under com-
monly used irradiances, are not exceptional compared to some other C3 species.
Evidently, although A. thaliana is an excellent and well-researched general C3 plant
model, it lacks the photosynthetic properties that would make it a candidate model
for exceptional Pmax.

Among C3 plants, sustained high LUE at high irradiances, resulting in a Pmax
of over 40 µmol m−2 s−1, have only been reported for a few species. The majority
of these are annuals endemic to desert environments of the South-Western USA,
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where a high Pmax is attributed to an adaptation to very short growing seasons in a
high-light environment (Seemann et al., 1980). (Nobel, 1991) calculated a theoret-
ical maximum net photosynthetic rate for C3 plants of about 55 µmol m−2 s−1 at an
irradiance of 2000 µmol m−2 s−1. (Werk et al., 1983), however, reported the highest
photosynthetic capacity for a C3 plant of 65 µmol m−2 s−1 by Palafoxia linearis, a
winter desert annual, grown in a controlled environment. The C3 winter desert an-
nuals Camissonia claviformis and Camissonia brevipes (currently part of the Chylis-
mia genus) achieve an assimilation rate of about 60 µmol m−2 s−1 at an irradiance of
2000 µmol m−2 s−1 (Ehleringer et al., 1979; Longstreth et al., 1980; Seemann et al.,
1980). Other C3 species have been reported to have high assimilation values of
42 – 55 µmol m−2 s−1 (Nobel, 1991) at an irradiance of 2000 µmol m−2 s−1; even at
this high irradiance, these assimilation rates were not fully light-saturated. Light-
saturated leaf photosynthetic assimilation rates for a typical cereal crop, for example,
wheat, are only 20 – 30 µmol m−2 s−1 under physiologically favorable conditions. The
high photosynthetic capacities of the C3 desert annual species referred to are com-
parable to, and even exceed, those of many C4 crop species, which typically pro-
duce biomass more efficiently than C3 crop plants on an intercepted light basis (von
Caemmerer and Evans, 2010). The C4 species Amaranthus palmeri (considered a
problem weed in some regions), however, can achieve an assimilation rate of nearly
80 µmol m−2 s−1 when measured at an irradiance of 80 µmol m−2 s−1, an optimal tem-
perature of 42 °C, and at natural ambient CO2 concentrations (Ehleringer, 1983) -
the highest known photosynthetic assimilation rate for any plant species (although
this claim must be tempered by the lack of any extensive, focused effort to find better
performing species). Despite the high assimilation rate potential revealed by these
C3 and C4 species, many of the high photosynthetic capacity species mentioned
here would not qualify as good experimental plant models. Good model plants de-
mand simple genetics and a close genetic distance from major crop plant species
or another genetically well-researched species; for example, neither A. palmeri (Am-
aranthaceae) nor Camissionia/Chylismia species (Onagraceae), share close phylo-
genetic relations with major commercial crops. Furthermore, they have scarce cur-
ated germplasm and are poorly studied genetically. To understand the genetic and
physiological basis of high LUE at high irradiances, a model species that has high
assimilation rates at high irradiance and is genetically close to crop or model plant
species is therefore needed. Hirschfeldia incana appears to offer that special com-
bination of physiological and genetic properties that support its candidacy as a model
species. We need to recognize however that while H. incana may be the most con-
venient, suitable model species for the very high photosynthetic rate phenomenon,
we should continue comparing this with other species that also have very high pho-
tosynthetic rates; there may be different routes to the same end.

2.7 Hirschfeldia incana

H. incana (L.) Lagr.-Foss. (Figure 2.2) is a nitrophilous and thermophilous winter
annual or biennial C3 species. It is the sole member of a monophyletic genus and
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Figure 2.2: The morphology of Hirschfeldia incana. (a) Top view of a four weeks-old plant
grown under artificial lighting in a controlled indoor environment, (b) typical inflorescence, (c)
maturing siliques, (d) micrograph of ripe seeds.

is native to the Mediterranean basin and the Irano-Turanian floristic region (Man-
afzadeh et al., 2017). Due to introductions elsewhere, the distribution of H. incana
extends to cool and warm-temperate climate areas globally (Siemens, 2011), with
wild populations concentrated in the sub-tropical to temperate regions of the world
(Figure 2.3).

In these regions, H. incana occurs as a pioneer species in colonies often of only a
few individuals or as solitary plants on disturbed sites such as roadsides and ditches
(DiTomaso and Healy, 2007). It shows rapid, sustained growth over a short period,
and is commonly seen as a weedy, invasive species (Lee et al., 2004). H. incana
is a prolific bearer of seeds, which are contained in numerous siliques. About 3–5
seeds per locule develop along many long racemes (DiTomaso et al., 2013). Seeds
obtained from a wild population at Oued El Himer in Eastern Morocco were 1.16
±0.05 mm in length and 0.86 ±0.03 mm in width (n = 10, unpublished observation),
and seeds are generally highly viable at maturation (Gresta et al., 2010), germinat-
ing rapidly within a few days without requiring any seed pre-treatment (unpublished
observation). Rapid germination was reported at 25–30 °C in light conditions and
20–25 °C in darkness by (Gresta et al., 2010), while we have found high germina-
tion rates in fresh seed material exceeding 90% at 20 °C in darkness and 23 °C in
light. Seeds of H. incana store well, consistent with its classification as a weedy spe-
cies; when stored under non-ideal seed storage conditions of 23 °C and at a relative
humidity of 50%, we found most H. incana seeds remained viable for more than 5
years. Under favorable growth conditions, H. incana has a relatively short reproduct-
ive cycle, completing germination to flowering in about 5–8 weeks. The maturation of
the first seed set occurs approximately 3–4 weeks after flowering. Although H. incana
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Figure 2.3: The global distribution of wild populations reported for Hirschfeldia incana
(various sources, see Quiroz (2015)). Orange markers indicate approximate locations where
at least one individual has been reported in the wild.

is considered self-incompatible due to protogyny (Al-Shehbaz, 1977), self-fertilization
has been reported (Lee et al., 2004) and self-fertilized progeny can be produced with
hand pollination. Seedlings of H. incana establish and grow well in pots under neut-
ral white LEDs or fluorescent lighting commonly used in growth chambers, and they
thrive under warm conditions (Chronopoulos et al., 2005).

As a member of the Brassicaceae, H. incana is a close relative of economic-
ally important vegetable and oil-seed crop species (FAO, 2022), including Brassica
rapa, Brassica oleracea, Brassica napus, Brassica nigra, and Camelina sativa (Arias
and Pires, 2012; Huang et al., 2016; Warwick and Black, 1991). H. incana, there-
fore, belongs to one of the most well-studied plant families with regard to phylo-
geny, physiology, genetics, and genomics (Al-Shehbaz, 2012; Arias and Pires, 2012;
Franzke et al., 2011; Nikolov and Tsiantis, 2017), and which has been subject to
in-depth comparative genomics studies (Koenig and Weigel, 2015; Schranz et al.,
2006; van den Bergh et al., 2016). The fairly close phylogenetic relationship shared
between H. incana and A. thaliana makes it feasible to swap tools and knowledge
developed for either species. H. incana has a somatic chromosome number of 2n =
14 (Anderson and Warwick, 1999; Rollins, 1981), and an estimated genome size of
about 450 Mb (Garassino et al., 2022), which modern genomics technologies make
accessible. The evolutionary history that H. incana shares with its relatives involve
a series of ancient whole genome duplication and triplication events interspersed
with diploidization events (Franzke et al., 2011). This complex evolutionary history
is believed to have resulted in a great potential for the emergence of new genetic
functions or the preferential retention of favorable genes in Brassicaceae species
exposed to different environmental constraints, thus resulting in their adaptation to
these environments (Cheng et al., 2014; Qi et al., 2021; Zhang et al., 2021). The ge-
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netic blueprint for the evolution of high assimilation rate characteristics of H. incana
may have arisen from the preferential retention or the evolution of specific photosyn-
thetic efficiency-related genes because of its evolution in dry, hot, and sunny climates
with ephemeral, low competition habitats.

The widespread distribution of H. incana, combined with its large seed production
and ease of germination and growth, allows for the easy building of diverse panels, as
demonstrated by the fact that without any targeted collection campaign our laborat-
ory was able to obtain more than 30 accessions from three continents. Intercrossing
between these accessions proved to be easy, and the resulting progeny can easily
be propagated, implying that the construction of mapping populations in H. incana
is a feasible task. Hybridization of H. incana has been shown to be possible with
commercial Brassica crops such as B. napus (Darmency and Fleury, 2000; Lefol
et al., 1995; Siemens, 2002) and to some extent B. oleracea (Quiros et al., 1988), on
other Brassicaceae species such as B. nigra (Quiros et al., 1988; Salisbury, 1991)
and B. carinata (Mohanty et al., 2007), as well as with very close relatives such as
Erucastrum elatum and Erucastrum virgatum, based on our own experience. Thus,
the introgression of genes underlying the photosynthetic efficiency of H. incana ap-
pears possible, with the best candidate for introgression being B. napus (Devos et al.,
2009).

2.8 Photosynthetic carachteristics of H. incana

H. incana exhibits exceptional C3 photosynthetic characteristics (Canvin et al., 1980).
A photosynthetic capacity of 45 to 55 µmol m−2 s−1 was attained by young, fully ex-
panded leaves when measured under 21% O2, 400 ppm CO2 and 70% relative hu-
midity (Figure 2.4a). Although these rates are not as high as the highest assimilation
rates recorded for Camissionia/Chylismia species or Palafoxia linearis (Ehleringer
et al., 1979; Longstreth et al., 1980; Seemann et al., 1980; Werk et al., 1983), H.
incana has the advantage of comparatively simple genetics and being a member of
the Brassicaceae family. Although high photosynthetic capacity was recently repor-
ted for another species from the Brassicaceae family, B. rapa (Taylor et al., 2020), H.
incana currently represents the upper limit for what might be the highest achievable
photosynthetic capacity in the family. While in an ideal scenario one would like to
have a model species with large intra-species variation for Pmax under similar growth
conditions, this has not been reported for any plant species to date. Nevertheless,
a degree of natural variation in photosynthetic capacity was already observed for
H. incana (Garassino et al., 2022), and the aforementioned widespread distribution
of the species across geographical locations and climates suggests that more vari-
ation can be easily accessed, potentially allowing for the reporting of even higher
photosynthetic capacity.

The rate constant for linear electron transport (measured using the dark relaxa-
tion of the 820 nm absorbance change as a measure of kinetic limitation imposed by
the photosynthetic electron transport chain (Baker et al., 2007)) generally had a t1/2 of
1.7–2.5 ms (equivalent to a rate constant of 272–230 s−1) — significantly higher than
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values obtained, for example, pea and spinach leaves (Harbinson and Hedley, 1989;
Schreiber et al., 1989). The proton efflux rate constant via the ATPase (measured
via the 520 nm light-induced absorbance change (Baker et al., 2007)) in H. incana
leaves is nearly constant at 80 s−1 in the irradiance range 1250–2400 µmol m−2 s−1.

The decline of ΦPSII and ΦPSI with increasing irradiance was found to be modest
for H. incana, decreasing to only 0.43 (ΦPSII) and 0.61 (ΦPSI) at an irradiance of
2400 µmol m−2 s−1 (Figure 2.4b). Similarly, the decline of Fv/Fm and Fv’/Fm’ with
irradiance was modest up to a saturating irradiance of 2400 µmol m−2 s−1 (Figure
2.4c). The relationship between ΦPSII and ΦPSI with increasing irradiance was also
relatively linear, a finding consistent with results obtained from other species (Figure
2.4d). Therefore, the photosynthetic apparatus in H. incana leaves is remarkably
robust to high irradiances, exhibiting little to no physiological stress or photoinhibition
at measurement irradiances of up to 2400 µmol m−2 s−1 - levels higher than could
be expected on a cloudless day at noon in the Equator during an equinox (˜2200
µmol m−2 s−1) or for horizontal locations at 37°N during a summer solstice solar noon
(˜2130 µmol m−2 s−1) (Ritchie, 2010). In our hands, juvenile H. incana plants could be
exposed for up to 12 h a day to 2400 µmol m−2 s−1 or for 16 h to 2000 µmol m−2 s−1

without detectable signs of physiological stress or a decrease in the dark-adapted
Fv/Fm values. These exceptional high light performance and tolerance characteristics
of H. incana support its candidacy as a model C3 species in research focused on
improving C3 crop photosynthesis.

2.9 Concluding thoughts

A. thaliana did and continues to play a pivotal role as a model plant species in
wide-ranging ecophysiological, photosynthesis, and genetic research. However, for
research directed at bettering our understanding of the genetic, anatomical, and
physiological adaptations required for sustained high rates of photosynthesis in a C3
plant, H. incana can become a valuable complementary plant model. It is capable
of withstanding, growing under, and photosynthetically making efficient use of very
high irradiances. The diploid genetics and position within the Brassicaceae make H.
incana genetically simple and allow the wealth of genomic information that exists for
this family to be leveraged. In particular, the broad depth of genetic and physiolo-
gical knowledge, and the techniques, available for A. thaliana, another Brassicaceae
species, further strengthen the case for using H. incana as a high-light tolerant, high
assimilation rate model species. In our hands the plant has also proven easy to grow
in both greenhouses and growth cabinets — the greatest challenge was increasing
fertilization and watering regimes to meet the high demands of the plant. At least in
Western Europe, the seed is available from naturalized plant populations, although
currently no diversity panels, or similar, exist for the species. We expect that more
species with exceptional photosynthesis traits like H. incana will be established as
models, which can collectively aid our understanding of how these traits function,
and how they emerge from genetic specialization.
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Figure 2.4: Photosynthetic characteristics of Hirschfeldia incana. All measurements con-
ducted at 21% O2, 400 ppm CO2 and 70% relative humidity, with a 660 nm spectral peak
actinic and chlorophyll fluorescence excitation light source, for a representative, young, fully
expanded H. incana leaf grown under 1800 µmol m−2 s−1 PAR irradiance. (a) Gross photosyn-
thetic assimilation rate (Ag) (#) and a fit estimate of the response to irradiance using a non-
rectangular hyperbolic equation (Acock et al., 1976; Thornley, 1976). (b) ΦPSI (■) and ΦPSII
(#) with increasing irradiance. (c) Fv/Fm (single dark-adapted measurement), and Fv’/Fm’
(light-adapted measurements) with increasing irradiance. (d) Operating efficiencies of pho-
tosystems PSI (ΦPSI) and PSII (ΦPSII) with increasing irradiance.
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Abstract

Photosynthesis is a key process in sustaining plant and human life. Improving the
photosynthetic capacity of agricultural crops is an attractive means to increase their
yields. While the core mechanisms of photosynthesis are highly conserved in C3
plants, these mechanisms are very flexible, allowing considerable diversity in photo-
synthetic properties. Among this diversity is the maintenance of high photosynthetic
light-use efficiency at high irradiance as identified in a small number of exceptional
C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an ex-
ceptional species, and because it is easy to grow, it is an excellent model for studying
the genetic and physiological basis of this trait. Here, we present a reference gen-
ome of H. incana and confirm its high photosynthetic light-use efficiency. While H.
incana has the highest photosynthetic rates found so far in the Brassicaceae, the
light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra
are also high. The H. incana genome has extensively diversified from that of B. rapa
and B. nigra through large chromosomal rearrangements, species-specific transpo-
son activity, and differential retention of duplicated genes. Duplicated genes in H.
incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotec-
tion show a positive correlation between copy number and gene expression, provid-
ing leads into the mechanisms underlying the high photosynthetic efficiency of these
species. Our work demonstrates that the H. incana genome serves as a valuable
resource for studying the evolution of high photosynthetic light-use efficiency and
enhancing photosynthetic rates in crop species.
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3.1 Introduction

Photosynthesis is the biophysical and biochemical process that sustains most life on
planet Earth. The most common form of photosynthesis, oxygenic photosynthesis,
uses solar energy to convert the inorganic carbon dioxide (CO2) to organic carbon,
typically represented as a carbohydrate, releasing molecular oxygen (O2) from water
in the process. Terrestrial plants provide by far the most conspicuous example of oxy-
genic photosynthesis (referred to as photosynthesis from now on for brevity) and are
responsible for about 50% of the primary production of oxygen in the biosphere, with
marine production by eukaryotic algae and cyanobacteria comprising the other 50%.
Agriculture depends on primary production by plants, so expanding our knowledge
of photosynthesis is crucial if we are to meet many of the pressing global challenges
faced by mankind.

One of these challenges is the need to substantially increase the yield of agricul-
tural crops to meet the increasing demand not only for food and fodder, but also for
fibers and similar plant products, and organic precursors for the chemical industry
as it transitions away from fossil carbon sources. A major yield-related trait is the
conversion efficiency of absorbed solar irradiance to biomass (ϵc; Long et al. (2006)),
a parameter which is strongly influenced by the light-use efficiency of photosynthesis.
As light intensity, or irradiance, increases, the photosynthetic light-use efficiency of
leaves and other photosynthetic organs decreases, which leads ultimately to the
light-saturation of photosynthesis (Genty and Harbinson, 1996; Murchie et al., 1999;
Monneveux et al., 2003; Turner et al., 2003; Gitelson et al., 2015; Gu et al., 2017).
Once light-saturation is reached, any additional light will not lead to a further in-
crease in the photosynthetic rate and may even be detrimental to photosynthesis.
The threshold for light saturation generally lies far below the maximum level of irra-
diance experienced in the field or greenhouse (Zhu et al., 2010) and for most C3
crops this light saturation phenomenon is an aspect of their photosynthesis which
remains to be increased in order to increase yield. Improving the photosynthetic
light-use efficiency of crop plants thus paves the way towards increasing their ϵc and
ultimately their yield (Flood et al., 2011; Furbank et al., 2019; Lawson et al., 2012;
von Caemmerer and Evans, 2010; Zhu et al., 2010), as recently shown in soybean
(Glycine max ; De Souza et al. (2022)).

The means with which to reduce the loss of photosynthetic light-use efficiency in
crop plants might already exist in nature. Most temperate-zone crop species, along-
side tropical crops species like rice (Oryza sativa), make use of the C3 photosyn-
thetic pathway, which is the original and ancestral photosynthetic pathway in vascular
plants, with the alternative CAM and C4 pathways having evolved as an adaptation to
heat and drought, and low CO2 levels. Due to several issues associated with the C3
pathway compared to the C4 pathway, the maximum photosynthesis rates commonly
observed among C3 species are generally lower than those of C4 ones. Although the
core mechanisms of photosynthesis are highly conserved (Leister, 2019; Shi et al.,
2005), natural variation in photosynthesis rates has been observed for major crops
such as wheat (Triticum aestivum, Driever et al. (2014)), rice (Gu et al., 2014, 2012),
maize (Zea mays, Strigens et al. (2013)), soybean (Gilbert et al., 2011), sorghum
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(Sorghum bicolor, Ortiz et al. (2017)), as well as for the model species Arabidopsis
thaliana (van Rooijen et al., 2015, 2017). Much higher photosynthesis rates can be
expected in species that are more ecologically specialised (van Bezouw et al., 2019).
Exceptionally high light-use efficiencies (and high assimilation rates) at high irradi-
ance have been found previously in species growing in the Sonoran Desert, such
as Amaranthus palmeri, Chylismia claviformis, Eremalche rotundifolia, and Palafoxia
linearis. Although data collected on these species provided clues about the ana-
tomical and physiological basis of their high photosynthesis rates (Werk et al., 1983;
Gibson, 1998), a comprehensive ecophysiological explanation of their phenotypes is
still missing.

To understand the physiological and genetic basis of this more efficient photosyn-
thesis at high irradiance, a suitable model species is needed. To date, of the handful
of species showing high light-use efficiency that have been described (Ehleringer,
1985; Werk et al., 1983), none would qualify as a model species due to a combination
of complex genetics and difficulties in growing in laboratory conditions (e.g. difficult
seed germination). Taking inspiration from A. thaliana, an attractive model species
for high light-use efficiency would need to be easily grown in regular irradiance (typic-
ally up to 600 µmol m−2 s−1) and high-light laboratory conditions; have a high-quality
reference genome; be a diploid species capable of producing a large number of pro-
geny (hundreds of seeds from a single mother plant) with a short generation time;
germinate easily and have easily stored seed; and allow for both inbreeding and
outcrossing (Somerville and Koornneef, 2002; Koornneef and Meinke, 2010).

Hirschfeldia incana (L.) Lagr.-Foss. is an excellent candidate that fulfils these re-
quirements. H. incana is a thermophilous and nitrophilous annual species native to
the Mediterranean basin and the Middle East, but currently widespread in most warm-
temperate regions of the world (Siemens, 2011). It is generally self-incompatible and
thus allogamous, but a degree of self-compatibility has been observed in natural
populations (Lee et al., 2004). Although it makes use of the C3 pathway, H. incana
has a very high photosynthesis rate at high irradiance (Canvin et al., 1980), much
higher than that of the C3 crop species wheat (Driever et al., 2014) and rice (Gu
et al., 2012), more in the range of C4 species (Crafts-Brandner and Salvucci, 2002;
Leakey et al., 2006). Besides its exceptional physiological properties, H. incana is
also an attractive model species for practical and genetic reasons. It shows fast
and sustained growth in laboratory conditions and is a member of the Brassiceae
tribe within the well-studied Brassicaceae family, allowing the use of many genetic
and genomic resources developed for the model species A. thaliana and its close
relatives Brassica rapa (Choi et al., 2007; Kim et al., 2009; The Brassica rapa Gen-
ome Sequencing Project Consortium, 2011; Belser et al., 2018; Zhang et al., 2018),
Brassica nigra (Perumal et al., 2020; Paritosh et al., 2020), Brassica oleracea (Wang
et al., 2011; Liu et al., 2014; Belser et al., 2018), and Brassica napus (Bancroft et al.,
2011; Chalhoub et al., 2014). Yet, H. incana has received little attention from the
research community so far, being recognised mainly as a possible lead (Pb) hyper-
accumulator (Auguy et al., 2013; Fahr et al., 2015; Auguy et al., 2016) and for the
ecological implications of its occurrence as a weed (Darmency and Fleury, 2000;
Lee et al., 2004; Sánchez-Yélamo, 2009; Liu et al., 2013; Mira et al., 2019).
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Here we present a high-quality genomic assembly and gene set of H. incana. We
expect these data to lay the foundation for studying photosynthetic light-use efficiency
and improving this trait in crop species, through a process of candidate gene iden-
tification followed by phenotypic validation using genetic modification and/or gene
editing. First, we directly compare the photosynthetic rate of H. incana at high irradi-
ance to that of the Brassicaceae species B. rapa, B. nigra, and A. thaliana to affirm its
high light-use efficiency. Second, we characterize how the H. incana genome differs
from that of other members of the Brassicaceae family, specifically focusing on dif-
ferences in numbers of gene copies. Finally, we report on whether such differences
translate to differential expression of genes expected to mediate high light-use effi-
ciency. Our work demonstrates how the assembly of H. incana serves as a valuable
resource to elucidate the genetic basis of high photosynthetic performance and for
studying the evolution of this trait in the Brassicaceae family.

3.2 Results

3.2.1 Hirschfeldia incana has an exceptionally high rate of photosyn-
thesis

High photosynthesis rates have been reported for H. incana in 1980 (Canvin et al.,
1980). We performed new measurements in order to compare the performance of H.
incana with that of close relatives and the well-established model species Arabidop-
sis thaliana (Figure 3.1, Table S1). Gross CO2 assimilation rates, independent of
CO2 release by mitochondrial respiration and therefore a better indication of photo-
synthetic capacity than net photosynthesis rates, differed significantly between spe-
cies (Table S2). The two H. incana accessions had the highest average gross CO2
assimilation rates from 800 µmol m−2 s−1 to 2200 µmol m−2 s−1 irradiance, although
only ‘Burgos’ had a statistically significant higher rate than the other species (Table
S3). Net photosynthesis rates showed a similar trend, but larger differences in rates
between the two H. incana genotypes (Figure S1, Table S3). Moreover, the two H.
incana genotypes showed differences in rates of daytime dark respiration between
them (Rd, Table S4).

3.2.2 A reference genome of H. incana

We assembled a scaffold-level reference genome of H. incana based on one geno-
type of the ‘Nijmegen’ accession, that was inbred for six generations and therefore
expected to be substantially more homozygous than the natural accession ‘Burgos’,
easing genomic assembly. Its haploid genome size was estimated to be 487 Mb,
based on flow cytometry (Table S5). This estimate is smaller than the previously re-
ported genome size estimates of B. rapa (529 Mb) and B. nigra (632 Mb) (Johnston
et al., 2005). Chromosome counts from root tip squashes showed seven pairs of
chromosomes (2n=14) (Figure S2), consistent with previous reports (Anderson and
Warwick, 1999; Siemens, 2011).
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Figure 3.1: Two H. incana genotypes have a higher net CO2 assimilation at high irradi-
ance than genotypes of close relatives. Light-response curves for H. incana, B. rapa, B.
nigra, and A. thaliana accessions adapted to high levels of irradiance. Each point represents
the average net CO2 assimilation value of three (B. rapa) or four leaves coming from independ-
ent plants. Error bars represent the standard error of means. Ribbons represent the standard
error of the means. The lines indicate trends in gross assimilation for the various species and
were obtained via LOESS smoothing.

We generated DNA sequencing data consisting of 56 Gb of PacBio long reads
(115-fold genome coverage, based on the genome size estimate), 46 Gb of 10X
Genomics synthetic long reads (94-fold coverage, referred to as “10X” from now on
for brevity), and 33 Gb of Illumina paired-end short reads (68-fold coverage). In
addition, we generated 7.5 Gb of RNA sequencing (RNA-seq) data from leaf tissue
for annotation purposes. Summary statistics and accession numbers can be found
in Table S6. A k-mer analysis of Illumina data resulted in a haploid genome size
estimate of 325 Mb, with a low level of heterozygosity (1.2%).

Using a hybrid assembly strategy, we produced a nuclear genome assembly of
399 Mb of sequence in 384 scaffolds with an N50 of 5.1 Mb (Table 3.1, see Table
S7 for the full report generated by QUAST (Gurevich et al., 2013)). The assembly
size is slightly larger than the genome size estimated from Illumina read k-mers (325
Mb), but smaller than the typical overestimate (Sun et al., 2018) based on flow cyto-
metry (487 Mb). Besides the nuclear genome, we assembled the mitochondrial and
chloroplast genomes of H. incana into single sequences of 253 and 153 kb, and an-
notated the latter. The chloroplast assembly is typical for a Brassicaceae species, as
it is nearly identical to chloroplast assemblies of A. thaliana, B. rapa, and B. nigra in
terms of length and number of annotated genes (Table S8).

The assembly is near-complete and structurally consistent with the underlying
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Table 3.1: Genomic properties of assemblies generated of H. incana ‘Nijmegen’ (this
study), B. rapa Chiifu 401-42 (Zhang et al., 2018), and B. nigra Ni100 (Perumal et al., 2020).

H. incana B. rapa B. nigra
Technologies PacBio, 10X,

Illumina
paired-end

PacBio, BioNano,
Hi-C, Illumina
mate-pair

Nanopore, Hi-C,
genetic mapping

Size (Mb) 398.5 353.1 506
# scaffolds 384 1301 58
N50 (Mb) 5.1 4.4 60.8
Gaps (kb) 0.54 0.40 13
GC-content (%) 36.2 36.8 37.0
BUSCOs assembly∗ 96.2 97.7 97.0
BUSCOs annotation∗∗ 95.1 (80.2/14.9) 97.2 (84.2/13.0) 97.2 (81.9/15.3)
# protein-coding genes 32,313 46,250 59,852
# protein-coding transcripts 38,706 46,250 59,852
Repeat content (%) 49.4 37.5 54.0
Full-length LTR-RTs (%) 25.3 29.2 41.8
∗ Complete BUSCOs assembly (%)
∗∗ Complete BUSCOs annotation (single/duplicated) (%)

read data of H. incana ‘Nijmegen’ (Table S9). The high mapping rate of Illumina and
10X reads (> 93%) suggest completeness, while the lower mapping rate of PacBio
reads (81.5%) suggests some misassemblies or missing regions, likely repeats. The
high mapping rate of RNA-seq reads (93.6%) again shows the gene space is near
complete. We estimated the base-level error rate of the assembly to be 1 per 50
kb at most, based on variant calling using the mapped reads, resulting in 8,374 and
4,166 homozygous variants from the Illumina and 10X read alignments respectively.

We have annotated 32,313 gene models and 38,706 transcripts in the H. incana
assembly (Table 3.1). This is a conservative annotation, based on filtering 64,546
initial gene models resulting from ab initio, protein alignment, and RNA-seq based
predictions. Our filtering approach is more stringent than those used to generate the
B. rapa and B. nigra annotations, which explains why we report a lower number of
genes and transcripts for H. incana (Table 3.1) than for both Brassica species.

