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Abstract—Large scale integration of renewable and distributed
energy resources increases the need for flexibility on all levels of
the energy value chain. Energy storage systems are considered
as a major source of flexibility. They can help with maintaining
a secure and reliable grid operation. The problem is that these
technologies are capital intensive and therefore, there is a need
for new algorithms that enable arbitrage while ensuring financial
feasibility. To this end, in this research, we develop a constrained
deep Q-learning based bidding algorithm to determine the
optimal bidding strategy in the day-ahead electricity market.
The proposed algorithm ensures compliance to energy storage
system constraints. It takes imperfect, yet reasonably accurate,
24-hour-ahead price forecast data as an input and returns the
optimal bidding strategy as output. The numerical results and the
sensitivity analysis show that the proposed algorithm effectively
contains the impact of price forecast uncertainty to guarantee
financial feasibility.

Index Terms—Energy Storage, Energy Arbitrage, Deep Re-
inforcement Learning, Deep Q-Network, Day-Ahead Electricity
Market.

I. INTRODUCTION

A. Background

Decarbonization is a major pillar of the ongoing transition
in energy systems. Decarbonization via renewable energy
resources with their varying and intermittent profile, has
increased the uncertainty at all levels of the energy value
chain [1]. The increasing uncertainties have introduced new
challenges in maintaining the supply and demand balance and
in ensuring the reliable and secure operation of the electricity
network [2]. One way to manage the uncertainty is to increase
flexibility in the energy system [3].

Grid connected energy storage systems (ESS) are seen as a
valuable source of flexibility to manage these uncertainties [4].
The main challenge is to ensure financial feasibility of ESS
operation to encourage owners to offer available capacity of
their ESS when needed. One way to achieve this is by devising
a bidding algorithm that ensures profitability of energy storage
arbitrage in electricity markets. The challenge for a profit
maximization algorithm as such, lies in determining the opti-
mal bidding strategy despite being provided with uncertainty
associated erroneous market price forecasts as an input.

B. Literature Review

The energy arbitrage problem can be characterized as a
sequential decision-making problem, where an agent makes
decisions on how to interact with the market and ESS envi-
ronments [5]. One approach to solving such a problem is by

mathematical optimization (MO). In [6], the authors describe
a mixed-integer linear programming (MILP) approach to find
the optimal bidding strategy in intraday (ID) markets under
the assumption of perfect market price forecasts. In [7] and
[8], the authors respectively propose a stochastic and robust
formulation of the energy arbitrage problem in real-time (RT)
markets to handle uncertainty in price forecasts.

Another approach to solving the energy arbitrage problem
is by reinforcement learning (RL). RL is a machine learn-
ing approach based on trial-and-error learning, meaning that
little prior information about the system is needed. In [9]
and [10], the authors use RL to solve the energy arbitrage
problem for the RT market by combining an historical price
moving average with a Q-learning [11] and a proximal policy
optimization [12] algorithm respectively. The authors of [13]
propose a Deep Q Network (DQN) [14] based algorithm
which exploits raw historical price forecast data for solving
the energy arbitrage problem in day-ahead (DA) markets. More
recent RL works extend the scope to maximizing profits from
a combination of both energy arbitrage, and another revenue
source simultaneously. In [15], this additional revenue source
is obtained by simultaneously applying a DQN-based algo-
rithm to maximize savings from self-utilization of renewable
energy source supply technologies. In [16], a Q-learning agent
is trained to simultaneously serve the grid operator by peak-
load shifting, and in [17] a deep-deterministic policy gradient
based algorithm [18] is applied to simultaneously participate
in real-time frequency regulation services.

We distinguish two reasons why one would solve the
energy arbitrage problem using an RL rather than an MO
based approach. First, RL-based algorithms have the ability to
learn how to deal with imperfect forecasts since the optimal
decision-making strategy is determined directly from raw
historical price forecasts. Second, RL enables offline learning,
meaning that the computationally expensive learning of the
optimal bidding strategy is detached from the quicker real-time
decision-making process. MO algorithms on the other hand
require online optimization for solving the decision-making
problem as a whole. This is more computationally expensive,
considering that the above-mentioned MO algorithms need
to be provided with a multitude of uncertainty scenarios to
handle price forecast uncertainty. This phenomenon becomes
especially problematic when the decisions are to be revised in
short periods before the market gate-closure-time.

