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A B S T R A C T   

In this study, the difference between wild and farmed salmon production was successfully profiled and differ-
entiated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS) com-
bined with chemometric analysis. The established method based on multivariate analysis mainly involved 
principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial 
least squares-discriminant analysis (OPLS-DA) as the screening and verifying tools to provide insights into the 
distinctive features found in wild and farmed salmon products, respectively. The discrimination between farmed 
and wild salmon was accomplished with 100% classification accuracy using chemometric models, 100% iden-
tification accuracy was also achieved in distinguishing wild Salmo salar and Oncorhynchus nerka samples. The 
results of the present work suggest that the proposed method could serve as a reference for detecting salmon 
fraud relating to wild or farmed production and expand the application of MALDI-ToF technology further into 
food authenticity applications.   

1. Introduction 

In recent years the world has experienced significant population 
growth, and the demand for increased amounts of protein, including 
novel protein sources, has shown a significant increase. The use of 
seafood in general, specifically salmon, is one of the viable options to 
increase protein-rich foods available to consumers. Salmon is well- 
suited to commercial farming and also is readily available from tradi-
tional fisheries (wild-caught) (Nøstbakken et al., 2015). Salmon is a rich 
source of essential nutrients and is particularly sought after due to high 
levels of omega-3 fatty acids and low levels of saturated fats. It is also 
relatively abundant in essential elements such as iodine and selenium, 
and other nutrients such as vitamin D (Khalili Tilami & Sampels, 2018; 
Jakobsen et al., 2019; Colombo & Mazal, 2020). 

The demand for salmon is also influenced by its cost-effectiveness 
and predictability in production and commercial harvest, making it an 
affordable and dependable source of protein for many consumers 

(Henriques et al., 2014). 
Atlantic salmon (Salmo salar) and Pacific Sockeye salmon (Onco-

rhynchus nerka) are the two main species of salmon consumed in Euro-
pean countries (González et al., 2020; Ziegler & Hilborn, 2023). Salmo 
salar is both farmed commercially and caught from the wild, whereas all 
Oncorhynchus nerka are wild-caught (Mowi, 2021). Studies have 
demonstrated that wild salmon contains higher levels of omega-3 fatty 
acids and essential metals in comparison to farmed salmon (Thorstad 
et al., 2021; Lundebye et al., 2017). However, because of the high de-
mand and price (Rickertsen et al., 2017), there have been instances of 
food fraud where farmed salmon has been deceptively labelled and sold 
as wild salmon (Kappel & Schröder, 2016). While it is possible to 
identify whole fish based on their morphology, smaller cuts of salmon 
can be challenging to authenticate, and once processed, they can be 
nearly impossible to visually differentiate (Cline, 2012). 

The European Union recognised the growing concerns around mis-
labelling fraud in the seafood sector and implemented new labelling 
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regulations for fishery and aquaculture products (Council Regulation 
(EC) No 104/2000 of 17 December 1999 on the Common Organisation 
of the Markets in Fishery and Aquaculture Products (Repealed), 2000). 
These regulations emphasise the commercial and scientific name, pro-
duction modality (wild or farmed), and geographic origin information to 
help customers better understand the quality, origin, and production 
system of the products they are consuming (Council Regulation (EC) No 
104/2000 of 17 December 1999 on the Common Organisation of the 
Markets in Fishery and Aquaculture Products (Repealed), 2000). How-
ever, the absence of an official analytical methodology to monitor 
mislabelling is a significant problem, despite the implementation of 
labelling regulations for fishery products. To address this issue, it is 
crucial to develop and validate a reliable and accurate analytical method 
for determining the authenticity of salmon production systems and the 
geographical origins of production. Accordingly, the objective of this 
project was to develop a rapid and reliable method capable of con-
firming the authenticity of both wild and farmed salmon from various 
geographic locations, thereby protecting both the salmon industry and 
consumers from the consequences of mislabelling fraud. 

Given the increasing concerns about salmon fraud, several studies 
have been conducted to detect mislabelling fraud and confirm the 
authenticity of salmon products (Grazina et al., 2020). Thomas et al. 
(Thomas et al., 2008) developed a multi-probe and multi-element iso-
topic analysis combined with fatty acid analysis to determine the origin 
of salmon as wild or farmed. Fiorino et al. (Fiorino et al., 2019) more 
recently demonstrated that a Direct Analysis in Real Time-High Reso-
lution Mass Spectrometry (DART-HRMS) platform can be a promising 
tool to distinguish between wild and farmed salmon. However, to 
enhance the applicability of the investigation method, a larger sample 
size is required for modelling purposes. Any newly developed assay 
would also require a high sample throughput to meet the demands of 
industry. In this context, a novel method using Matrix-Assisted Laser 
Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF) 
has been developed to address these challenges. This method allows for 
the rapid and accurate identification of wild and farmed salmon pro-
duction, thereby making it a valuable tool for ensuring the authenticity 
of salmon products. 

