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A B S T R A C T   

The advent of temporally dense radar data such as the Sentinel-1 SAR have opened the door for rapid forest 
disturbance detection in the humid tropics. Tropical dry forest disturbance detection, however, were challenged 
by seasonality and more open canopy characteristics. In this manuscript, we proposed a Sentinel-1 SAR and deep 
learning based rapid forest disturbance detection approach for tropical dry forests. We demonstrated a weakly 
supervised method for reference label harvesting based on medium resolution globally available forest and forest 
disturbance maps. We trained a deep neural network model to derive forest and forest disturbance probabilities 
from Sentinel-1 images in the first step. We then implemented a probabilistic disturbance detection and 
refinement method to map forest disturbances in near real-time in two test regions in Paraguay and Mozambique. 
We mapped new forest disturbances in an emulated near real-time scenario for 2020 and 2021 and evaluated the 
spatial accuracy of the disturbance alerts by generating area adjusted precision, recall and F-1 score. We also 
evaluated the improvement in timeliness of disturbance detection by estimating mean time difference of 
disturbance events detection with that of Landsat-based GLAD alerts. The generated alerts in Paraguay and 
Mozambique achieved a precision, recall and F-1 score of 0.99, 0.61, 0.75 and 0.97, 0.51, 0.66, respectively. The 
proposed method detected disturbances with a mean of 21 days (± 18 days) earlier in Paraguay and 18 days (±
18 days) earlier in Mozambique than the Landsat-based GLAD alerts. These results demonstrated the efficacy of 
the proposed method and its viability to be used in an operational setting to generate large area rapid near real- 
time disturbance alerts in the dry tropics.   

1. Introduction 

Tropical dry forests (TDFs) cover approximately 40% of the globally 
available tropical forest stock (Murphy and Lugo, 1995; Miles et al., 
2006); they play an essential role in the global carbon and water cycle 
and provide major ecosystem and societal services (Lewis et al., 2009; 
Zhou et al., 2013). In tropical regions, most of the change associated 
with TDFs is due to anthropogenic disturbances driven by agriculture, 
mining and urban expansions that results in degradation, biodiversity 
loss, loss of biomass and green house gas emissions (Pearson et al., 
2017). There is a strong need to persistently monitor changes in TDFs to 
support sustainable land management and law enforcement activities to 
reduce illegal deforestation (Janzen, 1988; Miles et al., 2006; Portillo- 
Quintero and Sánchez-Azofeifa, 2010). 

Satellite-based monitoring is the main technology for deriving 
spatially explicit near real-time (NRT) detection of forest disturbances 
(Reiche et al., 2018). NRT forest disturbance alerting systems aim to 
detect new disturbances in forests as soon as new satellite images 
become available (Reiche et al., 2015a). The potential of NRT systems to 
support policy-making and law enforcement has been widely discussed 
and demonstrated (Assunção et al., 2013; Lynch et al., 2013; Wheeler 
et al., 2014; Hansen et al., 2016; Reiche et al., 2021). 

Currently, most NRT tropical forest disturbance alert systems rely on 
optical satellite images. The major limitation of optical satellite images 
in NRT systems is the late and/or missed detection of disturbances due to 
pervasive cloud cover, in particular during the rainy season (Reiche 
et al., 2018; Hansen et al., 2016; Souza et al., 2013; Sannier et al., 2014; 
Reiche et al., 2015b). SAR satellite images offer a better prospect, as they 
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operate in almost all weather conditions, day and night. Therefore, they 
have the potential to complement optical-based forest monitoring sys-
tems (De Sy et al., 2012; Joshi et al., 2016; Laurin et al., 2013). In this 
regard, the launch of the Sentinel-1 A and –1B C-band SAR satellites 
(Torres et al., 2012) and the associated open data policy from the Eu-
ropean Space Agency open up unprecedented opportunities to provide 
NRT forest disturbance detection over the tropics by utilizing images 
consistently acquired every 6–12 days (Reiche et al., 2021). 

A good demonstration of these capabilities is the Radar for Detecting 
Deforestation (RADD) alert system (Reiche et al., 2021), a NRT tropical 
humid forest (THF) disturbance detection system operating across the 
pan-tropics. The RADD alerts (Reiche et al., 2021), operated by Wage-
ningen University in the Netherlands, flagged potential disturbance by 
comparing the most recent Sentinel-1 image with the historical stable 
forest descriptors. They also implemented a Bayesian updating approach 
to derive the conditional probabilities of forest disturbance. Subsequent 
observations were used to update the probability of forest disturbance 
(increase confidence), and to establish a user set thresholds and tem-
poral windows to determine which of the flags were credible high- 
confidence alerts and which were false alarms. 

Other notable wide-area forest disturbance alerts utilizing Sentinel- 
1C-band SAR data include the methodology by the French Centre 
d’Etudes Spatiales de la Biosphère (CESBIO) (Bouvet et al., 2018), 
DETER-R (Doblas et al., 2022) and wide-area forest degradation and 
deforestation monitoring proposed by (Hoekman et al., 2020). Other 
than Sentinel-1 SAR, the JJ-FAST alert system has been developed by the 
Japanese Space Agency JAXA and is based on an L-band SAR data from 
ALOS-PALSAR and PALSAR2 ScanSAR data (Rosenqvist et al., 2004). A 
detailed summary and comparison of the alert systems is provided in 
(Doblas Prieto et al., 2023). 