The annotation is expected to cover the large majority of the H. incana gene
space. It contains 95.1% of 1,440 single-copy orthologs (BUSCOs) conserved in
the Embryophyta plant clade, comparable to the percentages found for B. rapa and
B. nigra (both 97.2%) (Table 3.1). The ratio of single to multiple copies is similar to
that of B. rapa and B. nigra (Table 3.1), suggesting that the 14.9% of the BUSCOs
present in multiple copies are true gene duplications shared by several species of
the Brassiceae tribe. We additionally evaluated the completeness of the annotation
by aligning protein sequences of B. rapa to the assembly and determining overlap
between protein alignments and annotated genes. 30,552 out of the 37,387 protein
alignments (81.7%) corroborate the annotation, as they completely or partially over-
lap with an annotated protein-coding gene. 2,570 (6.9%) of the protein alignments
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completely or partially overlap with an annotated repeat, suggesting that the aligned
B. rapa proteins correspond to transposable elements. The remainder of the B. rapa
proteins completely or partially overlap with gene models that were filtered (3,945 or
10.6%) or do not overlap with any annotated element at all (320 or 0.9%), indicating
a small number of genes that are potentially missing from the annotation. Based on
these observations, we conclude that the H. incana assembly is mostly contiguous,
correct, and complete, making it a solid foundation for comparative analyses with
other Brassicaceae.

3.2.3 The genome of H. incana extensively diversified from that of B.
rapa and B. nigra

We utilized our assembly to explore the genomic divergence between H. incana, B.
rapa, and B. nigra, all members of the same Brassiceae tribe. A substantial degree of
divergence is expected between the three species due to different processes of post-
polyploid diploidization, i.e. the process in which polyploid genomes get extensively
rearranged as they return to a diploid state (Mandáková and Lysak, 2018), following
the ancient two-step genome triplication event shared by all Brassiceae (Lysak et al.,
2005; The Brassica rapa Genome Sequencing Project Consortium, 2011; He et al.,
2021). Part of this divergence may have facilitated the evolution of the exceptional
rate of photosynthesis at high irradiance in H. incana.

We first assessed the phylogenetic relationship between H. incana, B. rapa, and
B. nigra by constructing phylogenetic trees based on homologous nuclear and chloro-
plast genes, using A. thaliana as the outgroup. Both trees are congruent with each
other and suggest that H. incana is more closely related to B. nigra than B. rapa
(Figures 3.2a and 3.2b). This is corroborated by the median rate of synonymous
substitutions between the syntenic orthologs (Ks) of the three species, which corres-
pond to speciation events with an estimated time of 10.35 (H. incana-B. nigra) and
11.55 (H. incana-B. rapa) million years ago (mya) (Figure 3.2c), which were obtained
by dividing the median Ks of each curve by the rate of 8.22× 10−9 synonymous sub-
stitutions per year established for Brassicaceae species (Beilstein et al., 2010). Our
results are consistent with a previous phylogenetic analysis based on four intergenic
chloroplast regions (Arias and Pires, 2012), but contradict a more recently construc-
ted phylogeny of the Brassicaceae based on 113 nuclear genes (Huang et al., 2016),
possibly because the latter looks at single-copy genes only, while we also take into
account multi-copy ones.

We determined rearrangements between the genomes of H. incana-B. rapa and
H. incana-B. nigra by comparing the order of syntenic orthologs between their as-
semblies. On a small scale, most genomic regions of H. incana are syntenic (not
rearranged) with B. rapa and B. nigra, as 77.7% and 81.0% of the genes of H. incana
could be clustered in collinear blocks containing a minimum of four orthologous pairs
of H. incana-B. rapa and H. incana-B. nigra, respectively. Gene order is less con-
served when comparing larger blocks, indicating several rearrangements between
the twenty largest scaffolds of H. incana (covering 43.6% of the assembly) and the
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responding to speciation events with an estimated time of 11.6 (H. incana-B. rapa) and 10.4
(H. incana-B. nigra) million years ago (mya).

chromosomes of the other two species (Figure 3.3a). For example, the two largest
scaffolds of the H. incana assembly both contain inversions and/or translocations re-
lative to their homologous chromosomes in B. rapa and B. nigra (Figures 3.3a and
S3). For example, the two largest scaffolds of the H. incana assembly both con-
tain inversions and/or translocations relative to their homologous chromosomes in B.
rapa and B. nigra. A similar pattern of rearrangements of small collinear blocks was
observed between the genomes of B. rapa and B. nigra in previous work (He et al.,
2021).

We further examined genomic differentiation between the three species by com-
paring their transposable element (TE) content. The assembly of H. incana consists
of 49.4% repetitive elements (Table 3.1), of which most are long terminal repeat retro-
transposons (LTR-RTs) (25.3% of the genome). These numbers are consistent with
previous work that investigated the repeat content of the H. incana genome using
genome skimming, and which reported a repeat content of 46.5% and LTR-RT con-
tent of 31.6% (Beric et al., 2021). We specifically focused our analyses on LTR-RTs,
as LTR-RT expansion and contraction has been previously identified as a major driver
of genomic differentiation between Brassiceae (Xu et al., 2018), even between differ-
ent ecotypes of the same species (Cai et al., 2020). The composition of LTR-RTs in
the H. incana assembly differs from that of the B. rapa and B. nigra assembly, as the
majority of LTR-RTs consist of Gypsy elements in H. incana, consistent with earlier
work (Beric et al., 2021), while Copia retrotransposons form the majority of LTR-RTs
in the others (Figure 3.3b). Furthermore, the estimated insertion times of LTR-RTs
vary between the three assemblies, as Gypsy and Copia elements in H. incana and
B. rapa are predicted to have proliferated recently (< 1 mya) (Figure 3.3c-d), while
Gypsy elements in B. nigra show a more varied distribution of insertion times (Figure
3.3c). A possible explanation of this shift could be that the B. nigra assembly was
generated using longer reads than those used for the assemblies of H. incana and
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Figure 3.3: The genome of Hirschfeldia incana extensively diversified from that of
Brassica rapa and Brassica nigra. (a) Orthologous syntenic blocks between the genomes
of H. incana and B. nigra. Dots indicate pairs of syntenic orthologs that are found in the same
order in both genomes according to sequence positions. Only the twenty largest scaffolds of
H. incana (43.6% of the assembly) are shown for clarity. Axes labels correspond to the total
number of genes annotated on the sequences (left and bottom) and identifiers of the scaffolds
(top) or chromosomes (right). A dot plot visualizing orthologous syntenic blocks between H.
incana and B. rapa, showing similar patterns, is found in Figure S3. (b) Frequency distribution
of Long Terminal Repeat Retrotransposon (LTR-RT) families. LTR-RTs are classified as un-
known if they contained elements of both Gypsy and Copia sequences and could thus not be
reliably assigned to either of these families. (c) Frequency polygon (bin width = 0.2 mya) of the
insertion times of Gypsy elements. (d) Frequency polygon (bin width = 0.2 mya) of insertion
times of Copia elements.

B. rapa, enabling it to capture a larger proportion of the centromeric regions, but we
found no evidence that this introduced a bias towards longer insertion times of Gypsy
elements (Figure 3.3c).

Taken together, the breakdown of genomic synteny and divergence of LTR-RT
content indicate that the genome of H. incana extensively diversified from that of B.
rapa and B. nigra following their shared genome triplication event.
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3.2.4 Gene copy number variation may contribute to high photosyn-
thetic rates

Genomic differentiation can result in species-specific gains and losses of genes,
which may explain the differences in photosynthetic light-use efficiency between H.
incana, B. rapa, and B. nigra. Given that the three species all share the same ancient
genome triplication event (Schranz et al., 2006; He et al., 2021), it is reasonable to
assume that most differences originated through differential retention of duplicated
genes, particularly those located in genomic blocks showing evidence of extensive
fractionation since that event (He et al., 2021). We investigated gene copy num-
ber variation between the three species, by clustering their annotated protein-coding
genes with those of five other Brassicaceae species within (Raphanus raphanistrum
and Raphanus sativus) and outside (Aethionema arabicum, A. thaliana, and Sisym-
brium irio) the Brassiceae tribe into homology groups. The inclusion of A. thaliana al-
lowed us to use its extensive genomic resources to functionally annotate the genes of
other species. The other four species were included to put the analysis in a broader
phylogenetic context. A. arabicum is part of the Aethionema tribe which diverged
from the core group of the Brassicaceae family, thus allowing us to identify highly
conserved genes. S. irio is part of a different tribe than A. thaliana (Sisymbrieae),
that is more closely related to the Brassiceae tribe (Huang et al., 2016), but did not
undergo the ancient genome triplication. R. raphanistrum and R. sativus are part of
the Raphanistrum genus within the Brassiceae tribe and thus represent another set
of species that underwent the genome triplication shared by the whole tribe.

Our analysis resulted in 20,331 groups containing at least one H. incana gene
(Table S10). The composition of the homology groups agrees with the currently es-
tablished phylogeny of the Brassicaceae (Huang et al., 2016), as groups containing
H. incana genes share the fewest genes with A. arabicum (58.2%) and most genes
with species part of the Brassiceae tribe (86.3-95.6%). H. incana has a low fraction
of species-specific homology groups (3.4%) compared to the seven other species,
which can be attributed to the stringent filtering of the predicted gene models.

We focused on a subset of 15,097 groups containing at least one gene of A. thali-
ana and one of H. incana, as these could be extensively annotated through the trans-
fer of Gene Ontology (GO) terms from A. thaliana genes to their respective groups.
According to the expectation that most genes quickly return to single-copy status fol-
lowing a whole genome duplication event (Li et al., 2016), 70.2% of these groups
contain a single gene of both A. thaliana and H. incana. Focusing on groups con-
taining A. thaliana genes involved in photosynthesis (260 in total, Table S11), most
contain a higher number of genes of H. incana, B. rapa, and B. nigra, compared to
A. thaliana (Figure 3.4), consistent with the relatively higher photosynthetic light-use
efficiency of the latter three (Figure 3.1). The higher efficiency of H. incana of all four
species is not apparent from the gene copy number, as for most groups, H. incana
contains the same or a lower number of copies, relative to B. rapa and B. nigra. This
is not a result of our conservative filtering approach, as we explicitly retained putative
photosynthesis-related genes during our filtering procedure (Methods S1). Besides
photosynthesis-related genes, we also analysed copy numbers of a more general
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Figure 3.4: Hirschfeldia incana retained fewer duplicated copies of photosynthesis-
associated genes than Brassica rapa and Brassica nigra. Bars show counts of homology
groups containing genes associated with photosynthesis with different distributions of copy
numbers (CN) in the four species (260 groups in total). For groups that contain a higher
number of copies in H. incana, B. rapa, and B. nigra than in Arabidopsis thaliana, it has been
indicated whether the same number of copies is found in all three species (equal CN), whether
there are two or more species that contain a higher number of copies than the other(s) (highest
CN in at least 2 species), or whether there is a single species containing the highest number
of copies.

set. 4,901 homology groups contain genes of which the copy number in H. incana is
higher than the one in A. thaliana, and equal to or higher than the ones in B. rapa and
B. nigra (Table S12). We estimate that 74.4% of duplicated gene pairs in H. incana
(16,788 of the 22,535 analysed pairs) were duplicated through whole-genome duplic-
ation, 1.8% through tandem duplication, and the remaining 23.6% through another
mode of duplication. Given that the increased photosynthetic light-use efficiency of
H. incana, relative to A. thaliana, B. rapa, and B. nigra is particularly pronounced
at high levels of irradiance (Figure 3.1), genes annotated with GO terms associated
with photosynthesis and/or photoprotection are of particular interest. The 4,901 ho-
mology groups contain ample examples of such genes (Table S12), although the
groups were not significantly enriched for any GO term specifically linked to photo-
synthesis and/or photoprotection (Table S13).

As gene copy number variation can considerably affect expression levels (Żmieńko
et al., 2014), we hypothesized that retained copy number expansions of photosyn-
thesis and photoprotection-associated genes in H. incana, B. rapa and B. nigra
may aid the high photosynthetic capacities of these species (Figure 3.1). We there-
fore measured gene expression levels of nine genes for which there is inter-species
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Table 3.2: Genes with inter-specific copy number variation of which expression was
measured. All genes are annotated to a function in photosynthesis and/or photoprotection.

Copy number
Gene name Reference A. thaliana B. rapa B. nigra H. incana
LHCA6 Peng et al. (2009) 1 1 1 3
ELIP1 Hutin et al. (2003) 1 3 3 3
SIGE/SIG5 Tsunoyama et al. (2004) 1 2 2 2
SIGD/SIG4 Favory et al. (2005) 1 2 2 3
BBX21 Crocco et al. (2018) 1 3 3 3
PETC Maiwald et al. (2003) 1 2 2 2
ABC1K3 Martinis et al. (2013) 1 1 1 2
OHP2 Li et al. (2019) 1 2 2 3
CYFBP Lee et al. (2008) 1 2 2 2

copy number variation in two contrasting light conditions (200 µmol m−2 s−1 and 1800
µmol m−2 s−1), selecting genes with a function related to photosynthesis and/or pho-
toprotection (Table 3.2). A. thaliana, the species with the lowest photosynthesis rates
measured in this study, contains a single copy of each of the tested genes. For six
genes, we observed a statistically significant positive correlation between gene ex-
pression level and gene copy number (Figure 3.5), with species showing higher or
equal expression with an increasing number of copies (Figure S4). No such correla-
tion was observed for the remaining three genes.

To test if the observed differences in gene expression are due to photosynthesis-
related genes being more frequently upregulated in general in B. rapa, B. nigra and
H. incana, compared to A. thaliana, we included nine additional genes in our ex-
periment that are present in a single copy in all four species and involved in similar
processes as the multi-copy genes. Although we find species-specific differences in
expression for this set of genes, no consistently higher gene expression levels are
found in B. rapa, B. nigra and H. incana compared to A. thaliana (Figure S5). Over-
all, our analyses suggest that the increased copy numbers of photosynthesis and
photoprotection-associated genes in H. incana, B. rapa and B. nigra, relative to the
A. thaliana, may contribute to their high photosynthetic efficiency, although this effect
appears to not be specific to a particular species or level of irradiance.

3.3 Discussion

In this study, we generated a reference genome of H. incana to establish this species
as a model for exceptional photosynthetic light-use efficiency at high irradiance. We
find substantial differences in light-use efficiency, genomic structure, and gene con-
tent between H. incana and its close relatives. We discuss these results in terms of
how they contributed to the evolution of the remarkable phenotype of H. incana.
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Figure 3.5: Copy numbers of photosynthesis- and photoprotection-associated genes
correlate with expression level. Boxplots depict gene expression levels of A. thaliana, B.
rapa, B. nigra and H. incana grown in 200 µmol m−2 s−1 and 1500 µmol m−2 s−1. Gene expres-
sion levels were normalized against H. incana grown at 200 µmol m−2 s−1 and subsequently
grouped per gene copy number. Titles of graphs indicate gene names based on the A. thali-
ana gene nomenclature. *p < 0.05; **p < 0.01; ***p < 0.001.

Our results show an even higher photosynthetic light-use efficiency at high irradi-
ance than previously reported for H. incana (Canvin et al., 1980), with photosynthesis
rates varying marginally between both accessions. Examination of a wider set of H.
incana accessions may identify genotypes with larger differences in photosynthesis
rates, that would allow a quantitative genetic approach to identify alleles conferring
high photosynthesis rates. Our measurements imply that the photosynthetic rates
of this C3 are higher than the rates of photosynthesis of the C4 crop maize (Crafts-
Brandner and Salvucci, 2002; Leakey et al., 2006) and and almost two times higher
than those typically reported from key cereal crop species with a C3 photosynthetic
metabolism, such as wheat (Driever et al., 2014) and rice (Gu et al., 2012), respect-
ively. Furthermore, these rates are higher than those of closely related Brassicaceae
species B. rapa, B. nigra, and the more distantly related A. thaliana. The photosyn-
thesis rates we measured in B. rapa are also higher than previously reported (Pleban
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et al., 2018; Taylor et al., 2020). Although the rates presented in this study were ob-
tained from plants grown in controlled, favourable conditions and thus could be an
overestimation of rates in natural environments, the magnitude of the differences
suggests that the H. incana genome holds essential information for the improvement
of photosynthetic light-use efficiency in crops.

The reference genome of H. incana generated in this study provides the means
to elucidate the genetic basis of this plant’s exceptional rate of photosynthesis and
how it evolved in this species. We estimate that H. incana diverged 11.6 and 10.4
mya from B. rapa and B. nigra, respectively, consistent with an earlier study that
used a smaller set of nuclear genes (Huang et al., 2016). These time points are
close to the reported time (11.5 mya) at which B. rapa and B. nigra diverged from
each other (Perumal et al., 2020) and the time at which the whole Brassicaceae
family underwent a rapid radiation event (Franzke et al., 2009). This event may
have been mediated by the expansion of grass-dominated ecosystems in the region
inhabited by Brassicaceae family members at that time, which created new open
habitats that favoured rapid diversification (Franzke et al., 2009). This expansion of
grasslands is thought to have been driven by decreasing atmospheric CO2 levels,
increasing temperatures, and increasing aridity, which favoured the displacement of
the then dominant C3 plants by C4 grasses (Edwards et al., 2010). We argue that
climatic changes also drove the evolution of the high photosynthetic rates observed
in H. incana; grassland, i.e. non-forested ecosystems may have provided the ephem-
eral niches with high irradiances that favoured the evolution of high photosynthetic
rates. Species with high photosynthetic rates are currently found in Mediterranean
and desert ecosystems (Ehleringer, 1985; Werk et al., 1983). The evolution of high
rates of C3 photosynthesis could therefore have paralleled the expansion of the C4
photosynthesis pathway as an adaptation to low CO2 levels and drought.

Our analyses suggest that the genome of H. incana extensively differentiated
from that of B. rapa and B. nigra since their time of divergence through large genomic
arrangements and differences in LTR-RT content. Previous analyses of natural A.
thaliana accessions indicated that specific LTR-RT families show increased rates of
proliferation in response to particular types of environmental stress (Baduel et al.,
2021), which may explain the species-specific amplification of Gypsy elements that
we observed in H. incana. Such elements may have been retained because this
particular LTR-RT family generally inserts outside of exons (Baduel et al., 2021). We
hypothesize that the differences in LTR-RT content between H. incana, B. rapa, and
B. nigra were caused in part due to Gypsy elements being less efficiently purged
from the genome of B. nigra than from those of the others. An increased rate of
LTR-RT removal, based on the ratio of solo LTRs to intact LTR-RTs, has also been
observed in B. rapa relative to B. oleracea and it was speculated that this is caused
by the increased rate of genetic recombination in the former (Zhao et al., 2013).
Given that a similar negative correlation between local recombination rate and LTR-
RT content was found in rice (Tian et al., 2009), soybean (Du et al., 2012), and
eukaryotes in general (Kent et al., 2017), the differences in predicted insertion times
of Gypsy elements in H. incana, B. rapa, and B. nigra observed in this study may
thus reflect different rates of genetic recombination in the three species. While it
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has been suggested that changes in recombination rate can be adaptive, there is
little empirical evidence that supports this (Ritz et al., 2017). It would therefore be
interesting to directly measure genome-wide rates of recombination of H. incana,
B. rapa, and B. nigra and explore whether these are correlated with their rates of
photosynthesis.

Further comparative analyses between the genomes of H. incana, B. rapa, B.
nigra, and A. thaliana revealed numerous species-specific gains and losses of genes.
For dosage-sensitive genes, such as those involved in transcriptional regulation, dif-
ferences may not necessarily reflect adaptive selection. This category of genes was
found to be consistently retained in multiple copies following polyploidy events across
the Brassicaceae (Mandáková et al., 2017) and a wide group of angiosperms (Li
et al., 2016), which is hypothesized to be due to dosage constraints (Edger and
Pires, 2009). Differences in copy number of such genes may thus reflect different
rates of relaxation of dosage balance constraints and subsequent loss of duplicates
through time, which is a neutral process.

On the other hand, there is reason to believe that gene duplications contributed
to the evolution of the high light-use efficiency of H. incana. Gene duplications have
been identified as important drivers of plant evolution and differences in gene copy
number between species are often enriched for adaptive evolutionary traits (Rizzon
et al., 2006; Suryawanshi et al., 2016; Oh et al., 2013; Dassanayake et al., 2011).
Moreover, RT-qPCR analysis of nine duplicated genes associated with photosyn-
thesis and/or photoprotection showed that the expression levels of six of them cor-
relate with gene copy number. In contrast, nine photosynthetic genes present in a
single copy in all species did not show significantly increased expression of these
genes in H. incana, B. nigra, and B. rapa compared to A. thaliana, indicating that
photosynthetic genes are not overexpressed in the former three species in general.
This supports a putative role for gene duplications in mediating the high light-use
efficiency achieved by H. incana, B. nigra and B. rapa.

The most striking genes of which copy number correlated with gene expression
are LHCA6 and ELIP1, involved in response to high light and having the highest
expression in H. incana growing under high light (Figure S4). LHCA6 encodes a
light-harvesting complex I (LHCI) protein of photosystem I (PSI), that together with
LHCA5 is required to form a full-size NAD(P)H dehydrogenase (NDH)-PSI supercom-
plex (Peng et al., 2009). Higher expression of LHCA6 might help the formation of the
NDH-PSI complex, thought to help stabilising NDH under high irradiance conditions.
In turn, NDH has proposed roles in both supporting the Calvin-Benson cycle’s activ-
ity (Harbinson et al., 2022)) and photoprotection by preventing overreduction at high
light intensities (Munekage et al., 2004). ELIP1 encodes for proteins with a proposed
role in photoprotection, which is associated with high light stress (Norén et al., 2003;
Heddad et al., 2006; Youssef et al., 2010). Increased expression of this genes is
expected to make the photosynthetic apparatus of H. incana more resistant to pho-
toinhibition at high levels of irradiance. While the H. incana genome harboured the
highest number of copies of LHCA6 when compared to the genomes of A. thaliana,
B. rapa, and B. nigra, this is not the case for ELIP1, for which H. incana, B. nigra and
B. rapa all have three copies as opposed to the single copy of A. thaliana. Therefore,
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although we can propose a role for gene duplications in achieving higher light-use
efficiency, the exact nature of this role still remains unclear as it appears to not be
completely dependent on species or light treatment.

While our gene expression analysis provides several promising leads, it only of-
fers a glimpse of what may contribute to the high photosynthetic light-use efficiency
of H. incana. Besides the nine genes included in this analysis, we identified many
more genes with a high copy number in H. incana that warrant further investigations.
Such investigations should not limit themselves to core photosynthetic genes, as H.
incana can only attain high photosynthetic light-use efficiency through changes in
many other traits that are outside the chloroplast, such as leaf architecture affecting
mesophyll conductance to CO2, the synthesis of carbohydrates in the cytosol, the
transport of carbohydrates from the leaf, the uptake from the soil and the supply
of nitrogen and other minerals to the leaf, the abundance and distribution of differ-
ent leaf pigments, and (photo)respiration. Nor should they include duplicated genes
only, as it is striking that H. incana shows a better high light-use efficiency than B.
rapa and B. nigra, though it contains fewer photosynthesis-related genes than the
latter two species. This points towards alternative scenarios in which adaptation of
H. incana photosynthesis to high levels of irradiance occurred through regulation of
expression of one copy of the photosynthesis-related genes, which relaxed selection
on duplicate retention or even encouraged loss of duplicate copies, or through other
traits, as described above.

To elucidate the exact genetic mechanisms underlying the high light-use effi-
ciency of H. incana, a natural follow-up to this study is to perform comparative tran-
scriptomic analyses of leaves of H. incana, B. rapa, and B. nigra under a range of
different levels of irradiance and at different developmental stages. Genes that show
copy number variation and are differentially expressed between H. incana and the
latter two species, such as LHCA6, would then be prime candidates to further test
for potential causality through e.g. knock-out mutant analysis. As previous work has
shown that it is possible to cross distantly related Brassicaceae species (Katche et al.,
2019), a useful approach to further pinpoint the causal genes is to establish a genetic
mapping population between H. incana and a Brassicaceae species with regular
light-use efficiency and perform quantitative trait locus analyses of photosynthetic
traits segregating within the population. It would also be useful to expand comparat-
ive genome and transcriptome analyses to plant species outside of the Brassicaceae
clade that show high photosynthetic light-use efficiency, such as the aformentioned
A. palmeri, C. claviformis, E. rotundifolia, and P. linearis. Such expanded analyses
could be informative for instance, to investigate amino acid substitutions or lateral
gene transfer specific to species with high photosynthetic light-use efficiency. Fur-
thermore, transcriptomic data may indicate genes showing differences in expression
between such species and those that are less efficient, providing further insight into
which genes contribute to the evolution of this trait.
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3.4 Conclusions

H. incana has an exceptional rate of photosynthesis at high irradiance. We generated
a near-complete reference genome of this species and found evidence suggesting
that its exceptional rate evolved through differential retention of duplicated genes.
Taken together, our work provides several promising leads that may explain the high
photosynthetic light-use efficiency of H. incana and we expect the reference genome
generated in this study to be a valuable resource for improving this efficiency in crop
cultivars.

3.5 Materials and Methods

Plant material

Hirschfeldia incana accessions ‘Nijmegen’ and ‘Burgos’ were used. ‘Nijmegen’ is an
inbred line (> six rounds of inbreeding) originally collected in Nijmegen, The Nether-
lands. Seeds of ‘Burgos’ were originally collected near Burgos, Spain. Furthermore,
Brassica nigra accession ‘DG2’, sampled from a natural population near Wagenin-
gen, The Netherlands, the Brassica rapa inbred line ‘R-o-18’ (Stephenson et al.,
2010; Bagheri et al., 2012), and the Arabidopsis thaliana Col-0 accession were used.

Measurements of photosynthesis rates

Seeds of H. incana ‘Nijmegen’, H. incana ‘Burgos’, B. rapa ‘R-o-18’, B. nigra ‘DG2’,
and A. thaliana Col-0 were sown in 3 L pots filled with a peat-based potting mixture.
Plants were grown in a climate chamber with a photoperiod of 12 hours and day
and night temperatures of 23 and 20 °C, respectively. Humidity and CO2 levels were
set at 70% and 400 ppm. The chamber was equipped with high-output LED light
modules (VYPR2p, Fluence by OSRAM). Plants were watered daily with a custom
nutrient solution (0.6 mM NH4

+, 3.6 mM K+, 2 mM Ca2+, 0.91 mM Mg2+, 6.2 mM NO3
– ,

1.66 mM SO4
2 – , 0.5 mM P, 35 µM Fe3+, 8 µM Mn2+, 5 µM Zn2+, 20 µM B, 0.5 µM Cu2+,

0.5 µM Mo4+). The seeds were germinated at an irradiance of 300 µmol m−2 s−1, and
the same irradiance was maintained to let seedlings establish. On day 14, 21, and
25 after sowing, the irradiance was raised to 600, 1200, and 1800 µmol m−2 s−1, re-
spectively.

The photosynthetic metabolism of young, fully expanded leaves developed under
1800 µmol m−2 s−1 of light was measured with a LI-COR 6400xt portable photosyn-
thesis system (LI-COR Biosciences) equipped with a 2 cm2 fluorescence chamber
head. “Rapid” descending light-response curves were measured between 30 and 35
days after sowing to accommodate differences in growth rates of the different species
on one leaf from four H. incana ‘Nijmegen’, H. incana ‘Burgos’, B. nigra ‘DG2’, and
A. thaliana Col-0 plants, and three B. rapa ‘R-o-18’ plants. The net assimilation rates
of the plants were measured at thirteen different levels of irradiance ranging from 0
to 2200 µmol m−2 s−1. During measurements, leaf temperature was kept constant at
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25 °C and reference CO2 concentration was kept at 400 µmol mol−1. Water in the
reference air flux was regulated in order to achieve vapour-pressure deficit values
comprised between 0.8 and 1.2 kPa.

Light response curve parameters (Amax: net CO2 assimilation at saturating irra-
diance, φ: apparent quantum yield of CO2 assimilation, Rd: daytime dark respiration
rate, and θ: curve convexity) were estimated for each species through non-linear
least squares regression of a non-rectangular hyperbola (Marshall and Biscoe, 1980)
with the R package “photosynthesis” (version 2.0.0) (Stinziano et al., 2020). An in-
dication of gross assimilation rates for each species was subsequently generated
by adding the daytime dark respiration rate (Rd) estimated for each species to the
species’ net assimilation rates.

Differences in net and gross assimilation rates were tested at each light level
of the light-response curve with a one-way ANOVA on the “genotype” experimental
factor. Pairwise comparisons between the assimilation rates of the different geno-
types at each light level were subsequently performed and tested with the Tukey-
Kramer extension of Tukey’s range test. The p-value threshold for statistical signific-
ance was set at α = 0.05.

Flow cytometry

Leaf samples of the H. incana genotypes ‘Burgos’ and ‘Nijmegen’ and A. thaliana
Col-0 were analysed for nuclear DNA content by flow cytometry (Plant Cytometry
Services B.V., Didam, the Netherlands). Seven, three and five biological replicates
were measured over separate rounds of analysis for H. incana ‘Nijmegen’ H. incana
‘Burgos’, and A. thaliana Col-0, respectively. Nuclei were extracted from leaf samples
following the method by Arumuganathan and Earle (1991), and stained with 4’,6-
diamidino-2-phenylindole (DAPI). The DNA content of nuclei relative to that of the
reference species Monstera deliciosa was determined on a CyFlow Ploidy Analyser
machine (Sysmex Corporation, Kobe, Japan). A haploid flow cytometry estimate
of 157 Mb was used for A. thaliana, resulting from comparisons of nuclear DNA
content of this species and other model organisms (Bennett et al., 2003). Haploid
genome size estimates for the H. incana genotypes were obtained by multiplying the
H. incana-to-M. deliciosa ratio by the haploid A. thaliana estimate and dividing this
product by the average A. thaliana-to-M. deliciosa ratio.