MALDI-ToF works by ionising samples in the presence of a matrix 
substance and subjecting them to a laser pulse, causing the analyte 
molecules to become ionized (Zambonin et al., 2021). The resulting 
mass spectrum can then be analysed to identify the molecular compo-
nents of the sample, providing accurate and sensitive detection of bio-
molecules such as proteins (Kritikou et al., 2022), peptides (Zhong et al., 
2021), as well as small molecule compounds (Wang & Giese, 2017; 
Arroyo Negrete et al., 2019). MALDI-ToF has been deemed as an ideal 
tool for conducting high-throughput analyses, because it has relatively 
minimal sample preparation requirements (Murphy et al., 2021). 
Additionally, some degree of synergy exists with other applications in 
the seafood sector with Chai et al. (Chai et al., 2022) demonstrating a 
microchip-MALDI-TOF MS approach to investigate bacterial contami-
nation in fish muscle commodities. Piras et al. (Piras et al., 2021) pre-
sented a MALDI-TOF method coupled with machine learning to 
discriminate milk from different mammalian species, and the method 
demonstrated 100% classification accuracy. Freitas et al. (Freitas et al., 
2022) employed MALDI-ToF to achieve geographic discrimination of 
Sparus aurata, while Bi et al. (Bi et al., 2019) conducted species-level 
differentiation using a MALDI-ToF analysis of fish skin. The current 
applications of MALDI-ToF in food authenticity analysis represents a 
significant step forward in enhancing food safety measures and 
combatting fraudulent practices in the food industry. To date, MALDI- 
ToF has not yet been used in differentiating between wild-caught and 
farmed salmon. 

Oils found in salmon are composed primarily of triglycerides (TAGs), 
which account for approximately 75% of the total lipid content (Cascant 
et al., 2018), whilst the number of fatty acids (FA) present in salmon 
results in a large variety of biomolecular species that make analysis 

difficult (Cascant et al., 2017). Thus, chemometric analysis was utilised 
for data analysis, which provides significant advantages by reducing 
data dimensions (Hong et al., 2023). Previous studies have demon-
strated the utility of combining mass spectrometry with chemometric 
modelling or machine learning approaches for food authenticity appli-
cations (Birse et al., 2022). These studies have include the use of prin-
cipal component analysis (PCA) (Wang et al., 2020), partial least 
squares-discriminant analysis (PLS-DA) (Bi et al., 2019), and orthogonal 
partial least squares-discriminant analysis (OPLS-DA) (Cajka et al., 
2013). PCA is one of the most frequently used unsupervised multivariate 
data analysis methods in exploratory data analysis and data mining in 
food research (Cozzolino et al., 2019). PCA can also be used as a 
dimension-reduction technique to transform a large MS dataset into a 
smaller and more refined dataset whilst retaining much of the unique 
information found in the original dataset (Khulal et al., 2016). Thus, 
PCA modelling was used for an exploratory statistical analysis in this 
research to provide visualisations that show separation trends of MS 
data. PLS-DA is a linear classification tool that employs a partial least 
squares regression algorithm to calculate predictive models (Sampaio 
et al., 2020). OPLS-DA is a closely related algorithm, which is gaining 
increasing attention as a useful feature selector and sample classifier. 
OPLS-DA has recently been used for food fraud, authenticity, and quality 
relevant applications (Kang et al., 2022; Birse et al., 2020). OPLS-DA 
results from Trigg et al. (Trygg & Wold, 2002), who applied an 
orthogonal projection to the PLS-DA algorithm to construct the varia-
tions of the predictors correlated but orthogonal to the response. 
Accordingly, PLS-DA and OPLS-DA were evaluated to find the most 
suitable chemometric model for wild and farmed salmon identification. 

In this study, a high-throughput, and accurate method combining 
MALDI-ToF MS with chemometric analyses was developed to profile and 
differentiate wild and farmed salmon production. This approach could 
serve as a reference for assessing fraud performed in commercially 
available wild and farmed salmon products. 

2. Materials and methods 

2.1. Reagents and chemicals 

Acetonitrile (LC-MS grade) was supplied by Merck (Darmstadt, 
Germany). 1-Butanol (GPR grade) was supplied by VWR (Fontenay- 
sous-Bois, France). Trifluoroacetic acid (99%) was obtained from Sigma- 
Aldrich (St. Louis, USA). Sinapinic acid was supplied by Bruker Dal-
tonics (Bremen, Germany). 18.2 MΩ/cm deionised water was obtained 
from a Millipore Milli-Q water-purification system (Billerica, MA, USA). 

2.2. Sample collection and preparation 

A total of 426 salmon muscle samples were obtained from a number 
of trusted sources and frozen at − 20 ◦C prior to despatch and during 
transit from the relevant production facilities. The samples were then 
labelled upon arrival at the laboratory and stored at − 20 ◦C, prior to 
analysis. 

