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Abstract
Single-cell heterogeneity in metabolism, drug resistance and disease type poses
the need for analytical techniques for single-cell analysis. As the metabolome
provides the closest view of the status quo in the cell, studying the metabolome
at single-cell resolution may unravel said heterogeneity. A challenge in single-
cell metabolome analysis is that metabolites cannot be amplified, so one needs
to deal with picolitre volumes and a wide range of analyte concentrations. Due
to high sensitivity and resolution, MS is preferred in single-cell metabolomics.
Large numbers of cells need to be analysed for proper statistics; this requires
high-throughput analysis, and hence automation of the analytical workflow.
Significant advances in (micro)sampling methods, CE and ion mobility spec-
trometry have been made, some of which have been applied in high-throughput
analyses. Microfluidics has enabled an automation of cell picking and metabo-
lite extraction; image recognition has enabled automated cell identification.
Many techniques have been used for data analysis, varying from conven-
tional techniques to novel combinations of advanced chemometric approaches.
Steps have been set in making data more findable, accessible, interoperable
and reusable, but significant opportunities for improvement remain. Herein,
advances in single-cell analysis workflows and data analysis are discussed, and
recommendations are made based on the experimental goal.
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1 INTRODUCTION

Cells are the fundamental units of life, and each cell is
unique, even when the type and genome are the same [1].
This is true for healthy cells, but also, for example cancer
cells [2, 3]. An infamous example is breast cancer: Its het-
erogeneity makes it complicated to treat it effectively [4],
which is one of the reasons that breast cancer is one of
the leading causes of death among women [5]. Further-
more, circulating tumour cells (CTCs) that have detached
from the tumour may be present in the bloodstream, and
these can provide information about the type of tumour
present and its metastasis [6]. Next to heterogeneity in dis-
ease (sub)type, cells may also be heterogeneous in their
resistance to drugs [7]. When cells are analysed in bulk, as
is done in the analysis of a biopsy, the differences between
subpopulations of cells are averaged out, as is shown in
Figure 1. Therefore, there is an interest in analytical tech-
niques capable of studying the chemical composition of a
single cell, so that the heterogeneity within the population
can be studied as well.
In cells, an overwhelmingly complex network of chem-

ical reactions takes place. The reactions in a cell are
ultimately controlled by its genome; part of the genome
is transcribed to mRNA, and the mRNA is translated to
proteins and enzymes, the proteome of the cell. Enzymes
catalyse biochemical reactions that allow the cell to grow,
divide, communicate and so forth. In these reactions, a

F IGURE 1 Relevance of studying single cells: When an entire
population is considered, differences between single cells are
averaged out, thereby masking their heterogeneity. Source:
Reproduced with permission from Taylor et al. [81].

wide variety of small molecules – metabolites – take part,
the entirety of which is referred to as the metabolome. The
metabolome gives the closest view of the status quo in a
cell: Although genes may not be expressed, mRNA can be
degraded before it is translated and proteins may coun-
teract each other, metabolites are (intermediate) products
of reactions occurring or just finished in the cell [8, 9].
Therefore, themetabolome is of interestwhen studying the
(heterogeneity in) behaviour of single cells. A complicat-
ing factor in the analysis of single cells is that metabolites,
as opposed to for instance DNA and mRNA, cannot be
amplified; hence, one is bound to analyses at very low
concentrations and in very small volumes.
Due to its high sensitivity and high-resolution (HR), MS

is the technique of choice when analysing the molecular
composition of single cells [10–14]. In general, (single-
cell) MS workflows in metabolomics comprise sample
enrichment to unlock the full potential of MS. Sample
enrichment can be done by endashing MS to LC (LC–MS),
GC (GC–MS) or CE (CE–MS) [15–17]. These separation
steps, however, decrease the throughput and reproducibil-
ity. A different widely applied technique in metabolomics
is NMR spectroscopy: It has sensitivities down to the
nM range, is non-destructive, can be applied in vivo and
requires much less sample preparation than MS, therefore
allowing for higher throughput and lower costs [18]. The
employment of higher field strengths and 2D-NMR exper-
iments as well as techniques to hyperpolarise nuclei can
improve NMR sensitivity even further [19]. Nonetheless,
GC–MS and LC–MS still outperformNMR in sensitivity by
one-to-two orders of magnitude [19]. Next to that, CE–MS
gets more and more attention due to the extraordinarily
high sensitivities that can be reached [20–23]. Further-
more, the risk of overlapping signals is higher inNMR than
in, for example CE–MS, limiting the number of analytes
that can be identified in a sample. Therefore, MS tech-
niques are preferred over NMR in the analysis of single
cells.
An important consideration in experimental design is

that the turnover rate of some human metabolites is in
the order of seconds [24]. Single-cell isolation may lead to
disturbance of the cell, which may affect its metabolome.
Therefore, halting the metabolism and cell isolation
should be done fast and as non-intrusively as possible.
After that, a sample is taken from the cell; this can be
done by chemical extraction or using micro-sampling
probes (Section 2.1). Next to that, cells can be fixated after
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WEVERS et al. 3

which spatially resolvedMS analysis can be executed (Sec-
tion 2.2), which does not require metabolite extraction.
As the volumes and concentrations are minute, sample
enrichment (Section 2.3) utilizing LC, GC or CE can be
applied to increase the MS sensitivity, but this also leads
to longer analysis times. Direct-infusion MS (DI–MS)
does not entail a chromatographic step, which reduces
the analysis time. The absence of separation, however,
leads to the simultaneous injection of all analytes into
the ionization chamber, which may lead to ionization
suppression [25]. Nonetheless, in 2008, the first MS
workflow was published that could be used for the real
time, comprehensive MS analysis of single plant cells
[26, 27] and human tumour cells [28]; this technique is
also referred to as live MS. Additional separation can be
achieved using ion mobility spectrometry (IMS), which
separates ions based on their shape (cf. Section 2.3.4)
using a neutral buffer gas flow. Lastly, one can selectively
detect ions, which can increase MS sensitivity. Vast
numbers of cells are required to do proper statistics, which
poses the need for high-throughput analytical workflows.
A variety of techniques is available for single-cell isolation,
metabolite extraction and sample enrichment, among
which techniques that allow for high throughput. Isolation
of single cells can be accelerated using image recognition,
but microfluidics has been employed for cell picking and
sample preparation as well [29, 30]. Next to that, CE can
also be executed on microfluidic chips coupled to an MS
instrument [31]. Besides minimizing the analysis time,
increasing the throughput necessitates as much automa-
tion of the analysis steps as possible. The transition to
high-throughput analysis will be discussed further in
Section 2.4. The prerequisites and opportunities for higher
throughput in single-cell MS have also been reviewed
recently by Xu et al. [32].
Lastly, the combination of increased throughput and

increased sensitivity poses the need for data analysis
techniques that can handle the large amount of high-
dimensional data produced. Besides conventional data
analysis techniques such as t-tests, principal compo-
nent analysis discriminant analysis (PCA-DA) and partial
least squares discriminant analysis (PLS-DA) [14, 33, 34],
machine learning (ML) [35, 36] and deep learning (DL)
[37–39] are employed more and more. ML models such
as random forest (RF) classification and logistic regres-
sion have been used successfully for the prediction of drug
resistance of single cells based on their metabolic profile
[7]. DL algorithms are comparably novel and require vast
amounts of data to be of merit but have been shown to
perform especially well in handling large amounts of data
while requiring less user intervention thanML algorithms;
DL algorithms have already been used successfully in the
field of proteomics [40, 41]. In addition to increasing the

throughput of the analysis, making use of findable, acces-
sible, interoperable and reusable (FAIR) data [42] also
increases the amount of data from which conclusions can
be drawn. This also demands, however, that experimental-
ists adhere to certain standards and guidelines regarding
experimental set-up and data handling. Examples of differ-
ent types of data analysis techniques and the use of FAIR
data will be evaluated in Section 3.
This review aims to provide analytical scientists with an

overview of the opportunities and challenges in the field of
single-cell MS. Furthermore, the community is provided
with recommendations based on the literature studied.
The field of single-cell metabolomics may be a relatively
young one, but it is developing quickly. Herein, experi-
mental design (Section 2) and data analysis and handling
(Section 3) are discussed, after which some concluding
remarks (Section 4) are shared. Scientific literature was
explored using Google Scholar using keywords such as
‘single-cell metabolomics’ and ‘single-cell mass spectrom-
etry’, together with more specific terms such as ‘in vivo’,
‘untargeted’, ‘data analysis’ and ‘CE–MS’. Next to that, it
was checked if and where publications were cited, as a
means to find follow-up research.

2 EXPERIMENTAL DESIGN

Single-cell isolation and subsequent metabolite extraction
(Section 2.1) is an essential step in the analysis of sin-
gle cells [43, 44] and starts with the halting of the cell
metabolism. This is a crucial step as subsequent analysis
steps may inflict stress on the cell, which may affect the
cell’smetabolome.Metabolite extraction can be done using
an extraction solvent as well as using micro-sampling
probes. On the other hand, the employment of spatially
resolved MS techniques (Section 2.2) such as secondary
ion MS (SIMS) and MALDI-MS will be discussed: Occa-
sionally, these require the embedding of the sample in a
matrix, but these analyses can be executed in situ and in
some cases also under ambient conditions; there is no pos-
sibility nor the need formetabolite extraction in this type of
analyses. When doing (single-cell) MS one must be aware
of ionization suppression [45]. When low-volatile analytes
are present, these may affect droplet formation and evap-
oration in ESI for co-eluting analytes, which may in turn
influencewhich ions reach themass analyser and inwhich
relative intensities. Compounds that tend to have this
influence include salts [46], which are abundantly present
in the samples discussed herein. Ways to reduce the risk
of ionization suppression will also be discussed. After
metabolite extraction, the sample may need to be enriched
as metabolites are present in vast numbers, and concentra-
tionsmay range overmultiple orders ofmagnitude; sample
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4 WEVERS et al.

enrichment is discussed further in Section 2.3. Lastly, to
be able to do proper statistics, the metabolomes of vast
numbers of cells are needed. To this end, high-throughput
single-cell analyses are needed, discussed in Section 2.4.

