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Abstract—Hydrogen as an energy carrier is expected to play
a significant role in the energy systems of the future. Storing
hydrogen at utility scale is a relatively new application for which
technologies are yet to mature. This paper provides a review
of the existing and emerging hydrogen storage technologies.
The technologies are categorized based on the phase of storage
- gas, liquid or solid - and the type of bonds - compound
or free hydrogen. For each category, the storage technologies
are compared based on technological operational parameters,
technology efficiency, safety, and economic projections.

Index Terms—hydrogen, energy carrier, grid balancing service,
hydrogen storage technologies, comparison criteria

I. INTRODUCTION

The decarbonization of energy systems entails a shift
from greenhouse gas emitting fossil-based sources towards
environmentally-friendly renewable energy sources (RES) [1]
[2]. RES energy production, however, is dependent on primary
intermittent energy sources such as wind and solar irradiation.
As a result, large scale integration of RES can lead to a
higher level of uncertainty in planning and operation of energy
systems. One way to handle this problem is to increase
flexibility in the system through energy storage systems.

Energy storage technologies are generally capital intensive.
They are mostly built from materials that are limited such
as lithium, obtained through harmful mining [3]. Therefore,
there is a need for alternative energy carriers to support a
smoother transition considering various challenges associated
with transport, storage and even end-user consumption.

Hydrogen is considered a promising alternative to natural
gas that can replace its application while addressing challenges
associated with transport and storage at utility scale [4]. Hy-
drogen’s potential has already been examined and investigated
in various applications including heavy industries such as
refineries, space applications [5] [4], heavy-duty transport [6]
and chemical industries [7].

However, there are numerous technical, economic and legal
challenges to come over before hydrogen economy becomes
operational [8]. Starting with hydrogen production: only 4%
of the global hydrogen production today is obtained from non-
potable water resources using RES produced electricity - so-
called Green Hydrogen [9] [4]. Shifting to 100% Green Hy-
drogen production requires an unrealistically massive amount
of investment in RES which is deemed infeasible at least in
the foreseeable future, thus a limiting factor [10]. Despite
the availability of RES, the process of large-scale hydrogen
production from non-potable water resources can yield a

significant amount of concentrate, necessitating appropriate
management [11]. In addition, a hydrogen economy would
require a new hydrogen infrastructure, but creating this induces
costs and possibly other unforeseen consequences [12].

Regardless of the method of production, another major
technological challenge is hydrogen storage [13]. That is, an
adequate storage technology that can be employed at utility
scale is yet to be developed. At the production side, hydrogen
storage technologies are needed to store the substantial amount
of hydrogen that is expected to be produced in the future. At
the distribution level, hydrogen storage technology is mostly
expected to provide auxiliary services, especially to the power
system. That is, it can be used to provide grid balancing
services in the short-run [14], and long-term seasonal storage
services (i.e., level out the variation in energy consumption
and production systems) in the long-run [15].

Most of the hydrogen storage technologies proposed in
literature are not yet ready to be deployed in the real-world,
for various reasons. This is mainly due to hydrogen’s explosive
nature [16] and the high investment costs [17].

Hydrogen storage technologies have been widely investi-
gated in literature from purely technological and economic
prospective. However, several other aspects related to storage,
efficiency and safety have not been in the focus of existing lit-
erature. This paper aims to take upon those aspects. Section II
provides an overview of available hydrogen storage technolo-
gies, categorized by form and subsequently phase of storage.
The technologies are then analyzed in Section III, based on
four criteria: operational conditions, storage efficiency, safety
and economic projections. Section IV concludes the paper.