Chromosome counting

Root tips (approximately 1 cm long) were collected from young, fast-growing rootlets
of multiple H. incana ‘Nijmegen’ plants and pre-treated for 3 h at room temperature
with a 0.2 mM 8-hydroxyquinoline solution. After pre-treatment, the 8-hydroxyquinoline
solution was replaced with freshly prepared Carnoy fixative (1:3 (v/v) acetic acid - eth-
anol solution) and maintained at room temperature for half a day. Root tips were then
rinsed with 70% ethanol for three times to remove remaining fixative and stored in
70% ethanol at 4 °C until further use. Prior to slide preparation, root tips were rinsed
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twice in Milli-Q (MQ) water before adding 1:1 solution of a pectolytic enzymatic diges-
tion solution (1% Cellulase from Trichoderma, 1% Cytohelicase from Helix Promatia,
1% Pecolyase from Aspergillus japonicus) and 10 mM citric buffer. After one hour in-
cubation at 37 °C, the enzymatic digestion solution was replaced by MQ water. The
digested root tips were spread in 45% acetic acid over microscopy slides on a hot
plate set at 45 °C, cells were fixed with freshly prepared Carnoy fixative, dried, and
stained with DAPI dissolved in Vectashield mounting medium (Vector Laboratories
Inc., Burlingame, U.S.). Slides were imaged with an Axio Imager.Z2 fluorescence op-
tical microscope coupled with an Axiocam 506 microscope camera (Carl Zeiss AG,
Oberkochen, Germany) at 63x magnification. Chromosome numbers were counted
in metaphase mitotic cells and averaged to obtain the reported number.

DNA and RNA isolation

Genomic DNA was extracted from H. incana ‘Nijmegen’ samples using a protocol
modified from Chang et al. (1993). The modifications consisted of adding 300 µL β-
mercaptoethanol to the extraction buffer just before use. We added 0.7% isopropanol
to the supernatant instead of 10 M LiCl and then divided the total volume into 1 mL
aliquots for subsequent extractions. The pellet was dissolved in 500 µL of SSTE
which was preheated to 50 °C before use. The final pellets were dissolved in 50
µL MQ water and then pooled at the end of the extraction process. DNA used for
Illumina and 10X Genomics sequencing was extracted from flower material, while
leaf material was used for the PacBio sequencing, all originating from the same
plant.

Total RNA was extracted from leaf material of H. incana ‘Nijmegen’ from a differ-
ent plant than the one used for the DNA isolations with the Direct-zol RNA mini-prep
kit (Zymo Research, Irvine, U.S.A.) according to the company’s instructions and then
subjected to a DNAse (Promega Corporation, Madison, U.S) treatment at 37 °C for
one hour.

Generation of sequencing data

Sequencing of total-cellular DNA of H. incana ‘Nijmegen’ was performed by Gen-
omeScan B.V. (Leiden, The Netherlands). A total of seven SMRT cells were used
for sequencing on the Pacific Biosciences Sequel platform. Short read Illumina and
10X Genomics libraries with an insert size of approximately 500-700 bp were pre-
pared with the NEBNext Ultra DNA Library Prep kit for Illumina and 10X Genomics
Chromium™ Genome v1 kit, respectively. These libraries were sequenced using the
Illumina X10 platform (2 x 151 bp). RNA paired-end sequencing libraries with an
average insert size of 254 bp were prepared using the Illumina TruSeq RNA sample
prep kit with polyA mRNA selection and sequenced using the Illumina HiSeq 2500
platform (2 x 125 bp).
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k-mer analysis

A histogram of k-mer frequencies of Illumina reads predicted to be of nuclear ori-
gin (see Methods S1) was generated using Jellyfish (v2.2.6) (Marçais and Kingsford,
2011), using a k-mer length of 21. The resulting histogram was provided as input to
Genomescope (v1.0.0) (Vurture et al., 2017) to estimate genome size and heterozy-
gosity.

Genomic assembly and annotation

The genome assembly and annotation process is more extensively described in
Methods S1. In short, we generated an initial assembly based on the PacBio data
only with Canu (Koren et al., 2017) and used it to bin the PacBio, 10X, and Illumina
reads according to whether they originated from nuclear, organellar, or contamin-
ant DNA. The bins were used to separately assemble the nuclear and organellar
genomes, yielding a nuclear assembly consisting of hundreds of contigs and mi-
tochondrial and chloroplast assemblies that were both represented by a single se-
quence. Nuclear contigs representing alternative haplotypes were removed using
purge dups (Guan et al., 2020), after which ARKS (Coombe et al., 2018) was used
to scaffold the remaining contigs using the 10X data. Scaffolds were polished us-
ing Arrow (https://github.com/PacificBiosciences/gcpp) and Freebayes (Garrison and
Marth, 2012), followed by a manual filtering step to obtain the final nuclear assembly.

Repeats in the assembly were masked using RepeatMasker (Smit et al., 2015) in
combination with RepeatModeler2 (Flynn et al., 2020) before starting the annotation
procedure. Nuclear genes were annotated by using EvidenceModeler (Haas et al.,
2008) to generate consensus models of ab initio gene predictions, alignments of
proteins from closely and distantly related plant species, and transcripts assembled
from RNA-seq data. These models were manually filtered to obtain a final set of
protein-coding genes.

Used datasets for comparative genome analyses

We mainly focused the comparative genome analyses on H. incana, B. nigra, and B.
rapa, three species of the Brassiceae tribe of which all members underwent an an-
cient genome triplication (Lysak et al., 2005; The Brassica rapa Genome Sequencing
Project Consortium, 2011). For comparative gene analyses, we extended this group
with the Brassicaceae species Arabidopsis thaliana, Aethionema arabicum, Sisym-
brium irio, Raphanus raphanistrum, and Raphanus sativus. The latter two Raphanus
species are also part of the Brassiceae tribe. Version numbers and locations of all
genomes are listed in Table S14.

ttps://github.com/PacificBiosciences/gcpp
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Analysis of pairwise gene synteny and long terminal repeat retrotrans-
posons (LTR-RTs) in H. incana, B. rapa, and B. nigra

Analyses of pairwise gene synteny between scaffolds of H. incana and chromosomes
of B. rapa and B. nigra were performed using the JCVI library (https://github.com/
tanghaibao/jcvi) (v1.0.5) in Python. Orthologs were identified through all-vs-all align-
ment of genes with LAST (Kiełbasa et al., 2011), retaining reciprocal best hits only
(C-score of at least 0.99). Hits were filtered for tandem duplicates (hits located within
10 genes from each other) and chained using the Python implementation of MCScan
(Tang et al., 2008) to obtain collinear blocks containing at least four pairs of syntenic
genes. Visualizations of collinearity between genomic assemblies were generated
using custom scripts of JCVI.

Ks values of syntenic gene pairs were computed using the ks module of JCVI.
Protein sequences of pairs were aligned against each other using MUSCLE (v3.8.1)
(Edgar, 2004), after which PAL2NAL (v14) (Suyama et al., 2006) was used to convert
protein alignments to nucleotide ones. Ks values for each pair were computed from
the nucleotide alignments using the method of Yang and Nielsen (2000) implemented
in PAML (Yang, 2007) (v4.9). Times of divergence between species were estimated
by dividing the median of the distributions of their Ks values by the rate of 8.22× 10−9

synonymous substitutions per year that was established for Brassicaceae species
based on extrapolation from the ancient triplication event in the Brassica clade (Beil-
stein et al., 2010).

Putative LTR-RTs were identified using LTRharvest (v1.6.1) (Ellinghaus et al.,
2008) and LTR finder (v1.1) (Xu and Wang, 2007), after which LTR retriever (v2.9.0)
(Ou and Jiang, 2018) was run with default parameters to filter and combine the output
of both tools into a high confidence set. LTR retriever was also used to provide estim-
ates of the insertion time of each LTR-RT. Parameters of LTRharvest and LTR finder
were set as recommended in the LTR retriever documentation. Centromeric regions
of the B. nigra assembly were obtained from Table S21 of the manuscript describing
the assembly (Perumal et al., 2020).

Phylogenetic analysis of H. incana, B. rapa, and B. nigra

The longest isoforms of the nuclear genes of H. incana, B. rapa, B. nigra, and A.
thaliana (outgroup) were provided to Orthofinder (version 2.3.11) (Emms and Kelly,
2019) to generate phylogenetic species trees. Orthofinder was run using the multiple
sequence alignment (MSA) workflow with default parameters. The same analysis
was performed using chloroplast genes. Trees were visualized using iTOL (version
6.3) (Letunic and Bork, 2021).

Comparative gene ontology analysis of eight Brassicaceae species

The longest isoforms of the genes of all eight Brassicaceae species described in
the section “Used datasets for comparative genome analyses” were extracted using

https://github.com/tanghaibao/jcvi
https://github.com/tanghaibao/jcvi
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AGAT (version 0.2.3) (https://github.com/NBISweden/AGAT) and clustered into ho-
mology groups using the “group” function of Pantools version 2 (Sheikhizadeh Anari
et al., 2018) with a relaxation parameter of 4. Groups were assigned GO slim terms
of their associated A. thaliana genes (obtained from arabidopsis.org/download files
/GO and PO Annotations/Gene Ontology Annotations/TAIR GO slim categories.txt
(last updated on 2020-07-01)) and GO terms assigned to protein domains of associ-
ated H. incana, B. rapa, and B. nigra genes using InterProScan (version 5.45-72.0)
(Jones et al., 2014) (ran using the Pfam and Panther databases only). GO term
enrichment tests were performed using the Fisher Exact test and the Benjamini-
Hochberg method for multiple testing correction (Benjamini and Hochberg, 1995).
A. thaliana genes were considered to be involved in photosynthesis, if they fulfilled
one of the following conditions:

• Annotated with one of the following GO terms: “photosynthesis”, “electron
transporter, transferring electrons within the cyclic electron transport pathway
of photosynthesis activity”, or “electron transporter, transferring electrons within
the noncyclic electron transport pathway of photosynthesis activity”;

• Included in the KEGG pathways ath00195 (Photosynthesis), ath00710 (Carbon
fixation in photosynthetic organisms), and ath00196 (Photosynthesis - Antenna
Proteins);

• Protein products have been assigned the keyword “Photosynthesis” in the Swiss-
Prot database.

The same criteria were used to retain photosynthesis-related genes of H. incana
while filtering the gene annotation of the assembly (see Methods S1).

Investigating the mode of duplicated genes in H. incana

Dupgen finder (Github commit hash 8001838) (Qiao et al., 2019) was run with de-
fault parameters to determine the mode of duplication for duplicated gene pairs in H.
incana, using the genome of A. thaliana as an outgroup to detect pairs duplicated
through whole-genome duplication. Pairs were allowed to be assigned to a single
category only. Input files containing alignments of the protein sequences of H. in-
cana aligned to themselves and those of A. thaliana were prepared using DIAMOND
(version 0.9.14) (Buchfink et al., 2015).

Analysis of gene expression under high and low irradiance

Seeds of H. incana ‘Nijmegen’, B. nigra ‘DG2’, B. rapa ‘R-o-18’, and A. thaliana
Col-0 were germinated on a peat-based potting mixture for nine days under an ir-
radiance of 200 µmol m−2 s−1. Twelve seedlings per species were then transferred
to 2 L pots filled with a peat-based potting mixture enriched with perlite and 2.5 g/L
Osmocote® Exact Standard 5-6M slow-release fertiliser (ICL Specialty Fertilizers,
Geldermalsen, The Netherlands).

https://github.com/NBISweden/AGAT
https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/TAIR_GO_slim_categories.txt
https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/TAIR_GO_slim_categories.txt
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Plants were germinated and grown in a climate chamber with a photoperiod of 12
hours and day and night temperatures of 23 and 20 °C, respectively. Humidity and
CO2 levels were set at 70% and 400 ppm. The chamber was equipped with high-
output LED light modules (VYPR2p, Fluence by OSRAM, Austin, U.S.). Six plants per
species were assigned to a high light (HL) treatment of 1800 µmol m−2 s−1 and the
remaining six to a low light (LL) treatment of 200 µmol m−2 s−1. Irradiance uniformity
was very high for both HL and LL treatments, with an u2 value of 0.93. Plant positions
were randomised across growing areas. Plants were watered with the same custom
nutrient solution as the one used in the measurements of photosynthesis rates, daily
for the LL treatment and twice a day for the HL treatment.

Twenty-eight days after sowing, one young fully adapted leaf from each plant was
selected, excised, and snap-frozen in liquid nitrogen. Leaf samples were crushed
with a mortar and pestle cooled with liquid nitrogen and further homogenised with
glass beads for 2 min at 30 Hz in a MM300 Mixer Mill (Retsch GmbH, Haan, Ger-
many). Total RNA was extracted with the RNeasy Plant Mini Kit (QIAGEN N.V.,
Venlo, The Netherlands) according to manufacturer’s instructions and then subjec-
ted to a RQ1 DNAse treatment (Promega Corporation, Madison, U.S.) at 37 °C for
30 minutes. We validated the total removal of DNA by means of a no-reverse tran-
scriptase PCR reaction on all RNA samples. The RNA quality was assessed for
purity (A260/A280) with a Nanodrop 2000 spectrophotometer (Thermo Fisher Sci-
entific Inc., Waltham, U.S.) and for possible RNA degradation by means of a visual
inspection of the RNA on a 1% agarose gel. cDNA was then synthesized from 2 µg
total RNA (measured by spectrophotometer) with the SensiFAST™ cDNA Synthesis
Kit (Meridian Bioscience, Cincinnati, U.S.) according to manufacturer’s instructions.

To examine the expression of both single-copy and multi-copy photosynthesis
and/or photoprotection-related genes (Table S15), species-specific RT-qPCR primers
were designed with the following criteria: the PCR fragment size had to range between
80 and 120 bp, the maximum difference in melting temperature between primers of
the same pair had to be 0.5 °C, and overall melting temperatures had to be com-
prised between 58 and 62 °C. Primers were designed to target a region of the gene
as similar as possible in all species. Additionally, for multi-copy genes, the primer
pair had to bind to all copies of a particular gene in one species. RT-qPCR reactions
were performed with SYBR green on a CFX96 Real-Time PCR Detection System
(Bio-Rad Laboratories Inc., Hercules, U.S.). The efficiency of each designed primer
set was assessed by means of a standard curve, and only primer sets with efficien-
cies ranging between 90% and 110% were used. All primer sequences can be found
in Table S16.

Gene expression was normalized to the reference genes ACT2, PGK, UBQ7 and
APR (Joseph et al., 2018; Løvdal and Lillo, 2009) using the delta-Ct (dCt) method
(Livak and Schmittgen, 2001). Normalized gene expression values were calculated
as 2-dCt. For the statistical analysis, we performed two-way ANOVA on the dCt val-
ues with the copy number and light treatment as grouping variables for the multi-
copy genes and species, and light treatment as grouping variables for the single
copy genes. A Kenward-Roger approximation for the degrees of freedom was used
and a post-hoc test was subsequently performed with Tukey’s range test, with the
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significance threshold set at (α = 0.05).
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Abstract

Photosynthesis is the only yield-related trait that has not yet been substantially im-
proved by plant breeding. The limited results of previous attempts to increase yield
via improvement of photosynthetic pathways suggest that more knowledge is still
needed to achieve this goal. To learn more about the genetic and physiological basis
of photosynthetic light-use efficiency (LUE) at high irradiance, we study Hirschfeldia
incana. Here, we compare the transcriptomic response to high light of H. incana
with that of three other members of the Brassicaceae, Arabidopsis thaliana, Brassica
rapa, and Brassica nigra, which have a lower photosynthetic LUE.
First, we built a high-light, high-uniformity growing environment in a climate-controlled
room. Plants grown in this system developed normally and showed no signs of stress
during the whole growth period. Then we compared gene expression in low and
high-light conditions across the four species, utilizing a panproteome to group homo-
logous proteins efficiently. As expected, all species actively regulate genes related to
the photosynthetic process. An in-depth analysis on the expression of genes involved
in three key photosynthetic pathways revealed a general trend of lower gene expres-
sion in high light conditions. However, H. incana distinguishes itself from the other
species through higher expression of certain genes in these pathways, either through
constitutive higher expression, as for LHCB8, ordinary differential expression, as for
PSBE, or cumulative higher expression obtained by simultaneous expression of mul-
tiple gene copies, as seen for LHCA6.
These differentially expressed genes in photosynthetic pathways are interesting leads
to further investigate the exact relationship between gene expression, protein abund-
ance and turnover, and ultimately the LUE phenotype. In addition, we can also
exclude thousands of genes from “explaining” the phenotype, because they do not
show differential expression between both light conditions. Finally, we deliver a tran-
scriptomic resource of plant species fully grown under, rather than briefly exposed to,
a very high irradiance, supporting efforts to develop highly efficient photosynthesis
in crop plants.
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4.1 Background

Considering the projected global population growth, the increasing effects of global
warming, and the need for a more sustainable means of production, it is evident
that the agricultural sector is under substantial pressure to increase crop yields while
reducing land use and inputs such as fertilisers and pesticides. Over the past decade
photosynthesis has taken a central role in plant research aimed at increasing crop
yields because it plays a major role in the crop energy conversion efficiency, the only
yield-related trait of food and feed crops that has not yet been maximised or even
substantially improved by plant breeding (Zhu et al., 2010).

While increasing crop productivity via improved photosynthetic efficiency was pro-
posed over forty years ago (Austin, 1989), limited results have been achieved so far
due to the physiological and genetic complexity of the photosynthetic process. Stud-
ies based on modelling of the photosynthetic process, bottleneck identification, and
genetic modification aimed at overcoming identified bottlenecks have proven suc-
cessful in some field crops, with yield increases ranging between 15 and 28% (Krom-
dijk et al., 2016; De Souza et al., 2022; López-Calcagno et al., 2020, 2019; Yoon
et al., 2020). However, the inconsistency of results over multiple seasons (De Souza
et al., 2022) and across species (Garcia-Molina and Leister, 2020) or growing condi-
tions (Ruiz-Vera et al., 2022) indicates that more knowledge is needed on photosyn-
thetic processes and how they are influenced by the environment across a range of
timescales if we are to systematically increase the photosynthetic efficiency in crops.

Plant photosynthesis is defined as the process in which energy from light radi-
ation is converted into chemical energy via a complex series of reactions resulting
in the production of carbohydrates and oxygen (Salisbury and Ross, 1992). A first
set of photosynthetic reactions, catalyzed by photosystem complexes and an asso-
ciated electron transport chain, is responsible for converting light radiation energy
into chemical energy. This chemical energy is then stored in metabolically useful
reducing agents (e.g. NADPH) and the energy-rich phosphate donor ATP. The pro-
cesses linking light absorption to the formation of ATP and NADPH and other re-
ducing agents collectively form the light reactions of photosynthesis (Schulze and
Caldwell, 1995). The energy-rich reducing agents and ATP then drive a second
set of photosynthetic reactions, the so-called dark reactions. These, generally re-
ferred as to the Calvin-Benson cycle, result in the conversion of the inorganic carbon
substrate CO2 into organic carbohydrate molecules (Schulze and Caldwell, 1995).
Bottlenecks or constraints - sites whose modification could result in improved photo-
synthesis - have been identified in both the light and dark reactions (Zhu et al., 2010).
Furthermore, bottlenecks affecting photosynthesis have been identified in processes
that would not be defined as strictly photosynthetic, such as the diffusion of CO2 into
and through leaves to the site of CO2fixation in chloroplasts, and the transport of
carbohydrates from photosynthetically active cells to carbon sinks elsewhere in the
plant (Singh et al., 2014).

Our current knowledge of the key mechanisms and components of photosyn-
thesis is the result of decades of studies in plants and other photosynthetic organ-
isms (Johnson, 2016). This amounts to a vast body of knowledge, but on its own



92 Chapter 4

it is insufficient to improve crops’ photosynthesis and their yield. Studies conducted
so far have highlighted how the link between crop photosynthesis and productivity is
much more complex than originally thought, as a result of interactions of this process
with plant development and environmental factors (Araus et al., 2021). One charac-
teristic of photosynthesis that can have a major impact on crop productivity is the
decreasing light-use efficiency that occurs with increasing irradiance, giving rise to
the light-saturation of photosynthesis and limitation of assimilation rate. This limita-
tion has a substantial impact on productivity at irradiance levels normally recorded
during summer in temperate areas of our planet. We define photosynthetic light-use
efficiency (LUE) as the ratio between photosynthetically assimilated CO2 and incid-
ent light radiation, or irradiance. The decrease in LUE due to increasing irradiance is
well-known and its causes are linked to both limitations in the photosynthetic process
and other associated processes (Taylor et al., 2022).

Evidence has been reported for large natural variation in photosynthesis rates,
and therefore photosynthetic LUE, among crop and other plant species (Yin et al.,
2022; Theeuwen et al., 2022). This suggests that a degree of plasticity exists for pho-
tosynthesis that could be leveraged to increase the photosynthesis of crop species.
However, it is nowadays clear that increases might only be achieved if knowledge
is accumulated on the regulation of the photosynthetic process as well as specific
strategies some plant species might have evolved that result in photosynthesis op-
timised to meet unusual goals (Taylor et al., 2022). One powerful way to map the
genetic basis of complex biological processes is via the analysis of the associated
transcriptional activity. Over the past years, several studies on transcriptional activity
in a number of species have increased our knowledge on the response of photosyn-
thesis to irradiances of different intensities or changes in irradiance. It was shown
that Arabidopsis thaliana acclimates to high light by increasing expression of heat
shock response genes and lipid remodelling genes (van Rooijen et al., 2018), that
rice (Oryza sativa) exposed to variations in irradiance associated to field conditions
activates a large number of biotic and abiotic stress genes (Hashida et al., 2022), and
that barley (Hordeum vulgare) expresses genes involved in phenolic compounds ac-
cumulation at a higher level with increasing irradiance (Pech et al., 2022). However,
none of these studies applied a long-term, very high irradiance treatment, similar to
what is experienced by plants growing in natural temperate environments during sum-
mer months, at high altitude conditions, or in the equatorial region. Neither did they
include species with a particularly high photosynthetic LUE. We consider these two
factors essential for unraveling the physiological and genetic basis of photosynthetic
light-use efficiency, and for ultimately building more light-use efficient photosynthesis
in our crops (Taylor et al., 2022).

Here, we present the analysis of gene expression in Hirschfeldia incana (L.) Lagr.-
Foss., the species we previously proposed as preferred model for studies on high
photosynthetic LUE (Garassino et al., 2022; Taylor et al., 2022). The gene expres-
sion under contrasting high- and low-light irradiance conditions is compared to that of
Brassicaceae family relatives A. thaliana, Brassica rapa, and Brassica nigra. While
A. thaliana does not share the whole genome triplication that the other three species
underwent and is therefore more distantly related, B. rapa and B. nigra represent the
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different evolutionary history of two major lineages emerging after this event (Arias
and Pires, 2012). Using transcriptomics we aim to elucidate which genes and thus
pathways are involved in the maintenance of a high photosynthetic LUE at high ir-
radiance in H. incana. First, we describe the experiment we conducted under high
irradiance, and present the results of differential gene expression (DGE) analysis per-
formed on each of the four species. Then, we report on the use of a panproteome to
compare gene expression changes across the four species, and on the exploration
of common and divergent trends in the gene expression response to high-light by
means of untargeted enrichment analyses. We then present the results of targeted
analysis of expression patterns across the four species for genes involved in key
photosynthesis-related pathways. Lastly, we discuss the findings in the light of their
implications for H. incana’s higher photosynthetic light-use efficiency at high irradi-
ance. Our work thus describes the transcriptional differences associated with plant
growth under highly contrasting irradiance conditions, and serves as a resource for
the elucidation of the genetic determinants of the striking photosynthetic capacity of
Hirschfeldia incana.

4.2 Results

4.2.1 Plant growth under a reliable high-light environment

In this study, we aimed to identify genes and pathways responsible for the higher
photosynthetic light-use efficiency of H. incana under high irradiance conditions. To
create strongly contrasting growth conditions, we set our low light (LL) irradiance
to 200 µmol m−2 s−1 and our high light (HL) irradiance to 1800 µmol m−2 s−1 for 12 h
per day. We calculated U2 irradiance uniformity values (Hu et al., 2015; Sun et al.,
2014) over all growing positions designated for both treatments, and we selected
positions on each growing table that resulted in the best irradiance uniformity. For
the LL table, this resulted in an average irradiance of 227.5 µmol m−2 s−1 associated
with an U2 of 0.93, while for the whole HL table we measured an average irradiance
of 1843.6 µmol m−2 s−1, also associated with an U2 of 0.93.

To compare the light treatments to conditions that plants would experience in
natural environments, we calculated a Daily Light Integral (DLI) (Faust and Logan,
2018), a measure of the total irradiance delivered over the course of a day per unit
of area, for each treatment. This resulted in DLIs of 9.82 mol m−2 d−1 and 79.64
mol m−2 d−1 for the LL and HL treatments, respectively.

Besides H. incana, this study featured three other Brassicaceae species: A. thali-
ana, B. rapa, and B. nigra. These are the same we used for previous work in which
they showed to have lower photosynthetic LUE than H. incana (Garassino et al.,
2022). Plants of the four species established and grew well under both light treat-
ments, albeit with differences in growth and architecture (Figures 4.1, S1). No stress
symptoms were visible on the plants throughout the growing period. 20% of the B.
nigra plants from the LL treatment appeared to grow more slowly and had paler leaf
color than the other B. nigra plants (Figure S1).
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Figure 4.1: Pictures of representative plants at the end of the experiment for each of the
four species grown under the two irradiance conditions. Left to right: A. thaliana, B. rapa,
B. nigra, H. incana. Top row: low light (LL) irradiance. Bottom row: high light (HL) irradiance.

4.2.2 Per-species differential gene expression analysis

To study the gene expression under contrasting light conditions in the four species we
sequenced forty mRNA libraries (4 species × 5 replicates × 2 conditions) generated
from RNA extracted from whole plant canopies, with an average of 22.2 ± 2.4 million
reads per library. The MultiQC inspection of all sequencing reads did not show any
quality issues in our dataset. Percentages of reads mapped to reference genomes
were overall high, ranging between 93.4 ± 1.5% and 96.3 ± 0.7% (Table S1).

We performed differential expression (DE) analysis on data from each species
individually with DESeq2 and selected all differentially expressed genes (Tables 4.1,
S2-S5). Per-species principal component analysis performed on count data trans-
formed by regularized logarithm showed that the general patterns of gene expres-
sion are consistent across biological replicates belonging to the same species and
originating from the same treatment (Figure S2). The percentages of genes signi-
ficantly differentially expressed were similar for A. thaliana, B. rapa, and H. incana,
while they were lower for B. nigra due to the high number of genes in the annotation.
Since we are interested in differences and similarities between A. thaliana and the
other species, and in particular H. incana, we compared the gene expression across
the species.
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Table 4.1: Numbers of differentially expressed and non-deferentially expressed genes
for the various species. Percentages of the total number of genes are placed between
brackets. Significant differences for p<0.05.

Number of genes
Higher Lower Unchanged

expression expression expression
A. thaliana 3,346 (12.1%) 3,027 (11.0%) 21,226 (76.9%)
B. rapa 7,292 (15.7%) 7,138 (15.4%) 32,050 (68.9%)
B. nigra 4,723 (7.9%) 4,052 (6.8%) 50,934 (85.3%)
H. incana 4,284 (13.2%) 4,334 (13.3%) 23,900 (73.5%)

4.2.3 Cross-species comparison using a panproteome

To enable the comparison of gene expression across species, we built a panpro-
teome to group homologous genes (orthologs and paralogs) (Sheikhizadeh Anari
et al., 2018). A panproteome of eight Brassicaceae species (Aethionema arabicum,
A. thaliana, B. nigra, B. rapa, H. incana, Raphanus raphanistrum, Raphanus sativus,
Sisymbrium irio) yielded 106,511 homology groups (HGs, Figure S3, Table S6). We
then selected HGs containing at least one gene from one of the four species for which
RNA-Seq was performed, leaving 63,675 HGs for downstream analysis (Figure 4.2).

We also distinguished “differentially expressed” (DE) HGs, which contain at least
one gene that was differentially expressed between both light conditions, and “non-
DE” HGs (Table 4.2), which do not. Among the 19,012 DE HGs, the 10,770 which
have an ortholog from each of the four species (i.e. the core proteome) form the
main target of our research. Of particular interest are the differences and similar-
ities between A. thaliana and the other species, all of which are members of tribe
Brassiceae, and in particular H. incana. Similarly, we identified 3,688 HGs which
contain genes that were not differentially expressed in any of the species and can
therefore not explain the phenotypic differences (Table S7). Based on the A. thali-
ana genes contained in these groups, we found 267 Gene Ontology (GO) Biological
Process (BP) terms enriched (Table S8). As expected, no terms related to photosyn-
thesis or high-light adaptation were identified in this set of groups.