Despite its early detection capabilities, the SAR-based alerts has 
mainly been used over THFs and their efficacy over TDFs was largely 
undetermined (Reiche et al., 2018). Therefore, expanding the THF NRT 
disturbance detection capability from THFs to TDFs was of paramount 
importance. To this end, a number of key challenges were defined as to 
why appropriate systems utilizing SAR data for NRT TDF disturbance 
detection and alerting have been limited to small test sites. 

The first challenge of using SAR images for NRT monitoring of TDFs 
disturbance was the backscatter variation due to seasonality. Detecting 
disturbance in satellite image time-series in TDF requires the compen-
sation of the seasonal forest component. Otherwise, the seasonal varia-
tions may lead to substantial false detection of forest disturbance 
(Hamunyela et al., 2016). The seasonal forest component in the SAR 
time-series signal was driven by changes in canopy structure and 
moisture that cause seasonal variations in the SAR backscatter signal 
(Ulaby et al., 1986). In time-series change detection, the seasonal forest 
component was often compensated by seasonal model fitting to account 
for forest seasonality (Verbesselt et al., 2010; Zhu et al., 2012). How-
ever, shifts in seasons affected the seasonality mitigation step, which 
caused imprecision’s in the removal of the seasonal component of the 
signal. Some attempts have been made to mitigate the seasonality 
without the dependency on dense time-series images by spatial image 
normalization (Hamunyela et al., 2016). Each pixel was normalized with 
the value of dense forest in the spatial surrounding of the pixel to be 
normalized. The efficacy of spatial image normalization in optical im-
ages and SAR images was shown in (Reiche et al., 2018; Hamunyela 
et al., 2016; Watanabe et al., 2021). 

The second challenge for NRT monitoring of TDF disturbance was 
the variation in the structure and canopy cover in different eco-regions 
over time (Verhegghen et al., 2022). As opposed to a THF, a TDF con-
sisted of open canopy cover and there existed significant herbaceous 
under-story that complicated disturbance detection. For optical-based 
monitoring systems, this along with seasonality effect posed a chal-
lenge for NRT monitoring of TDF (Fig. 1). However, C-Band radar data 
from Sentinel-1 satellites were less affected by seasonality as compared 
with optical images as the backscatter was confined from the top of the 

canopy and backscatter variation between the dry and wet season was 
small (Fig. 1). 

Recently, with the proliferation of data driven approaches, machine 
learning was increasingly used to detect forest disturbances in THF’s 
(Liu et al., 2018; Chen et al., 2021). Recent advances in advanced ma-
chine learning approaches provided the opportunity to mitigate the 
seasonality effect and the disparity in canopy structure in time-series 
data with the caveat of manually curating reference datasets (Sol-
órzano and Gao, 2022; Pacheco-Pascagaza et al., 2022). In this regard, 
recurrent neural networks are prominent machine learning approaches 
that are particularly suited for time-series data (Ye et al., 2019). LSTM 
(Long short term memory) and GRU (gated recurrent units) are notable 
variants that learned the time dependencies within the data and focused 
on the temporal dynamics of the time-series data by explicitly control-
ling the flow of information through time (Wang et al., 2019; Zhong 
et al., 2019). 

These approaches could be used to implicitly learn the seasonal 
patterns of TDFs to detect changes (Mullissa et al., 2023). However, 
time-series based neural networks for NRT disturbance detection was 
computationally expensive as the whole time-series needed to be pro-
cessed every time a new image acquisition became available. To miti-
gate this limitation, robust time-series feature engineering (Zheng and 
Casari, 2018) coupled with standard deep neural networks (DNNs) or 
convolution neural networks (CNNs) offered the potential to make TDF 
disturbance prediction on an image to image basis. Therefore, it was 
imperative to engineer features that represented the temporal dynamics 
of the time-series to train a TDF disturbance detection model that pre-
dicted disturbance as newly acquired images became available. CNNs 
were more suitable to learn features that had complex spatial-contextual 
relationships such as landcover mapping with the caveat of computa-
tional complexity (Wang et al., 2018; Liu et al., 2019). For SAR-based 
forest mapping, where the requirement for complex spatial-contextual 
feature learning was not as important, spatial-contextual feature ex-
tractors of CNNs could be replaced with computationally cheap pixel 
based dense neurons, as found in deep neural network (DNN). 

One of the main challenges in employing these approaches was the 
lack of high quality reference data needed to train these models. As 
ground-based reference data on TDF disturbances were very rare and 
manual annotation of reference data was time consuming and expen-
sive, a weakly supervised approach could be adopted. Weak supervision 
is a set of machine learning approaches that use higher level and often 
noisier labels to synthesize a large quantity of reference labels by iter-
ative refinement (Zhou, 2018). These techniques involve incomplete 
supervision i.e. when the available reference labels are precise but few in 
number to train a high quality model and there exists sufficient supply of 
unlabeled data (Wang et al., 2020). These categories encompass the 
fields of active learning and self-supervised learning. The second cate-
gory involves inexact supervision i.e. the labeling is coarse or high level 
such as image level annotations and the required labels for the task are 
pixel level (Wei et al., 2016; Huang et al., 2018; Ahn and Kwak, 2018). 
The third type of weak supervision is inaccurate supervision, indicating 
the reference labels are public or crowd-sourced datasets that are noisy; 
therefore, the labels are iteratively refined to a high quality reference 
data (Daudt et al., 2019). In this manuscript, we used a weakly super-
vised approach that aligned with inaccurate supervision that iteratively 
upgraded the quality of existing noisy reference datasets. In this regard, 
globally available forest change maps (e.g. Landsat-based GLAD alerts 
(Hansen et al., 2016), annual Landsat-based Hansen Global Forest 
Change dataset (Hansen et al., 2013)) were used as noisy labels in the 
weakly supervised framework. 