II. OVERVIEW OF TECHNOLOGIES

Hydrogen can be stored in 3 different phases: gas, liquid
or solid. It can be stored either as free state hydrogen or as
a compound containing hydrogen molecules. In light of this
description, six categories of hydrogen storage technologies
are defined: Free Hydrogen Gas (FHG), Free Hydrogen Liquid
(FHL), Free Hydrogen Solid (FHS), Compound Hydrogen Gas
(CHG), Compound Hydrogen Liquid (CHL), and Compound
Hydrogen Solid (CHS). The hydrogen storage technologies are
classified accordingly and discussed in the following.

A. Free State Hydrogen Storage

Hydrogen is in its free state when hydrogen atoms are stored
without modifying the chemical structure, thus remaining H2.
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1) Gas Phase: Hydrogen is a gas at room temperature.
Hydrogen storage in its gaseous state requires compression
due to its extremely low density (0.089 kg/m3) under normal
conditions [18] [19]. The storage pressure is restricted by the
safety regulation and other operational considerations [20].

The utility scale storage systems that are available today do
not exceed 100-200 bar of pressure. Higher pressure increases
the hydrogen density inside the tank to 7,8 kg/m3, and induces
high energy requirements and operation costs. Compressed
hydrogen gas storage can be divided into 2 categories:

• above-ground storage technologies that make use of
metallic vessels [20] or small-scale glass structures. The
latter has been introduced recently and enables storage at
very high pressures up to 1000 bar [21] [22] [23],

• below-ground storage technologies that make use of
existing geological features such as existing salt cavities,
retired oil/gas reservoirs, aquifers, or pipelines [20].

2) Liquid Phase: Liquid hydrogen (or cryogenic hydrogen)
storage is attracting more attention due to the high hydrogen
content, and relatively low risks - corresponding to the low
storage temperature and pressure [24]. The main disadvantage
of cryogenic hydrogen is the high investment and operational
costs - corresponding to the higher energy requirement [19].

The energy requirement for operating liquid storage is more
than 50% higher than of high-pressure gas storage technolo-
gies [19]. This links to the liquefaction of hydrogen, for which
the gas needs to be cooled to approximately 20°K at normal
pressures (1 bar) or higher [25]. The liquefaction process
increases the density of hydrogen to approximately 70 kg/m3
(at 1 bar) [20]. Besides the relatively high energy requirement,
liquefaction entails substantial installation costs due to the
unsuitability of existing infrastructure and availability issues
[26]. Even more importantly, part of the hydrogen is lost to
the environment as boil-off, raising safety issues [22].

Liquid hydrogen can be stored in specially designed cryo-
genic storage vessels, both for terrestrial and marine appli-
cations [22] [26]. These should be suitable for operation
at extremely low temperatures and be able to maintain the
pressure at which the gas is liquefied [27].

3) Solid Phase: Solid state storage of hydrogen occurs
through physisorption. In this case, hydrogen itself is not in
solid form but rather the adsorbent. Hydrogen molecules stick
to the surface of the solid adsorbent. This type of hydrogen
storage is extensively investigated due to its promising prop-
erties such as fast kinetics, good reversibility and high storage
capacity [18]. The main disadvantage of solid state storage lies
in complex operation, and space. Several exogenous factors
such as temperature and pressure should be adjusted optimally
to achieve the desired hydrogen density (i.e., energy density) in
solid-state storage [20].That is, the exothermic reaction needs
appropriate heat management to reach higher adsorption rates,
and additives to make the process more effective. In addition,
even though hydrogen can be stored using adsorbents, the
adsorbents themselves also need to be stored. For example in
a so-called Adsorptive Hydrogen Storage Tank [28]. The extra
space makes it difficult to apply and adjust pressure [29].

Suitable adsorbents are Metal Organic Frameworks (MOFs),
Carbon structures (e.g. Activated Carbon (AC), Graphite (G)
and Carbon Nanofibres (CN)), and Zeolites [30].

B. Compound Hydrogen Storage

Hydrogen can also be stored as a compound, bonding it to
another chemical. It can form gas, liquid or solid compounds.