To compare transcriptional activity across species within a single light condition,
we compared transcripts-per-million (TPM)-normalised transcript counts. To assess
bias due to differences in sequencing libraries, which are not corrected for during
TPM normalisation (Zhao et al., 2020), we tested whether average transcript abund-
ances were similar across species. We selected the non-DE homology groups con-
taining a single expressed ortholog for each of the four species. We averaged TPM
counts (regardless of treatment) for each species and calculated per-HG log2-ratios
between average counts for the single orthologs of the various species. The distri-
bution of these ratios showed that on average the A. thaliana transcript abundances
are higher than those of B. rapa and H. incana (% of area under the curve (AUC) for
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Figure 4.2: An UpSet plot of the panproteome homology groups (HGs), based on the
four species for which RNA-Seq was done. Vertical bars represent the number of HGs,
classified by presence/absence of genes from the various species as illustrated at the bottom
of the figure. The first bar represents all the HGs of the panproteome constructed with pro-
teomes from eight Brassicaceae species that do not contain any genes from the four species
we sequenced. The horizontal colored bars show how many of the HGs containing at least
one gene from a species fall within one of three categories: core HGs, i.e. those containing at
least one gene from all four species; accessory HGs, i.e. those containing genes from more
than one, but not all, species; and unique HGs, i.e. those containing only genes from a single
species.

log2-ratios > 1: 59.9 and 62.8%, respectively), which are in turn higher than those of
B. nigra (% of area under the curve for log2-ratios > 1: 67.4 % for B. rapa and 67.2%
for H. incana) (Figure S4, Table S9). Given the fact that expression in H. incana is
generally lower than in A. thaliana and similar to that in B. rapa, we conclude that
detection of a significantly higher expression in H. incana is the effect of biological
processes rather than an artifact.

4.2.4 Comparative analysis of core DE homology groups highlights
photosynthetic pathways

Of the 10,770 core HGs (CHGs) containing at least one gene differentially expressed
under HL, 10,352 showed non-ambiguous differential expression within each species
and were selected for downstream analysis. We defined non-ambiguous DE as the
situation in which the expression of all genes is exclusively increased or decreased.
Clustering the CHGs with non-ambiguous responses allowed us to identify expres-
sion profiles for the four species (Figure 4.3, Table S10). Some CHGs show consist-
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Table 4.2: Numbers of homology groups (HGs) in the constructed panproteome, clas-
sified based on their “differential expression” (DE) status. An HG is classified as “DE”
if it contains at least one gene differentially expressed between both light conditions. If this
condition is not met, the HG is classified as “non-DE”.

Homology groups
DE Non-DE Total

Core 10,770 3,688 14,458
Accessory 6,132 7,903 14,035
Unique 2,838 32,344 35,182
Total 19,012 44,663 63,675

ent higher or lower expression in all species (245 and 382, respectively). More often,
an higher or lower expression is shared by some species (2,165 and 1,890 CHGs) or
is unique to a species (2,163 and 1,946). Lastly, there are CHGs showing contrasting
expression (higher expression in some species, lower expression in others) across
species (1,561).

In order to get an overview of the role of the genes belonging to clusters of CHGs,
we performed Gene Ontology (GO) (Ashburner et al., 2000; Gene Ontology Consor-
tium, 2021) and KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2023) enrichment
analyses separately for clusters of CHGs containing at least one gene model with sig-
nificantly higher or lower expression in each species, in the three Brassiceae species
(B. rapa, B. nigra, H. incana), and in H. incana alone. GO enrichment analysis for the
sets of A. thaliana genes in the clusters of CHGs containing genes with higher ex-
pression under HL resulted in terms related to response to water deprivation and salt
stress, heat, low cellular oxygen, and flavonoid biosynthesis (Table S11). A similar
selection and analysis for genes with lower expression under HL resulted in terms
involved in high-light response, chlorophyll metabolism, and growth regulation.

KEGG enrichment analysis highlighted seventeen over-represented pathways
(Table S12). Twelve pathways were enriched in CHGs containing at least one gene
with higher expression under HL in all species, Brassiceae species, or H. incana
alone. The most notable of these pathways was “Carbon metabolism” (ath01200).
The remaining five patwhays were enriched in CHGs containing at least one gene
with lower expression under HL in all species, Brassiceae species, or H. incana
alone. Notably, these five pathways comprised the two currently annotated in KEGG
for photosynthesis: “Photosynthesis”(ath00195), and “Photosynthesis - antenna pro-
teins” (ath00196). Since all three photosynthesis-related KEGG pathways were high-
lighted by our enrichment analysis, we decided to further explore the expression of
the genes associated with these pathways in search of clues on the higher photosyn-
thetic LUE of H. incana.
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Figure 4.3: Heatmap of 10,352 groups showing only non-ambiguous responses per spe-
cies. The color scale represents the ratio between the number of higher (positive numbers) or
significantly lower expressed (negative numbers) genes and the total number of gene models
present in each group per each species. Both rows and columns were clustered with hierarch-
ical clustering based on Euclidean distances.

4.2.5 Targeted analysis of light-harvesting complex genes

We first analyzed the expression patterns of the A. thaliana genes annotated with
the KEGG pathway “Photosynthesis - antenna proteins” (ath00196) and their ortho-
logs in B. rapa, B. nigra, and H. incana. This allowed us to investigate transcriptional
differences associated with light-harvesting complexes (LHCs), which are amongst
the first complexes involved in the photosynthetic process. The KEGG pathway is
made up of 22 A. thaliana genes assigned to 14 homology groups. These groups
contain 34 genes for B. rapa, 33 genes for B. nigra, and 35 genes for H. incana. In-
spection on these genes revealed log2 fold change (log2FC) values ranging between
-3.15 and 1.01, with almost all genes showing significant lower expression under HL,
except for LHCB8, LHCB7, and LHCA5 (Figure S5). No differences across species
were observed except for two genes coding for photosystem II (PSII) antenna pro-
teins, LHCB8 and LHCB7, and two coding for photosystem I (PSI) antenna proteins,
LHCA6 and LHCA5 (Figure 4.4a). Considering the particular features explained be-
low, we selected the LHCB8 and LHCA6 genes for further investigation.

LHCB8 was first investigated as member of a subset of rarely expressed light-
harvesting complex (LHC) protein encoding genes (Klimmek et al., 2006). The
LHCB8 protein resembles the CP29.1 and CP29.2 proteins, encoded in A. thali-
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ana by the LHCB4.1 and LHCB4.2 genes, and is therefore also known as CP29.3
(LHCB4.3). AtLHCB8 shows a different expression pattern than AtLHCB4.1 and AtL-
HCB4.2, suggesting a different role for the protein in the LHC. It seems to be present
only in species of the eurosids, a subclade of the rosids (Klimmek et al., 2006). The
LHCB8 protein is present as a monomer within the PSII supercomplex, forming the
so-called “minor antenna” of photosystem II with a number of other LHCB proteins
(LHCB4, LHCB5, LHCB6) (de Bianchi et al., 2011)). The expression of A. thaliana
LHCB8 is induced by high irradiance conditions (Flannery et al., 2021b)). LHCB8 is
a single-copy gene in the four species used for this study and under HL had mod-
erately higher expression in A. thaliana and B. nigra, while it had moderarely lower
expression in B. rapa and showed no significant changes in H. incana. Based on
transcripts-per-million (TPM)-normalised read counts, LHCB8 transcripts represent
roughly 26.5% of the transcript pool for the minor antenna in H. incana plants grown
under HL, while they represent only 5.6%, in A. thaliana (Figure 4.4b). This high
representation is also found in B. rapa and B. nigra, with LHCB8 making up 22.5%
and 31.1% of minor antenna transcripts (Figure S6).

LHCA6 is a poorly-expressed gene coding for a protein associated with PSI as
an antenna monomer. LHCA6 is present as a single-copy gene in A. thaliana, B.
rapa, and B. nigra, while it has three tandem copies in H. incana (Garassino et al.,
2022)). LHCA6 did not show statistically significant changes in expression in B. nigra,
A. thaliana and in any of the three copies of H. incana. However, it had lower expres-
sion in B. rapa under HL. To determine expression across species, we summed
TPM-normalized counts for the three LHCA6 copies in H. incana and calculated all
pairwise ratios between counts in the four species under the two treatments. Inspec-
tion of ratios between counts in H. incana and other species revealed the LHCA6
paralogs to have higher expression in H. incana under both the irradiance conditions
after correction for the transcriptional baseline differences (Figures 4.4c, S7).

4.2.6 Targeted analysis of light reactions genes

We then analyzed the expression patterns for the CHGs containing the 77 A. thali-
ana nuclear and chloroplast genes that are annotated with the KEGG pathway “Pho-
tosynthesis” (ath00195), which are involved in the light reactions of photosynthesis.
Log2FC values ranged between 1.98 and -1.78, with 142 of the total 368 genes sig-
nificantly DE under HL. When considering only the significant expression changes,
the trend across “Photosynthesis” pathway genes is lower expression under HL in all
species: 29 genes out of 33 in A. thaliana, 48 out of 52 in B. rapa, 25 out of 26 in B.
nigra, and 27 out of 31 in H. incana (Figure S8). A small number of CHGs contained
at least one gene having higher expression under HL in one of the species (Figure
4.4a). For further analysis, we focused on those showing higher expression only in H.
incana, thus selecting genes PSBD and PSBE, part of the PSII complex, and PSAA
and PSAJ, part of the PSI complex.

The D2 protein, encoded by PSBD, forms the core of PSII along with the D1 pro-
tein, encoded by PSBA. These two subunits together bind three macromolecules that
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Figure 4.4: Results of the targeted analysis of photosynthetic pathways. (a) Schematic
view of the restricted set of genes belonging to KEGG pathways ath00196 (“Photosynthesis
- antenna proteins”, left column) and ath00195 (“Photosynthesis”, center and right columns)
showing higher expression under HL in at least one of the species. Magenta box indicate sig-
nificantly higher expression under HL, while blue boxes indicate significantly lower expression
under HL. At: A. thaliana; Br: B. rapa; Bn: B. nigra; Hi: H. incana. (b) Pie charts repres-
enting the relative abundance of transcripts originating from genes encoding components of
the PSII minor antenna. (c) Mean normalized abundance of LHCA6 transcripts in plants of
the four species grown under the two irradiance treatments. The different colors represent
different paralogs. Error bars represent the standard errors of the mean. The full compar-
ison of transcript abundances for LHCA6 can be found in Figure S7. (d) Mean normalized
abundances of PSBE, PSBD, PSAA, and PSAJ transcripts in plants of the four species grown
under the two irradiance treatments. Error bars represent the standard errors of the mean.
Full across-species comparisons can be found in Figures S9, S10, S11, and S12. (e) Schem-
atic representation of the Calvin-Benson cycle, or the “dark reactions” of photosynthesis, and
differential expression status of genes involved in the four species. Yellow: no significant differ-
ential expression under HL; red: significantly higher expression under HL; blue: significantly
lower expression under HL. At: A. thaliana; Br: B. rapa; Bn: B. nigra; Hi: H. incana.



Comparative transcriptomics 101

are fundamental for photosynthetic light reactions: the P680 reaction center, which
transfers energy to water molecules, the Mn4CaO5 cluster responsible for the split-
ting of water molecules and retrieval of electrons, and components of the primary
electron transfer chain, such as plastoquinones QA and QB (Leegood, 2013). The
PSII reaction center is completed by the subunit encoded by the PSBI gene and cyto-
chrome b559, composed of subunits encoded by the PSBE and PSBF genes and a
heme cofactor (Johnson and Pakrasi, 2022). The PSBD gene is highly expressed in
A. thaliana plants grown under both treatments, and H. incana plants grown under
HL, while the PSBE gene is highly expressed only in H. incana plants grown under
HL (Figures 4.4d, S9, S10).

The photosystem I (PSI) core is composed of proteins encoded by the PSAA
and PSAB genes. The PSI complex is composed of several additional subunits,
including one stabilized by the protein encoded by gene PSAJ (Scheller et al., 2001).
The expression of PSAA and PSAJ orthologs appears to be significantly higher in H.
incana plants grown under HL, with plants growing under LL having similar transcript
levels to those measured in the other species irrespective of the treatment (Figures
4.4d, S11, S12).

4.2.7 Targeted analysis of carbon metabolism genes

Continuing our analysis based on photosynthesis KEGG-related pathways, we stud-
ied the expression of the 273 A. thaliana nuclear and chloroplast genes associated
to the KEGG pathway ”Carbon metabolism” (ath01200) and their orthologs (Figure
S13). Pathway ath01200 comprises genes involved in both catabolism and ana-
bolism of carbon-based molecules, organized in a number of modules. Inspection
of these modules revealed that the genes related to the Calvin-Benson cycle, and
thus to assimilation of inorganic carbon into the end product of photosynthetic re-
actions, carbohydrates, were grouped into module “Reductive pentose phosphate
cycle (Calvin cycle)” (ath M00165). The expression of genes included in this module
did not show an obvious profile (Figure S14). However, two of the 23 CHGs asso-
ciated with this module contained genes that had higher expression uniquely in H.
incana under HL. These are orthologs of the A. thaliana genes FBP and RSW10
(Figure 4.4e). A. thaliana mutants for the RSW10 gene has been linked to ribose-
5-phosphate metabolism and cellulose biosynthesis, but no direct involvement with
photosynthetic activity has been described to date (Howles et al., 2006; Xiong et al.,
2009). Gene FBP, instead, has been associated with photosynthetic activity, and
FBP overexpression has been proven to increase soluble sugar and starch contents,
as well as photosynthetic CO2 assimilation (Cho et al., 2012).
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4.3 Discussion

In this study, we explored the transcriptomes of plants of four Brassicaceae species
(A. thaliana, B. rapa, B. nigra, H. incana) grown under contrasting irradiances to un-
ravel the genetic determinants of H. incana’s high photosynthetic light-use efficiency
under high irradiance. Considering the complexity of our dataset and based on the
results of our untargeted enrichment analysis, we decided to restrict our exploration
by focusing on genes related to photosynthesis in the KEGG ontology.

4.3.1 Increasing power of elimination through super-natural irradiance

To make sure we would observe any transcriptional differences associated with growth
under high irradiance conditions, we designed and built a high-output, high-uniformity
lighting system. The per-treatment daily light integral (DLI) of 9.82 mol m−2 d−1 that
we measured for the low light (LL - 227.5 µmol m−2 s−1) treatment is consistent with
what has been reported for winter months in warm-temperate climate areas, while
the DLI of 79.64 mol m−2 d−1 we measured for the high light treament (HL - 1843.6
µmol m−2 s−1) is substantially higher than the values of 60-65 mol m−2 d−1 reported
for summer months in the same climate areas (ENEA TER-SOLTERM, 2006; Faust
and Logan, 2018; Korczynski et al., 2002; Australian Government, 2022).

Our study differs from previous studies on high light responses not only because
of our use of the “super-natural” magnitude of our high light treatment, but also for the
way the treatment was applied. While previous high-light studies involving A. thaliana
have employed irradiances ranging from between 150 and 2000 µmol m−2 s−1, all of
these studies applied the high light treatment to low light-adapted plants and focused
on the response, or acclimation, to the high light (van Rooijen et al., 2018; Pech et al.,
2022; Tiwari et al., 2021; Bode et al., 2016; Caldana et al., 2011; Huang et al., 2019;
Page et al., 2012; Alvarez-Fernandez et al., 2021; Bobrovskikh et al., 2022). We, on
the other hand, focused on the steady-state transcriptional activity in the four species
we examined grown from the seedling stage to maturity under either low or high light.

We have shown that between 68.9 and 85.3% of genes from the four species
were not differentially expressed between the light treatments (Table 4.1). Further-
more, after performing homology grouping and integrating its results with gene differ-
ential expression analysis we identified a total of 44,663 HGs containing genes that
did not respond to the treatment (Table 4.2), as well as 631 out of the total 10,352
CHGs containing genes that have the same response to the treatment in all species
(Figure 5.8). None of these genes can, therefore, cause the higher photosynthetic
LUE under high light of H. incana, and were therefore not considered in our fur-
ther analysis. We thus believe that the combination of magnitude and application of
treatment in our study gives us a sizeable “power of elimination” when dealing with
complex transcriptomic datasets.



Comparative transcriptomics 103

4.3.2 Dealing with the complexity of across-species transcriptomic
comparisons

The limited set of studies comparing the transcriptomes of different plant species (Ju-
lca et al., 2021; Aubry et al., 2014; Wu et al., 2022; Curci et al., 2022; Garcı́a de la
Torre et al., 2021) is proof of the novelty of between-species comparative transcrip-
tomics. In contrast to previous studies, we used a panproteome built with PanTools
(Sheikhizadeh et al., 2016) to infer gene homology relationships. We made use of
optimised homology grouping, based on the organization of universal single-copy
orthologs (BUSCO gene sets, (Manni et al., 2021b,a)), that is unique to PanTools
(Sheikhizadeh Anari et al., 2018; Jonkheer et al., 2022). This method determines
the optimal strictness of protein-clustering settings, given the phylogenetic distance
between the proteomes in the data set.

Integrating HGs with per-species transcript abundance and differential expression
data presented us with the challenge of comparing transcript abundances across
species. Canonical normalization methods, such as the transcripts-per-million (TPM)
normalization we used in our study, do not yield abundance measures that can be
compared between species (Zhao et al., 2020). In the absence of a widely accepted
approach to compare normalised transcript abundances across species, we decided
to estimate the transcriptional “baseline” of the four species. We extracted expression
data for all the non-differentially expressed (non-DE) genes belonging to single-copy
core HGs and calculating gene-by-gene log2-ratios between transcript abundances.
Inspection of the distributions of these ratios revealed that A. thaliana has on aver-
age a slightly higher transcriptional baseline than B. rapa and H. incana, which in
turn have a slightly higher baseline than B. nigra. We decided to control for these
differences when comparing transcript abundance across species by calculating pair-
wise log2-ratios between TPM-normalized transcript counts and relating them to the
ratios calculated for non-DE genes. As we have shown for the genes highlighted in
the pathway analyses, the differences between TPM counts are much larger than
what could be explained by differences in “baseline” transcription (Figures S7, S9,
S10, S11, S12), and therefore have biological meaning.

4.3.3 Across-species comparison of differential gene expression high-
lights differences in photosynthetic pathways

The analysis of differential gene expression we performed individually on all four
species in this study revealed similar percentages of differentially expressed (DE)
genes for A. thaliana, B. rapa, and H. incana. Indeed, the cumulative percentage of
DE genes in response to HL ranged between 23% and 31% (Table 4.1). This is in line
with previous studies reporting that roughly 20% of the A. thaliana transcriptome is
responsive to light (Ruckle et al., 2012; Bode et al., 2016). For B. nigra, on the other
hand, only about 15% of the genes were DE under high light. We do not believe
that this difference has a biological explanation, but that it is the result of the very
large number of gene models included in the B. nigra annotation. Many of these
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gene models are likely to be annotation artifacts rather than actual genes, as shown
by the large number of B. nigra genes clustering separately from genes of the other
species in the panproteome (Figures 4.2, S3).

After quantifying gene expression for our four species and inferring homology re-
lationships between genes, we performed a number of untargeted analyses aimed
at giving us a non-biased overview of the biological processes and pathways most
affected when comparing the transcriptomes from the LL and HL treatments. By
making use of the panproteome, we were able to perform these analyses on specific
groups of genes, namely the core homology groups containing DE genes in all four
species combined, the Brassiceae species (B. rapa, B. nigra) and H. incana) as a
group, and H. incana on its own. Considering the higher photosynthesis rates we
previously reported for the Brassiceae species (Garassino et al., 2022), one might
expect results linked to photosnynthetic LUE to come from the HGs showing differ-
ential expression for the Brassiceae species, or from the HGs with genes showing
DE in H. incana alone. Nevertheless, the most promising results came from enrich-
ment analyses on the HGs containing genes deferentially expressed across all four
species. Indeed, out of a total of nine KEGG pathways enriched in this kind of HGs,
three pathways mentioned photosynthesis in their name.

One striking finding of our targeted analysis of the three photosynthesis-related
pathways was that most of the associated genes appeared to either have lower or
unchanged expression under the HL treatment. This was expected for the “Pho-
tosynthesis - antenna proteins” pathway (ath00196), including all photosystem an-
tenna genes, based on experimental evidence that plants growing under high light
will reduce the size of their antennas (Ballottari et al., 2007). However, this trend of
lower or unchanged gene expression was unexpected for genes related to photosyn-
thetic light reactions (included in the “Photosynthesis” pathway, ath00195) and car-
bon metabolism (included in the homonymous pathway, ath01200). Recent studies
of changes in the A. thaliana proteome in response to irradiance increase or switch
from controlled to field conditions have highlighted increases in abundance for most
proteins involved in light reactions (Flannery et al., 2021a,b). Furthermore, ample
experimental evidence has been collected in the past showing that plants acclimat-
ing to high light develop a higher carbon fixation metabolism via increased protein
levels (Schöttler and Tóth, 2014). A few considerations arise from the discrepancy
between this evidence and the results of our transcriptome analysis. The first is that,
as already discussed above, previous studies focused on acclimation responses to
higher light, while ours was conducted on plants that grew under constant high or low
light, and therefore the transcriptome snapshot obtained in our study might repres-
ents a much different gene and protein regulation situation than what was previously
studied. Furthermore, it is important to point out that while transcriptome analysis
highlights genes that are potentially involved in high photosynthetic LUE, it cannot in-
form us on downstream proteome dynamics. Thus, we currently cannot say whether
higher gene expression is a consequence of higher protein turnover due to e.g. pho-
todamage, or if it enables for higher protein abundance, thus potentially enabling for
higher biochemical capacity in the photosynthetic reactions. The opposite is naturally
true for lower gene expression, and therefore this analysis does not allow us to con-
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clude whether that is the result of higher protein stability or lower protein abundance
requirements.

Finally, our in-depth analysis of gene expression for three KEGG pathways re-
vealed that differential gene expression is only one of the ways H. incana achieves
higher transcript abundances, potentially enabling its higher photosynthetic light-use
efficiency. While we identified four genes encoding photosystem subunits (PSBD,
PSBE, PSAA, PSAJ) whose transcript levels were significantly higher in H. incana
plants grown under HL, we identified other genes such as LHCB8 and LHCA6 hav-
ing a striking transcript abundance in H. incana plants grown under both irradiances.
This appears to be achieved in two additional ways: while the LHCB8 gene is present
in a single copy in H. incana and all other species, and the abundance of its transcript
in H. incana can be explained with a constitutive overexpression of the gene, the
LHCA6 gene is present in three copies in H. incana as opposed as the single copy
of the other three species. Each LHCA6 copy is expressed in H. incana at levels
that appear to be slightly higher than those of other species, but the cumulative ex-
pression of the three copies results in a substantially higher transcript abundance for
the gene. These strategies to achieve higher gene expression form an interesting
lead to further investigate the precise relationship between expression levels, protein
abundance and turnover, and ultimately the photosynthetic light-use efficiency of H.
incana.

4.3.4 Possibilities to explore other processes related to photosyn-
thesis

While we decided to limit our research to KEGG photosynthesis pathways, we ac-
knowledge that photosynthesis is a highly complex process involving other key path-
ways. We hypothesize that genes involved in transpiration, heat dissipation, stress re-
sponse, and nutrient uptake and cycling will play a role in supporting higher photosyn-
thetic efficiency. While previous studies identified transcriptional responses to high
irradiance connected to heat-shock response (van Rooijen et al., 2018; Bobrovskikh
et al., 2022), ribosome biogenesis and transcriptional activity (Bobrovskikh et al.,
2022), lipid remodeling (van Rooijen et al., 2018), flavonoid biosynthesis (Page et al.,
2012; Pech et al., 2022), a comprehensive picture of these responses is still far from
being available (Burgess et al., 2023). Based on what emerged from our targeted
analysis on photosynthetic pathways, approaching our dataset in a different way than
via enrichment analysis will likely reveal how the these processes are playing a role
in high-light photosynthesis. Our resource will therefore provide means to further
explore the genetic basis of high photosynthetic efficiency under high light.

4.3.5 Prospects for future research

In this study, we have highlighted three different strategies that H. incana can employ
to achieve higher transcript abundances for genes that potentially play a key role in its
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photosynthetic efficiency. Given that our analysis pipeline allows the retrieval of TPM-
normalized counts for all expressed genes in each of the employed species, and that
we established a method to estimate baseline differences in transcript abundances
for the various species, an additional study of transcript abundances irrespective of
differential expression might provide further clues on the mechanisms allowing H. in-
cana to achieve higher photosynthetic light-use efficiency. Despite showing that most
genes involved in photosynthetic reactions have lower expression as a response to
high light in all analysed species, we have identified a number of genes that are either
highly expressed in response to high light or have a constitutive higher expression in
H. incana. Of these genes, LHCB8 and LHCA6 appear as very promising targets for
further analysis, as the function of the first is still unclear and the higher expression
in H. incana of the second cannot be explained with current literature.

It is important to stress once more how this experiment aimed at obtaining a snap-
shot of the operation of high photosynthesis rates, rather than at their establishment
during leaf development. While our experiment uncovered some genes that might be
playing a role in supporting high photosynthetic activity under high irradiance, future
transcriptomics investigations on time series collected throughout leaf development
will be crucial to understand which genes and processes enable the establishment
of high photosynthetic light-use efficiency.

4.4 Conclusions

This study provides an analysis of the transcriptomes of A. thaliana, B. rapa, B.
nigra, and H. incana plants grown under constant low and high irradiance, rather
than the acclimation response to high irradiance. By combining gene expression
quantification and differential expression analysis with a panproteome-based homo-
logy grouping, we quickly and efficiently identified expression patterns shared by the
various species, or unique to one of them. Following an untargeted approach, we
observed an enrichment for genes involved in photosynthetic pathways. A closer
look at the expression of all genes belonging to these pathways allowed us to reveal
that in comparison to other Brassicaceae species, H. incana growing under a high
light treatment achieves higher expression of genes related to photosynthesis via
three different modes: “canonical” differential expression between low and high light,
constitutive higher expression of single-copy genes, or cumulative higher expression
obtained by simultaneous expression of multiple gene copies. Besides identifying
genes such as LHCB8 and LHCA6, whose higher expression in H. incana growing
under high light prompts for a detailed investigation of their role in photosynthetic
LUE under high irradiance, we believe that analysing the genes undergoing differ-
ential expression specifically in H. incana will further clarify the role of non-strictly
photosynthetic genes in supporting the species’ striking photosynthetic performance.
Therefore, we expect the resource we established with this study to provide further,
extensive knowledge on the genetic strategy employed by H. incana to support its
high photosynthetic light-use efficiency.
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4.5 Materials and methods

Construction of high-uniformity growth system

Two custom light ceilings were built for this study. Each ceiling measured approxim-
ately 4.3 m2 (l 175 cm, w 245 cm), was equipped with six dimmable VYPR2p LED
fixtures (Fluence, Austin, USA) arranged in three equally spaced rows (between-
rows distance of 60 cm, and was hung so that fixtures would be one meter high over
plants. We then centered two custom-made growing tables measuring approximately
1.6 m2 (l 118 cm, w 137 cm) under the custom light ceilings, divided each table into
thirty growing areas, each measuring approximately 0.05 m2, and performed irradi-
ance measurements at the centre of each growing area. By calculating averages
over the thirty areas under each light ceiling, we optimised the output of the LED
fixtures to have average irradiances as close as the reference values we chose for
our treatments.

Plant material and growing conditions

Hirschfeldia incana accession ’Nijmegen’, Brassica nigra accession ’DG1’, Brassica
rapa R-o-18, and Arabidopsis thaliana Col-0 were used for this experiment. ’Nijme-
gen’ is an inbred line (over six rounds of inbreeding) from an H. incana plant originally
collected in Nijmegen, The Netherlands; ’DG1’ is a second-generation inbreeding
line of B. nigra sampled from a natural population near Wageningen, The Nether-
lands; and ’R-o-18’ is a B. rapa inbred line (Stephenson et al., 2010; Bagheri et al.,
2012).

Seeds of all species were germinated on a peat-based potting mix for nine days
under an irradiance of 200 µmol m−2 s−1. Twelve healthy seedlings per species were
then transferred to 2 L pots (� 13.9 cm, h 17.4 cm, Soparco, Condé-sur-Huisne,
France) filled with a peat-based potting mixture enriched with perlite and 2.5 g/L
Osmocote® Exact Standard 5-6M slow-release fertiliser (ICL Specialty Fertilizers,
Geldermalsen, The Netherlands).

Plants were germinated and grown in a climate-controlled room equipped with the
custom arrays of high-output LED light modules described above, with a photoperiod
of 12 h day and 12 h night, and air temperature set at 23 °C and 20 °C, respectively.
Humidity and CO2 levels were set at 70% and 400 ppm. Six plants per species were
assigned to the high light (HL) treatment of 1800 µmol m−2 s−1 (measured irradiance
average: 1843.6 µmol m−2 s−1) and the remaining six to the low light (LL) treatment
of 200 µmol m−2 s−1 (measured irradiance average: 227.5 µmol m−2 s−1). Irradiance
uniformity was very high for both HL and LL treatments, with a U2 value (defined
as minimum irradiance/maximum irradiance, (Hu et al., 2015; Sun et al., 2014)) of
0.93. Plant positions were randomised across growing areas. Plants assigned to the
LL treatment were fertigated daily, while plants assigned to the HL treatment were
fertigated twice a day, with a custom nutrient solution (0.6 mM NH4

+, 3.6 mM K+,
2 mM Ca2+, 0.91 mM Mg2+, 6.2 mM NO3

– , 1.66 mM SO4
2 – , 0.5 mM P, 35 µM Fe3+,

8 µM Mn2+, 5 µM Zn2+, 20 µM B, 0.5 µM Cu2+, 0.5 µM Mo4+).
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Sampling and RNA extraction

Twenty-eight days after sowing, samples representative of the whole canopy were
collected from all plants. All leaves (for smaller plants such as A. thaliana and H.
incana, especially when grown under low light) or half the total number of leaves
were excised from plants, transferred to 50 mL tubes, and flash-frozen in liquid ni-
trogen. All leaf samples were subsequently crushed with a mortar and pestle in
excess liquid nitrogen, and further homogenised with glass beads for 2 min at 30 Hz
in a MM300 Mixer Mill (Retsch GmbH, Haan, Germany). Total RNA was extracted
with the RNeasy Plant Mini Kit (QIAGEN N.V., Venlo, The Netherlands) according
to manufacturer’s instructions, and eluted using 50 µL of DNAse/RNAse-free water.
The following DNAse treatment and RNA recovery were performed as described in
(Oñate-Sánchez and Vicente-Carbajosa, 2008). 6 µL of 10X DNAse buffer and 4 µL
of RQ1 DNAse (Promega, Leiden, The Netherlands) were added to 50 µL of RNA,
and incubated for 30 minutes at 37 °C. The RNA was then precipitated overnight
using ammonium acetate and ethanol, and resuspended in 25 µL of DNAse/RNAse-
free water. To check RNA quality and integrity, 1 µL of RNA was used to (1) load
a 1% agarose-Ethidium bromide gel and after electrophoresis observe the bands
using standard imaging and (2) to determine spectrophotometric parameters with a
Nanodrop 2000 (Thermo Fisher Scientific Inc., Waltham, U.S.A.). The RNA was fur-
ther quantified using the Qubit RNA BR Assay kit and a Qubit 4 fluorometer (Thermo
Fisher Scientific Inc., Waltham, U.S.A.).