In SAR-based NRT forest disturbance monitoring, most methods in 
the literature were focused on THFs. As THF had dense canopy cover and 
less seasonality, simple machine learning models could derive high ac-
curacies (e.g. GMM in the case of the RADD alerts). Applying simple 
machine learning models to TDF, however, presented a challenge, as 
simple parametric models may not be suitable due to seasonality and 
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open-canopy structure. Deep learning provided a unique opportunity to 
solve this challenge, as it learned non-linear functions if supplied with 
adequate reference data. Our research addressed the application of small 
deep learning models to TDF disturbance detection by efficiently har-
vesting reference datasets without manual work at scale. Therefore, the 
novelty of our work was the weakly supervised deep learning approach 
to automatically harvest high quality reference dataset to train and 
predict TDF disturbances in a near real-time setting. The main objective 
of this manuscript was to demonstrate a Sentinel-1 SAR-based rapid 
forest disturbance detection system for the dry tropics. We had the 
following two sub-objectives: 

1. Develop a weakly supervised approach that leveraged global forest 
loss data to generate high quality reference data. 

2. Develop a deep-learning-based system for near real-time TDF 
disturbance alerting based on Sentinel-1 SAR data. 

2. Study regions 

We used two areas in Paraguay (South America) and Mozambique 
(Africa) to detect TDF disturbances in an NRT setting. While forest 
disturbance is defined in many ways, we followed a forest cover defi-
nition in a sense that pixels with less than 30% canopy cover were 
considered non-forest. 

The first study area is located in Northern Paraguay (centred at Lat: −
21.070, Lon: − 58.770) (Fig. 2). We selected the province of Mariscal 
with an area of 72,389 km2 for training a deep learning model, and the 
province of Fuerte with an area of 19,583 km2 was used to test the 
proposed method in NRT setting. The area is found in the Dry Chaco eco- 
region, characterized by tropical and subtropical grasslands, savannas 
and shrub-lands biome (Dinerstein et al., 2017) with a humid tropical 
climate with distinct wet October–May and dry seasons 

Fig. 1. The seasonality for stable dry forest in Planet Scope images (4.7 m resolution) during the (a) dry (September 2020) and (b) wet (April 2021) seasons. The 
corresponding time-series derived from (c) Sentinel-1 VV and VH polarization in the descending orbit and (d) Sentinel-2 normalized burn ratio (NBR) and Normalized 
Difference Vegetation Index (NDVI) in the Miombo woodland in Zambia (latitude:-13.17, longitude:27.64). In the Sentinel-1 SAR time-series, the variation due to 
seasonality is not visible in a single pixel because of speckle; therefore, we have synthesized the time series by aggregating 100 neighboring pixels (10 × 10 
neighborhood window) whose center is indicated by the white cross in the images. The Sentinel-2 time-series, however, was synthesized without spatial aggregation 
as the seasonality is readily visible. 
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June–September. Forest disturbances in the area were characterized by 
large-scale industrial logging and agricultural expansion (Hartung et al., 
2021). 

The second NRT disturbance mapping area is located in the central 
part of Mozambique (centred at Lat: − 17.090, Lon:36.160). Here, the 
training and NRT testing areas were selected from the province of 
Macuba and Derre, respectively. The training area covered 8,801 km2 

whereas the NRT test area covered 4, 762 km2. The areas are found 
within the Dry Miombo Woodlands eco-region, characterized by tropical 
and subtropical grasslands, savannas and shrub-lands biome with a 
humid tropical climate with the wet season occurring from (Novem-
ber–March) and the dry seasons occurring in May–October (Dinerstein 
et al., 2017). The change from wet and dry seasons was associated with a 
strong change in forest phenology, which is visible in SAR time-series. 
Forest disturbance in the area was mainly caused by smallholder agri-
culture expansion and logging activities (Nazerali and Chauque, 2023). 
We have selected these two areas because they represent a variety of dry 
forest eco-regions and drivers of forest disturbances. 

The training areas indicated in Fig. 2 were used to generate the deep 
learning training and validation data samples. While the NRT distur-
bance mapping areas were used to generate the NRT TDF disturbance 
maps using the trained models from the training area. The NRT TDF 
disturbance maps were validated using an independent reference data-
sets extracted from Planet images. 

3. Data 

3.1. Sentinel-1 SAR data 

We used Sentinel-1 ground range detected SAR images in dual po-
larization mode (VV and VH) acquired in the respective study areas from 
2018 to 2022 in Google Earth Engine (GEE) platform (Gorelick et al., 
2017). The Sentinel-1 SAR images were acquired in the interferometric 
wide-swath mode with a resolution of 20 m by 22 m in range and azi-
muth directions respectively (Torres et al., 2012). The Sentinel-1 images 
were acquired in both ascending and descending orbits, with nominal 
temporal resolution of 6–12 days. Prior to their ingestion into GEE, the 
Sentinel-1 images were processed for thermal noise removal, calibrated 
to sigma nought and range Doppler terrain correction was performed. 
The images were available in GEE with a ground sampling distance of 
10 m. 