1) Gas Phase: The most well-known gaseous compounds
in which hydrogen can be stored are ammonia (NH3) and
methane (CH4). Ammonia (NH3) is a specially interesting
alternative due to its relatively high hydrogen storage density
and the broad range of applications [31]. Ammonia can
be used directly [18], in a fuel cell or combustion engine,
or indirectly, by converting it to hydrogen, requiring extra
purification steps [22]. Ammonia advantageously makes CO2-
free energy but can release other GHGs during combustion
[32]. Liquefying ammonia leads to higher volumetric energy
densities, beneficial for transportation and storage purposes
[33]. Storage can occur in tanks at low temperature (-33,4◦C)
or in the existing propane infrastructure [22]. The main draw-
back of ammonia lies in the production process. It is mostly
produced through the Haber-Bosch process, conducted at a
high temperature and pressure, and requiring a specific catalyst
to facilitate the process [34], [35].

Methane (CH4) is the “carbon-based carrier with the high-
est storage capacity” for hydrogen [22]. Production occurs
through the Sabatier reaction [36], requiring pure CO2 as
input. Despite this benefit, the CO2 used in the methanation
process has to be purified before use. Besides, heat recovery
should be applied. These extra steps result in higher costs due
to higher energy and land requirements. In addition, recovering
hydrogen from CH4 is hard and costly. It can be done
through the Steam Methane Reforming (SMR) process, which
produces so-called Grey Hydrogen and CO2 [37], or through
the Catalytic Decomposition of Methane (CDM), a greener yet
not commercially available option. These disadvantages make
methane more viable as another energy carrier rather than as
a medium for storing hydrogen [22].

2) Liquid Phase: Hydrogen can also be stored in com-
pounds that are liquid at ambient temperatures [18]. Most
well-known alternatives in this category are liquid organic
hydrogen carriers (LOHCs) including Methanol and Formic
Acid. LOHCs have a great capacity to store hydrogen, release
little heat during production and are safe and abundant. The
delivery of LOHCs to the end-users is rather simple as they
are compatible with the technical characteristics of the existing
fuel distribution infrastructure [18] [22]. The key disadvantage
of LOHCs lies in high production costs, mainly due to the high
temperatures and pressures, and catalysts needed [18].

Formic Acid (HCOOH) is an advantageous option because
of its relatively high density, resulting in a considerable
volumetric hydrogen storage capacity. It is associated with low
flammability and toxicity, meaning that it is less likely to cause
harm to living organisms and the environment. Compared with
other liquid carriers, formic acid is rather easy to transport and
store [38] . The problem is, it has limited applications, partly
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due to its corrosive nature (requiring costly infrastructure
adjustments), and partly due to the chemically unfavorable
production process. In addition, it has a relatively low energy
density when used directly as a fuel [39].

Methanol (CH3OH) also has a number of advantages:
promising formation reaction rates, and a lower production
cost. It can be used both as a hydrogen carrier (hydrogen
is easily released from methanol) or directly as a fuel [40].
Methanol has a higher energy density as a fuel compared to
Formic Acid, though lower than gasoline [39], [41]. The main
disadvantage of methanol lies in its flammability (it burns with
near-invisible flame) and toxicity [42], [43].

Another liquid hydrogen carrier is Syncrude, a mixture of
long chain hydrocarbons showing similarities to crude oil [22].
Because of this characteristic, the existing infrastructure can be
used for distribution. Syncrude can be produced from CO2 and
hydrogen directly and indirectly [44]. However, the production
process (Fischer-Tropsch synthesis [45]) is still complex and
requires further improvement regarding reaction specifics.

3) Solid Phase: Hydrogen can react with other chemicals
to form a solid via the process of absorption. Most common
solid absorbents are Metal hydrides, divided into three groups:
elemental, intermetallic and complex hydrides [20]. Metal hy-
drides are considered a safe medium for storing hydrogen due
to the low operation temperatures and endothermic reaction
[46]. Shortcomings that hinder large-scale application of this
technology are e.g. relatively slow kinetics, high (hydrogen
release) temperatures and low reversibility [47].