2.1 Single-cell isolation and extraction

2.1.1 Halting the cell metabolism

When it comes to halting the metabolism, one can dis-
tinguish between cells in suspension and cells in tissues.
When cells are in suspension, one can remove themedium
by filtration and apply the quenching agent onto the
residue. Washing away the medium can be done with
warm PBS, but this is only applied when necessary as it
may lead to metabolite leakage. For adherent cells, the
quenching agent can be applied directly to the sample. A
discussion of multiple quenching protocols can be found
in the work by Dietmair et al. [47].
A widely employed technique for halting cell

metabolism is the immersion of cells in a hot or cold
organic solvent such as acetonitrile [48] or methanol;
mixtures of organic solvents, water and buffers are
also used frequently [47, 49]. Boiling ethanol and cold
methanol are used most: Boiling ethanol carries the risk
of degrading thermally labile metabolites, whereas cold
organic solvents carry the risk of being slow at quenching
the metabolism [50].
The extent of quenching can be studied by investigat-

ing the conversion of isotopically labelled compounds, as
is done in the work by Wang et al. [51]: The conversion
of these compounds after quenching can be used to quan-
tify the remainingmetabolism. Theirwork showed that the
use of 100%methanol at−80◦C ismost effective at quench-
ing metabolism; 30% methanol at −24◦C is slightly less
effective but allows for higher throughput. On the other
hand, in the work by Onjiko et al. [52] blastomeres from
frog embryos were transferred to cooled methanol (4◦C) to
denature enzymes and prevent metabolites from degrad-
ing. Subsequently, the solvent was removed, after which
an aqueous solution of 50%methanol with 0.5% acetic acid
was added. Samples were sonicated in ice-cold water and
vortexed to promote extraction. The authors were able to
identify severalmetabolites that played a role in the embry-
onic phenotype and cleavage. The same approach has been
used by Nemes et al. [53] for metabolite extraction from
sea hare cells as a way to classify cells based on their
metabolome.
Another possibility to halt cell metabolism is freezing

the cells using liquid nitrogen [54]. However, as the heat
transfer between biological samples and liquid nitrogen is
slow due to vapour formation between the surface and the

liquid, cooling is preferably done using precooled metal
plates [55]. However, this way of halting cell metabolism
is more difficult to implement for large numbers of sin-
gle cells. Therefore, methanol-based quenching methods
seem to be the most effective quenching methods; the
percentage of methanol used may differ [49].

2.1.2 Metabolite extraction using extraction
solvents

After the metabolism has been halted, one can proceed
with the analysis of the metabolome, the first step being
metabolite extraction from single cells. Extraction tech-
niques are employed to remove matrix interferents from
the sample as these might complicate subsequent MS
analysis. In this way, matrix effects can be reduced. The
optimum choice of extraction method varies strongly per
sample [56].
In the work by Zhang et al. [57], droplets of acetoni-

trile are extruded from a capillary to selectively extract the
immerged cell’s metabolites. Subsequently, the droplet is
sucked back, most of the solvent is evaporated, and the
metabolites are re-dissolved. This allowed for the removal
of matrix interferents and reliable and stable detection of
different metabolites. In a later publication of their group
[58], the aforementioned microdroplet extraction is com-
bined with an in-house developed pico-ESI source [59] to
study the differences between human astrocyte cells and
glioblastoma cells. This pico-ESI source makes use of a
constant, high DC voltage and a pulsed ESI source. The
small flowrate ejected by the pico-ESI source allows for a
lasting and stable flow, so MS/MS spectra can be acquired
as well; this is needed for the distinction among different
fatty acids and enabled the identification of hundreds of
metabolites. Furthermore, this approach enabled the clas-
sification of diseased and healthy cells. The throughput
of this method is, however, limited as cells needed to be
selected manually using a microscope.
Adjustment of the extraction solvent composition can

allow for the extraction of more hydrophobic analytes.
In the work by Onjiko et al. [60], three extraction sol-
vents, varying in pH and polarity, were used: Comparison
of the results showed that there was overlap as well as
variation in the metabolites identified using the differ-
ent extraction solvents, providing wider coverage of the
metabolome. Furthermore, varying the ESI mode can also
widen metabolome coverage. Wang et al. [11] made use of
multiple microextraction steps to study the metabolic pro-
file of breast cancer cells to identify different subtypes. The
use of multiple extraction solvents as well as ESI detection
in both positive and negative mode provided a broad view
of the different metabolites present, which significantly
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WEVERS et al. 5

improved classification accuracy. It does, however, require
a careful combination of the mass spectra obtained for the
different samples.

2.1.3 Metabolite extraction using
microfluidic devices

Besides the use of an extraction solvent, various microflu-
idic approaches can be employed formetabolite extraction.
Traditional benefits of microfluidics, such as reduced
sample and reagent consumption [61], lower limits of
detection [62], and the ability to create automated, high-
throughput workflows [63] are also seen in single-cell
work. An additional advantage ofmicrofluidic extraction is
that the risk of ionization suppression can be reduced, as
micro-sampling leads to the introduction of fewer matrix
interferents than whole-cell dissection [64]. Due to the
small volumes used, however, also smaller amounts of
matrix interferents can have a pronounced effect. In the
work by Gong et al. [65], a tungsten probe was inserted
into live cells, to which the metabolites were adsorbed.
Subsequently, themetabolites are desorbed from the probe
and injected into the MS instrument. In this way, a wide
variety of metabolites was analysed with minimal sample
preparation. After use, the probe could easily be cleaned
and re-used. Furthermore, this technique was shown to
work well also at the subcellular level; this requires, how-
ever, staining of the nucleus which may affect the cell’s
metabolism. Another limitation of this approach is that
one needs to ensure that all metabolites adsorb to the same
extent to the tungsten tip.
Li et al. [66] successfully extractedmetabolites from cells

using a pulled borosilicate capillary, with a stainless steel
electrode inserted to supply DC voltage. A single yeast cell
in 0.5 µL aqueous solutionwas driven through the capillary
by electromigration, after which it was lysed by electro-
poration. Subsequent MS analysis was performed with a
pico-ESI source (Section 2.1.2). In this study, however, yeast
cells were used, the cell wall of whichmight influence elec-
troporation efficiency. Fang et al. [67] applied this same
technique to human cells: They supplied bone samples
with mannose to differentiate between osteosarcoma cells
and osteoblasts; metabolomes of these cells were stud-
ied using, that is the aforementioned pico-ESI source. Wu
et al. [68] improved the concept of the pico-ESI source by
amongst others lowering the voltage. A decrease in the
voltage lowers the chance of electrochemical reactions of
the analytes. They managed to decrease the ESI voltage to
around 250 V while maintaining sensitivity. Furthermore,
in their work, ionizationwas done on-demand, using a dis-
continuous ambient pressure interface, which facilitates
the MS and MS/MS analysis of minute volumes.

2.1.4 Micro-sampling probes to combine
sampling, extraction and measurement

There have been major contributions to single-cell analy-
sis by developing microfluidic devices which can combine
single-cell sampling, metabolite extraction and coupling
to MS for measurement. These ‘micro-sampling probes’
vary in their size (intracellular vs. single-cell analysis),
throughput and capability for integrated sample prepara-
tion. Pan et al. [69] developed the single-probe that can
be applied for in situ, real-time analysis of single cells
and has found a wide variety of applications. The tip is
small enough to be inserted into a eukaryotic cell and
consists of two channels: One channel ejects an ioniza-
tion solvent, and the other sucks it up together with the
cell’s contents. The entire analysis process takes roughly
3 min and does not require sample preparation, only posi-
tioning of the cells and rinsing with PBS are sufficient. A
possible limitation of the single-probe is that it requires
the cells to be taken from their natural environment. In
some circumstances, this is not a detriment, however, as
cellular activity may be more representative. Nonethe-
less, it has been used to study heterogeneity in responses
to Trypanosoma cruzi infection [70] and irinotecan treat-
ment for cancer cells [71]. Standke et al. [72] used the
single-probe to study leukemic cells almost in their native
environment, the only sample preparation being the sus-
pension of cells. In this way, they managed to distinguish
between leukemic cells that had and that had not been
treated with the cancer drug Taxol. Chen et al. [34] used
the single-probe to study the effects of different treat-
ments on irinotecan-resistant cancer cell metabolomes.
This resulted in the identification of different metabolites
and lipids associated with the effectiveness of differ-
ent treatments, as well as insights into the underlying
mechanism.
Yoshimura et al. [73, 74] developed an ESI-based probe

that allowed for remote sampling electrospray ioniza-
tion (RS–ESI) suitable for real-time and in situ analysis
of biological samples and high-throughput analysis. A
schematic picture of this probe is shown in Figure 2. For
in vivo analyses, first an extraction solvent was applied to
the sample; the droplet size of this extraction solvent was
also the limiting factor in the spatial resolution that could
be obtained. A motorized micromanipulator was used for
the positioning of the probe, which acquired samples via
negative pressure produced by the Venturi effect [75]. In
the case of high-throughput analyses, samples were loaded
in a micro-well plate, and results were obtained within
seconds. This set-up has less precise sampling than some
other probes which can target specific individual cells, for
example. However the high throughput (one sample per
minute) is a major advantage over other approaches, and
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6 WEVERS et al.