In the above-mentioned literature on RL-based approaches,
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it is assumed that either DA forecasts are available one hour
ahead, or that the agent requires more price forecasts than just
the day ahead as an input. The former assumption does not
fully acknowledge the complexity of the DA market. The latter
assumption means a reliance on less accurate forecasts, since
price forecasts become less accurate when the time horizon
increases [19]. We argue that an agent would only require the
24 hour-ahead DA price forecasts as an input, to optimally
solve the energy arbitrage problem.

Each of the above-mentioned RL works mentions applica-
tion of safety constraints to the ESS energy capacity. One can
do so by modifying the optimization criterion (soft constraint)
or the exploration (learning) process (hard constraint) [20]. In
[15] and [16], the authors modify the optimization criterion by
punishing the agent for capacity constraint violation. In [9],
[10] and [17], the exploration process is modified by optionally
and iteratively changing the magnitude of the (dis)charging
action to comply with the ESS energy capacity constraint.
We argue that both approaches reduce the potential for the
RL algorithm to converge to the optimal bidding strategy.
Therefore, in this research, we formulate a hard constraint on
the ESS energy capacity and solve the constrained problem
using a constrained deep Q-network (CDQN) based algorithm.

Finally, it should be noted that grid-connected intermit-
tent renewable energy sources are expected to increase. This
development probably causes an increase in price volatility
and forecasting complexity in various electricity markets. To
analyze the performance of an RL-based algorithm in this
context, we perform a global sensitivity analysis on the market
price forecast uncertainty in this research. To our knowledge,
such an analysis is still missing from existing literature.

C. Contributions

The contributions of the paper are as follows:
1) It introduces a CDQN bidding algorithm to solve an

energy arbitrage problem. Taking imperfect point-wise
price forecasts as an input, the algorithm learns to find
the near-optimal bidding strategy to execute energy stor-
age arbitrage in the DA electricity market. The proposed
CDQN is a sequel to the DQN proposed in [13].

2) It reformulates the energy arbitrage problem by intro-
ducing a new state space consisting of the ESS’s state
of charge (SoC), a fixed 24-hour forecast, and an hour
counter for the algorithm to extract the bidding hour.
The combination of the latter two enables the use of
accurate and realistic price forecasts.

3) It performs a global sensitivity analysis on the perfor-
mance of the CDQN agent with respect to the market
price forecast uncertainty.

D. Structure of the Paper

The remainder of this paper is organized as follows; Sec-
tion II, presents the CDQN architecture and the problem
formulation. Section III, evaluates the performance of the
proposed methodology by applying it to a flow battery ESS
and comparing it to the performance of a conventional MILP

method. Section IV concludes the paper and proposes future
research directions.

II. METHODOLOGY

In this section we first present a generalized introduction to
the proposed CDQN algorithm. Second, we formulate the en-
ergy arbitrage problem as a Markov Decision Process (MDP).
Last, we present the complete algorithmic implementation.

A. Constrained Deep Q Network Architecture

In this subsection we explain the background of (Deep)
RL and the proposed CDQN for solving the optimal bidding
problem.

1) Q-Learning: In RL, the goal of an agent is to maximize
the cumulative reward from taking consecutive actions. This
translates in the agent trying to learn the optimal policy π∗

from any state st ∈ S . Q-learning is an RL approach that
works off-policy and is model-free. In Q-learning, the optimal
policy for a given state is found by taking the action at ∈ A
that has the maximum Q-value. The Q-value of a state-action
pair is defined as:

Q(st, at) = E[

∞∑
k=0

γkrt+k|st, at] (1)

where γ denotes the discount factor. rt is the reward signal
resulting from a specific state-action pair. To determine the
true Q-values of all state-action pairs, the agent has to explore
the full environment by iteratively taking actions from different
states, resulting in differing rewards. In this research, we apply
TD(0)-learning [21], meaning Q-values belonging to specific
state-action pairs are updated each single iteration following:

