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Abstract

The number of grape berries per bunch between pea-size and bunch closure stages provides useful
information to the farmer in planning and decision-making since it is an early indicator of the final
yield to be harvested. The aim of this study is to count the number of grapes per cluster by comparing
two different instance segmentation models (YOLACT and Spatial Embeddings) trained on RGB
videos acquired with a UAV. YOLACT tends to undercount the number of grapes, with count
estimations ranging from 0% to overcounts of 148%. Nevertheless, the lowest estimation achieved
by Spatial Embeddings is 30% and the highest is 116%. In general, Spatial Embeddings segments
and detects berries more accurately than YOLACT.
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Introduction

Viticulture plays an important role in the European socioeconomic sector (Fraga et al., 2012),
representing 45% of the worldwide land devoted to vine cultivation (International Organisation
of Vine and Wine, 2021). Farmers have to improve and adapt their farms to make their business
more competitive, and precision agriculture is a growing field that is gaining much traction due
to rapid research and development in the sector. Many agricultural tasks involve a lot of labour,
especially in agricultural settings. In the last years, there has been an increase in interest and quite
rapid developments in using artificial intelligence (Al) tools to assist agricultural tasks (Dharmaraj
and Vijayanand, 2018). The usage of unmanned aerial vehicles (UAVs) has also risen in agriculture
due to their ease of use for combining many tasks and integrating smart farming into a day-to-day
use case on the farm. Some of the tasks that UAVs can handle are seed sowing, fertiliser spraying,
monitoring (growth assessment), disease detection and mapping, and early phenotyping, among
others (Ariza-Sentis ef al., 2022; Kim ef al., 2019; Vélez et al., 2023). For the case of berry counting,
the usage of UAVs offers a solution with the addition of cameras and other related sensors on the
vehicle, which could potentially reduce labour and time.

Regarding grape berry counts, Nuske ef al. (2011) explored the computer vision field with the
Radial Symmetry Transform (Loy and Zelinsky, 2003), which employed the transform to find
berry candidates in images. This is further filtered with a K-nearest neighbour classifier, a machine
learning technique, which then finally performed linear regression on the detected grape berries.
In a further study, Nuske ef al. (2014) relayed the difficulty of grape berry cluster association due
to touching clusters from adjacent grape clusters. Hence, a deep learning method that first detects
clusters and subsequently detects berries from that cluster could potentially solve this problem.
This study aims to compare two state-of-the-art instance segmentation methods to count individual
grape berries on RGB videos recorded by UAVs on a commercial vineyard.
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Materials and methods

The workflow followed during this research is presented in Figure 1. The procedure started with
the planning of the UAV flights and their execution to collect data. Afterwards, the processing part
took place by cleaning and annotating two datasets, one with grape clusters and the second one with
berries. The datasets were used first to train the grape cluster detection model, using the PointTrack
(Xu et al., 2020) algorithm, and secondly for berry detection using two models: YOLACT (Bolya et
al., 2019) and Spatial Embeddings (SE) (Neven ef al., 2019). Finally, a qualitative assessment based
on the number of berries detected versus annotated per cluster was carried out.

Data collection

The study acquired the data on a vineyard in Tomifio, Pontevedra, Spain, on the 24 of June 2021.
The vineyard is located at the coordinates X: 516992.1, Y: 4644818.2 (ETRS89 / UTM zone 29N).
The weather conditions were sunny with quite harsh illuminations. The grape variety grown in the
vineyard is Loureiro (Vitis vinifera). The UAV platform used to acquire the images from the vineyard
rows was the DJI Matrice 210. The platform was equipped with a DJI Zenmuse X5S camera. It was
also equipped with an infrared sensor at the bottom of the UAV, which was flown slowly between
the rows to capture the video in a ‘drive-by’ style. The dataset used in this study is made available
(Ariza-Sentis and Valente, 2021).

Data setup

From the data acquisition, four rows were recorded, with each row having five to twelve videos. In
total, there were 41 videos acquired from all the rows of the vineyard. Out of these 41 videos, some
were annotated in the MOTS style (Voigtlaender et al., 2019), following the same procedure as de
Jong et al. (2022), and some were annotated in COCO style (Lin et al., 2014). All the annotations
used the CVAT software2, an annotation tool that was developed by Intel. The videos in the MOTS
style contain the grape clusters annotated, meanwhile, the videos in the COCO style have the grape
berries annotated. Regarding the grapes annotation, each visible berry was annotated in each cluster,
so occluded berries were ignored in the annotation process.

Algorithms

To count the number of grapes per cluster, first, the grape clusters were detected using PointTrack.
Afterwards, two different instance segmentation models, YOLACT and SE, were trained to identify
and count the number of grapes per bunch.
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Figure 1. Flowchart of the methodology of this study. There is a common start point which consists
of data collection and cleaning and afterwards, the flowchartis divided into two main branches, the
red one for cluster detection and the blue one for berry detection.
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YOLACT is a state-of-the-art instance segmentation algorithm that could segment objects in real-
time. YOLACT achieves this by running two simpler tasks in parallel, as opposed to doing a two-step
feature localization as Mask R-CNN (He et al., 2017) does. The parallel tasks that YOLACT does
are (1) to produce prototype masks and (2) to predict mask coefficient vectors.

Spatial Embedding is an instance segmentation method that is proposal-free, which means it does
instance segmentation without bounding boxes (object detection). Embedding performs instance
segmentation in only one step, compared to Mask R-CNN, which performs it in two steps. Hence,
SE is much faster in segmenting images. Proposal-free methods have performed worse than their
proposal-based counterparts (Hsu et al., 2018; Liang ef al., 2018) because these methods sacrifice
the accuracy of segmentations for the speed that comes with a one-stage segmentation.