F IGURE 2 Schematic of remote sampling electrospray
ionization (RS–ESI) source used by Yoshimura et al. In the ESI
emitter, the Venturi effect is used to generate a local reduced
pressure needed for ionization. Source: Reproduced with permission
from Yoshimura et al. [73].

F IGURE 3 Schematic of the T-probe, incorporating online cell
lysis. The flow of ionization solvent causes negative pressure,
causing the cellular contents to be sucked in. Source: Adapted from
Zhu et al. [12].

the motorized well plate for automated sampling further
reduces the need for operator input.
Liu et al. [12] developed the T-probe, which operates on

a similar principle to the single-probe. The major differ-
ence is that the T-probe does not eject ionization solvent
into the cell, but rather samples the entire cell into a con-
tinuous flow of ionization solvent (50/50 water/methanol
with 0.1% formic acid). This solvent flow provides enough
suction to aspirate live cells through a glass capillary and
into DI–MS. The schematic of the T-probe is shown in
Figure 3. Using the T-probe, in situ real-time studies of cel-
lular metabolomics are possible. Furthermore, in contrast
to the single-probe, the capillary diameter can be decreased
to sub-1 µm, thereby enabling the analysis of subcellu-
lar volumes. The T-probe can be re-used for multiple
cells, which facilitates high-throughput analysis. However,
there is an added risk of unwanted carryover between
samples, as cells can adhere to the glass sampling capil-

lary, if not treated with surface coating [76]. The T-probe
demonstrated limits of detection similar to the single-
probe; however, additional separation of analytes using CE
or IMS is needed formore accurate identification. Zhu et al.
[77] redesigned the T-probe, incorporating online cell lysis
with acetonitrile as the sampling flow. This enabled a dis-
tinction between cancer cells that had and that had not
undergone irinotecan treatment. One potential drawback
of the T-probe approach is that there is no precise control
over the sampling volume. This is a challenge for quanti-
tation, as the dilution factor during lysis is not necessarily
consistent.
Another challenge in single-cell analyses is that some

metabolites are difficult to ionize in ESI due to their
hydrophobicity. Cao et al. [78] developed a workflow with
on-probe derivatization that enabled the analysis of fatty
alcohols and sterol metabolites and showed that these can
be used to differentiate among different cell types. In their
work, the cell contents were sucked out and injected into
the derivatization solution. Subsequently, alcohol groups
were quaternized using excess SOCl2 and pyridine. After
derivatization, the reaction mixture was subjected to MS
analysis. To perform ionization of this apolar mixture, a
variant of nano-carbon fibre ionization [79] was used. The
nano-fibres this probe consists of can be used to apply the
analytes to, they can be coupled with LC, GC and super-
critical fluid chromatography (SFC), or they can be placed
against the sample. Subsequently, a high voltage is used
to ionize the analytes, after which they are transferred
to the MS instrument. Selective detection of derivatized
compounds is easily done in selected reaction monitor-
ing (SRM), making use of pyridine as an easily detachable
group. Using this method, MS detection of fatty alcohols
and sterols was strongly enhanced.
A complicating factorwhen dealingwith ionization sup-

pression is that analyte concentrations may vary among
different parts of the cell, so variations in measured ana-
lyte concentrations are not necessarily a consequence of
ionization suppression. This can be compensated for by
using an isotopically labelled internal standard. One needs
to make sure, however, that this internal standard is not
present in excessively high concentrations, as this might
also lead to ionization suppression [80]. Working with
internal standards in live single cells, however, presents a
challenge in itself: When using an extraction solvent, the
internal standard can be a constituent thereof, but when
the sample is not extracted beforeMS analysis, the internal
standard would have to be added to the cell itself.
The individual steps of metabolite extraction for single-

cell MS can be executed in a wide variety of ways. Whether
extracting from cells in tissues or cells in suspension, the
cell’s metabolism needs to be halted to avoid interference
from subsequent analysis steps. Cold aqueous methanol
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WEVERS et al. 7

solutions yield high quenching efficiencies. Cells in sus-
pension can easily be extracted usingmicro-droplet extrac-
tion and micro-sampling using, for example a T-probe can
be applied to both cells in suspension and tissues. An addi-
tional advantage of micro-sampling is that less stress is
inflicted on the cells. The use of multiple extraction sol-
vents or a hybrid ionization source gives a wider coverage
of the metabolome. The analysis of non-polar analytes
in ESI–MS is challenging; this can be overcome using
derivatization.

2.2 Spatially resolved MS ionization
methods

Instead of extracting the metabolites from the cell, their
spatial distribution over the cell can be measured as well.
Spatially resolved MS enables imaging of tissues at the
cellular level, providing the chemical information cor-
responding to the individual pixels; this may also be
useful in the identification of biomarkers. Advances in
spatially resolved MS analysis in single-cell metabolomics
have recently been reviewed by Taylor et al. [81] and
Hansen [82]. Subcellular resolutions have been achieved
in spatially resolved MS of single-cell metabolomes [83].
MALDI–MS requires the sample to be embedded and fix-
ated in a matrix, which is a clear limitation. Furthermore,
the spatial resolution that can be obtained is limited by
the laser spot size. The use of MALDI–MS for single-cell
metabolomics was recently reviewed by Krismer et al. [84].
SIMS makes use of an ion beam for ionization and has a

higher resolution than MALDI, but its ionization is quite
hard [81]. Therefore, SIMS is suitable for the detection
of, for example, trace elements, but it is limited in the
ionization of biomolecules. Therefore, when metabolism
is studied, cells are generally grown on 13C- or 15N-rich
media, after which single cells are probed and small frag-
ments containing these heavy isotopes are annotated with
metabolites [85]. This limits the use of SIMS for, for exam-
ple cancer cell characterization or analysis of other tissue
samples. Furthermore, the applicability of SIMS is lim-
ited due to the need for fixation and vacuum. Nonetheless,
SIMS-TOFhas been used successfully for the identification
and HR imaging of α-tocopherol [86]. Furthermore, SIMS
has been coupled to TOF and Orbitrap mass analysers for
the identification and HR and high-speed localization of
phospholipids and other metabolites in mouse brains [83].
The high speed and high spatial resolution of TOF-SIMS
and the high mass resolution, the high mass accuracy and
the possibility to acquire MS/MS spectra of the Orbitrap
combined can be a great tool in biomarker identification.
Subcellular resolutions could be reached for the distribu-
tion of various metabolites. In vivo analysis may not be

feasible, but this techniquemight provide valuable insights
into cancer metabolomics, as it allows for subcellular
analysis and analysis of distributions within organelles
[87].
Spatial resolution can also be obtained using laser abla-

tion ionization. Lu et al. [88] combined the derivatization
approach of Cao et al. [78] with laser ablation ionization
to profile the mono- and diglyceride contents of ovarian
cancer cells. The laser also ensured fast derivatization. In
this way, they managed to distinguish between cancerous
and para-cancerous tissues, which might give insight into
cancer metabolism.

2.3 Sample enrichment

After metabolite extraction, sample enrichment can be
used to enhance MS sensitivity by removing interferents
and increasing analyte concentrations. As mentioned in
Section 1, DI–MS suffers from a reduced sensitivity due
to ionization suppression, as all analytes enter the ioniza-
tion chamber simultaneously. This can be reduced by, for
example applying a CE, GC or LC separation first, but this
generally leads to longer analysis times. Therefore, other
methods are also used to provide the analytical workflow
with additional orthogonality, for example enriching the
analytes after ionization using IMS or by detection of only
a selection of the ions generated. Thiswill also be discussed
in this section.

2.3.1 Direct-infusion MS

In DI–MS, the sample is injected into the MS instru-
ment without any prior enrichment and with minimum
sample preparation, as is for instance done in liveMS (Sec-
tion 1). The work by Fukano et al. [89] compares the use of
LC–MS of bulk samples of hepatocytes with DI–MS of sin-
gle hepatocytes. Single cells are selected using an optical
microscope, ionization solvent is added, and the cellular
contents are sucked out and subjected to nano-ESI–MS,
proving single-cell heterogeneity. A similar approach is
taken in the work by Mizuno et al. [90] to distinguish
between cells from different cell lines based on the con-
tents of cytoplasm and different organelles. In both cases,
cells were sampled from suspendedmedia. In this method,
the throughput is limited by the need for manual selection
of the cells. Furthermore, it is disadvantageous that this
analysis is not done in vivo; it should, however, be possible
to execute this analysis on live cells.
DI–MS has also been made compatible with derivatiza-

tion steps to increase metabolome coverage. In the work
by Li et al. [91], the cell lipidome is used to identify four
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8 WEVERS et al.