Qnew(st, at) = Qold(st, at) +

α(rt + γmax
A

Q(st+1,A)−Qold(st, at))

(2)
where α is the learning rate. The new Q-value is then stored in
a look-up table. Training a Q-learning agent takes a predefined
number of episodes e ∈ E , where each episode consists
of h ∈ He iterations. In each iteration, the agent observes
the state, and then selects an action following the epsilon
greedy algorithm. The agent either explores the environment
with probability ϵ by taking at = rand(A) or exploits its
knowledge about the action with the highest Q-value with
probability 1 − ϵ by taking at = argmax

A
Q(st,A). To

enable efficient training, ϵ generally decays over the episode
number through ϵ = De with epsilon decay factor D such that
the agent mainly explores the environment at the start of its
training, and exploits its knowledge about a good policy more
and more while further in training. [22].

2) Deep Q-Network: Q-learning is reliant on a look-up
table that presents Q-values for each state-action pair. However
the problem becomes intractable when the state or action
spaces are high-dimensional or continuous. A solution to this
problem is the Deep Q-Network in which the Q-values are
approximated using a deep neural network:
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Q(st, at;w) ≈ Q(st, at) (3)

where w denotes the DQN weight configuration. The goal
in training the DQN-agent is set to find the ‘true’ Q-value
by minimizing the difference between the old and new Q-
value through stochastic gradient descent. Following (2), this
is equivalent to minimizing the Mean Squared Error loss term,
given by:

L(w) = (rt + γmax
A

Q(st+1,A;w−) − Qold(st, at;w))
2

(4)
where w− denotes the target network weight configuration
which is a copy of the DQN weight configuration, taken every
U number of episodes. In a DQN-based algorithm, within a
single step h, the decision-making process is decoupled from
the process of updating the DQN. First, the step that has
been decided upon, which we call an experience, is stored
as a 4-dimensional array (st, at, rt, st+1) in the experience
replay memory (ERM) with size M . Next, a size X batch of
experiences is randomly drawn from the ERM. This batch
is then used to get the old and new Q-values, apply (4),
and finally update the DQN weight configuration. Both the
inclusion of a target network and training on a batch of
experiences have been proven to improve the DQN training
process. [14].

3) Constrained Deep Q-Network: To conform to the ESS
energy capacity boundaries, we formulate a system constraint
as given in (8). Constrained DQN (CDQN) is a version of
DQN that ensures both compliance with system constraints at
every time instant and the potential to converge to the optimal
solution [23]. In the energy arbitrage problem, the permissible
action space A′

t is dependent on time, and therefore should be
shrunk to a subset of the original action space A′

t ∈ A. Prac-
tically, this changes several things for the above-mentioned
theory: in action selection through exploration or exploitation
A → A′

t; in (2) and (4) A → A′
t+1; and to enable execution of

these equations, experiences should be stored as 5-dimensional
arrays (st, at, rt, st+1,A′

t+1).

B. Problem Formulation

In our energy arbitrage problem, the CDQN agent should
learn to maximize profit by observing the ESS and market
environment, controlling the actions of the ESS to bid in the
market environment, and by receiving reward signals in the
form of the profit/loss resulting from the taken actions. We
use this subsection to formulate the energy arbitrage problem
as an MDP by characterizing the state space, action space and
reward function. The problem formulation is generic and could
be applied to any ESS with fixed energy capacity, power rating
and (dis)charging efficiencies.

1) Assumptions: The energy market is assumed to be
perfectly competitive. This implies that market participants
are price-takers and that the market is sufficiently liquid.
Furthermore, 24 hour-ahead price forecasts at different level
of accuracy are assumed to be given as input to the CDQN

agent. In section III-A we show how the market price forecasts
are generated.