For the Paraguay test area, 408 images were acquired in ascending 
orbit, and 834 images were acquired in descending orbit in both the 
historical (i.e. the period representing stable dry forest from January 1, 
2018 to December 31, 2019) and monitoring (period for monitoring TDF 
disturbance, January 1, 2020 to December 31, 2021) period, whereas for 
the Mozambique test site, we selected 737 images in the ascending orbit 
and 442 images in descending orbit in both the historical and moni-
toring period. All the images were processed in dual polarization mode. 

Fig. 2. Model training and validation area locations in Paraguay (A) and Mozambique (B) with the corresponding NRT disturbance mapping locations.  

A. Mullissa et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 298 (2023) 113799

5

3.2. Forest and forest-loss data 

We used the 2020 Hansen forest-cover loss data (hereafter referred to 
as’Hansen 2020 forest-cover loss’) (Hansen et al., 2016) to synthesize 
the disturbance labels. To generate the forest cover baseline map for 
2019 and synthesize the forest labels, we used the Hansen 2000 forest- 
cover percentage map (with 30% tree cover threshold) and removed 
2001–2019 Hansen forest-cover loss. We hereafter refer to the 2019 
forest-cover baseline map as’Hansen 2019 forest-cover dataset’. 

4. Methods 

The general flowchart of the proposed approach is shown in Fig. 3. 
The indicated processing steps are described in the following sub-
sections. We first pre-processed Sentinel-1 SAR data (Section 4.1). Sec-
ondly, we applied feature engineering (Section 4.2), followed by a 
reference label harvesting method (Section 4.3). Finally, we proposed to 
use the harvested labels to train a deep learning model to generate forest 
and forest disturbance probabilities (Section 4.4) that will be used in a 
probabilistic disturbance detection refinement method (Section 4.5) to 
generate alerts. The first part of the methodology was focused on iter-
atively refining a reference data to train a deep learning model. The 
model was used to derive forest and disturbance probabilities on a pixel 
to pixel basis. The second part of the methodology adopted the proba-
bilistic refinement method suggested by (Reiche et al., 2018; Reiche 
et al., 2015a) to generate an NRT TDF disturbance alert. 

4.1. SAR data pre-processing 

We created Sentinel-1 SAR analysis ready data (ARD) in GEE 
following the methods described in (Mullissa et al., 2021). The Sentinel- 
1 ARD was created by applying additional border noise correction to 
remove remaining border artefacts in the Sentinel-1 images. We also 
applied multi-temporal speckle filtering using the framework suggested 
by (Quegan and Yu, 2001). We applied the multi-temporal filtering 
framework with a Lee filter (Lee, 1981) of kernel size of 9 × 9 pixels. For 
optimal filtered output, we have restricted the number of images 

involved in the filtering to 40. Radiometric terrain normalization was 
also applied to mitigate the backscattered signal variation due to 
topography using a 1 arc-second (30 m) SRTM digital elevation model. A 
volume scattering model was used for the normalization (Hoekman and 
Reiche, 2015; Vollrath et al., 2020). This processing was performed 
separately for the ascending and descending orbits. 

4.2. Feature engineering 

We generated historical stable forest metrics that represented TDF 
dynamics for 2018 and 2019. The historical stable forest metrics are 
temporal features that best represent the dynamics of stable forests. We 
first removed outliers present in the Sentinel-1 image time-series using a 
Hampel outlier detection approach (Hampel, 1974). We discarded im-
ages with extremely low values due to rain cells from the image 
collection. For THFs, (Reiche et al., 2021) used the median and standard 
deviation to represent the signal variation, as no seasonal effects exist in 
THFs. In tropical South American and African dry forests, we observed 
that forested areas had higher backscatter values in both VV and VH 
polarization and lower variation in backscatter values, whereas areas 
with agricultural crops and bare grounds had a higher variance in the 
backscatter values (Verhegghen et al., 2022). When considering C-band 
SAR time-series it can clearly be observed that in dry seasons, even with 
complete loss of foliage in a forest, there was still substantial interaction 
with the branches. Therefore, the seasonality in Sentinel-1 time-series 
was not as pronounced as in optical time-series (Fig. 1). When sub-
stantial TDF disturbance happened, the scattering mechanism of the 
resolution cell changed from volume to surface; therefore, the back-
scattered signal decreased significantly especially in the VH polariza-
tion. Thus, we have chosen the median and minimum 2% of the 
backscatter values from both polarizations in the time-series to represent 
the historical stable TDF dynamics. These time-series metrics combined 
with individual images in the monitoring period (a time period where 
disturbance detections are conducted) were used to train a deep neural 
network to detect TDF disturbances in a before and after disturbance 
scenario. 

Fig. 3. The general methodological framework for the proposed TDF disturbance alerts.  
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4.3. Reference label harvesting 

4.3.1. Forest disturbance label selection 
We adopted a weakly supervised approach to synthesize the distur-

bance reference labels by iteratively refining an initial selection of noisy 
forest disturbance data collected from globally available Hansen 2020 
forest-cover loss dataset (Hansen et al., 2016). The Hansen annual 

forest-cover loss data were produced from annual cloud-free Landsat 
composites, which comprised forest-cover loss accumulated for an entire 
year. It did not provide information on when the disturbance was 
detected. This made it challenging to correspond these data to a specific 
image in the Sentinel-1 image collection. This challenge was especially 
prominent for forest disturbance occurring earlier in the year where 
there was some re-growth in the under-story by the end of the year. In 

Fig. 4. A time-series of Sentinel-1 backscatter values in dB scale. The series clearly shows TDF disturbance in August 2020. The series also shows the post disturbance 
signal dynamics in early 2021. 