different subtypes of breast cancer and to identify cells
that are sensitive and insensitive to gefitinib treatment.
Cells are fixated in glutaraldehyde to prevent cell lysis,
and the fatty acids are derivatized using the Paternò–Büchi
reaction to localize carbon double-bond positions. The cell
suspension was subjected to a capillary to which a voltage
was applied: Cells were separated using electromigration,
and at the tip of the capillary electroporation was applied
to release the cell’s metabolites, which were directly led to
a nano-ESI source [66]. MS/MS spectra were acquired to
determine the position of the double bonds. The fixation
step used here most likely will affect the metabolism of the
cells. Next to that, the derivatization step and the manual
selection of the cells complicate high throughput.
Wide coverage of the metabolome facilitates the identi-

fication of biomarkers and their interactions. Hiyama et al.
[28] studied the metabolome and lipidome of CTCs and
white blood cells. Cells were sucked up using a capillary,
after which an ionization solvent was added via the rear
end of the tip. Sonication was used for homogenization,
enabling the simultaneous detection of metabolites and
lipids. Subsequently, the contents of the tip were injected
into theMS instrument. A comparison of samples that had
and that had not been sonicated showed that sonication
led to a vast increase in the number of metabolites and
lipids identified, as well as in the peak intensities mea-
sured. Throughput in this analysis is reduced by the need
for sonication.
Instead of sonication, one can use a hybrid ionization

source to widen the metabolomic coverage, as is described
in the work by Liu et al. [92] In this work, nano-ESI
was combined with dielectric barrier discharge ionization
(DBDI) [93] for the simultaneous analysis of polar and
apolar metabolites, respectively. Cellular contents were
extracted using a microcapillary, after which nano-ESI
was used for the ionization of more polar analytes. Sub-
sequently, DBDI was used as a post-ionization source for
the ionization of apolar and mainly apolar analytes. This
method has been applied successfully both to animal and
plant cells and led to a strong increase in the number and
variation of metabolites identified [94].
In conclusion, DI–MS has been used for a wide vari-

ety of applications, an important advantage being that it
allows for real-time analysis as exemplified by live MS.
Themetabolomic coverage can be increased bymaking use
of a hybrid ionization source, so apolar analytes are more
readily ionized, or by the derivatization of apolar analytes.

2.3.2 Gas and liquid chromatography

A downside of DI–MS is that all analytes enter the ioniza-
tion chamber simultaneously, which can lead to ionization

suppression. Furthermore, the risk of injectingmatrix con-
stituents is high, which complicates metabolite analysis.
Due to their high separation and identification power,
LC–MS and comprehensive GC–MS (GC × GC–MS) are
suitable techniques for untargeted analyses and analyte
enrichment. Another advantage of the inclusion of a chro-
matographic separation is that ionization suppression can
be reduced by sample dilution. Furthermore, it has been
argued that the extraction of the sample can also reduce
the extent of ionization suppression, as this reducesmatrix
effects in general and reduces the amount of salt in the
sample [57].
Applying an enrichment step before MS analysis pre-

concentrates the analytes and separates them from inter-
ferents, thereby facilitatingMS analysis. However,metabo-
lites are generally too polar to be analysed with GC, which
poses the need for derivatization. In the work by Koek
et al. [95], GC–MS is used for the analysis of microlitre and
nanolitre samples of different biological fluids. To this end,
analytes were silylated [96] before injection onto the GC
column. This method enabled the analysis of the intracel-
lular contents of a single oocyte. However, oocytes have a
much larger volume than most other human cells, which
limits the applicability for, for example tumour cells.
In the work by Fairweather et al. [97], GC–MS and

LC–MS were used for the metabolomic profiling of frog
oocytes. In both cases, the sample was extracted first using
a mixture of water, methanol and chloroform, after which
samples were lysed and centrifuged. Using GC–MS after
derivatization and LC–MS, the authors managed to get
more insight into the biochemical pathways underlying
and transporters involved in amino acid homeostasis and
signalling. However, due to the need for a centrifugation
step as well as a derivatization step, together with the need
for chromatographic separation, high-throughput analysis
using this method is complicated. Furthermore, these cells
are large compared to human cells.
In most cases, one needs to resort to LC–MS or HILIC–

MS-based methods, as these can handle the high metabo-
lite polarity without derivatization reactions [98–100].
These have, however, less resolving power than GC. A
large body of LC–MS-based metabolomics studies is avail-
able, but these are generally based on bulk samples [14].
On the other hand, in single-cell proteomics, LC–MS(/MS)
is used extensively [101, 102]. Using dedicated platforms
incorporating ultrasensitive LC–MS, thousands of pro-
teins can be identified in small populations of single
cells [103]. Next to that, important advances have been
made through implementation of trapped IMS (TIMS)
[104] and data-independent acquisition of MS spectra [41,
105]. However, LC–MS is used much less for the analy-
sis of the metabolomes of single mammalian cells. In the
work by Vasiljevic et al. [106], LC hyphenated to HR MS
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WEVERS et al. 9

(LC–HRMS) was used for the analysis of whole blood sam-
ples and single caviar eggs. In the case of the single caviar
eggs, single cells were analysed, but these cells have a
diameter in the order of millimetres. Consequently, a tip
was used for metabolite extraction that would be too large
for the analysis of single human (tumour) cells. HILIC has
the advantage that it allows the separation of more polar
analytes than LCdoes, but it generally suffers frombroader
peaks. Boelaert et al. [107] used HILIC-TOF-MS to identify
biomarkers for chronic kidney disease in blood plasma and
urine. Also here, serum samples were analysed instead of
single cells.
To summarize, LC–MS and (GC×)GC–MS do not seem

suitable for single-cell metabolomics due to their compa-
rably low sensitivity: When single cells are analysed, these
are generally much larger than human cells so they meet
the volume requirements posed by LC and GC. Further-
more, the use of (comprehensive) GC is limited by the need
for derivatization to study polar analytes.

2.3.3 Capillary electrophoresis

In contrast to LC and GC, CE has received much atten-
tion due to its high sensitivity and facile operation with
polar analytes. The possibilities of CE–MS for the omics
fields have recently been reviewed by DeLaney et al. [108]
and Ramautar and Zhang [22]. In the work by Onjiko
et al. [109] CE–MS was used to differentiate between
dorsal and ventral embryonic frog cells based on their
metabolome. Capillaries were used for cell content isola-
tion, after which the sample was extracted in a separate
vial. CE–MS was applied to the sample extracts to deter-
mine themetabolomes of the different samples. This led to
the identification of 52metabolites as potential biomarkers
for different cell types. Furthermore, ca. 200 features were
identified that may be targeted in future studies in embry-
onicmetabolomics. This shows that CE–MS can be applied
in situ but the need for an extraction step prevents it from
being real time.
Adjustment of the ionization source can enhance CE–

MS sensitivity even further. Huang et al. [110] developed a
customized CE capillary – called the spray capillary – that
can be used to suck out the cell’s contents and directly be
used for CE–MS analysis, enabling online single-cell CE–
MS. For cell picking, amicroscope and amicromanipulator
were used.A capillarywas used to extract cellular contents,
after which it was moved to a vial with background elec-
trolyte when CE–MS was done, or to a vial with column
liquid in case DI–MS was done. Not surprisingly, more
metabolites were identified when CE–MS was used, but
some metabolites were only identified using DI–MS, and
DI–MS analysis times were considerably shorter. The set-

up, however, needs to be operated manually, which limits
the throughput.
In the work by Kawai et al. [111], a CE–MS platform is

described that can detect amino acids andmetaboliteswith
a limit of detection (LOD) of 450 fM. To this end, electroki-
netic pre-concentrations (stacking) in conjunction with an
in-house developed nano-CESI source (which is based on
a sheathless porous tip interface) were used, resulting in
dramatic improvement in detection limits as compared to
the use of hydrodynamic sample injection only [112]. As a
consequence of stacking, larger volumes could be injected
without compromising separation efficiency. Single HeLa
cells were analysed: Lysis was done separately inmethanol
in an Eppendorf tube, as in-capillary lysis decreased the
throughput and liquid mixing is hindered by laminar flow
in microfluidics. Nevertheless, the dilution this lysis step
leads to is compensated for by stacking. When applying
stacking, one needs to consider that there may be analytes
present that hinder the stacking process; this may require
(more) sample preparation to remove these, and this in
turn reduces the throughput.
A complicating factor in single-cell analyses is that cells

are generally emptied completely, making repetitive anal-
yses impossible. Lombard-Banek et al. [113] analysed in
vivo the proteome–metabolomes of tadpole embryos. Two
samples, one for each omics analysis, were taken, and due
to the small volumes taken (approximately 10 nL), the
survival rate was almost 100%. For metabolomic analysis,
ultrasensitive CE–HR MS platforms were used [114]. This
showed that approximately 0.01% of the cell’s volume suf-
ficed for the detection of ca. 150 features, of which 57 could
be identified with a high degree of certainty. Increasing the
throughput is, however, complicated, as the cell manipula-
tion is done manually. Furthermore, approximately 5 nL
of cell volume was used for chemical analysis, which is
large in comparison with human cells. However, only a
fraction of this in the order of tens of picolitres was used
for metabolomics MS analysis.
Micro-sampling has also been applied successfully in

combination with CE–MS. The work by Onjiko et al.
[115] showcases capillary micro-sampling, microextraction
and CE–MS for fast analysis of frog embryos. Cell con-
tents were sucked out, extracted in a separate microvial,
vortexed and centrifuged before CE–MS analysis. Interest-
ingly, this method led to less noise as there were fewer
matrix interferents present. Furthermore, judging from
the ratio between oxidized and non-oxidized compounds,
the authors concluded that this micro-scale approach
also exposed the cells to less stress. It was shown that
microprobe CE–MS has a higher sensitivity and better
reproducibility than regular CE–MS, microprobe CE–MS
can be used in situ and in vivo, and as microprobe CE–
MS also allows for repeated analysis of the same cell, cells
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10 WEVERS et al.