2) State Space: We define a continuous state space where
the state at day d, hour t, is defined as:

sd,t = (pf
′

d,t, ct, SoCd,t), t ∈ T d, d ∈ D. (5)

where D and T d are the sets of days and hours in a
day respectively. pf

′

d,t = (pf
′

d,t=0, p
f ′

d,t=1, . . . , p
f ′

d,t=22, p
f ′

d,t=23)
are the generated (imperfect) and scaled hourly DA market
clearing price (MCP) forecasts for the next day d. First
we limit the generated imperfect MCP forecasts by taking
pfd,t = min(pfd,t, 150) and pfd,t = max(pfd,t,−50). Then we
apply min-max scaling and obtain pf

′

d,t ∈ [0, 1]. SoCd,t ∈ [0, 1]
is the SoC of the ESS at day d and the start of hour t. ct is
the hour counter that has been developed for the algorithm to
extrapolate which of the 24 forecasted prices belongs to the
state’s bidding hour. The combination of the hour counter and
price forecasts with a fixed 24-hour time horizon as inputs,
enable the agent to find the optimal bidding strategy using the
most accurate available price forecasts at each time instant.

3) Action Space: Next, we define a discrete action space:

A = {PC , 0,−PD} (6)

where PC and PD are the net maximum charging and
discharging power rating of the ESS respectively. Taking the
action with value ‘0’ means for the ESS to stand by. After the
CDQN algorithm determines an action ad,t ∈ A for the full
duration of hour t, the SoC reads as:

SoCd,t+1 = SoCd,t +
ad,t

E − E
(7)

where E and E are the maximum and minimum energy
capacity of the ESS respectively. The choice of ad,t is limited
to the physical boundary of the ESS: SoC ∈ [0, 1]. Therefore:

−SoCd,t · (E − E) ≤ ad,t ≤ (1− SoCd,t) · (E − E) (8)

Because our action space is discretized, this constraint might
cause limitation of the SoC to a smaller range in practice. To
resolve this problem, we assume PC = PD in (6).

4) Reward Function: We define the reward function as a
scaled version of the profit/loss made from a single action:

rd,t = −ηd,t · a
′

d,t · pr
′

d,t (9)

where

a
′

d,t =

{ ad,t

|ad,t| , ad,t ̸= 0

ad,t, ad,t = 0

}
(10a)

ηd,t =

{
1

ηC
d,t

, ad,t > 0

ηDd,t, ad,t < 0

}
. (10b)

ηCd,t and ηDd,t are the charging and discharging efficiency of
the ESS at day d, hour t, respectively. pr

′

d,t denotes the realized
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market price on day d, hour t, scaled along the same method as
pf

′

d,t. From the previously described scaling operations follows
rd,t ∈ [− 1

ηC
d,t

, ηDd,t]. The reward being in this range should
prevent problems with saturation and inefficient learning as
described in [24], while simultaneously preserve a proportional
reward allocation with respect to the charging and discharg-
ing actions. Hereby the cumulative reward is mathematically
proportional to the profit/loss made from cumulative actions,
thereby training the agent to learn the optimal bidding strategy.

Algorithm 1 depicts pseudocode of the CDQN architecture
applied to the described energy arbitrage problem.

Algorithm 1 CDQN for Energy Storage Arbitrage in DA
Market

1: Set Hyperparameters E ,He, D,X, γ, α,MAPE,U,M
2: Load Realized DA Market Price Data pr

3: Compute the complete set of pf from (13)
4: Initialize ESS Environment E,E, P , P , ηC , ηD

5: Initialize CDQN algorithm ω, ω−, ERM
6: for e ∈ E do
7: Compute ϵ = De

8: Draw d = rand.choice(D)
9: Set SoCd,0 = 0

10: Compute sd,0 and A′
d,0

11: for h ∈ He do
12: t = h
13: Draw r = rand.uniform(0, 1)
14: if r > ϵ then
15: ad,t = argmax

A′
d,t

Q(sd,t,A′
d,t)

16: else
17: ad,t = rand.choice(A′

d,t)
18: end if
19: Execute ad,t
20: Compute rd,t from (9) and (10)
21: Compute sd,t+1 from (5) and (7)
22: Compute A′

d,t+1 from (6) and (8)
23: Store experience in ERM
24: Draw X experiences from ERM
25: for x = 1 : X do
26: Update the Q-value through (2)
27: end for
28: Update the CDQN through (4)
29: end for
30: if e mod U = 0 then
31: Update target network w− = w
32: end if
33: end for