Sequencing

RNA from five of the six plants of each species grown under each light treatment
was sequenced by Novogene (UK) Company Ltd., Cambridge, U.K.. Poly-A enriched
RNA was employed to prepare sequencing libraries with the NEBNext® Ultra™ RNA
Library Prep Kit (New England Biolabs, Ipswich, U.S.A.). Paired-end, 150-bp-long
reads (PE150) were generated with a NovaSeq 6000 system (Illumina Inc., San
Diego, U.S.A.) aiming at obtaining 6 Gb of data per sample.

Selection and preparation of genome assemblies and annotations

For mapping of sequencing reads and quantification of gene expression, the TAIR10
(Swarbreck et al., 2008) genome assembly and the Araport11 annotation (Cheng
et al., 2017) were used for A. thaliana, the ”Chiifu” v3.0 assembly and annotation
(Zhang et al., 2018) were used for B. rapa, the ”Ni100” v2.0 assembly and annota-
tion (Perumal et al., 2020) were used for B. nigra, and the ”NIJ6” v1.0 assembly
and annotation (Garassino et al., 2022) were used for H. incana. For panproteome
building, the v3.0/3.1 A. arabicum (Fernandez-Pozo et al., 2021), the v1.0 R. raphan-
istrum (Moghe et al., 2014), the v1.0 R. sativus (Kitashiba et al., 2014), and the v1.0
S. irio (Haudry et al., 2013) genome assemblies and annotations were employed
together with the aforementioned ones. The exact locations where the various files
were downloaded from can be found in Table S13.
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Statistics were collected for all genome assemblies and annotations with cus-
tom Python (v3.11.0) scripts and are reported in Table S14. Given that not all
genome annotations contained multiple transcript isoforms, all GFF files were pro-
cessed with the agat sp keep longest isoform.pl script from the AGAT toolkit v1.0.0
(Dainat, 2021) to generate annotations containing only the longest transcript iso-
forms of all gene models. Subsequently, these GFF files were filtered with the
agat sp filter by ORF size.pl script to remove all gene models that would have yiel-
ded protein sequences shorter than 30 amino acids. Finally, a number of gene
models identified in the R. raphanistrum and R. sativus annotation that would still
not result in protein sequences (due to stop codons embedded in their sequence)
were removed from the corresponding annotations with the agat sp filter feature
from kill list.pl script. The resulting filtered annotation files are provided with the data
package linked to this article.

Identification and Analysis of Differentially Expressed Genes

The quality of sequencing libraries was assessed with MultiQC (Ewels et al., 2016)
v1.11. A snakemake (v7.19.1) (Mölder et al., 2021) pipeline was employed to auto-
mate subsequent read mapping and transcript quantification steps. Reads were
aligned to reference genome assemblies with two passes of the STAR (Dobin et al.,
2013) v2.7.10a aligner (STAR indexing running with parameters -sjdbOverhang 139
and –genomeSAindexNbases 13, STAR aligner running with parameter –clip5pN-
bases 10 10). Assembly and quantification of full-length transcripts were then achie-
ved with StringTie (Pertea et al., 2015) v2.2.1 (running with option -e). Per-sample
gene and transcripts counts were then grouped by species with the prepDE Python
script included in the StringTie suite (running with parameter -l 140). Transcripts per
million (TPM) counts (Wagner et al., 2012) were extracted for visualisation purposes
from the StringTie output with a custom Python script.

Relationships between samples of the same species were explored with PCA
plots of transcript counts transformed by means of regularized logarithm (Love et al.,
2014). Differentially Expressed Genes (DEGs) were subsequently identified with
DESeq2 (Love et al., 2014) v1.34.0 running in R (R Core Team, 2021) v4.1.1.

Panproteome construction

Proteomes were created from the filtered annotations of all eight species with the
AGAT toolkit agat sp extract sequences.pl script, running with options -p, –cis, and
–cfs. A panproteome was subsequently constructed by running PanTools v4.1.0
(Sheikhizadeh Anari et al., 2018; Jonkheer et al., 2022) commands build panproteo-
me, busco protein, (with options -if brassicales odb10 –version busco4), optimal-
grouping, and change grouping (with option –version 4, and thus running with a re-

laxation parameter of 4). A separate panproteome was constructed featuring chloro-
plast proteomes for A. thaliana, B. rapa, B. nigra, and H. incana with PanTools com-
mands build panproteome and group (with the same relaxation parameter of 4). The
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panproteome was visualized by making UpSet plots (Lex et al., 2014) with the Com-
plexUpset package (v1.3.3) running in R v4.4.2.

Integration of panproteome and DE results

The homology table resulting from panproteome construction was integrated with
Differential Expression analysis results by means of a custom script running in Py-
thon v3.10.9 and leveraging NumPY v1.24.1 (Harris et al., 2020), and Pandas v1.5.3
(McKinney, 2010). The resulting homology/DE status table was further processed
and visualised with a custom script running in R v4.2.2. A heatmap of non-ambiguous-
ly responding core groups was generated with the Pheatmap v1.0.12 package. After
specific categories of homology groups were selected, a Gene Ontology (GO) Bio-
logical Process (BP) enrichment analysis was performed for the A. thaliana gene
identifiers present in said groups with TopGO v2.50.0 (Alexa et al., 2006), relying on
the org.At.tair.db v3.16.0 Bioconductor annotation data package, running the ”Clas-
sic” algorithm, and performing Fisher tests. Enrichment results for each set of groups
were filtered by keeping only terms which were associated to at least five genes. A
KEGG pathway enrichment analysis was subsequently performed on the A. thaliana
genes present in the same categories of homology groups with the enrichKEGG
function of the ClusterProfiler v4.6.2 package (Yu et al., 2012; Wu et al., 2021). For
both enrichment analyses, the set of background genes (i.e., the analysis ”universe”)
was composed by all A. thaliana genes surviving the DE analysis (i.e., genes for
which an adjusted p-value could be calculated by DESeq2).

Processing and visualization targeted analysis results

Expression profiles, TPM-normalized counts and homology relationships were pro-
cessed and visualized with custom R scripts making use of packages dplyr (v1.1.0),
ggplot2 (v3.4.1), janitor (v2.2.0), pheatmap (v1.0.12), scales(v1.2.1), stringr (v1.5.0),
tidyr (v1.3.0). All scripts are published with DOI 10.4121/5b88cdf2-eb5f-4033-8ece-
1f3f488a1f83.

https://doi.org/10.4121/5b88cdf2-eb5f-4033-8ece-1f3f488a1f83
https://doi.org/10.4121/5b88cdf2-eb5f-4033-8ece-1f3f488a1f83
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Availability of data and materials

Raw sequencing data has been deposited to NCBI and can be found under BioPro-
ject PRJNA1001172. All scripts used for data analysis are available on the 4TU.Re-
searchData platform with DOI 10.4121/5b88cdf2-eb5f-4033-8ece-1f3f488a1f83.
Supplementary information is available on the 4TU.ResearchData platform as well,
with DOI 10.4121/d3455b3c-54d8-4ef8-8501-a70936a51dad.v1.
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Nelissen, H., Inzé, D., Klein Lankhorst, R., Parry, M. A. J., Murchie, E. H., and Baekelandt, A. (2023).
Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy
Security , 12(1), e435.

Caldana, C., Degenkolbe, T., Cuadros-Inostroza, A., Klie, S., Sulpice, R., Leisse, A., Steinhauser, D.,
Fernie, A. R., Willmitzer, L., and Hannah, M. A. (2011). High-density kinetic analysis of the metabolomic
and transcriptomic response of Arabidopsis to eight environmental conditions. The Plant Journal , 67(5),
869–884.

Cheng, C.-Y., Krishnakumar, V., Chan, A. P., Thibaud-Nissen, F., Schobel, S., and Town, C. D. (2017).
Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. The Plant Journal ,
89(4), 789–804.



References 113

Cho, M.-H., Jang, A., Bhoo, S. H., Jeon, J.-S., and Hahn, T.-R. (2012). Manipulation of triose phos-
phate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in pho-
tosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photo-
synthesis Research, 111(3), 261–268.

Curci, P. L., Zhang, J., Mähler, N., Seyfferth, C., Mannapperuma, C., Diels, T., Van Hautegem, T., Jonsen,
D., Street, N., Hvidsten, T. R., Hertzberg, M., Nilsson, O., Inzé, D., Nelissen, H., and Vandepoele,
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Oñate-Sánchez, L. and Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis
thaliana, including seeds and siliques. BMC research notes, 1(1), 1–7.

Page, M., Sultana, N., Paszkiewicz, K., Florance, H., and Smirnoff, N. (2012). The influence of ascorbate
on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: Further evidence
for redox control of anthocyanin synthesis. Plant, Cell & Environment , 35(2), 388–404.
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Abstract

Photosynthesis research holds great potential to facilitate the transition to more sus-
tainable agriculture, given its central role in the solar energy conversion efficiency
of crops. While recent research aiming to increase the yield potential of crops has
primarily focused on addressing specific bottlenecks in the photosynthetic process
by means of genetic engineering, there is an increasing recognition of the import-
ance of studying natural variation in photosynthetic efficiency. The Brassicaceae
family contains one species, Hirschfeldia incana, which was shown to have a striking
photosynthetic light-use efficiency. Elucidating the mechanisms behind such light-
use efficiency and determining whetehr other members of the family possess similar
photosynthetic characteristics to H. incana would contribute to our understanding of
interspecific variation in photosynthesis, and its implications for plant productivity and
adaptation. This, in turn, can contribute to efforts aimed at increasing the productivity
of crops via more efficient photosynthesis.
Here, we present the results of our investigation into natural variation in photosyn-
thesis within the Brassicaceae family. By combining high-throughput time-series
measurements with destructive end-of-growth measurements, we examined several
potential factors influencing high photosynthetic efficiency. Our study encompasses
ten Brassicaceae species and provides insights into photosynthetic efficiency (dark-
adapted Fv/Fm, and ΦPSII), Excess Green Index (ExGI), Normalized Difference Ve-
getation Index (NDVI), leaf anatomy and stomatal parameters, as well as chlorophyll
content. We analyze the relationships between these species, their alignment with
the phylogenetic relationships within the Brassicaceae family, and the correlations
among the parameters.

In this study, we addressed a number of challenges to construct a dataset that
serves as a valuable resource, describing natural variation in photosynthesis within
the Brassicaceae family and providing a basis for further genomic and transcrip-
tomic investigations. Our findings not only validate the exceptional photosynthetic
efficiency of H. incana, but also identify B. nigra, B. tournefortii, and Z. ait-atta as
species with high photosynthetic efficiency. Through a comprehensive analysis of
twenty-one parameters, encompassing physiological and anatomical characteristics,
we uncovered a correlation between ΦPSII and stomatal counts, showcasing the ef-
ficacy of combining high-throughput and end-of-growth destructive measurements
for studying complex physiological traits like photosynthetic efficiency.
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5.1 Background

Given the projected global population growth, the impacts of global warming, and the
urgent need for sustainable food production, the agricultural sector is under pressure
to increase crop yields while minimizing land use and reducing inputs such as fertil-
izers and pesticides. Photosynthesis can play a central role in increasing agricultural
production as it determines the energy conversion efficiency of crops, a yield-related
trait that has yet to see substantial improvement through conventional plant breeding
methods (Zhu et al., 2010). The limited progress in this area can be attributed to the
physiological and genetic complexity of photosynthesis, as well as to complex inter-
actions with environmental factors , as evidenced by inconsistent results from recent
studies aimed at enhancing crop yields by manipulating photosynthetic processes
across various species and cropping seasons (Kromdijk et al., 2016; De Souza et al.,
2022; Ruiz-Vera et al., 2022; López-Calcagno et al., 2020, 2019; Yoon et al., 2020;
Garcia-Molina and Leister, 2020).

While recent research aiming to improve crop yields via photosynthesis has pre-
dominantly focused on addressing specific bottlenecks in the photosynthetic process,
there is a growing recognition of the need to shift perspectives towards studying nat-
ural variation in photosynthetic light-use efficiency (LUE). Natural variation in photo-
synthesis has been identified as a potential avenue for improving crop productivity
(Faralli and Lawson, 2020; Theeuwen et al., 2022), although previous studies have
primarily focused on crop species and the model plant Arabidopsis thaliana (Taylor
et al., 2022). Investigations on these species have significantly contributed to our un-
derstanding of physiological and genetic variation in photosynthesis. However, they
have not elucidated the mechanisms responsible for high photosynthetic LUE at high
irradiances because these species do not possess this trait. A plant is characterized
by high photosynthetic LUE at high irradiance if the light saturation point for its photo-
synthetic reactions is high (Formighieri, 2015), meaning that its photosynthetic CO2
assimilation rate will continue increasing until irradiance reaches very high values.
While the photosynthetic apparatus of most major crops is saturated at irradiances
corresponding to about one-quarter of maximum full sunlight (Long et al., 2006), a
much better performance has been reported for wild plant species growing in challen-
ging environments (Werk et al., 1983). Therefore, the collective effort to enhance the
photosynthetic efficiency of crops would greatly benefit from a deeper understanding
of natural variation in photosynthesis within non-crop and non-model species.

In our previous work we have confirmed that Hirschfeldia incana L. Lagr.-Foss. ex-
hibits exceptional photosynthetic CO2 assimilation rates, and therefore LUE, at high
irradiances, and we have begun unraveling the genetic basis of this property (Garass-
ino et al., 2022). We also argued that H. incana, being a member of the well-studied
and economically significant Brassicaceae family, provides a much more accessible
way of exploring high photosynthetic LUE under high irradiance than other high-LUE
species (Taylor et al., 2022). The complex evolutionary history of the Brassicaceae
family might have resulted in other member species evolving high photosynthetic
LUE, and therefore exploring natural variation in photosynthesis across this family
holds promise for understanding how high photosynthetic efficiency has evolved and
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identifying species that may surpass H. incana in this regard.
The study of natural physiological and genetic variation in photosynthesis can

be traced back over sixty years (Talling, 1961; Hodges, 1967; Avratovščuková and
Fousová, 1975), and its use for the increase of crop yields was first proposed over
forty years ago (Austin, 1989). However, up until recently the most common methods
for measuring photosynthesis relied on gas analysis, which was inherently slow and
hindered the scalability of research aimed at understanding the physiological and
genetic basis of natural variation in photosynthesis (Siebers et al., 2021; Du et al.,
2020). Nevertheless, recent advances in optical measurements of chlorophyll fluor-
escence have revolutionized photosynthesis phenotyping, liberating it from the con-
straints of low throughput. These modern methods enable the (quasi-)simultaneous
measurement of photosynthetic parameters in hundreds or even thousands of plants
across multiple time points, such as different times of day, and lasting over sev-
eral days or weeks, or key growing season moments. The development of high-
throughput phenotyping platforms creates an unprecedented opportunity to integ-
rate chlorophyll fluorescence- and additional image-based parameters, allowing to
gain detailed insights into photosynthetic performance. Multivariate analysis of high-
throughput data holds significant promise to further our understanding of natural vari-
ation in photosynthesis and its implications for plant productivity and adaptation.

In this manuscript, we present a comprehensive analysis of photosynthetic effi-
ciency at high irradiance in ten species that reflect key evolutionary events within the
Brassicaceae family (Franzke et al., 2011): Arabidopsis thaliana, Brassica oleracea,
Brassica nigra, Brassica rapa, Brassica tournefortii, Erucastrum littoreum, H. incana,
Sinapis alba, Sisymbrium irio, and Zahora ait-atta. Our study makes use of high-
throughput phenotyping techniques to measure photosynthetic efficiency and integ-
rates these measurements with other image-based parameters, such as the Excess
Green Index (ExGI) and the Normalized Difference Vegetation Index (NDVI), as well
as a range of anatomical and biochemical characteristics that potentially influence
photosynthetic efficiency. We explore the resulting complex and multivariate dataset
using various statistical methods to identify trends across species and investigate
if more species within the family show high-photosynthetic LUE at high irradiance.
Furthermore, we assess the alignment of these trends with the evolutionary history
of the Brassicaceae family. Our study delivers a detailed description of inter-specific
variation in photosynthetic parameters for the Brassicaceae family, completed by a
selection of anatomical and biochemical characteristics that may play a role in sup-
porting high photosynthetic LUE under high irradiance. The insights gained from this
research will be important in developing strategies to enhance the photosynthetic
LUE at high irradiance of crop species.
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5.2 Results

Ten Brassicaceae species were selected for this study: A. thaliana, B. oleracea, B.
nigra, B. rapa, B. tournefortii, E. littoreum, H. incana, S. alba, S. irio, and Z. ait-
atta (see Figure S1 for a summary of the phylogenetic relationships). To account
for differences in growth speed, three faster-growing species (B. oleracea, B. rapa,
S. alba) were sown and transferred to the phenotyping platform one week after the
other seven species. Here we present the results of the various measurements we
conducted during or at the end of their growth. Throughout their growth, we per-
formed daily measurements on all plants for the maximum efficiency of photosystem
II (dark-adapted Fv/Fm), Excess Green Index (ExGI), and Normalised Difference Ve-
getation Index (NDVI), as well as bi-daily measurements for the operating efficiency
of photosystem II (ΦPSII). The parameters obtained from these measurements are
derived from images, which, due to the design of our phenotyping platform, required
segmentation for object identification and masking to enable appropriate quantifica-
tion of the parameters. At the end of the growth period, we measured anatomical and
biochemical parameters for all plants using more classical methods, such as pigment
extraction in solvent, quantification by spectrophotometry, and microscope imaging.
After presenting the key findings for each of the measured parameters, we show the
results of a number of dimensionality-reduction and statistical analyses. These ana-
lyses were performed with the aim of highlighting relevant similarities and differences
between the ten studied species.

5.2.1 Validating the robustness of custom masking approach and
enhancing fluorescence data quality with dark-adapted Fv/Fm
measurements

Due to the species’ characteristics in our experiment, we observed that the standard
masking and quantification workflow provided by the PSI FluorCam software, which
relies on a fixed-area mask for measuring fluorescence parameters, did not perform
well when plants exceeded the typical size of A. thaliana. To overcome this limitation,
we developed a customized masking and quantification workflow using the PlantCV
suite (Fahlgren et al., 2015). Briefly, we first decoded the raw images in .fimg format
generated by the PSI PlantScreen™ platform and imported them into Python as
NumPy arrays (Harris et al., 2020). Using PlantCv functions, we then processed
individual images by thresholding them and identifying the plant at the center of the
image, thus masking individual plants irrespective of their size. Finally, we made use
of NumPy functions to calculate descriptive statistics for each processed image.

To evaluate the added value of our method over the manufacturer’s standard ap-
proach, we fitted a linear regression model between the readings of photosystem II
maximum quantum yield (Fv/Fm) obtained using the standard PSI software and our
masking and quantification pipeline. The regression model demonstrated a strong
linear trend between the two approaches (R2 = 0.87), with the regression coefficients
showing that values obtained from our custom pipeline are coherent with those ob-
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Figure 5.1: Overview of selection of plants based on measurements taken at 26 DASs.
Each set of dots, and the line connecting them, represents a single plant’s mean area meas-
ured during various days (i.e, measurement rounds). The round conducted at 26 DASs (round
39) is represented by the solid black line. Blue points and lines identify plants that were se-
lected to be part of downstream analysis, orange ones identify plants selected based on area
but not on Fv/Fm, pink ones those selected based on Fv/Fm but not on area, and green ones
identify the plants that are excluded based on both methods.

tained from the FluorCam software (slope = 1.05, intercept = -0.04, Figure S2, Table
S1). Using our own pipeline, we could compute the distribution of per-pixel Fv/Fm
values over 200 equally-sized bins for each image in our dataset. This allowed us to
extract the modal values of the per-image Fv/Fm distribution and compose time-series
images of Fv/Fm distributions corresponding to each measured plant (File S1).

During the course of our experiment, we observed that the growth of a number
of plants was stressed due to the experimental conditions, which subsequently in-
fluenced their chlorophyll fluorescence-derived parameters. To address this issue,
we devised a filtering strategy to select non-stressed plants for downstream ana-
lysis of fluorescence parameters. We extracted dark-adapted Fv/Fm values meas-
ured 26 days after sowing of slow-growing species (DASs) (i.e., after one week of
growth under high irradiance for all plants) and calculated the per-species means
and standard deviations. Plants with Fv/Fm values lower than the corresponding
species’ mean minus 0.5 times the species-wide standard deviation were excluded
from downstream analysis, except for B. tournefortii plants (Figure S3). Given the
low standard deviation and high uniformity observed for this species, we decided
not to apply the filtering criteria to this species, and to include all its plants in the
subsequent analysis. In order to test whether the stress resulting in low Fv/Fm val-
ues impacted plants’ growth, we related Fv/Fm values to plants’ projected leaf areas.
However, we could not confirm that plants filtered out based on Fv/Fm values had a
consistently smaller size than plants selected for downstream analysis (Figure S4).
Therefore, we complemented selection of plants based on Fv/Fm values by extracting
corresponding plant areas and excluding plants with area values lower than the cor-
responding species’ mean area minus the species’ standard deviation (Figure S5).
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Table 5.1: Number of plants per species retained after the Fv/Fm-based filtering and
corresponding per-species Fv/Fm means (± standard deviations) at 26 DASs.

Species n Fv/Fm Species n Fv/Fm

A. thaliana 8 0.758 (±0.030) B. nigra 11 (0.807 ±0.008)
B. oleracea 11 0.804 (±0.006) B. rapa 12 (0.807 ±0.004)
B. tournefortii 8 0.806 (±0.009) E. littoreum 9 (0.799 ±0.011)
H. incana 7 0.823 (±0.007) S. alba 10 (0.806 ±0.008)
S. irio 9 0.783 (±0.019) Z. ait-atta 10 (0.803 ±0.017)

By applying both selection criteria, we selected 95 out of the 152 plants (62.5%) that
grew during the experiment (Figure 5.1). The per-species-level mean Fv/Fm values
at 26 DASs ranged from 0.758 to 0.823 (Table 5.1), thus falling within the optimal
range of 0.75-0.83 (Krause and Weis, 1991; Hogewoning et al., 2012; Maxwell and
Johnson, 2000).

5.2.2 ΦPSII measurements confirm the photosynthetic efficiency of
H. incana

Similarly to what was done for Fv/Fm, we compared the measurements of quantum
yield of photosystem II (ΦPSII) obtained with the FluorCam software to ΦPSII meas-
urements obtained with our custom masking and quantification workflow. ΦPSII
measurements were conducted twice a day, in the morning and in the afternoon
while under a growth irradiance of 960 µmol m−2 s−1. The linear regression model
fitted between FluorCam- and custom pipeline-derived plant-wide mean ΦPSII val-
ues showed good collinearity (R2 = 0.87, Figure S6, Table S1). We confirmed the
within-plant homogeneity of ΦPSII measures by inspecting distributions of per-pixel
ΦPSII values for each image in our dataset organised in per-plant time series (File
S2).

We then analysed the trends in ΦPSII over time for the 95 plants selected based
on Fv/Fm. We decided to focus on measurements conducted while both the slow-
and fast-growing species were in the phenotyping platform, and therefore We restric-
ted the set of measurement rounds to those performed between 19 DASs and the
end of the experiment (37 DASs). We examined trends in ΦPSII mean and modal val-
ues throughout the entire set of measurements with generalized linear mixed-effect
models (GLMMs) that accounted for the block design and the repeated measure-
ments of individual plants. We included information on measurement rounds as well
in the model by calculating the hours elapsed between midnight on the day the ΦPSII
measurement were started and the hour in which of each measurement round star-
ted. The calculated hours elapsed were included in the GLMMs as a second-order
polynomial term. We evaluated the goodness of fit and the proportion of variance
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Figure 5.2: Per-species trends of plant-wide mean ΦPSII values over the course of the
experiment. The black lines represent a linear model including the hours elapsed as a third-
order polynomial fitted on the data to visualize trends in ΦPSII. The hours elapsed were cal-
culated between midnight on the day the ΦPSII measurements were started and the hour in
which of each measurement round started. The first points, at 130 hours elapsed, correspond
to the measurement conducted in the morning at 19 DASs. The last points, at 567 hours
elapsed, correspond to the measurement conducted in the afternoon at 37 DASs.

explained in the two GLMMs on means and modal values using marginal and condi-
tional pseudo-R-squared (RGLMM) measures.

The marginal RGLMM measures were 0.96 for both GLMMs, conducted on plant-
wide means and modal values of ΦPSII. These values ignore random effects and
indicate the proportion of variance explained by the plant species and by elapsed
hours, i.e. by the measurement rounds. The conditional RGLMM measures, which
consider both fixed and random effects, were 0.97 for both GLMMs. This demon-
strates an excellent fit of the models and their ability to explain most of the variance
in the ΦPSII datasets. We performed an analysis of variance (ANOVA) on the two
separate models and observed a significant interaction effect between plant species
and hours elapsed, confirming the presence of differences between species across
the entire series of measurements (Table S5). Upon inspecting the coefficients for
both models, we identified per-model significant differences in intercepts and most
partial regression coefficients (Tables S6, S7). Therefore, we conclude that notable
variations in trends over time could be established for both the plant-wide mean and
modal values of ΦPSII.

We further employed linear mixed-effect models (LMMs) to test for differences
in ΦPSII values across species during individual measurement rounds. Heritability
(Visscher et al., 2008), defined as the proportion of phenotypic variation in a trait
that can be attributed to genetic variation among species, was used to identify the
most promising rounds for downstream analysis. The heritability estimates, based
on plant-wide mean ΦPSII values for the 24 selected measurement rounds, ranged
between 0.27 and 0.61 (Table S2). Among the ten measurement rounds with the
highest heritability, H. incana exhibited the highest mean ΦPSII values, with stat-
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istically significant differences observed in comparison to most species, except for
various combinations of B. nigra, B. tournefortii, and Z. ait-atta depending on the
round (Figure S7, Table S3). An analogous analysis of ΦPSII modal values (i.e., the
values corresponding to the most represented of the 200 bins in which the per-plant
and per-round distribution of per-pixel ΦPSII values was divided) revealed a similar
trend, with H. incana displaying high values, although the differences between H. in-
cana, B. nigra, B. tournefortii, and Z. ait-atta were less pronounced (Figure S8, Table
S4).

5.2.3 Analysis of Excess Green Index (ExGI) reveals significant vari-
ation in leaf greenness

RGB images taken between 21 and 37 DASs were processed by applying a mask
and summarizing them using the Excess Green Index (ExGI) (Woebbecke et al.,
1995; Richardson et al., 2007). The ExGI serves as a measure of leaf “greenness”
(Richardson et al., 2009) and has been linked both to carbon assimilation at a large
scale in remote sensing applications (Wang et al., 2020), as well as to leaf-level pho-
tosynthetic dynamics, such as the electron transport rate of photosystem II (Junker
and Ensminger, 2016). Thus, the ExGI seems a useful parameter to study in the ten
species included in this study.

After masking RGB images generated by the PSI PlantScreen™ platform and
visualizing per-plant mean ExGI values, we observed that a technical camera or
software issue caused images taken after 32 DASs to have slight, but consistent,
variations in their color profile, resulting in a reduction of ExGI values (Figure S9).
Having established that this reduction was not related to any biological effects, we
adjusted the ExGI values. Specifically, we added the difference in ExGI calculated
from images taken on each plant at 32 and 33 DASs to all subsequent ExGI values
calculated from images captured from 33 DASs onwards. After applying the correc-
tion, data points from measurements conducted from 33 DASs did fit well the ExGI
trends outlined by data collected up and until 32 DASs (Figure 5.3). Having observed
some outliers that had a substantial impact on our analysis, we decided to exclude
plants whose ExGI values deviated from the species’ mean values by a factor greater
than 0.8 times the species’ standard deviations at 26 DASs, which corresponded to
seven days after all plants were subjected to high light conditions.