Adsorption technologies can be improved by surface modifi-
cation and combining elements. Elemental hydrides are binary
compound materials made of bonds between hydrogen and 1
other metal [48]. The most promising examples are magnesium
hydride (MgH2) and aluminium hydride (AlH3). Intermetallic
hydrides can be seen as an improved example of elemental hy-
drides with an extra element (largely rare earth and transition
metals). The final compound takes the chemical formula of
AxByHz [49]. These combinations improve hydrogen storage
capacities, at the expense of higher material and thus invest-
ment costs. Finally, complex hydrides are formed through a
reaction of two hydrides, for example, LiBH4, NaAlH4 and
LiNH2 [22]. The highest storage densities are reached when
boron (B) functions as the central atom. Hydrogen can be
released under mild conditions, but hydrogen uptake - the
amount of hydrogen that can be adsorbed or absorbed by a
material per unit mass or volume - is a lot harder to achieve
and requires significant costs and effort [50].

III. ANALYSIS OF CHARACTERISTICS

This section presents an analysis of the different hydrogen
technologies with regard to the 4 comparison criteria. First,
technological operational conditions are reviewed. Then tech-
nology efficiency, and safety. And lastly, economic projections.

A. Technical Operational Conditions

Operational conditions refer to the specifications regarding
temperature, pressure and additive requirement needed for

hydrogen storage, uptake and release. The simplest condition
to maintain the operation is when hydrogen is stored at room
temperature (about 21◦C) and under normal pressure (1 bar),
as this requires the least maintenance and safety measures.

Table I & II present the operational conditions for storage
(maintaining hydrogen in the medium) and for uptake and
release (forcing hydrogen in and out of the medium) of
hydrogen respectively. A ? refers to a lack of information.
Remarks are added in italic.

TABLE I: Hydrogen Storage Parameters

Cat. Option Pressure Temperature Add.
bar ◦C

FHG
Compressed
H2 gas

350-700 [51] normal [51] No

Glass struct. 1000+ [22] -40 - 60 [23] No
FHL Liquid H2 1 [25] -253 [20] [13] No

FHS

MOFs
(MOF-5)

1 [18] cryogenic [18] Yes [18]

Carbon
struct.

high [18] cryogenic [18] Yes [18]

- AC 80 [29] 25 [29] Yes [18]
- G 100 [29] 25 [29] Yes [18]
- CN 120 [29] 27 [29] Yes [18]
Zeolites ? room T [18]

[52]
Yes [18]

Adsorption
(general)

40 [20] -176 [20] Depend.
on type
sorbent

CHG
Ammonia normal / 8-10

[31] [5]
-33,4 / ambient
[31] [5]

Yes [18]

Methane N.A.

CHL

Syncrude Similar to
existing fuels
[22]

Similar to
existing fuels
[22]

Yes [22]

Methanol
(LOHC)

1 [31] [5] 25 [31] [5] Yes [22]

Formic Acid
(LOHC)

105 [20] 100-180 [20] Yes [22]

CHS

Metal Hydr. 10-40 [53] 20 [53] Yes [22]
- Elemental [20] [20] Yes [20]
- Intermetal. 50 [20] 80 [20] ?
- Complex 100 [54] 200 [54] Yes [20]

From Table I it can be observed that there is no technology
that enables storing hydrogen at room temperature and normal
pressure. The least complicated way to store hydrogen are
represented by the options with 2 optimal conditions: Com-
pressed H2 Gas (normal temperature & no additives), Liquid
H2 (normal pressure & no additives), Ammonia (normal
pressure & temperature) and Methanol (normal pressure &
temperature).