III. NUMERICAL RESULTS

In this section we first explain the DA MCP forecast
data preparation step. Second, we give a description of the
case study, parameter settings and performance evaluation
measures. Next, we establish the optimal algorithmic imple-
mentation and analyze the CDQN’s performance for several

ESS configurations. Finally, we analyze the CDQN’s perfor-
mance through applying a global sensitivity analysis on the
forecast uncertainty and comparing the results to a benchmark
optimization algorithm.

A. Data Preparation: Imperfect Price Forecast Generation

The imperfect DA MCP forecasts are generated by adding
an error term to the realized historical DA MCP data. A pop-
ular way of evaluating the performance of a price forecasting
tool is by using the Mean Absolute Percentage Error (MAPE)
measure [25]:

MAPEout =
100%

n(D) · n(T d)
·
∑
d∈D

∑
t∈T d

|prd,t − pfd,t|
prd,t

(11)

where n() denotes the number of elements in a set. Represent-
ing an unspecified forecasting algorithm, we aim to generate
hourly DA MCP forecasts at a desired accuracy evaluated
by the MAPE. To do so, we assume that forecast error is
represented by addition of a Gaussian noise signal to the
historical hourly MCPs, that is pfd,t = prd,t + N (0, σ)d,t. We
use this relation to substitute pfd,t in (11) and subsequently
rewrite the equation to solve for N (0, σ)d,t. Substituting this
solution in pfd,t = prd,t +N (0, σ)d,t results in:

pfd,t = prd,t + prd,t ·
MAPEin

100%
· N (0,

√
π

2
)d,t (12)

where MAPEin = MAPEout for n(D) → ∞. In (12)
the error term includes multiplication with the historical DA
MCP itself causing unrealistic noise approximations when the
historical DA MCP takes a near zero value. Arguably, it would
be more realistic to uniformly distribute the added noise based
on the average realized daily DA MCP. Therefore, we alter
(12) to:

pfd,t = prd,t + (
1

n(T d)

∑
t∈T d

prd,t) ·
MAPEin

100%
· N (0,

√
π

2
)d,t

(13)
This alteration causes a slight difference between the in-

tended MAPE output measure and the MAPE input value:
MAPEout = (1± 0.1) ·MAPEin for n(D) → ∞.

B. Case Study, Parameter Settings & Performance Evaluation

As a case study we study the ‘Green Battery’ (GB), a type of
acid-base flow battery developed by the AquaBattery company
[26]. In flow batteries, energy capacity and power rating can be
independently scaled. Also, there are no standby power losses
since the liquids are stored in separate storage tanks [27]. In
a standard GB power module PD = 0.3 MW . Due to a lack
of related time-dependent data and/or models on the GB, we
assume time-independent charging and discharging efficiency
terms, where ηCd,t = 0.9 and ηDd,t = 0.8, as communicated
by Aquabattery. We formulated our problem so that time
dependent efficiency terms can be incorporated when data or
model availability allows for it, as suggested in [13].
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Without performing extensive tuning, the hyperparameters
have been set as presented in Table I. Agents are trained for
10,000 episodes each consisting of a single bidding day. Most
notable is that the discount factor has a high value such that
later states heavily influence the action made in the current
state, enabling determination of the optimal bidding strategy
for a block of 24 consecutive bidding hours.