To explore between-species differences in ExGI over plant growth (Figure 5.3),
we fitted a GLMM identical to the one used on ΦPSII data to the ExGI values calcu-
lated for all selected plants at time points between 21 and 37 DASs (marginal RGLMM
= 0.77, conditional RGLMM = 0.93). The model-estimated coefficients, as well as an
ANOVA, confirmed the statistical significance of differences in intercept and partial re-
gression coefficients (Tables S7, S8). We further investigated per-round differences
in ExGI following a similar approach as employed for ΦPSII. Specifically, we utilized
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Figure 5.3: Per-species trends of plant-wide mean Excess Green Index (ExGI) values
over all imaging rounds. The black lines represent a linear model including the hours
elapsed as a third-order polynomial fitted on the data to visualize trends in ExGI. The hours
elapsed were calculated between midnight on the day the RGB imaging started and the hour
in which of each measurement round started. The first points, at 12 hours elapsed, corres-
pond to the imaging round conducted at 21 DASs. The last points, at 396 hours elapsed,
correspond to the imaging round conducted at 37 DASs.

per-round mixed linear models that accounted for the block design and examined
differences in the ten rounds exhibiting the highest heritability with respect to plant
species.

In these rounds, B. rapa and S. alba displayed the highest ExGI values, which
were significantly different from those of most other species (Figure S10, Table S10).
Based on the ExGI analysis, we categorized the species into three distinct groups.
The first group consisted of “high green” species, including B. rapa and S. alba. The
second group comprised “low green” species, namely Z. ait-atta, S. irio, A. thaliana,
and B. oleracea. The third group represented “mid green” species, encompassing H.
incana, E. littoreum, B. nigra and B. tournefortii.

5.2.4 Significant differences in potential vegetation health and photo-
synthetic activity highlighted by NDVI

Simultaneously with RGB imaging, we collected reflectance data in the red and near-
infrared parts of the light spectrum to calculate the Normalized Difference Vegetation
Index (NDVI). NDVI is used in high-throughput phenotyping to assess vegetation
health and productivity potential, and it has been suggested to be linked to photo-
synthetic activity at a larger scale (Sellers, 1985). Similar to what observed for ExGI
values, raw NDVI values exhibited substantial changes between 32 and 33 DASs
(Figure S11). To address this, we applied the same correction method as described
for ExGI, and we also removed outliers using the approach of excluding plants with
NDVI values deviating from the species’ mean by more than 0.8 times the species’
standard deviation.
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Figure 5.4: Per-species trends of plant-wide mean Normalized Difference Vegetation
Index (NDVI) values. The hours elapsed were calculated between midnight on the day the
NDVI imaging started and the hour in which of each measurement round started. The first
points, at 12 hours elapsed, correspond to the imaging round conducted at 21 DASs. The last
points, at 396 hours elapsed, correspond to the imaging round conducted at 37 DASs.

To investigate between-species differences in NDVI trends throughout plant growth
(Figure 5.4), we followed the same methodology as employed for ΦPSII and ExGI
analyses. The GLMM yielded a marginal RGLMM of 0.82 and a conditional RGLMM
of 0.88. An ANOVA further confirmed the statistical significance of differences in
intercept and partial regression coefficients (Tables S11, S12). Additionally, we ana-
lyzed the NDVI trends for individual measurement rounds, similarly to the approach
described for ExGI. Among the ten rounds with the highest heritability, B. nigra, B.
rapa, S. alba, H. incana, and E. littoreum stood out with the highest NDVI values,
significantly differing from most other species (Figure S12). In rounds closer to the
end of the experiment, the first three species exhibited even higher NDVI values,
significantly differentiating them from the other two species (Table S13).

5.2.5 Variability of leaf anatomical properties

Leaf anatomy plays a key role in photosynthetic performance because it plays a ma-
jor role in limiting CO2 diffusion into and within leaves to the sites of CO2 fixation
(Terashima et al., 2011; Adams III and Terashima, 2018). We examined the number
and size of stomata on both the adaxial and abaxial surfaces of leaves from the ten
plant species as a proxy for the conductance of CO2 diffusion from the outside into
the leaves. Utilizing a machine-learning-based approach to analyse micrographs of
stomatal imprints, we estimated the number of stomata within a given leaf area and
measured the lengths of the stomata major axes. For each micrograph, we calcu-
lated both the mean and median lengths of stomatal major axes. These parameters
were analyzed with LMMs. The models revealed a better fit for the measurements
conducted on the abaxial side of leaves compared to those on the adaxial side (con-
ditional RLMM of 0.64 and 0.45, respectively) when assessing the number of stomata.
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Figure 5.5: Per-species boxplots of parameters measured for stomata on the abaxial
side of leaves. (a) Average number of stomata counted per-species, based on counts ob-
tained from all images generated from samples for that species, each measuring 0.09 mm2;
(b) the average length of the major axis of stomata measured per-species, based on counts
obtained from all images generated from samples for that species; (c) and the median length
of the major axis of stomata measured per-species, based on counts obtained from all images
generated from samples for that species. The “▲” symbols represent Estimated Marginal
Means (EMMs) derived from LMMs accounting for block design, and their associated error
bars represent the standard error of EMMs. Within each plot, letters present a Compact Letter
Display (Gramm et al., 2007) of significant differences between EMMs. If two species share a
letter, differences between the estimates cannot be proven to be statistically significant.

H. incana and B. nigra exhibited the highest number of stomata on the abaxial side
(Figure 5.5a) and, together with B. tournefortii, on the adaxial side (Figure S13a).

In terms of stomatal size, models for both the mean and median lengths did not
provide a good fit for the measurements (Table S14). No differences in the trends
between mean or median lengths could be identified. S. alba and E. littoreum dis-
played the highest major axis lengths on both the abaxial (Figure 5.5b,c) and adaxial
surfaces of leaves (Figure S13b,c). The combination of larger stomatal dimensions
observed in E. littoreum alongside its relatively low stomatal count on both leaf sides
suggests that this species has fewer but larger stomata. Conversely, S. alba appears
to have a relatively high number of stomata with larger dimensions, similar to the
observations for H. incana and B. nigra.

Having assessed the potential for gas diffusion into the leaves of the ten spe-
cies, we then investigated the limitations to CO2 diffusion within leaves by perform-
ing measurements on cross-sectional micrographs of leaves. First, we focused on
the square roots of areas of the palisade and spongy mesophyll as a proxy for cell
volume. We transformed the area values by calculating their square roots to meet
the assumptions of LLMs we employed in subsequent analysis. Our LMM analysis
revealed significant differences in both palisade and spongy mesophyll cell areas
(conditional RLMM of 0.52 and 0.56, respectively). Among the ten species measured,
E. littoreum exhibited the largest areas for both palisade and spongy mesophyll, while
B. nigra and S. irio had the smallest areas (Table S15). Notably, H. incana displayed
large areas for palisade mesophyll but small areas for spongy mesophyll (Figure
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Figure 5.6: Per-species boxplots of measured anatomical parameters. (a) The square
root of per-sample average area of palisade mesophyll cells (in pixels, px); (b) the square root
of per-sample average area of spongy mesophyll cells (px); (c) and the square root of per-
sample average leaf thickness (µm). The “▲” symbols represent Estimated Marginal Means
(EMMs) derived from LMMs accounting for block design, and their associated error bars rep-
resent the standard error of EMMs. Letters present a Compact Letter Display of significant
differences between EMMs.

5.6a,b).
To gain further insights into the impact of different cell volumes on overall leaf

structure, we measured total leaf thickness from the micrographs. The LMM fitted on
square roots of thickness measures resulted in a conditional RLMM of 0.77. Based
on this model, we found significant differences between species (Figure 5.6c). Once
again, E. littoreum stood out with the highest values for leaf thickness, while A. thali-
ana and S. alba had the thinnest leaves (Table S15). Despite having a large area of
palisade mesophyll cells, the leaf thickness of H. incana fell within the central range
of the thickness distribution.

5.2.6 Moderate differences in leaf chlorophyll content

At the end of our experiment, we sampled the oldest leaf of each plant, which due to
the short growing period was the larger and most developed as well, extracted the
leaf chlorophylls using N,N-dimethylformamide (DMF), and quantified the concentra-
tion of chlorophylls a and b in the resulting extracts (Figure S14). By measuring
the leaf thickness through microscopy on samples taken from the same leaves, we
were able to estimate the volume of leaf tissue from which the extracted chlorophylls
originated, which enabled us to express chlorophyll concentration in relation to leaf
volume. The measurement of chlorophyll a and chlorophyll b content (Figures 5.7a,b)
provides information on the abundance of these pigments, which are vital for captur-
ing light energy during photosynthesis. Additionally, the chlorophyll a/b ratio (Figure
5.7c) offers insights into the relative distribution of these two chlorophyll types, high-
lighting potential variations in light-harvesting strategies among species. Further-
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Figure 5.7: Per-species boxplots of parameters relating to chloropylls. (a) The per-
sample chlorophyll a concentration, in µg per mm3 of leaf volume; (b) the per-sample chloro-
phyll b concentration (µg /mm3 leaf volume); (c) the per-sample chlorophyll a/chlorophyll b
ratio, (d) and the per-sample total chlorophyll concentration (µg chlorophyll/mm3 leaf volume).
The “▲” symbols represent Estimated Marginal Means (EMMs) derived from LMMs account-
ing for block design, and their associated error bars represent the standard error of EMMs.
Letters present a Compact Letter Display of significant differences between EMMs where any
differences could be proven significant.

more, by examining the total chlorophyll content in the samples (Figure 5.7d), we
gain an overall measure of the photosynthetic pigment concentration, which relates,
albeit non-linearly, to the potential capacity for light absorption within the leaf.

Among the species investigated, B. rapa, Z. ait-atta, and E. littoreum exhibited
the lowest levels of both chlorophyll a and b. The chlorophyll composition of H. in-
cana did not differ significantly from these species, although H. incana displayed
a low chlorophyll a/b ratio, indicating improved tolerance to high irradiance via re-
duced size of light-harvesting complexes. In contrast, B. nigra showed the highest
chlorophyll contents and a/b ratio, which significantly differed from those of other
species. These findings shed light on the inter-species variability in chlorophyll com-
position, reflecting differences in light-harvesting and high irradiance tolerance within
the Brassicaceae family.

5.2.7 Integrative analysis of all measurements reveals little correla-
tion between parameters

The extensive range of measurements conducted in this study resulted in a multivari-
ate dataset. To simplify the dataset, we applied a filtering approach to focus on
specific time-series parameters (ΦPSII, NDVI, ExGI) that corresponded to measure-
ment rounds with highest heritability or were near the end of the experiment, while
avoiding excessive noise due to overlapping of leaves from different plants. This al-
lowed us to include two parameters (mean from round with highest heritability, mean
from “late” round) for ExGI and NDVI each, and four parameters for ΦPSII (mean
parameters as already described, modal values for the round with highest heritability
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Figure 5.8: Heatmap summarising values for all parameters measured in this study on
the ten Brassicaceae species. Each cell represents where the value of a given parameter
for a given species falls in the distribution of all values for that parameter: “low” if the value is
lower than 33rd quantile, “mid” if it is comprised between the 33rd and 66th quantile, “high” if it
is higher than the 66th quantile. Parameters that were measured on both top and bottom sides
of leaves are labelled with (T) and (B), respectively.

and for the “late” round) in our downstream analysis. By integrating these selected
parameters with other measured variables, we obtained a total of 21 parameters for
further analysis (Figure 5.8).

To reduce the dimensionality of the dataset and identify the key parameters driv-
ing the main differences among the ten studied species, we employed Principal Com-
ponent Analysis (PCA). Since some measurements were missing for certain experi-
mental units (i.e. plants, see Figure S15), we employed a regularized iterative Factor
Analysis of Mixed Data (FAMD) algorithm to impute the missing values. Imputed
values fell within the distribution of measured values and were therefore considered
acceptable for downstream analysis (Figure S16). Examining the PCA eigenvalues,
we found that the first three principal components accounted for a substantial portion
of the data variation, nearly 70% (PC1=26.2%, PC2=25.0%, PC3=17.3%, Figure
S17, S18). Consequently, we arranged the parameters based on their contributions
to these components. Notably, four out of the five parameters with the highest con-
tributions were related to ΦPSII, while the parameters with the lowest contributions
were the mean areas of spongy and palisade mesophyll, median and average sto-
matal lengths on the adaxial side of leaves, and the chlorophyll a/b ratio (Table S16,
Figure S19). Species-level differences in grouping of individuals emerged as expec-
ted from the PCA, albeit that visualisation of PCA results suffered from overlap of
points and groups (Figures S20, S21).

We further investigated the distribution of individual plants based on the meas-
ured parameters using t-distributed stochastic neighbor embedding (t-SNE), a nonlin-
ear dimensionality-reduction method (Van der Maaten and Hinton, 2008). The t-SNE
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Figure 5.9: Visualization of the results of t-distributed stochastic neighbor embedding
(t-SNE). t-SNE was run on (a) the complete dataset of 137 individuals and 21 parameters, (b)
anatomical parameters, (c) chlorophyll parameters, (d) ΦPSII parameters, (e) NDVI and ExGI
parameters, and (f) stomatal parameters.

plot generated over all measured parameters revealed the presence of 10 distinct
groups, each predominantly consisting of individuals from a single species (Figure
5.9a). To determine which sets of parameters primarily contributed to the differences
between species, we performed additional t-SNE analyses on specific parameter
categories, including anatomical parameters, chlorophyll content, fluorescence para-
meters, RGB and reflectance parameters, and stomatal parameters (Figure 5.9b-f).
Consistent with the contributions observed in the PCA results, we found that the
fluorescence parameters determined the most pronounced separation between spe-
cies. Stomatal parameters emerged as another determinant of good separation of
species, while the remaining parameters resulted in weaker separation.

To statistically test the dissimilarities in sample groupings, we conducted a per-
mutational analysis of variance (PERMANOVA) (Van der Maaten and Hinton, 2008)
on the same distance matrix employed for PCA and t-SNE. The results demonstrated
statistically significant differences between the centroids of groups corresponding to
the various species, with a R2 for the species factor of 0.91 (Table S17). The analysis
of multivariate homogeneity of group variances (PERMDISP) we conducted as well,
led us to conclude that group variances were homogeneous. We then proceeded to
perform pairwise-PERMANOVA tests to highlight significant differences between indi-
vidual species. Pairwise-PERMANOVA R2 measures varied between 0.34 and 0.90,
with median and mean R2 of 0.71 and 0.67, respectively (Table S18). All pairwise
differences between species resulted significant (p<0.001).

We further explored the relationships and similarities among the ten studied spe-
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Figure 5.10: Visualization of the results of k-means clustering performed on all meas-
ured parameters for 137 individual plants. The color scale of tiles represents the percent-
age of the total number of individual plants for a given species that was grouped in a single
cluster. The numbers in the tiles represent the number of individuals for a given species
grouped in a single cluster.

cies based on the comprehensive dataset of twenty-one parameters with k-means
clustering. After establishing that six clusters would be optimal (Figure S22), we
grouped the species based on their similarities across all the measured parameters
(Figure 5.10). Individuals from each species were mostly grouped in one of the six
clusters, and three of the six clusters contained a high number of individuals from
couples of phylogenetically close species (Arias and Pires, 2012; Koch and Lemmel,
2019), such as H. incana and B. tournefortii, B. nigra and S. alba, and B. oleracea
and Z. ait-atta. S. irio and E. littoreum individuals clustered independently from those
of any other species, and despite not being phylogenetically close, individuals of A.
thaliana and B. rapa mostly clustered together.

Having observed this, and considering that the PCA reported ΦPSII-related para-
meters as the major contributors to the between-species separation, we analyzed
the correlation between measurements for all twenty-one parameters to understand
whether any other parameters could be related to ΦPSII. First, we computed and
visualized the Pearson correlation coefficients (r ) between all parameters along with
their statistical significance (Figure S23). We then calculated a distance metric based
on the calculated coefficients (1 - r ) and used it to perform hierarchical clustering of
all parameters (Figure S24). This analysis revealed a strong positive correlation
between the four ΦPSII parameters and the stomatal counts on the adaxial leaf side
(0.51 <r <0.82, p <4e-4), as well as a positive correlation with the stomatal counts
on the abaxial leaf side (0.30 <r <0.60, p <2e-10). Furthermore, weaker yet signi-
ficant negative correlations were observed between some of the ΦPSII parameters
and the lengths of stomatal major axes on the abaxial leaf sides (-0.22 <r <-0.16, p
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<0.03), and a weak correlation pattern emerged between ΦPSII parameters and the
mean area of palisade mesophyll cells (-0.22 <r <0.19, p <0.03). Thus, ΦPSII, the
proxy for photosynthetic LUE employed in this study, was observed to be correlated
mostly to stomatal parameters, while no significant correlations emerged between
ΦPSII and the other measured parameters.

5.3 Discussion

In this study we assessed the photosynthetic efficiency of ten Brassicaceae species
using high-throughput image-based phenotyping approaches. Our analysis encom-
passed inter-specific variation in photosynthetic parameters and a selection of po-
tential determinants, measured with both high- and low-throughput methods. The
resulting multivariate dataset allowed us to compare species, identify similarities and
differences, and evaluate the contribution of the various measured parameters to
inter-species distinctions.

5.3.1 Challenges associated with testing the panel of Brassicaceae
species

The experiments presented in this manuscript exemplify the challenges associated
with high-throughput phenotyping (HTP) of diverse sets of plant species. We believe
these challenges have greatly limited studies on inter-specific variation in controlled
environments. The phenotyping platform used in this study allowed us to grow the
selected species for only about four weeks (or three weeks for faster-growing spe-
cies) due to leaf overlap and potential shade-avoidance responses. Consequently,
our analysis captures the early growth phases of all species except A. thaliana, with
plants still in the exponential growth phase (Figure S25) at the end of the experiment.
We assessed the distribution of HTP parameters (such as ΦPSII, NDVI, and ExGI)
and confirmed their uniformity, thus confirming the absence of large differences in
these parameters between leaves of our plants. Additionally, we sampled the most
developed leaf at the end of the experiment to minimize developmental differences
while measuring low-throughput parameters (anatomical parameters and chlorophyll
content). Therefore, while our conclusions may not be applicable to full-grown plants,
we are confident in their robustness for the young plants we were able to grow and
measure.

Our study highlights the need for caution when relying on “turnkey” image seg-
mentation and analysis software associated with phenotyping platforms. During our
experiment, we noticed rapid invasion of the fixed imaging areas employed by the
standard masking method by leaves from faster-growing plants. This prompted us to
develop and evaluate a custom masking strategy based on object identification. Bey-
ond allowing us to explore the HTP datasets in more depth (e.g., by extracting per-
pixel parameter values for all images and exploring their distribution), our approach
yielded small but important improvements in the estimation of HTP parameters.
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In line with our focus on photosynthetic light-use efficiency under high-irradiance
conditions, we conducted the experiment at the highest irradiance levels allowed by
our phenotyping platform, which was an average irradiance of 960 µmol m−2 s−1 of
light at plant level for twelve hours a day, including dawn and dusk periods. This cor-
responded to a daily light integral (DLI) (Korczynski et al., 2002) of 34.6 mol m−2 d−1

(Table S19), comparable to DLIs reported during late spring and early fall in warm-
temperate global regions (Korczynski et al., 2002; ENEA TER-SOLTERM, 2006). Al-
though past studies considered irradiances well below 1000 µmol m−2 s−1 as “high
light” in controlled-environment plant research (Balfagón et al., 2019; Pech et al.,
2022; van Rooijen et al., 2018), irradiances higher than 1000 µmol m−2 s−1 are widely
experienced by plants growing outdoor. Considering that the average irradiance em-
ployed in this study is very close to 1000 µmol m−2 s−1, we classify it as high irradi-
ance as well.

Not anticipating growth issues, based on prior experience with significantly higher
irradiances, we unexpectedly observed stress in a subset of plants during the exper-
iment, as evidenced by the removal of several plants from the analysis of fluores-
cence parameters based on maximum quantum yield of Photosystem II (PSII), or
dark-adapted Fv/Fm. We attribute this stress to difficulties in establishing seedlings
within the phenotyping platform as a result of the heat they might have experienced
due to a combination of the high irradiance and the design of the phenotyping plat-
form. Seedlings had indeed to be transplanted directly into large rockwool blocks
covered by a black plastic screen which heated up when exposed to the high irra-
diance generated by the LED modules. We believe that due to potentially uneven
air circulation in the growth room, some seedlings could have then been exposed to
high temperatures which could have compromised their establisment, and the follow-
ing plant growth.

5.3.2 Pushing the boundaries of high-throughput measurements

High-throughput measurements enabled us to investigate photosynthesis, growth,
plant pigmentation, and reflectance over a substantial part of the early stages of
growth of these plants. The parametrization of time-series high-throughput meas-
urements is a promising approach (Flood et al., 2016) that has been employed in
only a limited number of studies to date (van Eeuwijk et al., 2019; Tardieu et al.,
2023; Pérez-Valencia et al., 2022). Regarding ΦPSII, the prevailing analysis ap-
proach considers individual measurement rounds as separate entities (van Rooijen
et al., 2015, 2017; Flood et al., 2020). In our study, we complemented the analysis
at the single measurement-round level for ΦPSII, NDVI, and ExGI with an examin-
ation of the per-species trends over time for these parameters. We parameterized
these trends by fitting generalised mixed-effect linear models on the high-throughput
parameters’ datasets (ΦPSII, ExGI, NDVI), and evaluating the statistical significance
of differences between per-species model coefficients. With this approach, we re-
vealed significant differences between the coefficients, and thus in the trends over
time, for all parameters among the ten studied species, thus gaining insights into the
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distribution and differences of the parameters across the entire time series.
In our study, we utilized our image analysis workflow to extract various statistics

summarizing parameter distributions across single plant images. To evaluate the
performance of mean and mode in describing plant performance, we conducted a
case study using ΦPSII. The mean, as a summary statistic, is susceptible to outliers
in the dataset. In the context of ΦPSII phenotyping, low values at the borders of
leaves or other organs, such as stems, can act as outliers and significantly impact
the plant-wide mean ΦPSII, despite their limited contribution to the overall plant area
(Figure S26a). Additionally, the overlapping of leaves from different plants can lead to
artificially low mean ΦPSII values for target plants (Figure S26c). To address these is-
sues, we analyzed time-series images of ΦPSII and compared the plant-wide means
and modes with the corresponding distribution of per-pixel ΦPSII values. Our findings
indicated that the mode of ΦPSII is robust against the aforementioned disturbances
(Figure S26b,d). Consequently, we examined the calculated heritabilities for plant-
wide ΦPSII means and modes (Tables S2, S3), observing that the rounds with the
highest heritability occurred around half-way the experiment for ΦPSII means, while
for ΦPSII modes, the highest heritabilities were associated with the latest measuring
rounds. The results of this case study imply that the modal values for image-wide
parameter distributions can improve the reliability of parameter summary statistics
calculated for individual plants.

In this study, we expanded the set of measured parameters by collecting RGB
and near-infrared (NIR) images. In controlled-environment high-throughput (HTP)
platforms, RGB imagery is commonly used to measure plant area parameters and
morphological parameters through side-view cameras, if available (Yang et al., 2020).
However, in platforms which only offer a top-view perspective of plants like the one
utilized in our study, RGB images have primarily been employed for calculating plant
areas and growth (Ge et al., 2016; Mazis et al., 2020; Jiang et al., 2022). The extens-
ive use of RGB imagery in open-field HTP and remote sensing has led to the devel-
opment of numerous vegetation indices that could be applied to images generated by
controlled-environment HTP platforms (Adak et al., 2021; Rufo et al., 2021; De Swaef
et al., 2021). In our study, we conducted an analysis of RGB images to calculate the
Excess Green Index (ExGI), which is one of the various measures of plant “green-
ness” (Richardson et al., 2009). Notably, this index has been associated with carbon
assimilation on a large scale in remote sensing applications (Wang et al., 2020) and
leaf-level photosynthetic dynamics, such as the electron transport rate of photosys-
tem II (Junker and Ensminger, 2016). However, experimental evidence supporting
these associations remains limited to date. In the context of controlled-environment
HTP, our aim was to utilize ExGI for a different purpose, namely characterizing plant
morphology based on top-view RGB images. The underlying assumption is that
leaves, as the photosynthetic organs of plants, will accumulate more chlorophyll than
other organs such as stems or leaf petioles. Consequently, in two plants covering
the same area but displaying different morphologies, the plant with a greater amount
of leaf tissue would exhibit a higher ExGI. However, this assumption holds true only
if the accumulation of chlorophylls and other leaf pigments (e.g., anthocyanins and
carotenoids) is consistent across different species. Upon inspecting the RGB images
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from our experiment (Figure s27), we discovered that differences in greenness were
significantly more pronounced than variations in morphology, rendering the latter in-
terpretation incorrect.

5.3.3 Integration and correlation of results

Our study was designed with the ambitious goal of combining time-series high-throughput
measurements with destructive end-of-growth ones to explore relationships and po-
tential differences in photosynthetic efficiency. We confirmed the higher photosyn-
thetic performance of H. incana compared to most species in our panel of Brassicaceae,
which expands upon our previous findings based on low-throughput measurements
of photosynthetic carbon assimilation (Garassino et al., 2022). Moreover, the emer-
gence of ΦPSII parameters as major determinants of species differentiation indicates
a promising level of variation for photosynthesis within the Brassicaceae family. We
found that B. nigra, B. tournefortii, and Z. ait-atta achieved similar levels of photosyn-
thetic performance as H. incana, positioning them as prime candidates for further
studies on their photosynthetic metabolism. However, we also observed striking dif-
ferences in the parameters describing the time-series of ΦPSII measurements for
these species, with H. incana reaching values close to its maximum ΦPSII during
the early stages of growth. Therefore, our study reveals a significant degree of vari-
ation in photosynthetic efficiency within the Brassicaceae family, warranting further
exploration and characterization.

We report strong positive correlations between ΦPSII parameters and stomatal
counts, particularly those derived from the adaxial side of leaves. Recent studies
have demonstrated the significant contribution of adaxial stomata to overall photo-
synthetic carbon assimilation in a wide range of species (Xiong and Flexas, 2020;
Wall et al., 2022). Therefore, the higher stomatal density on the abaxial side of
leaves, and consequently the potential for increased abaxial stomatal conductance
CO2, can be linked to enhanced photosynthetic LUE at high irradiance, as reflec-
ted by ΦPSII. We did not observe strong or significant correlations between ΦPSII
and our selected leaf anatomical parameters, indicating that these parameters may
not serve as reliable proxies for mesophyll conductance to CO2, which is another
important determinant of photosynthetic efficiency alongside stomatal conductance
(Mizokami et al., 2022).

Despite some suggestions that NDVI would correlate to photosynthetic activity
(Gamon et al., 1995; Sellers, 1985), we were unable to confirm this correlation in
our experiment. The only substantial correlation we identified for NDVI was with
ExGI, with the opposite being true as well. Weaker correlations could be identified
between both NDVI and ExGI and stomatal counts on the abaxial side of leaves,
sizes of stomatal major axes on both the adaxial and abaxial side of leaves, and
the chlorophyll a/b ratios. Explaining the relationships between NDVI or ExGI and
all the correlated parameters is not trivial. The impact of the chlorophyll a/b ratio
on leaf reflectance has not been clarified yet (Nyongesah et al., 2015), and while
a positive relationship has been established between NDVI and plant water content
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(Zhang and Zhou, 2019; Zhou et al., 2022), no obvious correlation between plant
water content and physical characteristics of stomata has been found to date. The
positive correlation between NDVI - and thus leaf water content - and stomatal char-
acteristics might appear counterintuitive, as one would expect e.g. a lower stomatal
count to be associated with higher leaf water content as a result of lower transpira-
tion potential. However, this interpretation is an oversimplification, as it disregards
stomatal regulation, which could not be measured in this study. Similarly, correlation
between ExGI and stomatal physical characteristics has not been reported to date.
Thus, a combined approach focusing on NDVI, ExGI, and stomatal density and con-
ductance measurements would be an interesting target for future studies aiming at
understanding the physiological basis of the correlation between vegetation indices
and stomatal parameters.

5.3.4 Future directions

Naturally, our dataset could be expanded by incorporating additional measurements,
with the most promising ones likely to come from hyperspectral imaging. In recent
years, a growing body of evidence has accumulated regarding the possibility of dir-
ectly modeling key photosynthetic parameters related to carbon assimilation and
photosynthesis biochemistry, as well as parameters associated with plant constitu-
ents such as nitrogen or chlorophylls, based on hyperspectral readings (Meacham-
Hensold et al., 2020; Jin et al., 2022; Buchaillot et al., 2022). However, some caution
is warranted regarding the applicability of methods developed thus far across differ-
ent plant species and conditions (Khan et al., 2021; Song et al., 2022). Nonetheless,
integrating hyperspectral imaging-based methods into future explorations, following
a similar approach to our study, would undoubtedly contribute to a deeper under-
standing of physiological variation for photosynthetic and associated traits across
the Brassicaceae family.

Furthermore, the purely physiological approach we employed in this study to
explore variation in photosynthetic efficiency and potential associated parameters
could be complemented by a genomic and transcriptomic dissection of such vari-
ation. In previous work we have shown how comparative genomics and transcrip-
tomics, even when uncoupled from physiological investigations, can provide relev-
ant insights into the genetic determinants of the high photosynthetic efficiency of
H. incana (Garassino et al., 2022, 2023). Moreover, recent comparative genomics
approaches have elucidated the evolution of C4 photosynthesis in the sister family
of Brassicaceae, Cleomaceae (Hoang et al., 2023), while comparative transcriptom-
ics has been providing clues on the mechanisms responsible for photosynthetic ef-
ficiency for over ten years (Bräutigam et al., 2011; Serba et al., 2016). Given the
availability of genome sequences for most of the species included in our study (re-
viewed for most species in (Garassino et al., 2023), complemented by (Liu et al.,
2014)), the current accessibility of whole-genome and whole-transcriptome sequen-
cing technologies, and the development of powerful tools enabling the construction
of plant pangenomes (Petereit et al., 2022; Li et al., 2022; Shi et al., 2023), comparat-
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ive genomics and transcriptomics offer promising avenues for better elucidating the
basis of high photosynthetic efficiency in the Brassicaceae family.