Fig. 5. Weakly supervised reference label harvesting workflow. The AND condition indicates the agreement between the indicated datasets.  
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those cases, the backscatter in pixels containing regrowth was identical 
to that of a stable forest pixel. In addition, the Hansen forest-cover loss 
data were processed from Landsat at 30 m ground sampling distance and 
the forest loss pixels may not exactly have matched with the 10 m 
Sentinel-1 image, thus introducing noise in the label. Therefore, we 
refined the Hansen 2020 forest-cover loss to match with Sentinel-1 im-
ages from December 1 to December 31, 2020 and used them as initial 
forest disturbance labels. We accomplished this by spatially selecting the 
forest loss pixels that intersected with pixels below a user set threshold 
of the VH and VV backscatter values for each individual Sentinel-1 
image acquired between December 1 and December 31, 2020 (Fig. 5). 
Here, we processed the ascending and descending orbits separately. This 
threshold value was determined empirically by comparing the histo-
gram of pixels intersecting with the Hansen 2020 forest-cover loss data 
and the image histogram. This step was crucial as it helped to reject 
labels intersecting with regrowth or some forest pixels found between 
deforested land as found in large scale industrial logging operations in 
South America. To remove the edge pixel effect, we applied an inverse 
buffer of 20 m at Sentinel-1 image scale to all selected initial forest loss 
plots. 

The selected initial labels were used to train a DNN (Section 4.4) 
model to make a forest and disturbance prediction. We selected the 
specific DNN architecture to minimize the computational complexity 
while maintaining model accuracy during prediction. During prediction, 
we used a probability threshold of 70% to extract the disturbance pixels 

and 70% to select the stable forest pixels. The final disturbance labels 
were selected from the intersection between the Hansen 2020 forest- 
cover loss data and the disturbance prediction from the initial DNN 
model within the time period of December 1, 2020 to December 31, 
2020 (Fig. 6). These final reference labels were used to train the final 
DNN model that will be used to predict the forest mask in the NRT 
disturbance mapping area and generate the NRT TDF disturbance alerts. 

4.3.2. Stable forest label selection 
To select the labels for a stable forest, we removed the Hansen 2020 

forest-cover loss from the Hansen 2019 forest-cover map. We selected 
the initial stable TDF reference labels by applying an inverse buffer of 
50 m from the data layer. The forest mask that will be used in the NRT 
alerts was predicted using the probability of forest generated at pre-
diction time using the engineered features at the start of the monitoring 
period in the test regions. The probability of disturbance for each image 
in the monitoring period was used to generate the NRT TDF disturbance 
alerts. 

4.3.3. Training sample selection 
We added the median and 2% minimum of the historical period (i.e. 

from January 1, 2018 to December 31, 2019), as bands to images in the 
sampling period (December 1 to December 31, 2020) so the input 
feature vector represented a 1 × 3 feature vector for each polarization 
state. First, the initial TDF and disturbance labels were prepared as input 

Fig. 6. Label harvesting in the Mozambique training site. (a) Hansen 2019 forest cover (unrefined forest labels). (b) Harvested stable forest labels. (c) Hansen 2020 
forest loss (Unrefined forest disturbnce labels). (d) Harvested disturbance labels corresponding with Sentinel-1 image acquired on December 9, 2020 in ascending 
orbit. Scene center coordinate (latitude: − 16.820, longitude:36.400). 
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training data by stratified random sampling of 20,000 pixels (10,000 
pixels for TDF and 10,000 samples for the disturbance class). We used 
the 20,000 label pixels to sample the Sentinel-1 VV and VH polarization 
images acquired during the sampling period (December 1 to December 
31, 2020) separately in ascending and descending orbits. The sampled 
data consisted of 52,615 and 103,728 samples over Paraguay and 
51,900 and 40,623 samples over Mozambique in the designated sam-
pling regions for the VV and VH polarizations respectively (Fig. 2). The 
synthesized dataset was randomly split into 80% training data, 10% 
validation data and 10% test data. We have not, however, used the 
testing samples to test model accuracy as they were biased by label 
harvesting (Section 4.3.) 

4.4. Deep neural network 

We trained separate models for Paraguay and Mozambique in the VV 
and VH polarization to accommodate the variability in the TDF sea-
sonality and forest types, respectively. We selected a DNN architecture 
(Fig. 7) with three hidden layers interleaved with batch normalization 
(Ioffe and Szegedy, 2015) and Rectified Linear Unit (ReLU) activation 
and Dropout layers. We used TensorFlow 2.8 (Abadi et al., 2016) to train 
the model, using the Adam optimizer (Kingma and Ba, 2014) with a 
batch size of 32 and a categorical cross-entropy loss function. We trained 
the model for 50 epochs. We applied hyper-parameter tuning using the 
Keras tuner package (O’Malley et al., 2019) using Hyperband tuner (Li 
et al., 2017), to select the optimal number of neurons for each hidden 
layer and the optimal learning rate. The optimal number of units and 
trainable parameters in the DNN is shown in Table 1. The optimal 
learning rate for both VV and VH polarization was 0.001. 

The final DNN models corresponding with the VV and VH 

polarization in their respective areas were used to generate forest and 
disturbance probabilities for each image in the monitoring period for 
NRT TDF disturbance mapping. These VV and VH polarization derived 
probabilities were fused in the probabilistic refinement step to make 
TDF disturbance detections. 