Methane is a special case. Methane storage and transport
is a well established practice (natural gas). However, methane
is almost never considered as a hydrogen carrier but rather as
an energy carrier. This refers mainly to the relatively hard and
costly process of hydrogen release, but also to the extra steps
required to adequately store hydrogen in it.

Table II shows a wide variety of processes and associated
conditions for hydrogen storage. Although comparing is dif-
ficult, one can observe that for both Compressed H2 Gas
and Liquid H2 the hydrogen uptake and release processes are
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unnecessary, making those options relatively beneficial. Once
again methane is special in that it has an unfavorable hydrogen
release process. Note that Syncrude is usually considered an
end product and thus no hydrogen storage medium. In some
cases - mostly for groups of hydrogen carriers like MOFs -
there is still a lack of information.

TABLE II: Hydrogen Uptake & Release Parameters

H2 Uptake H2 Release
Cat. Option P T P T Add.

bar ◦C bar ◦C

FHG

Compr.
H2 gas

N.A. N.A. N.A. N.A. N.A.

Glass
struct.

N.A. N.A. N.A. N.A. N.A.

FHL Liquid
H2

N.A. N.A. evap.
[55]

evap.
[55]

N.A.

FHS

MOFs
MOF-5

1 [18] cryog.
[18]

? ? ?

Carbon
struct.

? ? ? ? Yes

- AC 30
[56]

-196 [56] ? ? Yes
[56]

- G 113,5
[56]

room T
∼ 20
[56]

? ? Yes
[56]

- CN 101
[56]

room T
∼ 20
[56]

? ? Yes
[56]

Zeolites ∼100
[52]

350 [18] 1,5
[52]

? Yes
[18]

CHG

Ammonia 100-
300
[22]
[24]

400-500
[24] [31]

250
[57]

400-700
[31] [57]

Yes
[22]
[31]
[24]

Methane <100
[58]

250-400
[22]

? [22] ? [22] Yes
[22]

CHL

Syncrude 10-40
[22]

200-250
(LTFT)
[22]

? ? ?

Methanol
(LOHC)

40-60
[59]

∼140
[59]

25-50
[24]
[22]

200-300
[24] [22]

Yes
[31]

Formic
Acid
(LOHC)

120
[60]

120 [60] depend.
on
CO2
recov.

50-100
[20] [55]

Yes
[60],
Ru-
based

CHS

Metal
Hydr.

depend
on
type
[22]

depend
on type
[22]

1.5
[54]
(compl.
hydr.)

<180
(compl.)
[54]
≥300
(MgH2)
[18] [20]

Yes
[22]

B. Technology Efficiency

This section focuses on how far the different hydrogen
storage technologies have progressed. This assessment is car-
ried out considering various factors including: the scale of
application, hydrogen content (in wt%), volumetric (in kWh/L)
& gravimetric densities (in kWh/kg), round-trip & conversion
efficiencies. Scale of application refers to the scale at which
the technology currently is employed. It ranges from 1=large
scale (e.g. energy grids), 2=medium scale, 3=small scale
(usually laboratory scale), 4=very small scale (microscale)
to 5=not realistic. The hydrogen content of a storage option

describes what percentage of the weight consists of hydrogen.
Volumetric and Gravimetric Density show the available energy
per unit of volume or weight respectively. Volumetric Density
can change depending on the applied pressure, whereas Gravi-
metric Density is a material property. Round-trip efficiency (or
storage efficiency) is the percentage of energy input that can
be retrieved again. Conversion efficiency is the effectiveness of
the conversion - generally converting hydrogen in a compound
- expressed as a percentage.

It is assumed that a desirable hydrogen storage technology
should have widespread availability, high H2 content, high
densities (especially volumetric), and high efficiencies. These
factors are considered to determine the most favorable hydro-
gen storage technology. Results are summarized in Table III.