Count assessment

A count assessment between YOLACT and Spatial Embeddings with grape berries was carried out.
The performance of YOLACT and SE was compared to assess whether deep learning algorithms
were able to accurately segment small objects such as grape berries. The assessment of grape berry
detection was done to evaluate how accurately could YOLACT or SE count grape berries compared
with the ground truth number of berries per cluster.

Results

The grape berry annotated dataset contained 4,905 manually annotated grape berry masks over 33
images, with a roughly 70/30 training/testing split. 27 images were used for training (containing
4408 berry masks) and 6 images for testing (including 497 berry masks), which is roughly a 70/30
training and testing split.

Ground truth count

The ground truth count of the berries was done manually. The visible berries in the obtained clusters
were counted manually and then noted as the ground truth count. In some cases, it was quite easy
to obtain the count of the clusters, as shown in Figure 2 (a), (b) and (c). The detected clusters are
nice and clear. It has some shadows going across the cluster, but the contours and shape of each
grape berry are still very clear-cut and obvious. On the other hand, Figure 2 (d)-(h) has very
limited visibility of the grape berries. It is very difficult for a human to determine each grape berry.
The images are very dark, and the low resolution of the clusters makes it very hard to differentiate
between a grape berry or a simple curl in a leaf. Hence, the manually counted berries in these kinds
of clusters were potentially erroneous. Notwithstanding, it gave insight into how the models count
estimation compared to a human’s ability in counting.

Berry count estimation

A visual example of how the algorithm identified the berries inside each detected cluster using
YOLACT and SE is shown in Figure 3. Furthermore, Table 1 presents the count assessment of the
same grape clusters as Table 1 for the two algorithms compared to the ground truth count. It can
be observed that SE estimates better the berry count compared to YOLACT. Cluster numbers 3, 4b,
5, 8, and 9 are almost estimated perfectly by SE. YOLACT accurately estimates cluster number 8.
YOLACT tends to underestimate the count estimates, with values ranging from 0 to 148%, whereas
SE’s range from 30 to 116%.
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Figure 2. Grape clusters for which the number of individual berries is counted. (a) to (c) show clear
clusters for which counting berries is an easy task. (d) to (h) present difficulties with berry counting
due to limited visibility.
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Figure 3. Grape berry count per grape cluster detected using the two algorithms: YOLACT and Spatial
Embeddings, along with the ground truth count of the berries per cluster.
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Table 1. Count assessment comparing the ground truth berry counts with YOLACT and Spatial
Embeddings detections.

No. Ground truth YOLACT YOLACT Spatial SE estimated
berries prediction estimated embeddings amount
amount prediction

la 19 0 0% 13 68%
1b 41 1 2% 17 41%

2 33 2 6% 10 30%

3 43 35 81% 47 109%
4a 68 39 57% 79 116%
4b 56 7 13% 58 104%

5 22 10 45% 23 105%

6 45 13 29% 39 87%

7 31 1 35% 21 68%

8 15 14 93% 16 107%

9 21 31 148% 22 105%
10 21 9 43% 1" 52%
il 46 13 28% 19 41%
Discussion

The grape berries were counted manually. This means, the author inspected each image belonging
to each cluster and subsequently isolated the detections from that cluster to obtain the number of
counts. Hence, with this method, the false positives from the images are not considered. A method
that automatically obtains a berry count from the detected cluster is needed to avoid the necessity
of manually counting the berries in the cluster.

YOLACT count estimations are quite chaotic, with one estimation having 0%, and on the other end,
a different cluster overestimated 148% (Table 2). Meanwhile, the lowest count achieved by SE is
30%, and the highest overestimate is 116%. Overall, SE tends to overestimate the counts compared
to YOLACT. However, SE yields more accurate count results than YOLACT.

The potential reason why cluster number 8 is more accurate is that the grape cluster has well-defined
berries. In general, spatial embeddings could segment and detect the grape berries quite well, except
in cases where the grape berries were very hard to see under the shade. It can be argued that the
detected clusters that do not have visible grape berries to count are not valid, since it is also difficult
for a person to count them by looking at the image. Nevertheless, those berries were included in
this study to make the model robust and check how well the algorithm detected even with harsh
illumination conditions.

It is important to point out that the counts of the grape berry only represent one side of the grape
cluster that is visible. Hence, if the model has a 100% estimation amount, it is still an underestimation
of the real grape berry counts. Nuske ef al. (2011) addressed this issue of grape berry occlusion by
explaining that occlusion is not a problem if there are few false positives, saying that the portion
of visible grape berries could be used to represent the total number of berries from a cluster.
Notwithstanding, their further research (Nuske ef al., 2014) stated that their method gave difficulty
in associating berries with clusters, due to many grapes that have close adjacent clusters.
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Conclusions

This study succeeded in counting the number of grape berries per cluster on UAV RGB videos
by comparing two instance segmentation models, YOLACT and Spatial Embeddings. It was
a challenging task due to the homogeneous environment and harsh illumination in the video
sequences. YOLACT tended to underestimate the number of berries with count estimations between
0 and 148%. However, the lowest estimation for Spatial Embeddings was 30%, and the highest 116%,
showing more accurate results and potential for berry counting. For future studies, RGB videos with
less challenging environment conditions will be used to confirm the expected increase in count
estimation of the trained algorithms.
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