4.5. Probabilistic detection refinement 

To detect disturbances in TDF, we used the Bayesian updating 
approach proposed by (Reiche et al., 2018; Reiche et al., 2015a). In a 
near real-time monitoring scenario with past observations given as (t −
1), current as (t) and future as (t + 1) observations, where individual 
images are added to the stack chronologically as they are acquired from 
the start of the monitoring period on-wards, the probability of distur-
bance P(D), derived from each pixel using the DNN model, is given as: 

P(D) = P(D)XX
*P(D)XY (1) 

Here P(D)XY is the probability of disturbance derived from the DNN 
model in the XY polarization state indexed as VH. The current (t) 
probability of disturbance was used to detect disturbance events with 
low confidence when the probability of disturbance exceeds a user set 
threshold. For low confidence alerts, the posterior probability of forest 
disturbance was estimated using Bayesian updating (Reiche et al., 
2015a) by taking the previous (t − 1) and current (t) probability of 
disturbance. The Bayesian probability updating is given as: 

P(D)Posterior =
P(D)t− 1

*P(D)t

P(D)t− 1
*P(D)t +

( (
1 − P(D)t− 1

)
*
(
1 − P(D)t

) ). (2) 

At the beginning of the monitoring period, the P(D)Posterior is esti-
mated by assuming a prior probability of zero. In subsequent acquisi-
tions the P(D)Posterior is updated using the current and previous 
probabilities from the DNN model. The iterative Bayesian updating is 
stopped when TDF disturbance events are detected with high confidence 
i.e. when P(D)Posterior exceeds a predetermined threshold value χ within a 
given time-period. If the conditional probability of disturbance falls 
below χ for the low confidence alerts, or if the posterior probability fails 
to exceed χ within a given time, the pixel is un-selected as a disturbance 
event. 

Fig. 7. The deep neural network architecture used by the proposed method for the VV or VH polarization. The input data dimension (1× 3) indicated the input 
features i.e. backscatter image pixel from a single date in the monitoring period, the median and 2% minimum image pixels from the historical period. We trained 
two separate models for the VV or VH polarizations. ReLU, Rectified Linear Unit. 

Table 1 
The number of units in each hidden layer and trainable parameters in the DNN 
architecture used to train the model in the respective study areas.  

Region Polarization Layer 1 Layer 2 Layer 3 Parameters 

Paraguay VV 160 576 544 411,459 
Paraguay VH 448 896 640 984,067 
Mozambique VV 576 640 288 560,067 
Mozambique VH 224 768 128 274,755  
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Fig. 8. Forest disturbance dates mapped from January 1, 2020 to December 31, 2021 for the Paraguay test area (top) and the Mozambique test area (bottom).  

Table 2 
Precision (user accuracy), recall (producers accuracy), F-1 score for the mapped forest disturbances for 2020 and 2021. The proposed method without label refinement 
followed the same procedure as the proposed method, except the deep learning model was trained using the unrefined Hansen forest-cover loss dataset.  

Region Method Precision (users accuracy) Recall (producers accuracy) F-1 score 

Paraguay Proposed method with label harvesting 0.99 0.61 0.75 
Paraguay Proposed method without label harvesting 0.88 0.13 0.22 
Paraguay Hansen forest-cover loss 0.95 0.51 0.66 
Paraguay GLAD alerts 0.93 0.23 0.36 
Mozambique Proposed method with label harvesting 0.97 0.51 0.66 
Mozambique Proposed method without label harvesting 0.88 0.16 0.26 
Mozambique Hansen forest-cover loss 0.90 0.40 0.55 
Mozambique GLAD alerts 0.59 0.06 0.10  
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Fig. 9. Visual comparison between our proposed method for alerts in 2020 and 2021 over the Paraguay NRT mapping region (top), Landsat-based GLAD alerts for 
2020–2021 (Hansen et al., 2016)(center) and Hansen 2020–2021 forest-cover loss data (Hansen et al., 2013) (bottom). 
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Fig. 10. Visual comparison between our proposed method for alerts in 2020 and 2021 over the Mozambique NRT mapping region (top), Landsat-based GLAD alerts 
for 2020–2021 (Hansen et al., 2016)(center) and Hansen 2020–2021 forest-cover loss data (Hansen et al., 2013) (bottom). 
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To detect NRT TDF disturbance events, we set a threshold of 0.6 for 
low confidence alerts and a posterior probability threshold χ of 0.8 to 
detect the high confidence alerts in both test regions. We used a time 
window of 90 days to convert the low confidence alerts to a high con-
fidence alerts. Low confidence alerts that were not converted to high 
confidence alerts within this 90 day period were removed as an alert. 
Furthermore, low confidence alerts falling behind a threshold value of 
0.6 in subsequent acquisitions were discarded. Detected high confidence 
alerts were not re-detected again in subsequent acquisitions. We dis-
carded detections smaller than 5 (8-connected) pixels at Sentinel-1 
scale, therefore, maintaining disturbances at a minimum mapping unit 
of 0.05 ha. The TDF disturbance alerts were generated over the two test 
regions for the period 1 January 2020 to 31 December 2021 (Fig. 8). 