Table III shows that ammonia exhibits high scores across
a majority of dimensions, with Methanol following closely
behind. Thus, CHG appears to be the best performing category.
One can also see that Liquid H2 has quite a high gravimetric
density, but has rather low round-trip and conversion efficien-
cies. Likewise, methane has a high H2 Content but has a
rather low volumetric density. On the other hand, most FHS
technologies score very low regarding H2 Content. Note that
there is a lack of data on some technologies including MOFs,
carbon structures, zeolites, metal hydrides.

C. Safety

The safety level of different hydrogen technologies is eval-
uated based on the explosiveness and toxicity of the storage
medium. The result is given in Table IV. A +/++ refers to
reported high levels of explosiveness or toxicity. A - refers
to the characteristic not being observed. A ? shows a lack
of information. In the far right column important remarks
regarding the safety of the storage options are reported.

Table IV shows that flammability is an issue for compressed
hydrogen gas, liquid hydrogen, methane, methanol, and metal
hydrides, followed by a lower level of explosiveness for
ammonia and possibly syncrude. Toxicity is mainly a problem
for ammonia, but also, albeit less extreme, for MOFs and
methanol. The most promising options in this regard are thus
carbon structures or formic acid for hydrogen storage as they
both have no reported explosiveness and toxicity claims.

D. Economic Projections

The most prominent factor that determines the success of
any technology finding its way in practice is its economic
projection. Therefore, an estimated calculation of costs per
technology option is provided in Table V. These relate to
levelized costs of hydrogen storage (LCHS) solely. LCHS
refers to the capital and operational cost of the hydrogen
storage system expressed per unit of hydrogen stored. Other
costs are considered beyond the scope of this paper. The values
are calculated for storage of 1 ton of hydrogen, a realistic
future objective. The results are shown in Table V. From an
investment perspective, it is evident that technologies with
lower investment and/or operational costs are preferred.
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TABLE III: Technology Efficiency Parameters

Cat. Option Scale H content Vol.Dens. Grav.Dens. Round-trip Eff. Conv. Eff.
- wt% kWh/L kWh/kg % %

FHG Compr. H2 Gas 1 [22] 13 [29] 1,32 [18] 33,3 [22] 95-98 [19] 72,4 [5]
Glass struct. 4 [22] 10-14 [13] ? ? ? ?

FHL Liquid H2 2-1 [13] Size dependent 2,36 [22] 33,3 [22] ∼53 [5] 44,7 [5]

FHS

MOFs (MOF-5) 3 [13] 4,5 [18] 0,021 kg H2/L [18] 0,038 kg H2/kg [18] ? ?
Carbon struct. 3 [13] 8 [13] ? ? ? ?
- AC 3 [13] 5,5 [29] ? ? ? ?
- G 3 [13] 4,48 [29] ? ? ? ?
- CN 3 [13] 6,5 [29] ? ? ? ?
Zeolites 3 [13] 9,2 [13] ? ? ? ?

CHG Ammonia 1 [22] [31] 17,8 [18] 3,53 [31] 5,17 [31] 99,3 [5] Haber-Bosch: 76 [5]
NH3 to H2: 69 [57]

Methane 5 [22] 25 [22] 0,0105 [61] 15,4 [61] 95 [5] Methanation: 87,9
[5]

CHL

Syncrude 1 [22] ? 10 [62] (crude oil) 3,53 [63](crude oil) ? Power-to-fuel: 46-
67 [64]

Methanol
(LOHC)

3 [22] 12,5 [22] 3,3 [22] 8,64 [63] 95 [5] 83,5 [5]

Formic Acid
(LOHC)

3 [22] 4,4 [13] 1,79 [22] ? ? 48 (+Ru-catalyst)
[60]

LOHCs 1-3 [22] ? ? ? ∼71 [65] ?

CHS
Metal Hydr. 4-3 [22] max 12,6 [13] dependent on type 0,50 [53] ∼78 [65] ?
- Compl. 4-3 [22] 18,5 [66] 0,71 [18] ? ? ?
- MgH2 4-3 [22] 7,66 [66] 5,55kg/100L [66] ? ? ?