F IGURE 4 Various ion mobility spectrometry (IMS) techniques. (A) Drift time ion mobility spectrometry (DTIMS) makes use of friction
between travelling ions (red rods, blue pentagons) and static gas (black dots). (B) Travelling-wave ion mobility spectrometry (TWIMS) makes
use of an oscillating electric field, which leads to focusing of ions. (C) Trapped ion mobility spectrometry (TIMS) makes use of an electric field
opposing the gas flow, allowing for trapping and ejection of ions. Source: Reproduced with permission from Luo et al. [117].

can be analysed multiple times, thereby allowing for the
distinction of biological variability. However, the extrac-
tion and vortexing steps decrease the throughput of this
analysis.
In general, one looks at positively or negatively charged

(or chargeable) compounds in CE–MS. In the work by
Portero and Nemes [116], a CE–MS workflow is presented
that allows for the sequential analysis of anionic and
cationic compounds, using the same cell extract. To ensure
stability in negative ESI mode, the background electrolyte
was exchanged. Analysis in both positive and negative
mode led to a strong increase in the number of metabolites
identified and wider coverage of the cells’ metabolome.
In summary, CE seems a useful addition to theworkflow

of single-cell MS analysis: It can handle minute volumes
and is compatible with ESI–MS as well as other ion-
ization sources. Furthermore, stacking can be employed
to increase sensitivity even further. In comparison with
DI–MS, however, analyses take longer but more metabo-
lites are identified, so a trade-off is made there. The next
step would be to develop a more generic CE–MS-based
workflow for single-cell metabolomics and for that an

interlaboratory study is needed to assess the reproducibil-
ity.With a positive outcome,CE–MS could potentially have
a major impact in studies dealing with low amounts of
mammalian cells. The developments reported so far are
encouraging.

2.3.4 Ion mobility spectrometry

Although CE separates analytes before they are ionized,
IMS separates them after ionization. IMS is a suitable
extension of the analytical workflow as it can separate
isobaric compounds with different collision cross sections
(CCSs) within milliseconds. The CCS of an ion is depen-
dent on its shape, which determines the drag it experiences
from the neutral buffer gas it is driven through. Espe-
cially in untargeted analysis, IMS can be of use, as it can
distinguish between structural isomers. Applications and
advances of IMS have recently been reviewed by Luo et al.
[117]. An overview of some different IMS techniques is
given in Figure 4, a review of these and more techniques
can be found in the work by Dodds and Baker [118].
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WEVERS et al. 11

F IGURE 5 Workflow used in the laser ablation electrospray ionization (LAESI) microscope used by Taylor et al. This enables the
combination of microscopy with LAESI ionization. Ion mobility spectrometry (IMS) is used to gain additional orthogonality. Source:
Reproduced with permission from Taylor et al. [120].

Zhang et al. [119] used CE–IMS–MS for the analysis of
single plant cells. Single cells of Arabidopsis thalianawere
selected manually with the help of a micromanipulator,
after which the cell’s contents were sucked out using a
capillary. The capillary was then backfilled with ioniza-
tion solvent, after which MS and MS/MS analysis were
executed. Analyses were executed with and without IMS,
which showed that the inclusion of IMS led to a strong
increase in the number of metabolites identified andwider
coverage of the metabolome. A complicating factor in the
analysis of IMS–MS data is that there are – to the best of
our knowledge – hardly any tools available that can per-
form all individual steps of the corresponding data analysis
workflow.
In the work by Taylor et al. [120], laser ablation electro-

spray ionization (LAESI) was used together with drift time
IMS (DTIMS) for metabolomic analysis of single onion
cells. Image recognition software was used to detect cells,
allowing for higher throughput. Furthermore, it allows for
in situ and spatially resolved analysis, by directing the laser
or by using a laser fibre (f-LAESI) [121]. Opticalmicroscopy
was combined with LAESI to acquire MS information
on manually selected cells, leading to the ‘LAESI micro-
scope’ depicted in Figure 5. Next to that, a comparison
was made between metabolites identified from single cells
andmetabolites identified from bulk extracts. This showed
that single-cell analysis led to the identification of more

metabolites, although some compounds were only identi-
fied in bulk extracts. In later work of this group [122], the
LAESI microscope was used in combination with an Orbi-
trap mass analyser to obtain higher mass resolutions. Next
to that, a smaller LAESI beam width was used, leading to
a higher spatial resolution. Furthermore, they showed that
single cells can be analysed in situ and in high throughput.
The work by Mast et al. [123] shows the combina-

tion of CE–MS with TIMS for the targeted separation of
stereoisomers of peptides in neural cells. Furthermore,
IMS mobility profiles were used to relatively quantify the
presence of the different stereoisomers. TIMS works espe-
cially well in targeted searches for ions of which the CCS
is known, but for untargeted searches, travelling-wave IMS
(TWIMS) and DTIMS are more suitable. All in all, IMS
seems a very useful addition to the targeted or untargeted
MS analysis of single cells, as it provides additional orthog-
onality that can potentially resolve isomers, and it does so
at the millisecond timescale.

2.3.5 Ion selection techniques in MS

As mentioned earlier, introducing all ions simultaneously
into the MS instrument may lead to ionization suppres-
sion. This can be reduced using, for example CE or IMS.
To reduce the number of ions entering the mass analyser,
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12 WEVERS et al.

ions can also be filtered out based on their mass or frag-
mentation products. In the work by Nemes et al. [53], SIM
was applied in CE–MS. This allows for the sensitivity to
be improved without a chemical bias. The authors were
able to distinguish among several types of neurons and to
quantitatively compare metabolite levels between cells.
Abouleila et al. [124] combined live MS with a microflu-

idics platform to do untargeted analysis on CTCs obtained
from the blood of colorectal and gastric cancer patients.
Increasing the dynamic range and reducing the amount of
noise SIM were used. This allowed for the identification
of more metabolites. A clear distinction was shown among
blanks, gastric cancer CTCs and colorectal cancer CTCs,
providing ameans to find cancer type-specific biomarkers.
Besides SIM, one can resort to multiple reaction monitor-
ing (MRM). This has been applied successfully in the field
of plant sciences [125], but it is only suitable for targeted
analyses, whereas SIM also allows for untargeted analyses.
A disadvantage of the methods discussed in this section is
that they still may suffer from ionization suppression, due
to the large variation in concentrations present.
Sample enrichment has been used successfully to

increase the identification rate in single-cell MS. Nonethe-
less, successes have been booked with DI–MS in the form
of live MS, the main advantage being that it provides real-
time results. A suitable enrichment technique is CE; this
leads to less ionization suppression and the identification
of more metabolites than DI–MS. CE capillaries have been
used for the extraction ofmetabolites from single cells. Fur-
thermore, CE–MS has an outstanding sensitivity, which
can be improved even further by analyte stacking. Due to
the high sensitivity of CE–MS, only a small part of the cell
volume is needed, allowing for cells to stay alive so they can
be followed over time. IMS can be incorporated to obtain
additional orthogonality, especially because it can resolve
isomers that differ in shape. Ion selection techniques such
as SIM can also be used to reduce ionization suppression
and increase MS sensitivity.

2.4 High-throughput analysis

High-throughput analysis is crucial for large-scale
research like population studies, where thousands of
samples or more must be analysed. This is particularly
challenging in single-cell metabolomics, where there is
a high skill threshold and a large amount of hands-on
time by the researcher for each sample. The ideal high-
throughput single-cell workflow would be comprised
automated single-cell sampling, fast sample preparation,
prevention of unnecessary sample dilution, efficient
metabolome quenching and direct coupling to MS. In
the previous section, a diversity of steps in the single-cell

analysis workflow have been discussed, some of which
can also be applied in high-throughput analysis. Halting
the cell metabolism is best done using cold methanol, but
the compatibility of this with high-throughput analyses
depends on the temperature used. Micro-sampling probes
have been used for high-throughput analyses, such as
the RS–ESI probe with the Venturi suction for rapid
sampling. This method, along with most high-throughput
approaches, is not compatible with live single-cell sam-
pling from their native environment. Cell picking is
generally performed manually with a microscope and/or
using a video camera, which limits the throughput, even
though MS spectra can be acquired at high rates. The
cell lysis step is more compatible with high throughput:
High-throughput cell lysis has been shown using for
instance electroporation, which requires only seconds.
The requirement of high-throughput favours the use of

DI–MS. GC and LC have generally been applied to bulk
samples instead of single cells or cells that are much larger
than human cells. On top of that, GC-based analyses gen-
erally require the derivatization of the analytes. CE–MS
has been used extensively for the analysis of single cells,
and extremely low LODs have been achieved. However,
an extraction step may be needed, which is difficult to
do online. Furthermore, separation in general decreases
the throughput. Additional orthogonality and sensitivity
can be provided using IMS or ion selection techniques.
Application of IMS can provide additional orthogonality at
the timescale of milliseconds. This allows for an increase
in sensitivity without the need for targeted analyses. In
case a targeted analysis is done, one may also resort to
MRM or neutral loss scanning. In this section, advances
in high-throughput single-cell metabolomics analysis are
discussed.