5.4 Conclusions

In this manuscript, we present an investigation of inter-species variation in photosyn-
thetic efficiency and potentially associated anatomical and physiological parameters
within the Brassicaceae family. Working with a diverse set of species posed sev-
eral technical challenges that we addressed by implementing custom image-analysis
pipelines and expanding the scope of our exploration to include time series of para-
meters instead of single measurements. The constructed dataset can serve as
an initial resource describing natural variation in photosynthetic LUE across the
Brassicaceae family and providing a foundation for genomic and transcriptomic dis-
section. Our findings confirm the remarkable photosynthetic efficiency of H. incana
and identify B. nigra, B. tournefortii, and Z. ait-atta as additional species with high
photosynthetic efficiency. Through our comprehensive analysis of twenty-one para-
meters encompassing six classes of physiological and anatomical characteristics,
we have uncovered an unexpected correlation between ΦPSII parameters and sto-
matal counts, highlighting the power of combining high-throughput and end-of-growth
destructive measurements to explore complex physiological traits, such as photosyn-
thetic efficiency.

5.5 Materials and Methods

Plant material, experimental design, and growth conditions

A set of ten Brassicaceae species was used in this research: Arabidopsis thaliana,
Brassica nigra, Brassica oleracea, Brassica rapa, Brassica tournefortii, Erucastrum
littoreum, Hirschfeldia incana, Sinapis alba, Sisymbrium irio, and Zahora ait-atta. In-
formation on individual accessions can be found in Table S20. Prior to germination,
all seeds were surface-sterilized with chlorine gas for four hours. All seeds were
sown on a custom sterile medium (8 g/L Daishin Agar in a 10 mM KNO3 solution)
and stratified at 4 °C for 96 h. Seeds were germinated for seven days at 24 °C with a
photoperiod of 16 h under an irradiance of 150 µmol m−2 s−1 provided by fluorescent
tubes. Given differences in growth rates between the various species, the seeds of
seven of the species that were found in a pilot experiment to grow relatively slowly
(A. thaliana, B. nigra, B. tournefortii, E. littoreum, H. incana, S. irio, Z. ait-atta) were
sown, stratified, germinated and transferred to the phenotyping platform one week
earlier than the seeds of the three other (B. rapa, B. oleracea, S. alba) (Table 5.2).

At the end of the germination period, seedlings were transferred to wet rock-
wool blocks (10x10x6.5 cm, Grodan by Rockwool B.V., Roermond, The Netherlands)
placed in a flooding table part of the phenotyping platform. Fifteen seedlings per spe-
cies were transplanted, giving a total of 150 plants, following a randomized complete
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Table 5.2: Times at which the actions preceding growth in the final conditions were
executed. All times are expressed as DASs, i.e. days after sowing of seeds of the slower
growing species.

Slower growing Faster growing
species species

Sowing and stratification 0 DASs 7 DASs
Germination 4 DASs 11 DASs
Transplant 11 DASs 18 DASs

block design (RCBD) with 15 blocks spanning a 7 m2 growth area. The growth cham-
ber housing the plants was equipped with high-output LED light modules (VYPR2x,
Fluence, Austin, USA) delivering on average photosynthetically active irradiance of
960 µmol m−2 s−1 at plant level. Plants were grown with a photoperiod of 12 h includ-
ing a two-hours dawn and a two-hours dusk period, day and night air temperature
controlled to 20 °C (temperature at plant level during the day would be increased by
the light modules), relative humidity controlled to 75%, and CO2 levels were ambient.
Plants were fertigated by flooding the growth table every 48 h with a custom nitrogen-
and iron-rich solution (1.2 mM NH4

+, 7.2 mM K+, 4 mM Ca2+, 1.82 mM Mg2+, 12.4 mM
NO3

– , 3.32 mM SO4
2 – , 1.0 mM P, 35 µM Fe3+, 8 µM Mn2+, 5 µM Zn2+, 20 µM B,

0.5 µM Cu2+, 0.5 µM Mo4+).

High-throughput phenotyping

High-throughput phenotyping of plants was conducted with a PlantScreen™ XY Sys-
tem (Photon Systems Instruments, Drásov, Czech Republic). Each day, every plant
was subject to four imaging rounds: one dark-adapted Fv/Fm round (measurement
starting at 04:00, running for 240 min), two ΦPSII rounds (measurements starting at
10:30 and 15:00, running for 80 min), and one combined RGB and NIR round (meas-
urement starting at 12:00, running for 135 min). Imaging started three days after
transplanting of seedlings of the slow-growing species, therefore 14 days after their
sowing (DASs), and ran until 38 DASs. The order in which plants were measured was
designed to maximize the time between measurements of neighboring plants, avoid-
ing interference from the imaging processes (e.g., saturating light pulses shading by
the camera and LED head).

Analysis of fluorescence images

Raw images corresponding to individual measurements needed to calculate fluor-
escence parameters Fv/Fm and ΦPSII (baseline and maximal fluorescence, defined
as Fo and Fm, Fp and Fmp, respectively) were processed by means of custom Py-
thon v3.10.10 scripts making use of the modules NumPy v1.22.3, OpenCV v4.7.0,
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PlantCV v3.14.3. Briefly, raw images in .fimg format generated by and exported from
the PlantScreen™ platform were imported, decoded, and converted into NumPy ar-
rays; images corresponding to maximal fluorescence readings (Fm and Fmp) were
normalized and thresholded to convert them into binary images. These binary im-
ages were then subjected to object identification and selection of the object at the
image center, resulting in a binary mask for such object; the resulting binary mask
was applied to both maximal and baseline fluorescence images, and pixel-by-pixel
fluorescence parameters were calculated as follows:

Fv/Fm = (Fm − Fo)/Fm

ΦPSII = (Fmp − Fp)/Fmp

The mean, standard deviation, median, maximum and minimum values for the cal-
culated parameters were then computed per plant with standard functions included
in the NumPy module. The mode of the parameters was determined as the most-
represented value in a histogram of per-plant parameter values with 200 equally
sized bins. Calculated per-pixel values were then employed to reconstruct and output
images of whole plants, as well as histograms of fluorescence values and summary
statistics. Calculated per-plant Fv/Fm and ΦPSII values, as well as areas derived
from reconstructed images, were correlated with measurements provided by the PSI
FluorCam software. To reduce variation in the dataset, Fv/Fm values recorded at 39
DASs (one week of growth under high irradiance for all plants) were measured and
plants having an Fv/Fm value lower than 0.5 times the standard deviation calculated
over all replicates of their species were removed. Of the 152 plants that grew during
the experiment, 107 were selected for downstream analysis.

Analysis of RGB images

RGB images in .png format, corrected for fisheye distortion by the PlantScreen soft-
ware, were thresholded to binary images and subjected to object detection in the
same way as done for fluorescence images. The resulting masks were applied to ob-
tain masked images and calculate plant areas. Masked images were subsequently
employed to calculate the Excess Green Index (ExGI) (Woebbecke et al., 1995;
Richardson et al., 2007). The following calculation was performed for each pixel
of each image:

r = R/(R+ G+ B)
g = G/(R+ G+ B)
b = B/(R+ G+ B)

ExGI = (2 ∗ g)− r − b

Where R, G, and B are the intensities for the red, green and blue channels of a
given pixel, respectively. Mean, standard deviation and mode of ExGI values corres-
ponding to each plant were calculated with built-in functions, while the mode of ExGI
values was calculated with the same approach as described above.
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Since values measured and therefore calculated for imaging rounds conducted
from 33 DASs appeared to be consistently reduced due to an unidentified technical is-
sue, the measured values were corrected.The per-plant difference in ExGI calculated
from images taken at 32 and 33 DASs was added back to all ExGI values calculated
from pictures taken from 33 DASs.

Analysis of reflectance images

Images corresponding to reflectances at 660 and 740 nm in .fimg format were de-
coded as done for chlorohpyll fluorescence images. The Normalized Difference Ve-
getation Index (NDVI) was calculated per-pixel with the formula (Gamon et al., 1995):

NDVI = (R740 − R660)/(R740 + R660)

Reconstructed NDVI images were then thresholded and masked as described
for chlorophyll fluorescence parameters. Since a similar issue to what described for
RGB images was detected for NDVI images as well, a similar correction of images
generated during later imaging rounds was performed. Descriptive statistics were
calculated as described for RGB statistics, and differences between per-plant mean
NDVI values were tested following the same approach employed for fluorescence
parameters.

Extraction and quantification of leaf chlorophylls

At the end of the growth period (38 DASs), two leaf discs (diameter 2 mm) were collec-
ted from the most developed leaf of each plant and immediately transferred to 1 mL
N,N-dimethylformamide (DMF). Following incubation overnight at room temperature
in the dark, absorbances at 647 and 664 nm of each extract were measured with
a Cary 4000 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, U.S.A.).
The concentrations of chlorophyll a and b in measured solutions, total chlorophyll con-
tent, and chlorophyll a/b ratios were calculated according to Minocha et al. (2009).

Measurement of leaf anatomical parameters by optical microscopy

Similar to what was done for leaf chlorophylls extraction, at 38 DASs two leaf discs
(diameter 6 mm) were collected from the most developed leaf of each plant and trans-
ferred to 1 mL Accustain™ fixative (Sigma-Aldrich, St. Louis, USA). All samples un-
derwent three cycles of vacuum infiltration at -800 mbar for 15 min followed by 30 min
at ambient pressure and overnight incubation in the fixative. Samples were then
dehydrated with an ethanol series and embedded in Technovit 7100 resin (Kulzer
Technik, Wehrheim, Germany) with a modified version of the protocol by Yeung and
Chan (Yeung and Chan, 2015). Embedded leaves were sectioned with a Reichert-
Jung 2040 Autocut Rotary Microtome (Leica Biosystems, Nussloch, Germany) set
at 5 µm section thickness. Sections mounted on microscopy slides were stained
with a 0.05% toluidine blue-O, 1% sodium tetraborate solution and imaged in bright
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field at 10x magnification with an AXIO Imager.A1 microscope equipped with an Ax-
ioCam MRc5 camera (Carl Zeiss, Köln, Germany). At least twelve captured images
per plant leaf sample were analysed manually with Fiji v2.12.0 (Schindelin et al.,
2012) to determine the area of palisade and spongy mesophyll cells, and overall leaf
thicnkess.

Measurement of abundance and dimensions of stomata

At 38 DASs, clear nail polish was applied to 2 cm2 on both the ad- and abaxial sides
of the most developed leaf of each plant and removed when dry with clear adhes-
ive tape. Leaf impressions were then transferred to microscopy slides and imaged
with an Axiophot microscope (Carl Zeiss, Köln, Germany) equipped with a DFC340
FX monochrome camera (Leica Microsystems, Wetzlar, Germany). At least twelve
captured images per plant leaf sample were analysed. Counting and measuring of
the stomatal length were automated with a Python v3.10.10 script running StarDist
v0.8.3 (Schmidt et al., 2018; Weigert et al., 2020). A training set of annotated images
was produced using Qupath v0.3.2 (Bankhead et al., 2017).

Statistical analysis of measured parameters

Between-species differences for the various parameters were tested in different ways
according to the nature of the respective datasets. For time-series data (ΦPSII, ExGI,
NDVI), a generalized linear mixed-effect model (GLMM) accounting for block design,
time of measurement, and repeated measurements of individual plants were fitted
on the whole dataset with package glmmTMB v1.1.7 (Brooks et al., 2017). Condi-
tional and marginal coefficients of determination (pseudo-R2) were calculated for the
models with the R package MuMIn v1.47.5 (Barton, 2009).

In order to obtain a more detailed description of between-species differences, lin-
ear mixed-effect models (LMMs) accounting for block design were fitted on data cor-
responding to each measurement round with R package lme4 v1.1-33 (Bates et al.,
2015). The assumption of normal distribution of residuals was tested by scaling the
residuals and testing the difference of their distribution to the normal distribution with
the Kolmogorov-Smirnov test. Estimated marginal means (EMMs, also known as
least-squares means) were then computed with package emmeans v1.8.6 (Lenth,
2023) using the Kenward-Roger approximation for degrees of freedom, and were
subsequently employed to perform pairwise comparisons between species with pack-
age multcomp v1.4-23 (Hothorn et al., 2008) using the Benjamini-Hochberg method
for reduction of false discovery rate. Heritability of differences was calculated with
the same approach and a modified linear model including the species experimental
factor as a random-effects term. The methodology described for single measurement
rounds was also employed to test between-species differences for single-time point
data (anatomical parameters and chlorophyll content).



144 Chapter 5

Integration and analysis of results

Block-effect corrected data were predicted from the (G)LMMs fitted to the various
measurement datasets. Time-series parameter datasets were filtered to select only
observations belonging to the round resulting in the highest heritability and the round
closest to the end of the experiment in which overlap between leaves from different
plants was judged to be minimal.

Missing values due to parameter-specific filtering or missing samples were im-
puted with package missMDA v1.18 (Josse and Husson, 2016), based on a Factorial
Analysis for Mixed Data (FAMD) model. Principal Component Analysis (PCA) was
performed on the generated dataset with package FactoMineR v2.8 (Lê et al., 2008)
and results were visualized with package FactoExtra v1.0.7 (Kassambara and Mundt,
2020). The dataset was further explored by means of nonlinear dimensionality
reduction with t-distributed stochastic neighbor embedding (t-SNE) performed with
package M3C v1.20.0 (John et al., 2020). Individuals (i.e., measured plants) were
clustered by means of k-means clustering (package stats v4.2.2), based on scaled
non-centered values for all parameters. Clustering results were visualized with pack-
ages FactoExtra v1.0.7 and ggplot2 v3.4.2 (Wickham, 2016). Differences between
species-based groups of individuals were tested with Permutational Analysis of Vari-
ance (PERMANOVA) and pairwise-PERMANOVA models from packages vegan v2.6-
4 (Oksanen et al., 2022) and RVAideMemoire v0.9-83 (Hervé, 2023). Prior to these
analysis, an analysis of multivariate homogeneity of group dispersions was per-
formed with package vegan v2.6-4. Pearson correlation coefficients (r ) between
parameters and associated p-values were calculated with package Hmisc v5.1-0
(Harrell Jr, 2023) and visualized with package corrplot v0.92 (Wei and Simko, 2021).
Hierarchical clustering based on distances calculated as (1-r ) was performed and
visualized with packages stats v4.2.2 and graphics v4.2.2.
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formation accompanying this chapter and the data files employed for analysis are
available on the 4TU.ResearchData platform with DOI 10.4121/79a62b5f-2881-4520-
b031-e03334c02aad.
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CHAPTER 6
General discussion

“Now this is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning.”

Winston Churchill, Their Finest Hour
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In the previous five chapters, I first introduced current trends in photosynthesis
research and the rationale of the work I conducted. I then illustrated the most rel-
evant results obtained from H. incana and a number of other Brassicaceae species.
While detailed discussions of all results are included in each of the experimental
chapters, this final chapter presents several more general considerations. The re-
search presented in this thesis was started with the objective of identifying some of
the genetic determinants, or part of the “genetic strategy”, of Hirschfeldia incana’s
striking photosynthetic light-use efficiency (LUE) and Pmax. In this chapter, I first
summarize all my findings about the photosynthetic LUE of H. incana and discuss
how exceptional they are and how they relate to the LUE of other Brassicaceae spe-
cies. Following a similar comparative approach, I then provide a unifying view of
all findings based on comparative genomics and transcriptomics investigations co-
workers and I conducted. I then interpret all the most relevant experimental results
employing concepts borrowed from ecophysiology. Subsequently, I discuss how pho-
tosynthesis research will be more likely to achieve the goal of increasing crops’ yields
if we surpass the current leaf- and crop-centric perspectives. These perspectives
were initially adopted to mitigate the high complexity associated with the photosyn-
thetic process and its interactions with the environment. I argue that given the limited
success obtained so far in improving crop yields via increased photosynthesis, the
time has come to adopt broader, more holistic perspectives. Finally, I revisit my most
important findings and suggest directions for future research.

6.1 Describing the photosynthetic performance of Hirschfel-
dia incana

Since the photosynthesis of H. incana had only been reported in a single work pub-
lished over forty years ago (Canvin et al., 1980), a more detailed study of H. incana’s
photosynthesis was required. The results of this study are not organised within a ded-
icated chapter of this thesis but rather spread across three of the thesis’ chapters.

In Chapter 2, I presented measurements conducted in preliminary laboratory
studies on H. incana alone, highlighting that the photosynthetic apparatus in its
leaves is remarkably robust to high irradiances, exhibiting little to no physiological
stress or photoinhibition at measurement irradiances of up to 2400 µmol m−2 s−1,
levels higher than could be expected on a cloudless day at noon at the Equator
during an equinox (approximately 2200 µmol m−2 s−1) (Ritchie, 2010).

In Chapter 3, I reported on our first comparative exploration of photosynthetic
rates between H. incana, Brassica nigra, Brassica rapa, and Arabidopsis thaliana,
the species that have served as comparisons for most of this research. By growing
plants under high, super-natural irradiances and measuring the response of CO2 as-
similation rate to irradiance, I demonstrated the higher photosynthetic rates of two
different genotypes of H. incana compared to the other species. Growing plants un-
der constant high irradiance in experimental settings was not trivial at the beginning
of this research, and despite the introduction of increasingly powerful LED fixtures
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over years still is not, as demonstrated by the custom-built lighting systems employed
for research on the controlled-environment agriculture crop for which irradiance mat-
ters most, cannabis (Cannabis spp.) (Rodriguez-Morrison et al., 2021; Moher et al.,
2022; Llewellyn et al., 2022). Therefore, co-workers and I developed a custom solu-
tion to deliver super-natural, highly uniform irradiance at the plant level and integrated
it into a growth room as described in Chapter 4.

The low throughput of the techniques employed in the studies reported so far pre-
vented us from performing a more extended study of photosynthetic LUE across the
Brassicaceae family, to determine if H. incana is an outlier within the family or one
of many representatives of a clear evolutionary trend favoring higher photosynthetic
LUE. Therefore, in Chapter 5, I present the results of an exploration conducted with
a different, high-throughput method: chlorophyll fluorescence-based estimation of
the operational quantum yield of Photosystem II (ΦPSII). Despite being grown under
lower irradiances than used in previous studies, amounting to Daily Light Integrals
(DLIs) comparable to those recorded in warm-temperate areas of the globe in spring
and autumn, H. incana plants showed very high ΦPSII values, only matched by those
of B. nigra, Zahora ait-atta, and occasionally Brassica tournefortii. Based on these
results, one may be tempted to conclude that H. incana is not the sole example of
high photosynthetic LUE within the Brassicaceae family, a conclusion that would be
supported by additional gas-exchange-based data collected on H. incana, B. nigra,
B. rapa, and A. thaliana in another project (Retta et al., in preparation). This conclu-
sion appears to be in contrast to what is described in Chapter 3, but an alternative
conclusion can be proposed, which leads to an interesting hypothesis for follow-up
research. In Chapter 5 I also performed an analysis of ΦPSII trends over the plants’
growth and demonstrated how H. incana achieved high values from very early stages
of growth under high irradiance, contrary to what observed for most other species.
This could suggest that H. incana is better equipped to maintain a higher photo-
synthetic LUE under challenging conditions than other Brassicaceae species. This
hypothesis is supported by the higher leaf thickness reported for H. incana compared
to B. nigra and A. thaliana in Chapter 5 and that observed for H. incana compared
to B. nigra, B. rapa, and A. thaliana in other research (Retta et al., in preparation).

Considering that H. incana originated in warm-temperate climates, and possibly
in the Mediterranean basin, its ability to achieve higher photosynthetic LUE under
resource-limited conditions would be in line with what was observed for other Medi-
terranean species (Flexas et al., 2014). Striking similarities in anatomical strategies
can be found between H. incana and the more studied Mediterranean species Cap-
paris spinosa, the caper plant. A link between leaf thickness, drought resistance,
and higher photosynthetic LUE has been clarified for this species (Rhizopolou and
Psaras, 2003; Levizou et al., 2004; Gan et al., 2013), and could be postulated for H.
incana as well.

Furthermore, a leaf thickness increase in response to water scarcity has been re-
ported in tomato (Solanum lycopersicum) and tobacco (Nicothiana tabacum) plants,
further implicating leaf thickness adjustment as a mechanism to alleviate water stress
(Galmés et al., 2013; Khan et al., 2023). Another observation supporting the hypo-
thesis of a higher photosynthetic LUE of H. incana under stress conditions is the
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higher leaf nitrogen content for H. incana than other species measured in a project
related to this (Retta et al., in preparation). In addition to being the fundamental com-
ponent of proteins, nitrogen can play a key role in maintaining plants’ photosynthetic
performance in water or salt stress conditions, due to the accumulation of nitrogen-
ous osmolytes (Tipirdamaz et al., 2006; Ahanger et al., 2019, 2021), and could be
therefore another indication of a strategy evolved by H. incana to maintain its pho-
tosynthetic performance in water-scarce environments. Higher photosynthetic LUE
means higher CO2 assimilation and thus more energy for plant establishment and
growth, so H. incana’s strategy could grant the species a competitive advantage over
other species when establishing and growing in water-limited conditions.

6.2 Probing the genetic strategy responsible for the pho-
tosynthetic LUE of H. incana with genomics and tran-
scriptomics

Photosynthesis is a complex biochemical process that can be subdivided into a num-
ber of traits, as I argued in Chapter 2. Although mostly interdependent, these traits
are usually analyzed individually or in restricted sets during physiological, genetic,
and ecological studies, due to their intricate genetic determinants (van Bezouw et al.,
2019). One could say that the molecular pathway from genotype to the photosyn-
thetic LUE phenotype is therefore highly complex, similar to what is observed for
many other traits determining plants’ and crops’ fitness and productivity (Paterson,
1998; Glazier et al., 2002; Holland, 2007; Saini et al., 2021). Since the field of genom-
ics was revolutionized by the sequencing of the human genome (Lander et al., 2001;
Venter et al., 2001), the scientific community has been probing such complexity and
developing technologies making genetic information increasingly accessible. In this
research, co-authors and I leveraged modern genomics and transcriptomics techno-
logies and tools to explore the genomes of H. incana and relatives and understand
the transcriptional activity in relation to irradiance, aiming to highlight some genetic
determinants of photosynthetic light-use efficiency under high irradiance.

Given the little attention received by H. incana within the scientific community, it
is not surprising that its genome had not been sequenced before the start of this
project. In Chapter 3, co-authors and I reported the assembly and annotation of
the H. incana genome. We then proceeded to test the hypothesis that differential
retention of copies of genes duplicated following the genome triplication event the
common ancestor of the three species underwent could contribute to H. incana’s
higher photosynthetic LUE. By studying the gene expression of eighteen genes in-
volved in photosynthesis and/or photoprotection, nine of which showing inter-species
copy number variation (CNV) and nine present in single copies in all genomes, we
found an indication of a positive correlation between photosynthetic/photoprotective
genes’ copy number and their expression. Such a relationship between gene copy
number and expression had already been highlighted as a driver for traits’ evolution
(Kondrashov, 2012; Żmieńko et al., 2014; Patterson et al., 2018) and thus supports
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our hypothesis that CNV of photosynthetic and photoprotective genes was an import-
ant component of H. incana’s genetic makeup for high photosynthetic LUE. However,
having observed similar copy number retention and gene expression patterns in spe-
cies that achieved lower photosynthetic light-use efficiencies, namely B. nigra and B.
rapa, we concluded that more research was required to further clarify the transcrip-
tional basis of H. incana’s performance.

Going beyond the few target genes studies in Chapter 3, in Chapter 4 I presen-
ted the results of a genome-wide transcriptome analysis conducted on the four spe-
cies grown under contrasting high and low irradiances. I analyzed gene expres-
sion differences in H. incana, B. nigra, B. rapa, and A. thaliana focusing on differ-
ences in expression of photosynthesis-related genes per se, rather than differences
that could directly be linked to CNV. While RNA-Seq methodologies are now well-
established, cross-species analyses are complicated by challenges such as the lack
of high-quality reference genome assemblies for all species and difficulties in quant-
itatively comparing transcriptomes from distant species (Roux et al., 2015; Parekh
et al., 2018; Rivarola Sena et al., 2022).

I addressed these challenges by constructing a panproteome, clustering the pro-
teins predicted from genes annotated for eight Brassicaceae genomes and using
inferred gene homology relationships to group expression data for the various spe-
cies. Enrichment analyses on A. thaliana orthologs from responsive core homology
groups, i.e., those containing at least a gene from each the four studied species
and at least one gene showing differential expression, highlighted photosynthetic
pathways. Additionally to an expected generalized transcriptional response for pho-
tosynthetic genes in all species due to the contrasting irradiance conditions plants
were exposed to, notable H. incana-specific transcriptional patterns could be identi-
fied. These patterns can be further classified based on the underlying genes’ copy
number status. Indeed, I identified cases in which single-copy H. incana genes under-
went constitutive higher expression or differential expression as a result of irradiance,
as well as cases in which genes having a higher copy number in H. incana achieved
higher transcript abundances constitutively or in one of the irradiance conditions.

The combined findings of chapters 3 and 4, therefore, support the original hy-
pothesis on the involvement of gene CNV in the genetic background of H. incana’s
high photosynthetic LUE. However, the extent of the contribution of CNVs to this trait
remains to be addressed, as the analysis of full transcriptomes revealed interesting
H. incana-specific responses in single-copy genes as well.

6.3 An ecological interpretation of findings: many roads
lead to high light-use efficiency?

So far, this Discussion has been focused on connecting selected findings from the
various experiments reported in this thesis. As mentioned above, many photosyn-
thetic traits appear to be interdependent or correlated. Thus, adopting a perspective
encompassing this interdependence can help in formulating a collective summary of
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the findings described in this thesis. Such a perspective can be derived from ecolo-
gical studies and could be that of the global Leaf Economics Spectrum (LES) (Wright
et al., 2004; Osnas et al., 2013). Essentially, the global LES describes a spectrum
of coordinated biochemical, anatomical, and physiological properties that character-
ize the ecological leaf developmental and metabolic traits of different plant species.
One extreme of the LES is represented by short-lived leaves of herbaceous annual
plants, characterized by comparatively high photosynthetic rates but low resistance
to stress factors over time, while the other is represented by the long-lived leaves
of perennial plants, which are in turn resistant but show lower photosynthetic rates.
Adoption of the LES concept has allowed for the description of the interdependence
and trade-offs between leaf traits, including photosynthesis, between and within plant
species (Marino et al., 2010; Osnas et al., 2013). As an example, greater amounts of
cell wall have been postulated to be required to build long-lived leaves, which would
reduce the efficiency of photosynthesis by lowering the fraction of leaf nitrogen in-
vested in photosynthetic proteins and CO2 diffusion rates through thicker and denser
mesophyll cell walls (Onoda and Wright, 2018). However, inconsistencies in global
LES trade-offs and relationships were reported when the principle was applied at
smaller scales, such as restricted groups of plant species, individual plant species,
or geographically-limited areas (Osnas et al., 2018). These inconsistencies suggest
that while the general idea of the short-lived, fast return leaf strategy opposed to
the long-lived, slow return one holds true, different relationships between leaf traits
can still result in these strategies (Niinemets, 2015; Xiong and Flexas, 2018), or as
postulated by Anderegg et al. (2018), “there are still many ways to be a plant in most
environments”.

This is in line with what I described in Chapter 5, where I showed limited and
weak correlations between photosynthetic LUE measured as ΦPSII and a set of pre-
sumably coordinated leaf anatomical and biochemical traits. The only significant and
strong correlation to photosynthetic LUE was that of stomatal densities on adaxial
and abaxial leaf sides, traits whose direct link to photosynthetic LUE is debated
(Franks et al., 2015; Schuler et al., 2018; Harrison et al., 2020). Beyond the lack
of explanatory correlations, species showing the highest photosynthetic LUE did not
consistently have thinner leaves than species with lower photosynthetic LUE. Thus,
the lack of correlation between leaf thickness and photosynthetic LUE violates one
of the key postulates of the global LES, stating that higher photosynthetic capacity is
linked with lower leaf thickness. Another case of decoupling between leaf thickness
and photosynthetic LUE in the Brassicaceae comes from the observations conduc-
ted in a related project (Retta et al., in preparation), which showed that two species,
B. nigra and B. rapa, can achieve similar photosynthetic capacity and thus LUE as H.
incana, albeit via very different anatomical and biochemical strategies.