4.6. Accuracy assessment 

We assessed the accuracy of our proposed method in generating the 
NRT TDF disturbance alert maps by using area-adjusted accuracy 
assessment suggested in (Olofsson et al., 2014). We generated 1200 
sample points using random stratified samples from the detected alerts 
to derive the accuracy metrics. We allocated 400 sample points in the 
disturbance stratum, and the remaining 800 points were allocated to the 
forest baseline and buffer area consisting of 200 m buffer distance from 
the alert pixels (Olofsson et al., 2020). We used visual inspection of 
monthly Planet scope image mosaics to derive the ground truth data. We 
applied the accuracy assessment approach proposed by (Olofsson et al., 
2014) to derive the area-adjusted precision (users accuracy), recall 
(producers accuracy) and F1 score for the forest disturbance alerts. To 
evaluate the efficacy of the proposed weakly supervised approach, we 
compared the area-adjusted accuracies of disturbance alerts generated 
with label harvesting and without label harvesting. To make the com-
parison fair, we had kept all NRT parameters the same, except the label 
harvesting. We also compared the accuracies with that of the existing 
Landsat-based GLAD alert (Hansen et al., 2016) and the Hansen forest- 
cover loss dataset (Hansen et al., 2013) mapped at Landsat pixel level 
(0.09 ha MMU) over the test areas. 

We also evaluated the differences in timeliness of detections by 
intersecting confirmed alerts between the proposed method and the 
Landsat-based GLAD alerts. This comparison was made based on the 
time when the alert was confirmed as a high confidence alert in both the 
proposed method and the Landsat-based GLAD alerts. 

5. Results 

5.1. Label harvesting 

To perform label harvesting in the Paraguay test area, we applied a 
minimum 10% threshold value from each VV and VH image to refine the 
Hansen Global Forest Change dataset into the initial forest disturbance 
labels. However, we applied a minimum 35% threshold value of VV and 
VH image in Mozambique to synthesize the initial forest disturbance 
data. 

To assess the improvement from the weakly supervised label 
refinement, we trained a DNN model using the unrefined Hansen 2019 
forest-cover and Hansen 2020 forest-cover loss. In both the Paraguay 
and the Mozambique models, the generated alerts achieved a precision, 
recall and F-1 score of 0.99, 0.61, 0.75 and 0.97, 0.51, 0.66, respectively. 
The detail precision, recall and F-1 score for the harvested and original 
Hansen labels is shown in Table 2. 

5.2. TDF disturbance detection 

The two detailed maps depicted in Fig. 8 show the large scale agri-
culture derived TDF disturbance in Paraguay and a small holder agri-
culture and logging driven TDF disturbance in Mozambique. We 
detected 33.7 kha of disturbance in Paraguay and 14.9 kha of 

disturbance in Mozambique test sites, respectively. Detected disturbance 
events accounted for 1.72% of the study area in Paraguay and 3.12% of 
the study area in Mozambique, respectively. 

5.3. Disturbance alerts accuracy assessment 

The area-adjusted accuracy assessment for the disturbance maps in 
the two test areas yielded consistently high results (Table 2). The area- 
adjusted precision and recall accuracies for the high confidence alerts in 
the Paraguay and Mozambique test regions were 99% and 61% and 
97.5% and 51%, respectively. These accuracies suggested confident 
detection of TDF ≥ 0.05 ha. In comparison, the methodology without 
label harvesting scored significantly lower than the proposed method 
with a precision of 88% and 13% and 88% and 16% respectively. 
Similarly, Landsat-based GLAD alerts scored significantly lower than the 
proposed method in Paraguay and Mozambique, with a precision and 
recall of 93.5% and 23% and 59% and 6%, respectively. Substantial 
omission and commission errors were observed in the GLAD alerts 
compared with the Hansen 2020–2021 forest-cover loss dataset. The 
Hansen 2020–2021 forest-cover loss dataset performed better than the 
GLAD alert in Paraguay and Mozambique, with a precision and recall of 
95% and 51% and 90% and 40%, respectively. Visual comparisons 
supported the quantitative results reported in the accuracy assessment 
(Fig. 9 and Fig. 10). 

Assessing the improvement in timeliness showed that the proposed 
method was detecting disturbances 21 (± 18) days earlier than the 
Landsat-based GLAD alerts in Paraguay, whereas the proposed method 
detected disturbances 18 (± 18) days earlier in Mozambique. We have 
not determined the absolute mean time lag between our proposed 
method or the GLAD alert due to inaccuracies associated with extracting 
these dates from available reference optical and SAR images. 

6. Discussion 

Our results demonstrated the benefits of automatically harvesting 
reference labels for NRT TDF disturbance monitoring. They also showed 
the high quality NRT TDF disturbance detection results that can be 
derived from applying simple deep learning models. We were able to 
mitigate TDF seasonality in the Sentinel-1 SAR backscatter signal to 
detect and monitor disturbances in two different TDF eco-regions with 
high accuracy. 

The Sentinel-1 temporally dense SAR images were important in the 
rapid detection of TDF disturbance events. The backscatter signal from 
the C-band radar of Sentinel-1 did not show large variations during the 
leaf on and off seasons. This characteristic was important to design the 
proposed method. To avoid false detections in the alerts and preserve the 
spatial integrity of alerts, the pre-processing steps (Mullissa et al., 2021) 
in the ARD image generation were crucial. 