2.4.1 Automation of single-cell isolation and
sample preparation

Single-cell metabolomics critically relies on the analysis
of large numbers of cells: In this way, noise and biologi-
cal variation can be distinguished from one another, and
data analysis and biomarker identification become feasible
and meaningful. This requires analyses to be done in high
throughput. An advantage of using microfluidics for this
purpose is that it can be used to simulate the cell’smicroen-
vironment in vitro, thereby reducing the gap with in vivo
studies, and that the required equipment can be produced
easily [126, 127]. Recently, applications of microfluidics for
isolation and sorting of single cells have been reviewed by
Luo et al. [128]. Microfluidics has been applied for a vari-
ety of steps that constitute single-cell analysis, such as cell
sorting, isolation and lysis. Furthermore, Feng et al. [30]
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WEVERS et al. 13

recently reviewed opportunities and challenges in hyphen-
atingmicrofluidic devices toMS instruments for single-cell
metabolomics studies. PDMS, a widely used material for
the production of microfluidic chips, is compatible with
methanol, even though methanol leads to minor swelling
[129]. Microchips are also produced using glass, but this
is more labour-intensive and glass can exhibit undesirable
surface properties leading to cell adhesion and carryover.
Other materials such as cyclic olefin copolymer, PMMA
and fluoropolymers have also been employed for bio-
logical micro-devices, depending on the application and
desired surface chemistry. Due to laminar flow within
microchips, proper mixing of quenching solvent, internal
standards and the sample is crucial. There are many differ-
ent approaches to microfluidics mixing, described well in
a review by Lee et al. [130].
A conventional way of using microfluidics for the iso-

lation and transport of single cells is by encapsulating
them in microdroplets. In the work by Zhang et al. [131],
a microfluidics platform is described that allows for the
transport of cells, removal of matrix interferents, de-
emulsification and coupling with an MS instrument. Cells
were extracted online using methanol, after which the
extract was subjected to ESI–MS analysis. Differences in
lipid profiles were detected between cells that had and that
had not been treated with a drug, which also outlined the
heterogeneity in the cells’ drug responses. This analysis
was, however, only applied for the analysis of lipids, not for
other metabolites. Furthermore, the use of apolar solvents
for encapsulation may interfere with MS analysis.
Various ways have been published to avoid the use of

apolar encapsulation solvents. In the work by Huang et al.
[132], a microfluidic device with a spiral-shaped channel is
used to generate a uniform distribution of the cells along
the channel. It makes use of Dean flow, generated due to
the spiral-like channel shape: Dean flow leads to differ-
ences in flow velocities, with equidistant maxima to which
the individual cells are attracted; this is also shown in
Figure 6. Subsequently, ESI–MS was used for lipid profil-
ing of single tumour cells; cell lysis was induced by the
high ESI voltage. This showed that cells can be classified
into subpopulations based on their lipidome. Advantages
of this approach are that it allows for easy hyphenation to,
for exampleMS and that it does not require encapsulation.
However, due to ionization suppression, the identification
ofmetabolites proved to be difficult. Furthermore, the cells
cannot be analysed in their native environment. Xu et al.
[133] made use of Dean flow for the high-throughput anal-
ysis of cell surface proteins and metabolites. Membrane
proteins were tagged to increase specificity and sensitiv-
ity, after which the cells were separated and analysed
using nano-ESI–MS at a rate of approximately 40 cells
per minute. Six surface proteins and approximately 100

F IGURE 6 Principle of Dean flow: Due to the converging,
spiral-like shape of the channel, equidistant maxima in the flow
velocity are formed, leading to a uniform distribution of suspended
cells. Source: Reproduced with permission from Huang et al. [132].

metabolites were shown to be important in the differen-
tiation of different breast and ovarian cancer subtypes, as
well as in predicting drug resistance.
As an alternative to Dean flow, microfluidic chip chan-

nels with a serpentine shape can be used for the high-
throughput isolation of single cells, as shown by the work
byFeng et al. [134]. Ahigh-throughputmethod is described
for ESI-HRMS metabolome analysis of single cells in sus-
pension. A pulsed square wave electric field was used for
the online disruption of the cells and ionization of its con-
stituents. This allowed for the analysis of up to 80 cells
per minute and the annotation of more than 120 different
metabolites in cancer cells, enabling their distinction.
Yao et al. [135] coupled flow cytometry to ESI–MS

(CyESI–MS) for highly automated and comprehensive MS
analysis of single cells. Cells were isolated, extracted and
lysed online, and subsequently, their composition was
analysed in real time. In this way, the authors managed to
identify a wide range of metabolites, which also resulted
in the successful classification of different subtypes of
breast cancer. Furthermore, potential biomarkers for the
different subtypes could be identified using different data
analysis techniques. A downside of this method is that in
the cytometer, shear stress is applied to the cells, which
may affect the metabolism and hence cloud the results.
Furthermore, there is little possibility for the acquisi-
tion of MS/MS spectra, which may be disadvantageous in
metabolite identification.
An alternative method for the isolation of single cells

from a suspension has been proposed by Cahill et al. [136].
In their work, small piezoelectrically ejected droplets and
liquid vortex capturing (LVC) are used for high-throughput
isolation; this principle is also shown in Figure 7. Video
cameras are used to ensure a droplet only contains one
cell, and after LVC, the cell is ruptured and extracted using,
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F IGURE 7 Liquid vortex capturing used in the work by Cahill
et al. Piezoelectric elements are used to generate droplets containing
a single cell, which is confirmed using a video camera. Source:
Reproduced with permission from Cahill et al. [136].

for example methanol. This allows the cell to stay in its
native environment until lysis. Throughputs up to 2.5 cells
per minute can be reached, sequential window acquisition
of all theoretical-MS spectra can be acquired for the dis-
tinction of more complex samples, and chemical analysis
is done in real time. A limitation of this method is that
it requires the sample to be in suspension and that this
suspension must have a viscosity close to that of water.
Besides the separation of cells in suspension, in situ

image recognition is a viable tool for the identification of
single cells in suspension as well as in tissues. This has
been described by Brasko et al. [137]. In their work, image
analysis algorithms, ML and microscopy are combined
into a platform that automatically isolates and extracts sin-
gle cells from a suspension or a tissue, without disturbing
the cell’s environment. However, the extract is not used for
MS analysis but for RNA sequencing. Furthermore, slices
of tissue instead of real-time in situ analyseswere executed,
which might have affected the cell’s metabolome.
Lamanna et al. [138] have published a combination of

microfluidics, image recognition and MS for proteome
analysis of single cells. Cells are stored with 100–300 cells
in micro-wells after which a convolutional neural net-
work (CNN) is used for the identification of single cells.
Cell identification can be adjusted to the user’s needs
and wishes or be fully automated using artificial intelli-
gence. Cells are lysed using laser irradiation, leading to
the formation of a plasma bubble, that is taken up by a
collection droplet. In this work, only genome and tran-
scriptome analysis of the cells were done online, whereas
proteome analysis was done offline due to the need for

digestion and derivatization steps. In a later work [139],
this lysis technique was employed in an all-in-one pro-
teomics workflow comprising cell isolation and counting
and sample pre-processing on a microfluidic chip, after
which data-independent acquisition MS (DIA-MS) was
performed. However, this analysis was done at-line, and
only the proteomewas analysed. Nonetheless, there are no
limiting factorsmentioned prohibiting this technique from
being used in single-cell metabolomics.
In the work by Zhao et al. [140], a miniaturized platform

is described that allows for well-controlled and automated
extraction of single cells at a rate of one cell per 3 min.
Using this platform, pico-ESI–MS analyses can be executed
in an automated fashion. For the detection of individual
cells, image recognition is used. Furthermore, this plat-
form can be coupled to different MS instruments and has a
higher sensitivity for single-cell metabolite and phospho-
lipid analysis. The authors argue that this approach can
also be used for the high-throughput analysis of single cells
in metabolomics and lipidomics studies. A downside of
this method is that cells are ruptured offline in a vacuum
oven, but it allows for continuous sample preparation of
thousands of cells.
As mentioned earlier, the analysis of less polar com-

pounds may require derivatization to increase ionization
efficiency. Peng et al. [141] showed how double-helix
micro-channels on microfluidic chips can be used for
online multi-step derivatization of aldehydes. In their
work, the online derivatization of aldehydes and their elec-
trophoretic separation were of interest. The helix-shaped
channels ensured efficient mixing of the reactants, and
reaction and separation were completed within minutes.
However, the emphasis was placed on aldehydes, and a
different detector than MS was used. Therefore, the appli-
cability of this technique for metabolomics is hard to
estimate.
All in all, plenty of ways are available to isolate single

cells, be it from suspensions or tissues. Especiallymicroflu-
idics seems useful, as it allows for efficient isolations but
also the derivatization of analytes when needed [142–144].
Furthermore, it has been coupled with CE–MS and pico-
ESI–MS. For the isolation of single cells from tissues, image
recognition is often used, after which the cell contents can
be extracted using a capillary or a micro-sampling probe.

2.4.2 Reducing the analysis time

For the reduction of analysis time, especially IMS seems
suitable: It provides the analytical workflow with addi-
tional orthogonality, and it separates ions before they enter
the mass analyser, thereby reducing the risk of ionization
suppression. This is shown by the work by Taylor et al.
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[120]. Furthermore, CE–MS and IMS can be combined,
as shown by the work by Mast et al. [123] discussed in
section 2.2.5.
CE–MS has been used for fast separations of samples.

The work by Li et al. [145] shows the combination of
CE–MS and microfluidics, allowing for highly sensitive
single-cell analysis at a rate of approximately one cell
per minute. Cells were lysed using a double-electrode cell
lysis technique monitored by a video camera: Single cells
were lysed using two electrodes over which a voltage was
applied. Even though only dopamine and glutamine were
studied in this work, the authors argue that this approach
is feasible for other organic metabolites as well. In this
work, only targeted analysis of dopamine and glutamine
was done using SRM MS for quantitation. Cells needed
to be suspended manually in several steps, decreasing the
throughput and prohibiting in vivo analysis.
Over the past years, considerable progress was made

in the automation of the different steps (including recog-
nition, isolation, lysis, sampling, derivatization and sep-
aration) of single-cell MS. MS analyses have also been
executed in high throughput, and the distinction of dif-
ferent cell types using the obtained metabolic profiles has
been done successfully. Not all of these novel methods,
however, (i) have been applied in combination and (ii)
have been applied for metabolomics studies. A wide vari-
ety of technologies have been published that are suitable
for high-throughput analysis of single cells, and some have
already been used for that purpose as well. Together, these
cover a large part of the steps that are part of single-cell
isolation, metabolite extraction and sample enrichment.
Separations before MS analysis offer higher identification
rates at the cost of longer analysis time, and additional
orthogonality can also be provided by IMS or MS/MS
analysis. The use of micro-sampling probes seems to min-
imize the effect of ionization suppression as fewer matrix
interferents are present, and they may be combined with
automated micromanipulation platforms so they can be
used for high-throughput analysis.