TABLE I: Summary of CDQN settings

Item Value
No. nodes input layer 25 + n(ct)
Type hidden layers Dense
No. hidden layers 2
No. nodes hidden layers 64
No. nodes output layer n(A)
Activation function ReLu
Optimizer Adam
Learning rate (α) 0.00025
Epsilon Decay Factor (D) 0.99953
Batch size (X) 64
Experience Replay Memory Size (M) 240, 000
Target Network Update Frequency (U) 100
Set of Episodes (E) 0 : 10, 000
Set of steps within Episode (He = T d) 0 : 23

The proposed approach is evaluated using historical French
DA market clearing price data of 2019 and 2020 for training
and testing respectively [28]. The CDQN agent is expected
to determine the optimal bidding strategy using imperfect DA
MCP forecasts obtained as is explained in Section III-A above.
Therefore, the DA MCP forecasts will be generated with a
MAPE value that is equal in both training and testing phase.
Literature on DA MCP forecasting tools show that MAPE-
values average around 5% [29]–[33], which we take as our
initial MAPE-value. We measure the performance of an agent
through the yearly accumulated profit from bidding in the 2020
French DA market and average the results from 10 consecutive
runs with equal settings to reduce the impact of randomness
in the CDQN training process. The algorithm is developed
using python 3.8 and Keras [34] with TensorFlow back-end
[35]. Training a single agent takes about 30 minutes while
solving the bidding problem for a whole year takes a only a
few seconds when executed on an 8-core CPU (2.9 GHz) and
a 1024-core GPU (1.35 GHz).

C. Establishment of Algorithmic Implementation

In this subsection we briefly describe experiments to estab-
lish the hour counter and action space size implementation

1) Hour Counter Methodology: In establishing the state
space observation of the CDQN agent, we have tested three
hour counter types to represent T d. The Index hour counter:
an array of length 24, where each number takes a value of 0
except for the number with its index equal to bidding hour
t, which takes a value of 1. The Binary hour counter: an
array of length 5 where the bidding hour t is expressed as a
binary number. The Fraction hour counter: an array of length
1, where the bidding hour t is expressed as a fraction of
n(T d). Our analysis showed that the CDQN agent presented

with the Index hour counter could accumulate most yearly
profit. Therefore, this hour counter has been adopted for the
upcoming experiments.

2) Action Space Size: As a second experiment, we test
the influence of the action space size on the performance of
the CDQN agent. We set n(A) = {3, 5, 9, 15} resulting in
e.g. A = {PC , 1/2PC , 0,−1/2PD,−PD} for n(A) = 5.
Analysis of the results showed a small decrease in performance
for increased action space size, and therefore we set n(A) = 3
in further experiments.

D. Establishment of Algorithmic Performance

Next, we establish performance of the proposed CDQN
algorithm by application of a global sensitivity analysis on
the ESS power to energy (PE) ratio configuration. Addi-
tionally, this analysis gives insight in investment decisions
regarding the optimal PE ratio for a potential investor. We
set E = 3.6 MWh, E = 0 MWh and PC = PD =
{0.3, 0.6, 1.8, 3.6} MW resulting in PE-ratios of 1:12, 1:6,
1:2 and 1:1 respectively. In Fig. 1 we observe the accumulated
profit to be positively correlated with the PE-ratio. This
is because a higher power rating enables a higher volume
of electricity trade. The correlation is sublinear since ESSs
with high PE-ratio configurations are limited in their number
of consecutive (dis)charging actions, while price peaks and
valleys often last for multiple consecutive hours.

Fig. 1: Yearly average accumulated profit from energy arbi-
trage for the CDQN algorithm applied to different ESS power
to energy ratio configurations.

E. Robustness to Price Forecast Error

The next step in our research is to put the performance of the
CDQN algorithm into perspective by comparing to a bench-
mark algorithm. Therefore, we reformulate the optimization
problem as a MILP with objective function:

23∑
t=0

(ηDt DtPD − 1

ηCt
CtPC) ∗ pft (14)

and constraints:
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SoCt+1 = SoCt −DtPD + CtPC

0 ≤ SoCt ≤ 1

SoC0 = SoC23 = 0

Dt, Ct ∈ {0, 1}
0 ≤ Dt + Ct ≤ 1

(15)

where Dt and Ct are binary decision variables that are
set to 1 when respectively discharging and charging, and 0
otherwise. The last constraint prevents simultaneous charging
and discharging, while it leaves the option to do neither. We
then solve this optimization problem using CPLEX [36] in
Python for each day of the year.