The selection of features that could represent the dynamics of stable 
dry forests was found to be another important factor. From this, the 
minimum 2% of backscatter value was the most important feature. The 
removal of outliers in the SAR time-series was crucial to estimate the 
proper feature value for stable forests, as the outliers could bias the 
estimate. Both polarization states were found to be essential in detecting 
dry forest disturbance due to the sensitivities of the vegetation to the VH 
polarization and sensitivity of the VV polarization to bare ground. The 
stronger contrast in the VV and VH backscatter before and after 
disturbance led to a better detection of disturbance events. The combi-
nation of VV and VH polarization was instrumental in rejecting false 
detection due to signal anomalies. 

The proposed label harvesting showed an alternative cost effective 
way of reference label generation. The initial filtering and removal of 
regrowth pixels from the initial reference label guaranteed that the 
selected pixels corresponded well with a disturbance event that was 
visible in the SAR images. In addition, the Hansen forest-cover loss data 
(Hansen et al., 2016) introduced label noise when compared with the 
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Sentinel-1 SAR images, as optical and SAR images were sensitive to 
different properties of the forest structure. Therefore, the backscatter 
filtering avoided these discrepancies in the selection of reference labels. 
This was clearly shown by the comparison of results applying label 
harvesting with the original noisy reference labels (Table 2). The 
intersection of the stable forest dataset (Hansen et al., 2013) with the the 
DNN predicted stable forest cover improved the confidence of the initial 
selected forest samples, as the selected disturbance pixels corresponded 
with disturbance events (such as clear-cut disturbance) that are 
observable in both SAR and optical images. In the presence of additional 
forest-cover datasets such as Copernicus dry forest class (Buchhorn 
et al., 2020), the confidence can be further increased by intersecting 
these datasets. Overall, the proposed label harvesting method provided a 
large quantity of high quality reference samples in the dry forest regions 
and potentially other biomes globally, making it a viable strategy for the 
preparation of global reference data. The proposed method can also 
easily be transferred to the humid tropics by adding additional NRT 
alerts to further improve the confidence of the initial reference dataset. 

The application of a DNN architecture improved the deployability of 
the model in an operational setting. This made the DNN model a suitable 
candidate to be deployed in an NRT monitoring and evaluation system at 
a large scale. The trained DNN model was sensitive to the random 
initialization of parameters. Therefore, the units selected by each hidden 
layer may fluctuate as a result of this. However, the variation was within 
±1 % accuracy in the validation data. The addition of dropout layers in 
every hidden layer was important to avoid over-fitting to the training 
data. The models showed slightly higher accuracies due to the correla-
tion between training and test datasets, as they were randomly selected 
from the same geographic region. However, the high NRT TDF distur-
bance detection accuracy indicated the same level of performance in a 
geographically disjointed test region. 

The proposed method detected TDF disturbances 21 days (±18 days) 
in Paraguay and 18 days (±18 days) in Mozambique earlier than than 
the GLAD alerts; this indicated that the proposed method provides a 
more rapid detection performance than the optical image based GLAD 
alert (Hansen et al., 2016), which was mostly effective in detecting 
disturbances in images with minimal cloud cover conditions. However, 
some observations in the proposed method have delayed detections due 
to post-disturbance signal fluctuation, especially in the beginning of the 
wet season (Fig. 4). However, these alerts were detected once the signal 
stabilized. 

The Sentinel-1 SAR based rapid TDF disturbance detection method 
that we proposed is unique in that disturbance was detected without 
deseasonalizing the series, as shown in previous TDF monitoring 
methods (Reiche et al., 2018). The careful engineering of features, 
combined with the usage of deep learning models, enabled our proposed 
method to learn the complex dynamics of an open to closely covered 
TDF. However, there were some SAR-based NRT THF disturbance alert 
methods proposed in the literature that relied on change in backscatter 
during disturbance (Reiche et al., 2021) or detect change in backscatter 
associated with shadows during disturbance to infer disturbance (Bou-
vet et al., 2018; Doblas et al., 2022), which worked well for the humid 
tropics (Doblas Prieto et al., 2023). To extend these methods to TDFs, 
however, the presence of TDF canopy structure and seasonality 
remained a challenge. To the best knowledge of the authors, the pro-
posed approach was the first TDF disturbance alert that was designed for 
monitoring the dry tropics using SAR data. 

In summary, our study filled the methodological gap in the appli-
cation of deep learning to NRT TDF disturbance monitoring using dense 
Sentinel-1 SAR data. Its simplicity made it easily extendable to other 
TDF eco-regions and deployable to large-area monitoring applications, 
which would shed light into the extent of disturbance in a vast portion of 
tropical forest canopy. Of course, for efficient large-area monitoring 
computational capability remained a challenge, but the recent advances 
in the accessibility and affordability of cloud computation technologies 
showed a promising path ahead (Azzari and Lobell, 2017). 

7. Conclusion 

We presented rapid forest disturbance mapping for TDF conditions. 
The availability of uninterrupted supply of dense Sentinel-1 SAR time- 
series enabled the rapid detection of disturbances within a few weeks 
after the event actually happened. The methodology proposed a cost- 
effective method for training and applying machine learning to forest 
disturbance monitoring. Scaling the proposed approach could help 
provide new insight into the spatio-temporal dynamics across the dry 
tropics. 

The proposed approach had some remaining limitations of omission 
of alerts due to moisture, signal fluctuations after disturbance events and 
regrowth of under-story in open dry forests. In future research, we will 
focus on addressing the alert omissions shown in the NRT disturbance 
maps and the deployability and generalization issues associated with 
deep learning based large-scale NRT TDF disturbance monitoring 
systems. 
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