3 DATA ANALYSIS AND SHARING

The increasing sensitivity of instruments, the number of
separation dimensions and the number of data sets avail-
able together pose a need for data analytical tools that can
handle these vast amounts of data. This brings us to the
realm of statistics, ML and DL. Statistics and ML differ in
that statistics is more aimed at fitting probability models
to data, whereas ML is more aimed at finding patterns in
the investigated data [146]. ML is suitable for data sets con-
taining more variables than observations, which is not the
case for statistical tools such as regression (Section 3.1). An

extensive review of the use of statistics in metabolomics
can be found in the works by Broadhurst and Kell [147]
andAntonelli et al. [148].ML approaches formetabolomics
data have recently been reviewed by Liebal et al. [149].
Next to statistics and ML, DL may also be useful, as it
can outperform ML when extremely large data sets need
to be processed, but this requires large amounts of data
(Section 3.2). To increase the throughput, there may be
an interest in more stand-alone methods for data analy-
sis; these are discussed in Section 3.3. Lastly, as the vast
amounts of data needed for proper statistics can also be
obtained by sharing data between research groups, Sec-
tion 3.4 is devoted to FAIR data guidelines and steps that
need to be taken in this regard.
Besides the algorithm used for sample classification

and feature identification, one must also pay attention
to the careful pre-processing of the data. This includes
for instance missing value imputation, normalization,
transformation and so forth, and these can be used in
different combinations. To optimize this, an R package
called NOREVAhas been developed by Fu et al. [150]. Data
pre-processing will not be considered further here.

3.1 Statistical tools and machine
learning

In contrast to LC–MS data analysis in metabolomics,
there are currently no golden standards for data analysis
in single-cell MS studies [14]. Furthermore, the high-
dimensionality of the data complicates data analysis. In
terms of techniques to handle this high-dimensionality,
one can distinguish between univariate techniques (only
one variable is considered per test) and multivariate tech-
niques (multiple variables are considered). Univariate
techniques include, amongst others, t-tests and Kruskal–
Wallis tests. Examples of multivariate techniques are
dimension-reduction techniques such as PLS-DA and
PCA-DA, and classification techniques such as RF classi-
fication and logistic regression. When applying statistical
tests, onemust ensure that the assumptions underlying the
test in question are met: Shapiro–Wilk tests can be used to
assess the normality of the data, and Levene’s test (in case
of normally distributed data) or Bartlett’s test (in case data
is not normally distributed) can be used to check whether
the variances of the two groups of samples compared are
equal.
When executing large numbers of univariate tests, one

must do multiple-test correction: Comparison of many
metabolites may lead to chance correlations [151]. Straight-
forwardways ofmultiple-test correction are the Bonferroni
correction [152] and the Benjamini–Hochberg correction
[153], but multiple alternatives exist [147]. Another way
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to do multiple-test correction is the use of a so-called q-
value, a user-chosen percentage that describes the share of
false positives considered acceptable. Multiple-test correc-
tionmay lead to differences being considered insignificant,
even though theywere significant before correction (for an
example, see the work by Clinton et al. [154]).
The work by Gilard et al. [155] shows how metabolites

can be identified by looking at the system as a whole,
rather than individual metabolites. Gaussian graphical
models (GGMs) and RF classification were used to find
the most informative variables in predicting the diagnosis
and optimal treatment of glioblastoma. GGMs were used
for preliminary identification of disease-specific metabo-
lites and lipids: Patient-specific metabolic networks were
identified, after which the metabolites that occurred in at
least 50%of the patient-specific networkswere used for fur-
ther analysis. Using these variables, RF models were built
for all different combinations, so the predictivity of these
variables could be determined. In this way, they showed
how a systems-based approach can be used to identify
biomarkers for characterizing glioblastoma. This way of
using RF models, however, necessitates a strict selection
of metabolites of interest, as the number of models to be
evaluated grows almost exponentially with the number of
metabolites considered.
Data analysis in omics studies is generally complicated

by high-dimensionality. Yao et al. [135] made use of a
variety of dimension-reduction techniques to distinguish
among different subtypes of breast cancer. One of these
techniques is t-distributed stochastic neighbour embed-
ding (t-SNE). t-SNE reduces a high-dimensional data set to
a two-dimensional data set. It makes use of a user-defined
‘perplexity’, which can be seen as the estimated number
of neighbours a datapoint has. A limitation of using
t-SNE is that one needs to optimize the perplexity value
which can influence the clustering and that it does not
provide insight into which variables are most predictive
in classification. Therefore, Yao et al. also used linear
discriminant analysis for classification. In this way, they
were able to classify single tumour cells according to
their subtype, as well as identify biomarkers useful in this
classification.
In later work of this group [156], a data processing

workflow is developed to discriminate between different
subtypes of leukemic cells. Supervised classification was
done using a naïve Bayes classifier (NBC) with kernel den-
sity estimation (KDE). An NBC calculates the probability
an observation belongs to a particular class: Probability
coefficients are calculated independently for all variables,
KDE is used to smoothen the probability distributions,
and a threshold function is used for the assignment of
samples to classes. t-SNE and k-nearest neighbour classi-
fications are used to visualize the heterogeneity. Based on

the results, multiple biomarker candidates for leukaemia
subtypes were proposed.
Xie et al. [35] developed a more local RF-based classi-

fication algorithm for the classification of different types
of brain cells. An RF model was fitted to the MS data to
obtain information on the relative importance of the differ-
ent predictors; instead of the – conventionally used – Gini
importance, shapley additive explanation (SHAP) values
[157] were used to identify the most important predictors.
This method considers local and global patterns in the
assignment of importance scores, whereas the Gini impor-
tance is a global metric. As the matrix with SHAP values
has the same shape as the originalmatrix, PCA is applied to
show that different cells can be grouped according to their
subtypes. The most predictive variables can be identified
using the mean absolute SHAP values.
A well-known technique for classification based on

high-dimensional data is PLS-DA. Liu et al. [12] made use
of orthogonal PLS-DA (OPLS-DA) for the classification of
HeLa cells that had been exposed to different anticancer
treatments. The difference between OPLS-DA and PLS-
DA is that the latent variables (LVs) in PLS-DA all explain
variation in the dependent and independent data, whereas
in OPLS-DA, only the first LV is a predictor of class, and
the subsequent LVs explain variation with respect to that
first LV [158]. Hence, the predictive information is concen-
trated in the first LV, which makes the interpretation of
the loadings more straightforward. Furthermore, permu-
tation tests were used in their work to assess the model
quality: Using permutation tests probability distributions
can be determined for performancemetrics (e.g. prediction
accuracy), so their significance can be evaluated [159].
Lombard-Banek et al. [113] made use of hierarchical

clustering analysis (HCA) to study how divisions in tad-
pole embryos are controlled. First, t-tests were applied
to find metabolite intensity differences, after which HCA
was applied to the 40 metabolites that were most dif-
ferentially present. Subsequently, they determined which
metabolites were more abundant in one of two classes
using an intensity heatmap.With this approach, theywere
able to identify metabolites that play a key role in the
control of embryonic cleavage, thereby also getting more
understanding of the biochemical reactions controlling
this process.
In conclusion, a wide variety of data-analytical tech-

niques have been combined to get more insight into
whether there are differences between subtypes of cells,
which metabolites can be used for classification and if
thesemetabolites correlate.When applying statistical tests,
one needs to make sure that the assumptions the test in
question relies on are met, or one should use a test that
does not make these assumptions in the first place. Fur-
thermore, when doing classification, one needs to make
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sure that one is not overfitting the data, for instance using
permutation tests. Lastly, after establishing the statistical
significance of a particular biomarker, its biological rele-
vance needs to be established as well. For this purpose, a
wide variety of pathway analysis tools exists [160].