TABLE IV: Safety Assessment

Cat. Option Explosive Toxic Remarks

FHG Compressed
H2 gas

++ [67] - [68] Asphyxiant [68]

FHL Liquid H2 ++ [67]
[27]

- [68] Frostbite [27] [67]

FHS

MOFs ? [69] + [69]
[70]

Many forms [69]
[70]

Carbon
structures

- [71] [72] - [71] [72] Weakly explosive /
health hazard [73]

Zeolites ? [74] ?/- [74] Little info

CHG
Ammonia + [75] ++ [75] Corrosive / Environ-

mental hazards [75]
Methane ++ [76] - [76]

CHL

Syncrude +? [77] -? [77] Based on crude oil
[22] / Health and
environmental haz.

Methanol
(LOHC)

++ [78] + [78] Health hazard [78]

Formic Acid
(LOHC)

- [79] - [79] Corrosive [79]

CHS Metal Hydr. ++ [80]
[81]

? [81] Taken as a group

It should be noted that the values listed in Table 5 are
not complete. Costs related to chemical processes (hydrogen
uptake and release) and material costs are not included.
Moreover, most technologies require some development as the
costs are still quite high. This especially counts for MOFs and
Formic Acid. Costs are relatively low for Metal Hydrides and
above-ground Compressed H2 Gas storage.

IV. CONCLUSION

This paper provides a comprehensive overview of the ex-
isting and emerging hydrogen storage technologies. Special

TABLE V: Economic Projections

Cat. Storage Option Costs Remarks
$/ton

FHG

Compressed H2 gas 1810 [82] Compression + Storage
- Salt caverns 1610 [22] LCHS
- Above ground 140-330 [65]
Glass structures ? No info available

FHL Liquid H2 1686-1905
[22] [57]

Liquefaction / Liquefac-
tion + Storage

FHS
MOFs 490000 [18]
Carbon structures ? No info available
Zeolites ? No info available

CHG
Ammonia 3510 [65] LCHS Air Seperation

Unit [5]
Methane ? No info available

CHL

Syncrude 1523 [64] Calculated from C/lDE
Methanol (LOHC) 2250 [65] LCHS
Formic Acid
(LOHC)

23160 [60] Levelized costs (ecFA
+ LCO2), described as
Scenario 3 in article by
Kim et al. (2022), con-
taining production and
transportation

GENERAL LOHC 1200 [65] LCHS
CHS Metal Hydrides 700 [65] LCHS

attention is given to non-economic characteristics: technical
operational conditions, technology efficiency and safety.

The technical operational conditions show that Compressed
Hydrogen Gas storage is the most promising technology. It
stores free hydrogen, requiring no additional chemical reac-
tions for uptake and release of hydrogen. Hydrogen is stored
at normal temperature without additives. On the downside, it
requires an elevated pressure of 350-700 bar, raising safety
concerns.

The technologies are also assessed based on scale, energy
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content, and efficiency. In this regard, ammonia is the most
suitable technology. The technology is readily available at a
large scale, and especially suitable for transport. It has a high
hydrogen content (17,8 wt%), high storage efficiency (99,3%),
medium conversion efficiencies (ranging from 25% to 76%)
and a relatively high volumetric density (3,53 kWh/L).

The level of safety is assessed based on flammability and
toxicity. From this point of view, Carbon structures and Formic
Acid are most suitable because neither are flammable nor
toxic. However, Formic Acid is corrosive, negatively impacting
its storage possibilities. Powdered carbon structures exhibit
low explosive potential and are classified as irritants and
suspected carcinogens.

Lastly, regarding economic projections, it is difficult to
draw any conclusion. This is because research in this field
is relatively new. As a result, there is limited clarity and data
availability which makes the assessment prone to error. This
aspect can be further investigated in the future.
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