Taking a step away from physiological parameters, the work I presented in chapters
3 and 4 can be interpreted with the “many ways to be a plant” approach (Anderegg
et al., 2018). One finding co-authors and I reported in Chapter 3 is that contrary
to our original hypothesis, H. incana has, on average, a lower number of copies for
genes involved in photosynthesis or photoprotection, despite having a higher pho-
tosynthetic LUE. This might be due to the strict filtering criteria we applied to pre-
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dicted gene models in H. incana while annotating its genome, and will need to be
confirmed by expanding the H. incana annotation with the use of larger RNA-Seq
datasets. Interestingly however, H. incana, B. nigra, and B. rapa all had on aver-
age a higher number of copies of photosynthetic or photoprotective genes compared
to A. thaliana, in line with their higher photosynthetic LUE. This hints at different
photosynthesis-related genomic strategies being adopted by the three species. In
Chapter 4, I focused on the expression profiles for genes directly involved in the pho-
tosynthetic reactions and highlighted a number of H. incana-specific gene expres-
sion patterns arising from irradiance-dependent expression regulation or constitutive
gene expression. This, combined with the different transcriptional profiles observed
for B. nigra and B. rapa but left to be studied in upcoming investigations, again hinted
at the deployment of different transcriptional strategies, even at the level of the highly
conserved photosynthetic genes, aimed at achieving high photosynthetic LUE by the
three species.

The combined findings of Chapters 3 and 4, along with the ecological perspective
of the global LES, offer valuable insights into the diverse strategies employed by H.
incana, B. nigra, and B. rapa to achieve high photosynthetic LUE. These results chal-
lenge the notion of a direct correlation between leaf thickness and photosynthetic
LUE and emphasize the complexity of the genetic and transcriptional mechanisms
underlying photosynthesis in these species. While the hypothesis on the involve-
ment of gene CNV in H. incana’s high photosynthetic LUE is partially supported, it is
evident that other regulatory mechanisms and transcriptional strategies play crucial
roles. Future research should delve deeper into the transcriptional strategies adop-
ted by H. incana, and possibly other Brassicaceae species, to achieve and maintain
high photosynthetic LUE under both optimal and challenging conditions. A logical
next experimental step would therefore be a large-scale transcriptomics investiga-
tion, featuring species previously selected for their higher and lower photosynthetic
LUE at high irradiance and utilizing a number of treatments that would expose plants
to both optimal high-irradiance conditions and challenging ones (e.g., determined by
the combination of high irradiance and water scarcity).

6.4 Photosynthesis beyond the leaf

This thesis, as the vast majority of photosynthesis research, was centered on the
major photosynthetic organs of plants, i.e. leaves. However, future research aimed
at improving plants’ overall photosynthetic LUE should abandon this leaf-centric per-
spective for two main reasons.

First, a growing body of evidence is accumulating for the importance and contri-
bution of photosynthesis carried out in non-foliar organs, such as stems and fruits,
to plant productivity (Aschan and Pfanz, 2003; Simkin et al., 2020; Lawson and Mil-
liken, 2023). While the biochemical pathways of non-foliar photosynthesis are still
to be fully understood (Henry et al., 2020; Rangan et al., 2022), the contribution of
wheat ears’ photosynthesis to overall assimilated carbon was shown to be relevant
in modern cultivars and in challenging conditions (Tambussi et al., 2021), similarly to
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what is being described for rice panicles (Zhang et al., 2022).
Second, ecophysiological reasons suggest that an approach focusing on more

plant organs than just leaves will benefit future photosynthesis research. An exten-
ded formulation of the LES named the Plant Economics Spectrum was proposed to
apply to whole plants (Reich, 2014; Shen et al., 2019). “Fast” or “slow” strategies
were therefore proposed to be applicable to whole plants, allowing establishing eco-
physiological connections between their organ-specific traits (de la Riva et al., 2016;
Shen et al., 2019). Somewhat similarly to what described above for the LES, the
idea that plants could be classified along a single spectrum based on coordination
between their traits has been shown to be less universal than originally proposed.
Especially in the case of winter annual C3 species, such as H. incana and the other
Brassicaceae species studied in this thesis, a plant-wide decoupling between car-
bon acquisition, i.e. photosynthesis-related, traits and structural traits has been high-
lighted, albeit in controlled conditions (Kurze et al., 2021). Interestingly, a similar
decoupling has been reported as well for C4 grasses grown in controlled conditions
(Simpson et al., 2020). Keeping this potential decoupling in mind, the Plant Eco-
nomics Spectrum allows me to make hypotheses on traits of H. incana that were
not studied within this thesis but could prove essential for future crop improvement
strategies.

The traits I hypothesize playing an important role in enabling H. incana to have
high photosynthetic LUE under challenging conditions relate to root architecture, up-
take of nutrients, whole-plant water and photosynthate dynamics. In addition to
presenting the decoupling between carbon acquisition and structural traits, Kurze
et al. (2021) and Simpson et al. (2020) reported the coordination between root and
leaf traits in non-woody species. Additionally, a substantial impact of root traits on
plants’ photosynthetic LUE is being reported (Reich et al., 1998; Duan et al., 2021;
Kodama et al., 2021; Miao et al., 2023). Similarly, functional relatedness and coordin-
ation have been highlighted between photosynthesis and whole-plant water transport
(Bucci et al., 2019; Xu et al., 2021). Based on these coordination patterns and a
number of unpublished observations on the higher water-use efficiency of H. incana,
I hypothesize that H. incana’s water dynamics are optimized to support its photo-
synthetic LUE, especially under water-limited conditions. An example of this would
be a higher root:shoot ratio for H. incana than other Brassicaceae species, either
constitutive or achievable via a large degree of plasticity for the ratio in relation to
different environmental conditions. The latter has been reported for Amaranthus
palmeri, an extremely successful weed characterized by the highest photosynthetic
capacity reported to date (Ehleringer, 1983; Ward et al., 2013). A. palmeri ’s suc-
cess was linked to its ability to outcompete crops for water (Berger et al., 2015)
and withstand drought (Chahal et al., 2018). While a full description of the wa-
ter dynamics of A. palmeri and their relationship with its high photosynthetic rates
is still lacking (Cominelli and Patrignani, 2022), what was observed so far on this
species strengthens my hypothesis on H. incana. Multi-organ water-related traits
must play a role in the species’ photosynthetic LUE, and especially in sustaining
it in face of challenging environmental conditions, and their role should be further
investigated. Similarly, I hypothesize an involvement in H. incana’s photosynthetic
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LUE of whole-plant traits related to the uptake and utilization of key nutrients for
photosynthesis, such as iron (Martı́n-Barranco et al., 2021), or to “sink” traits, i.e.
those concerning the transport, storage, and utilization of photosynthate, which have
already been shown to play a role in photosynthetic LUE (McCormick et al., 2006;
Fabre et al., 2020; Tejera-Nieves et al., 2023). While clarifying the role of all these
traits can appear as an overwhelming challenge, phenotyping platforms such as
the NPEC Greenhouse module (https://www.npec.nl/phenotyping-modules/module-
5-greenhouse-phenotyping) or the IPK PhenoSphere platform (Heuermann et al.,
2023) would allow to test a large number of plants of H. incana and relatives growing
under high irradiance with differential water, nutrients, etc. treatments and quantify
their photosynthetic LUE. This, in turn, would allow for a modelling effort considering
the interdependence between these traits and photosynthetic LUE. The analysis of
sink traits will likely be more difficult to perform, given the absence of high-throughput
platforms allowing to measure them. X-ray Computed Tomography is emerging as
the approach of choice for 3D imaging of the above- and below-ground organs of
plants (Teramoto et al., 2020; Piovesan et al., 2021), and would allow for a first in-
vestigation aimed at identifying where the major sinks for photosynthate lie in H.
incana and its relatives. While the integration of this technology is still limited in
high-throughput phenotyping platforms, recent developments (Gerth et al., 2021; Alle
et al., 2023) suggest that an experiment similar as what described above could be
performed in the near future with focus on sink traits as well.

6.5 The value of a less crop-centric perspective

Besides including non-leaf traits in future plant photosynthesis research, our efforts
towards improved crop productivity will benefit from a less crop-centric perspective
as well. In Chapter 2, I compiled a list of studies that demonstrated the existence of
natural genetic and physiological variation for a number of crop species. However, I
argue that the relatively limited magnitude of differences reported for within-species
variation does not align with the goal of substantially increasing crop productivity via
photosynthesis. An alternative approach gaining traction in recent years involves
screening crop wild relatives (CWRs) for interesting photosynthetic traits that could
potentially be bred into elite crop varieties (McAusland et al., 2020). CWRs have
been defined as wild plant taxa that can find breeding use derived from their relatively
close genetic relationship to a crop (Maxted et al., 2006). They have been shown to
harbor promising variation for photosynthesis traits such as enzymatic activity, sto-
matal dynamics, and leaf anatomical characteristics (Giuliani et al., 2013; Prins et al.,
2016; McAusland et al., 2020; Acevedo-Siaca et al., 2021; Mathan et al., 2021). Addi-
tionally, CWRs are recognized as valuable sources of traits directly linked with plant
resilience and adaptation to biotic and abiotic stresses such as drought or salinity
(Bohra et al., 2022; Brozynska et al., 2016; Renzi et al., 2022; Satori et al., 2022).
Although these traits were often lost during breeding programs (Khoury et al., 2022)
because they could result in reduced yields under optimal conditions, they could
contribute to increased photosynthetic LUE under challenging conditions, a much-

https://www.npec.nl/phenotyping-modules/module-5-greenhouse-phenotyping
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needed adaptation in light of the current rate of climate change (Tkemaladze and
Makhashvili, 2016; Hussain et al., 2021).

CWRs are genetically close to domesticated crops and, having their origin in
the same areas as domesticated crops (Maxted and Vincent, 2021), were subjec-
ted to similar selection pressure during evolution. Therefore, CWRs are not likely to
harbor the most radical photosynthetic solutions and adaptations that could benefit
crop productivity. These solutions will likely be found in wild, non-model species that
evolved in challenging environments. One example is the striking photosynthetic per-
formance of some species growing as winter annuals in the Sonoran desert (Werk
et al., 1983), which appears to be coupled with a high degree of temperature tol-
erance (Downton et al., 1984). Another example is H. incana, which, albeit native
to warm-temperate areas coinciding with those of some key crops, has adapted to
thrive on marginal lands, presenting it with similar challenges such as water and nu-
trient scarcity (Hart, 2001; Csikós and Tóth, 2023). Thus, a perspective shift in plant
photosynthesis research that includes more wild species is likely to not only expand
our understanding of the ecophysiological implications of the process, but also elucid-
ate traits and strategies that will allow for breeding crops with higher, more resilient
photosynthetic LUE and capacity.

6.6 Photosynthesis and yield research: where to now?

The assumption underlying the research presented in this thesis, and all research
efforts on H. incana, is that understanding how the species achieves high photosyn-
thetic LUE will contribute to the effort to increase the photosynthetic LUE of crops
and consequently their yield potential. The idea that increasing photosynthetic LUE
of crops can aid in increasing their yield potential is accepted across the scientific
community, and supported by a recent life cycle assessment (LCA) analyzing both
solar-derived energy and human-supplemented energy involved in the production of
potato crops. This analysis highlighted how energy losses associated with photosyn-
thetic inefficiencies are roughly eighty times greater than the energy supplemented
with agricultural practices (Roney and Walker, 2023), suggesting that photosynthesis
research has the potential to increase crop productivity beyond what can be achieved
by any effort based on increasing supplements such as fertilizers. An improvement
in photosynthetic LUE during plant evolution and domestication has been recently
reported as the result of an ecophysiological investigation, raising hopes for further
potential increases (Huang et al., 2022). However, a number of studies reported that
efforts carried out to increase the yield of crops by increasing their photosynthetic
LUE have so far been essentially unsuccessful (Flexas, 2016; Sinclair et al., 2019;
Araus et al., 2021; Sinclair et al., 2023). The current lack of generalized success
does not represent a reason to abandon photosynthesis research aimed at increas-
ing crop yields, also considering the substantial measurement errors that can be
associated with biomass and yield measurements which could hide small, yet sig-
nificant, improvements (Monteith, 1994; Arslan and Colvin, 2002; Lyle et al., 2014;
Gollin and Udry, 2021). However, I will argue that this lack of success prompts in-



General discussion 163

creased caution in designing and communicating future photosynthesis research and
photosynthesis-oriented crop breeding efforts.

Crop yield has been proposed to be a super-complex trait (Chang et al., 2019),
and could even be defined as an omnigenic trait, i.e. one driven by very large num-
bers of (genetic) variants all having very small effects (Boyle et al., 2017). Despite
being responsible for a major part of energy losses in a crop, the complex “photo-
synthesis” trait is thus only one contributor to the intricate network of traits and en-
vironmental factors determining crop yield. It is therefore hard to imagine that single
modifications to specific bottlenecks in the photosynthetic process will automatically
result in increased yield for different crops, in different agricultural settings, or even
in different cropping seasons (Araus et al., 2021). It is much more reasonable to
think of photosynthesis as one important tool that can help in achieving higher crop
productivity, rather than the single process that will enable it.

Quite some efforts, some of which were presented in Chapters 3 and 4 of this
thesis, have been directed towards revealing the “genetic strategy” underlying pho-
tosynthetic LUE, and ways to improve it (Zhu et al., 2007; van Bezouw et al., 2019;
Theeuwen et al., 2022). In my opinion, however, two caveats apply to the idea of
a genetic strategy for photosynthetic LUE. The first is that it tempts researchers to
describe variation for photosynthetic LUE in reductionist terms, thus prompting “one
trait” approaches in which a single plant trait contributing to photosynthetic LUE and
its genetic determinants is elevated to the rank of the main determinant of photosyn-
thetic LUE. The second caveat is that the idea of a genetic strategy for photosynthetic
LUE can make researchers disregard the impact that environmental factors have on
it. Indeed, the strategy for photosynthetic LUE should include a vast set of environ-
mental determinants next to the genetic ones. As discussed in detail in the previous
sections of this chapter, this implies the existence of many different strategies for
high photosynthetic LUE, something which could make the use of this trait for crop
yield increase seem like a hopeless task.

However, an approach that has higher chances of allowing the development of
crops with high photosynthetic LUE and yield has been proposed and is being in-
creasingly adopted. This approach is based on the idea of employing systems model-
ing to describe the relationship between photosynthesis, environmental factors, and
yield (Lammerts van Bueren et al., 2018; Verma et al., 2021). Systems models of
plants aim to describe and simulate quantitatively the behavior of a number of plant
traits at scales ranging from single cells to whole ecosystems (Salvatori et al., 2022).
Such an approach appears to be promising for developing a coherent view of the
impact of the many photosynthetic LUE strategies on plant productivity and highlight-
ing specific combinations of environmental and genetic factors that will increase crop
yields (Chang et al., 2019). To create comprehensive models of yield as a function
of photosynthetic LUE, a more complex and ecophysiological view of the processes
underlying the latter will be required. To ensure this, the largely leaf-centric perspect-
ive adopted by many photosynthesis researchers should be surpassed. This will
be supported by the increasing availability and accessibility of high-throughput phen-
otyping technologies, which are expanding the range of whole-plant physiological
parameters that can be measured and modeled (van Bezouw et al., 2019; Sharwood
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et al., 2022). Furthermore, the responses of physiological traits to different, fluc-
tuating environmental conditions closer to those experienced by crops growing in
field environments should be better understood. The majority of current photosyn-
thesis studies on a plant scale (as opposed to ecosystem-level studies, which are
beyond the scope of this Discussion) have been conducted on plants grown in con-
trolled, lowly variable conditions that do not mirror real-world conditions encountered
by crops (Poorter et al., 2016). The so-called lab-to-field transition of studies and
results on photosynthetic LUE and other yield-determining traits is not trivial (Kuijken
et al., 2015; Rouphael et al., 2018; Li et al., 2021; Fu et al., 2022). However, different
methodologies are being developed based on the precise simulation of field-like con-
ditions in large-scale controlled-environment facilities (Arend et al., 2022; Langstroff
et al., 2022) or the mathematical prediction of traits’ responses based on genetic
and environmental information coupled with data collected in controlled conditions
(Tardieu et al., 2023).

Despite this proposed paradigm shift, objections to the feasibility of improving
yield via photosynthesis could still be raised. Weiner (2019) argued that attempts to
increase crop yields by “improving” photosynthesis may have failed so far because
researchers and breeders have been trying to improve a template for photosynthesis
that has already been optimized by evolution, possessing a force that is orders of
magnitude greater than that of current scientific research. According to Weiner, “the
idea that plant researchers can develop new mechanisms that nature has not found
seems unlikely”. Sinclair et al. (2019) argued that nitrogen availability poses a much
more prominent constraint on crop yield than photosynthetic LUE, suggesting a much
larger focus on the first. In my view, both opinions do not support a case for redu-
cing the effort on linking photosynthetic LUE to crop yield, but rather support the
idea of doing so by adopting more complex perspectives encompassing the interde-
pendence of photosynthetic and other key plant traits and the plethora of solutions
evolved in the natural world to achieve higher photosynthetic LUE and capacity, if not
in absolute terms, at least in specific and often challenging conditions.

6.7 Conclusions

The research presented in this thesis initially aligned with the idea that a genetic
strategy could be described for H. incana in a relatively straightforward manner,
providing a template for increasing the photosynthetic LUE of crops. However, the
findings presented in Chapters 3, 4, and 5 paint a more complex picture than origin-
ally hypothesized. In Chapter 3, I reported that while CNV correlated with higher
photosynthetic LUE, other genetic factors might be involved in H. incana’s superior
performance, as this species did not show a substantial increase in gene copies
when compared to B. nigra and B. rapa. In Chapter 4, I focused on H. incana and
revealed the species’ adoption of unique transcriptional strategies under high irradi-
ance, while also reporting diverging transcriptional profiles for B. nigra and B. rapa,
which may contribute to different photosynthetic strategies. Additionally, Chapter 5
highlighted different strategies, showing a lack of correlation between high photosyn-



General discussion 165

thetic LUE and a series of anatomical and biochemical leaf parameters.
This thesis contributes essential genomic, transcriptomic, and phenomic resources,

along with a set of novel approaches and methods that will support efforts to under-
stand, and potentially enhance, high photosynthetic LUE. As argued in the previous
sections, future research on photosynthetic LUE should embrace the complexity of
this trait and expand experimental horizons beyond the current leaf- and optimal
conditions-centric approaches. The results presented for H. incana are highly relev-
ant in the context of a more holistic view of photosynthetic LUE. There is, therefore,
still ample scope to work with Hirschfeldia incana and its relatives and delve deeper
into the different mechanisms of high photosynthetic LUE in the Brassicaceae family.

Therefore, additional research on H. incana holds the potential to provide the
first comprehensive description of the strategy adopted by a species to sustain high
photosynthetic LUE. This description will, in turn, prompt for further investigations in
other high-LUE species, and will provide an important template to inspire breeding
projects aiming to increase the photosynthetic LUE of crops and realise its potential
to increase their yields, Future studies hinged on H. incana should focus on deliver-
ing a robust and comprehensive description of photosynthetic LUE for this species
and other selected Brassicaceae species grown under more challenging conditions
than those employed in this thesis (e.g., drought, nutrient limitations, and higher
temperatures). The differences observed will then need to be explained in terms of
whole-plant ecophysiological trait trade-offs, where modern high-throughput pheno-
typing technologies will prove invaluable. Subsequently, the genetic background of
the most explanatory traits should be investigated by determining patterns in gene
expression and transcription translation, thus integrating genomics, transcriptomics,
and proteomics. All this data could then be integrated through systems modelling,
providing an algorithm for high photosynthetic LUE in the Brassicaceae family under
various environmental conditions. Such an integrated set of data will undoubtedly be
a fundamental resource in advancing our understanding of photosynthetic LUE and
capacity, and could potentially direct future yield-oriented plant breeding approaches.
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to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in
relation to gas exchange parameters. Plant, Cell & Environment , 36(5), 920–935.

Gan, L., Zhang, C., Yin, Y., Lin, Z., Huang, Y., Xiang, J., Fu, C., and Li, M. (2013). Anatomical adaptations
of the xerophilous medicinal plant, Capparis spinosa, to drought conditions. Horticulture, Environment,
and Biotechnology , 54(2), 156–161.

Gerth, S., Claußen, J., Eggert, A., Wörlein, N., Waininger, M., Wittenberg, T., and Uhlmann, N. (2021).
Semiautomated 3D Root Segmentation and Evaluation Based on X-Ray CT Imagery. Plant Phenomics,
2021.

Giuliani, R., Koteyeva, N., Voznesenskaya, E., Evans, M. A., Cousins, A. B., and Edwards, G. E. (2013).
Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives
(Genus Oryza). Plant Physiology , 162(3), 1632–1651.

Glazier, A. M., Nadeau, J. H., and Aitman, T. J. (2002). Finding Genes That Underlie Complex Traits.
Science, 298(5602), 2345–2349.

Gollin, D. and Udry, C. (2021). Heterogeneity, Measurement Error, and Misallocation: Evidence from
African Agriculture. Journal of Political Economy , 129(1), 1–80.

Harrison, E. L., Arce Cubas, L., Gray, J. E., and Hepworth, C. (2020). The influence of stomatal morpho-
logy and distribution on photosynthetic gas exchange. The Plant Journal , 101(4), 768–779.

Hart, J. F. (2001). Half a Century of Cropland Change*. Geographical Review , 91(3), 525–543.

Henry, R. J., Furtado, A., and Rangan, P. (2020). Pathways of Photosynthesis in Non-Leaf Tissues.
Biology , 9(12), 438.

Heuermann, M. C., Knoch, D., Junker, A., and Altmann, T. (2023). Natural plant growth and development
achieved in the IPK PhenoSphere by dynamic environment simulation. Nature Communications, 14(1),
5783.

Holland, J. B. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant Biology ,
10(2), 156–161.



168 Chapter 6

Huang, G., Peng, S., and Li, Y. (2022). Variation of photosynthesis during plant evolution and domestic-
ation: Implications for improving crop photosynthesis. Journal of Experimental Botany , 73(14), 4886–
4896.

Hussain, S., Ulhassan, Z., Brestic, M., Zivcak, M., Weijun Zhou, Allakhverdiev, S. I., Yang, X., Safdar,
M. E., Yang, W., and Liu, W. (2021). Photosynthesis research under climate change. Photosynthesis
Research, 150(1), 5–19.

Khan, R., Ma, X., Hussain, Q., Chen, K., Farooq, S., Asim, M., Ren, X., Shah, S., and Shi, Y. (2023). Tran-
scriptome and anatomical studies reveal alterations in leaf thickness under long-term drought stress in
tobacco. Journal of Plant Physiology , 281, 153920.

Khoury, C. K., Brush, S., Costich, D. E., Curry, H. A., de Haan, S., Engels, J. M. M., Guarino, L., Hoban,
S., Mercer, K. L., Miller, A. J., Nabhan, G. P., Perales, H. R., Richards, C., Riggins, C., and Thormann, I.
(2022). Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phytologist ,
233(1), 84–118.

Kodama, A., Watanabe, T., Yamaguchi, M., Narita, R., Katsuhara, M., Sato, K., Ookawa, T., and Hirasawa,
T. (2021). Accession difference in leaf photosynthesis, root hydraulic conductance and gene expression
of root aquaporins under salt stress in barley seedlings. Plant Production Science, 24(1), 73–82.

Kondrashov, F. A. (2012). Gene duplication as a mechanism of genomic adaptation to a changing envir-
onment. Proceedings of the Royal Society B: Biological Sciences, 279(1749), 5048–5057.

Kuijken, R. C., van Eeuwijk, Fred. A., Marcelis, L. F., and Bouwmeester, H. J. (2015). Root phenotyping:
From component trait in the lab to breeding. Journal of Experimental Botany , 66(18), 5389–5401.

Kurze, S., Engelbrecht, B. M. J., Bilton, M. C., Tielbörger, K., and Álvarez-Cansino, L. (2021). Rethinking
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Summary

Plant photosynthesis is the biochemical process directly or indirectly sustaining most
life forms on planet Earth, by simultaneously providing them with chemical energy
and the oxygen required to utilise it. Although the core mechanisms of photosyn-
thesis are quite conserved across plants, not all of them are equal when it comes to
their photosynthesis. This is generally referred to as natural variation for photosyn-
thesis. While this variation is most apparent as physiological variation, hypotheses
have been formulated on the possibility of tying this variation to genetic variation
between plants, and tapping into this variation to uncover genetic traits that could be
employed to increase the yield of agricultural crops. This thesis focuses on one plant
species, the little-known Hirschfeldia incana (L.) Lagr.-Foss., and presents a number
of findings arising from investigations on the genetic background of its photosynthetic
performance, quantified in terms of photosynthetic light-use efficiency (LUE) or pho-
tosynthetic capacity.

Chapter 1 contains information that helps contextualising the research described
in this thesis. In this introductory chapter, after compiling an account of the key
moments in the history of photosynthesis research, I describe why photosynthesis
is nowadays a key subject in plant sciences, and what implications it can have for
breeding programs aimed at increasing crops’ yield. I then define three concepts this
thesis relies on, i.e. those of high irradiance, photosynthetic light-use efficiency (LUE)
and photosynthetic capacity (Pmax). Finally, I briefly review the most recent advances
in technologies that can be applied to photosynthesis research, and summarise the
rationale and the main findings of my thesis.

In Chapter 2 co-authors and I build a case for greater focus on exploring and
exploiting natural genetic variation in photosynthesis. We then argue for the use of
high photosynthetic capacity species as models for exploring the physiological and
genetic basis of high photosynthetic efficiency. Having described some of these
species with the most striking efficiencies and discussed how they would not be
suitable for research purposes, we identify Brassicaceae species H. incana as a
promising candidate, and describe its basic biology, evolutionary history, and eco-
logy. We then present some of the species’ photosynthetic characteristics, highlight-
ing its high photosynthetic capacity, which associates with high photosynthetic LUE,
and the tolerance of its photosynthetic machinery to extreme irradiance conditions.
Our conclusion is that H. incana is an excellent model species for studies aiming at
understanding natural genetic variation in photosynthetic light-use efficiency.
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Taking the first steps towards developing H. incana as a model species for pho-
tosynthesis research, in Chapter 3 co-authors and I present a reference genome
of H. incana and confirm the high photosynthetic light-use efficiency of the species.
We then show how the H. incana genome has extensively diversified from those of
B. rapa and B. nigra through large chromosomal rearrangements, species-specific
transposon activity, and differential retention of duplicated genes. Based on this ex-
tensive diversification, we hypothesize that copy number variation for genes involved
in photosynthesis or photoprotection, resulting in their higher expression, could be a
major genetic determinant of H. incana’s higher photosynthetic LUE. We investigate
this by performing a gene expression assay for selected photosynthetic and photo-
protective targets, and while not finding evidence for H. incana-specific patterns, we
report a positive correlation between the expression of genes duplicated in the H.
incana, B. rapa, and B. nigra genomes and their copy number. Our conclusion is that
while gene copy number variation appears to play a role in higher photosynthetic
LUE, other genetic determinants are likely involved in it.

In Chapter 4, I analyse the transcriptional signature associated with growth un-
der high light of H. incana and compare it with that of A. thaliana, B. rapa, and B.
nigra, with the underlying idea of exploring the genetic determinants of photosyn-
thetic LUE from a functional perspective. By analysing gene expression patterns
using a panproteome, I confirm that all four species actively regulate genes associ-
ated with the photosynthetic process in response to high light. I then describe some
unique photosynthetic gene expression patterns specific to H. incana. In a number
of cases, H. incana is shown to exhibit differential expression for specific genes not
observed in the other species, while in others significantly higher transcript abund-
ance is reported for certain genes in H. incana compared to the other species. Since
this chapter presents the analysis of only one part of the generated transcriptomic
dataset, I conclude that the transcriptional strategies adopted by H. incana on photo-
synthetic genes are likely to be applied to other processes as well that are crucial to
the species’ performance.

Chapter 5 presents the results for a broader analysis of the photosynthetic effi-
ciency and a number of biochemical and anatomical characteristics across a panel
of ten Brassicaceae species. I report that H. incana outperforms most relatives in
terms of photosynthetic efficiency, measured as ΦPSII. I then investigate the rela-
tionship between this and leaf chlorophyll content, vegetation indices, leaf thickness
and composition in terms of palisade and spongy mesophyll, and stomatal densities
and major axis lengths measured on both adaxial and abaxial sides of leaves. In-
terestingly, I report few correlations between these parameters and ΦPSII, with the
only strong ones being for stomatal counts on both leaves’ sides. While the invest-
igated leaf traits are not coordinated at the species level, clustering of the species
based on all parameters revealed similarities that are partially consistent with the
phylogenetics of the Brassicaceae family. Considering these findings and the high
photosynthetic LUE I report for H. incana, B. nigra, and Z. ait-atta, I conclude that
this dataset supports the idea that multiple different strategies in the Brassicaceae
family enable some of its members to achieve high photosynthetic LUE.

In Chapter 6, I fist draw some parallels between the results of the previous
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chapters. I group all the data I collected on the photosynthetic LUE of H. incana
and its relatives, and interpret them in terms of photosynthetic resilience to challen-
ging environmental conditions. I then bridge between the results the genomic and
transcriptomic investigations I performed to speculate on how much I explained of
the genetic basis of H. incana’s photosynthetic LUE. I subsequently integrate all of
my findings and contextualise them with ecophysiological concepts to conclude that
different strategies can lead a plant to achieve high photosynthetic LUE. I further
rely on ecophysiology to argue that future photosynthesis research should abandon
the current leaf-centric and crop-centric perspectives, as only this will allow for a
better understanding of photosynthetic adaptation and resilience to the various envir-
onmental conditions encountered in agroecosystems. Finally, I take a step back to
argue that only by relying on more holistic approaches photosynthesis research will
be able to contribute to crop yield increase.
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