3.2 Deep learning

Besides statistics and ML, DL is getting more attention as
well in data analysis but also other parts of the workflow.
The termsML and DL are often used interchangeably (and
not entirely incorrectly so) but there is an important differ-
ence: ML requires the user to define features in the data,
whereas DL selects these by itself, therefore making the
results more objective and allowing for higher throughput
[161]. DL has already found its way to the field of pro-
teomics [40, 162–164], is suggested to be a valuable tool
in the integration of omics data [38, 165] and has shown
its merit in MS imaging [166]. Furthermore, the increase
in ML algorithm performance eventually levels off for
increasing data set size, whereas DL algorithm perfor-
mance keeps improving, thereby surpassingML algorithm
performance. DL has been applied for a variety of steps in
the single-cell analysis workflow, some examples of which
are discussed in this section.
Lamanna et al. [138] used a CNN for cell recognition; the

user can define criteria to determine which cells can be
selected, or the process can be done in a fully automated
fashion, allowing for a throughput of approximately five
cells per minute. CNNs repetitively filter the picture and
eventually convert it to an array of numbers, to which a DL
classification network is applied. Even though a high accu-
racy was reached using this CNN, a downside is that they
require the user to define the shape of the network, which
requires some expertise at the user’s end. Furthermore,
this optimization is time-consuming.
Liu et al. [167] developed a software framework called

‘Trace’ that makes use of ML and DL for feature iden-
tification and optimization of extraction of trace-level
signals from CE-HRMS data. Pattern recognition is done
using CNNs, as these do not require pre-defined features.
They show that peak picking can be automated, reducing
the data analysis time from weeks to less than an hour.
Evaluation of the trained model showed that it is robust
to changes in migration times and biological replicates,
and signal intensities were determined with high repro-
ducibility. Comparison with ML models built for the same
data set showed that CNNs for instance outperformed RF
models. Limitations are that even though the DL algo-
rithm can learn to recognize patterns by itself, the user
still needs to roughly define various parameters describing
the network such as the threshold function. Furthermore,

a large amount of data is required to obtain reliable
models.
In the work by Niu et al. [168] a DL algorithm is used

to remove the batch effects from MALDI-MS and CyTOF
data and subsequently classify samples based on disease
diagnosis. Inspection of the results shows that before batch
effect removal (calibration), t-SNE clustering takes mainly
place based on batch number, whereas after calibration,
a clear distinction between samples corresponding to dif-
ferent diagnoses is visible. Furthermore, the classification
accuracy of the proposed DL algorithm is compared with
that of conventional classification algorithms: This showed
that using their newly developed algorithm, higher pre-
diction accuracies for disease diagnosis were obtained.
However, in theirwork, there is nomention of howone can
extract information on which variables are most impor-
tant in prediction; this is relevant as these might provide
insights for biomarker identification or drug development.
The relevance of DL has also been investigated for

the identification of biomarkers. In the work by Papa-
giannopoulou et al. [37], both ML and DL models are
used to predict the identity of pathogenic micro-organisms
based onMALDI-TOF-MS spectra. Optimization of theML
models (logistic regression, RF and k-nearest neighbours)
and DL models (fully convolutional networks, 2-layer
FCN and 3-layer FCN, followed by a concatenation step)
was done using a grid search in Python and using the
PyTorch library in Python, respectively. To train the DL
models properly, the data is augmented to have a large
enough training data set. Similar prediction accuracies
were obtained forML andDLmodels. However, the expec-
tation is raised that, whenmore observations are available,
DLmodels will outperformMLmodels. Furthermore, data
set augmentation may be feasible for the improvement of
image analysis but is complicated for chemical data sets
with samples and their compositions.
In conclusion, the advantages of DL in single-cell

metabolomics mainly lie in the automation of the ana-
lytical workflow, be it by the identification of single cells
or data processing. When it comes to feature identifica-
tion in high-dimensional data sets, currently there may
not be enough data available to make DL outperform ML.
Furthermore, resolving the most important variables in
prediction from a neural network is not straightforward,
complicating biomarker identification.

3.3 Automation of data analysis for
higher throughput

Increasing the throughput of single-cell analyses also
places a larger burden on data analysis, as thismust be able
to handle and make sense of larger amounts of data with
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less user intervention. Optimization of data pre-processing
can be done using the NOREVA R package developed by
Fu et al. [150]. As the code is openly available in this
and many other cases, it can easily be incorporated into
automated data analysisworkflows.However, this requires
the user to have sufficient knowledge of programming
in, for example R or Python. Another advantage of DL
with respect to ML is that DL models require less user
intervention: Only the network needs to be designed, but
the algorithm itself is capable of extracting features to
learn the data. For DL models to outperform ML models,
however, large amounts of data are required, and these
are not always available in the novel field of single-cell
metabolomics. Furthermore, the construction of the net-
work can take some time, and the network design and
parameters need to be optimized as well.

3.4 Data handling and FAIR data

Besides increasing the throughput of single-cell analyses,
sharing data between research groups can vastly increase
the amount of data available so one can draw more sub-
stantiated conclusions. FAIR data is especially important
in multi-omics studies, so one can compare data from
different sample sizes and different measurement tech-
niques [169]. Conversely, Veyel et al. [170] studied protein–
metabolite interactions making use of co-fractionation,
taking advantage of the size difference between proteins
and metabolites; applications of co-fractionation MS to
study protein–metabolite interactions have been reviewed
recently by Schlossarek et al. [171]. Herein, the focus lies
on the combination of multiple (single-cell) metabolomics
studies.
Striving for FAIR data puts constrictions on the data

format used for publishing – that is raw data should be
openly accessible, irrespective of the vendor of the analyt-
ical instrument – but also on the metadata, which should
include the details needed for reproducibility and intelligi-
ble sample annotation. Efforts in this direction have been
made over the last two decades in the field ofmetabolomics
[172, 173]; this includes for instance the establishment of
shared repositories and concomitant reporting standards
[174–176], data formats [177, 178] and data analysis stream-
lining [176]. However, Spicer et al. [179] investigated the
compliance of metabolomics data sets with the guidelines
of the public repository they were in and found that the
extent of compliance varies enormously but is generally
insufficient. Next to FAIR data storage, (partial) method
standardization is required to prevent the scattering of data
matrices available. Interlaboratory metabolomics studies
[180, 181] have shown the importance of using standard-
ized methods and references, but we were not able to find

interlaboratory studies in single-cell metabolomics. There
are still steps to be taken to make single-cell metabolomics
data FAIR, both in terms of storing (meta)data as well as
in terms of analytical workflows.
Another complicating factor inmaking use of FAIR data

is that the data processing pipeline is occasionally reported
inadequately [182], which hampers the comparison of
results from different studies. A wide variety of R packages
is openly available for data processing and analysis, provid-
ing, in combination with experimental data, a platform for
reproducible research [183]. Furthermore, Dekermanjian
et al. [184] published an ML-generated catalogue of soft-
ware tools available for the analysis of metabolomics data.
A long list of open-source software tools is available for i.a.
data formatting, metabolite annotation andmetadata han-
dling in single-cell metabolomics [185]. To benefit to the
fullest extent of FAIR data use, authors need to guide their
readers through their approach to data analysis, as there is
a multitude of data analysis methods available.
As the field of single-cell metabolomics is a relatively

young one, to the best of our knowledge, there are no ded-
icated data set repositories as there are for proteomics and
metabolomics. In 2020, Rozenblatt-Rosen et al. [186] set
out to create the Human Tumor Atlas Network, to provide
a framework for the publication of single-cancer cell data
sets, corresponding to different organs, cell types, condi-
tions and states. A wide variety of data analysis platforms
for the analysis of single-cell genomics data is available,
but the transfer of these platforms to the field of single-
cell metabolomics is complicated by the fact that genomics
relies on sequencing, whereas single-cell metabolomics
typically relies on MS data.

4 CONCLUDING REMARKS

Cellular heterogeneity in metabolism, drug resistance
and understanding disease mechanisms pose the need
for analytical tools that can analyse single cells. As the
metabolome provides the closest view of the status quo
in a cell, this is the most suitable study subject. Due to
its high sensitivity and resolution, MS is most suitable
for single-cell metabolomic analysis. In this work, a vari-
ety of approaches for the different steps in single-cell MS
analysis have been discussed, ranging from single-cell iso-
lation to metabolite extraction to sample enrichment. A
considerate choice of set-up can also reduce the risk of
ionization suppression. Large numbers of cells need to be
analysed to do proper statistics. For the high-throughput
isolation of single cells in suspension, microfluidic chips
employing Dean flow or with serpentine shapes are useful,
whereas DL image recognition can be used for the resolu-
tion of single cells in tissues. Suspended cells can also be
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isolated using LVC: This allows for high throughput, and
the cell stays in its natural environment until it is lysed.
Lysis of single cells in suspension can be done in high
throughput using electroporation or laser irradiation, both
of which have already been incorporated into microfluidic
chips. CyESI–MS enables the online isolation, extraction
and lysis of single cells in suspension, allowing for real-
timeMSanalysis. CE–MSanalyses have also been executed
in high throughput usingmicrofluidic chips, together with
IMS.
A wide variety of strategies have been proposed for

the processing, treatment and analysis of single-cell
metabolomics data, some of which also allow for more
automation of data analysis. However, one needs to care-
fully check the assumptions that underlie the tests used.
Furthermore, one must do multiple-test correction when
multiple univariate tests are used and apply permutation
testing in the case of classification analysis. DL seems
interesting for data processing, image recognition and
data analysis, as it handles vast amounts of data more
efficiently thanML algorithms and requires less user inter-
vention. As large numbers of cells are required to draw
statistically significant conclusions, the field of single-cell
metabolomics can strongly benefit from the use of FAIR
data and adherence to the concomitant guidelines.
All in all, a lot of progress is being made in the analysis

of single cells, reaching higher sensitivities, higher spa-
tial andmass resolutions, higher identification rates, wider
coverages and higher throughputs. Individual steps of the
workflow have virtually all been automated, and tools for
the automation of data processing, treatment and analysis
have also become available. However, these methods have
generally not been integrated. Furthermore, an automa-
tion of biomarker identification will also pose a challenge
for molecular pathway analysis: The number of biomark-
ers to be given a place in metabolic pathways will quickly
increase, so there will also be an increasing demand for the
automation of biological pathway analysis. To make use
of FAIR data to the fullest extent, more standardization of
data processing and experimental methods is needed. On
a more global scale, databases of single-cell metabolomes
are required. Single-cell MS analysis in metabolomics has
already led to the (tentative) identification of a variety of
biomarkers for a multitude of diseases, emphasizing its
value for diagnosis, drug discovery and treatment.
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