In addition we aim to examine the added value of the capa-
bilities of the CDQN to learn how to deal with forecast error
in comparison to the deterministic MILP algorithm. DA MCP
forecast errors range between 2-25% MAPE for different tools
[29]–[33]. Therefore, we apply a global sensitivity analysis on
the forecast error where MAPE = {1, 5, 10, 15, 20, 25} %.
To examine whether the CDQN algorithm really learns to deal
with forecast error, we distinguish a CDQN algorithm that is
trained on the respective MAPE values that it is also tested
against, and a CDQN algorithm that is trained on perfect price
forecasts. We compare the performance of these two agents
and the MILP algorithm and display the results of the P:E =
1:1 cases in Fig. 2.

From Figure 2a–c one observes a negative correlation be-
tween the performance and MAPE value. This is expected,
since a higher MAPE hinders the informative information
embedded in the DA forecast and therefore, complicates the
decision-making process.

Comparing Figure 2a to Figure 2c, one also observes that
the reference algorithm outperforms the DQN so long as
MAPE ≤ 5%. However, for MAPE ≥ 10%, the DQN is
superior to the MILP based reference algorithm. If we were to
provide perfect DA MCP forecasts, the MILP algorithm would
ensure maximization of profits. Since CDQN is learning-
based, it would never solve with 100% accuracy. This explains
why the MILP algorithm performs better in the scenarios
with low forecast error. The fast decline in performance of
the MILP algorithm is caused by the algorithm making a
considerable number of bids that would, under the assumed
perfect price forecasts, only result in a small extra profit.
Increasing the MAPE value, increases the probability of these
bids resulting in losses, and therefore, performance of the
MILP algorithm decreases, even leading to a net yearly loss
in the most severe cases.

Now comparing Figure 2b to Figure 2c where both algo-
rithms use perfect price forecasts, one observes the CDQN
outperforms the MILP algorithm for MAPE ≥ 10%. We
argue that the CDQN tends to converge to a more conservative
decision-maker, resulting in strategy in which the ESS charges
only when DA MCPs are very low and discharges only when
DA MCPs are very high.

Finally, from Figure 2a and Figure 2b one observes that
the CDQN algorithm performs better when trained using

(a) DQN trained with price forecast error

(b) DQN trained without price forecast error

(c) Reference Algorithm

Fig. 2: Global sensitivity analysis on price forecast error for
3 different algorithmic implementations: a) CDQN algorithm
trained and tested on imperfect price forecasts with equal error
terms, b) CQN algorithm trained on perfect price forecasts,
while tested on imperfect price forecasts, and c) MILP algo-
rithm tested on imperfect price forecasts.

erroneous price forecasts. This result implies that the CDQN
algorithm has the ability to learn the error pattern in the
provided price forecasts and subsequently uses that knowledge
to find the optimal bidding strategy in a comparable scenario.

IV. CONCLUSION

In this paper we developed a novel DRL-based algorithm
for energy storage arbitrage in the DA electricity market. The
resulted CDQN algorithm takes a reasonably accurate and re-
alistic 24-hour price forecast as input. The proposed algorithm
is generic in that it can be applied to any ESS technology with
fixed power and efficiency rating. Through global sensitivity
analysis, we showed that the CDQN algorithm retrieves a net
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profit from energy arbitrage for each of the tested forecast error
cases. We also find that the CDQN algorithm performs near-
optimal for low market price forecast errors and outperforms
a benchmark optimization algorithm for higher errors. This
demonstrates the added value of DQN-based algorithms in
the problem set-up characterized by market environments with
high price forecast errors. Ultimately, utilizing the proposed
algorithms favorably serves the ESS, the energy market and
grid participation, by offering more flexibility to the system
despite the uncertain price forecasts provided as input to it.

The RT and ID markets are characterized by relatively high
price volatility and forecast complexity. This paper showed
that the proposed DQN algorithm is especially good at con-
taining the impact(s) of imperfect price forecast. Therefore,
a valuable future work might focus on expanding the energy
arbitrage problem formulation to also include the RT and/or
ID markets with the aim of determining a potentially more
interesting business case for potential ESS investors.
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