The salmon samples used in this study were obtained from different 
countries and production systems. Specifically, the Scottish samples (n 
= 78) and the Norwegian samples (n = 102) comprised exclusively of 
farmed Salmo salar. The Alaskan samples (n = 102) consisted solely of 
wild-caught Oncorhynchus nerka, and the Icelandic samples (n = 144) 
consisted of both farmed (n = 54) and wild-caught (n = 90) Salmo salar. 

The samples for analysis were defrosted and approximately 20 g of 
sample was placed in a 50-mL centrifuge tube, the material was then 
refrozen at − 45 ◦C before freeze-drying using a Lablyo freeze drier 
(Frozen in Time, York, UK) for a minimum of 48 h. The freeze-dried 
samples were then stored at − 20 ◦C prior to extraction. 

Extraction was undertaken by weighing 10 mg of freeze-dried sample 
into a 2-mL centrifuge tube then extracting with 1 mL of acetonitrile/1- 
butanol (1/1,v/v), as described by Cascant et al (Cascant et al., 2017). 
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The samples were then sonicated for 10 min using a camSonix C1275 
sonicator (Camlab, Cambridge, UK) at maximum frequency, before 
being centrifuged using a Rotina 380R centrifuge (Hettich, Tuttlingen, 
Germany) at 5000 rpm for 10 min. 

A sinapinic acid matrix solution was prepared by dissolving 10 mg of 
sinapinic acid in 1 mL of 0.1% trifluoroacetic acid (TFA) solution/ 
acetonitrile (7/3, v/v) and mixed (1/1, v/v) with 0.5 µL of extract so-
lution. The sample-matrix solution was pipetted onto a Bruker MTP 
Target Plate - Ground Steel (Bruker Daltonics, Bremen, Germany) and 
allowed to dry at room temperature. 

2.3. MALDI-ToF MS analysis 

Samples were analysed using a Bruker autoflex maX MALDI-ToF 
mass spectrometer (Bruker Daltonics, Bremen, Germany). The spectra 
were recorded in the LIFT positive mode (laser intensity 80%, ion source 
1 = 19.00 kV, ion source 2 = 16.35 kV, lens = 8.35 kV, linear detector 
voltage = 2.6 kV). Mass spectrometric data were acquired over the range 
m/z 0–1500. Each spectrum corresponded to an ion accumulation of 
2,000 laser shots randomly distributed on the desired spot (laser beam 
attenuation = 20, laser beam focus = 33, laser repetition rate = 2000 
Hz). 

The mass spectra from Alaskan wild salmon, Icelandic wild salmon, 
Icelandic farmed salmon, Scottish farmed salmon, and Norwegian 
farmed salmon, respectively, are shown in Fig. S1. 

2.4. Data processing 

MALDI-ToF data was acquired using Bruker FlexControl v3.4 (Build 
169.5) (Bruker Daltonics, Bremen, Germany) and processed using 
Bruker FlexAnalysis v3.4 (Build 79) (Bruker Daltonics, Bremen, Ger-
many). The spectra obtained were processed with default parameters for 
smoothing, variance stabilisation, baseline correction and peak detec-
tion, then exported in TXT, CSV and mzXML formats in readiness for 
further data preparation. 

Mass binning at 0.2 Da was performed at this stage using R (v4.0.5, 
Vienna, Austria), and the mass range was set to 100 Da to 1500 Da, 
giving a total of 7000 mass bins for multivariate and statistical analysis. 
The MALDI-ToF data was normalised using the UV (Unit Variance) 
scaling method. 

Multivariate analysis was undertaken in several stages using 
MetaboAnalyst 4.0 (Quinn et al., 2022). Unsupervised analysis was 
evaluated using PCA, while supervised analyses were undertaken using 
PLS-DA and OPLS-DA models. A receiver operating characteristic (ROC) 
analysis and an ANOVA were performed. 

PCA was used to detect data trends and pattern analyses, and to 
perform an initial quality control check of the data generated. PLS-DA 
and OPLS-DA models were used to identify biomarker candidates that 
differentiated the wild and farmed salmon groups. The validity of the 
unsupervised and supervised models was verified using correlation co-
efficients (R2) and cross-validation correlation coefficients (Q2). The 
quality of the built models was assessed by the goodness of fit (R2X), the 
proportion of the response matrix variance explained by the model (R2Y) 
and the predictive performance of the model (Q2Y). These three metrics 
have values between 0 and 1, and the higher they are, the better the 
performance of the model (Dinis et al., 2022). Generally, Q2(Y) values 
greater than 0.5 are regarded as good for biological models (Verplanken 
et al., 2017). The number of primary components utilised in modelling is 
represented by A, and N represents the number of samples analysed. 

The five-fold cross-validation were used, designating 1/5 of the data 
as a hold-out test set in each iteration. The model was trained using 4/5 
of the data, which was subsequently used to predict the classifications of 
the remaining 1/5. This process was executed five times, each instance 
using a different partition for prediction, with the model being trained 
on the complementary four partitions. 

3. Results and discussion 

3.1. Multivariate data analysis (MVA) of salmon specimen dataset 

Unsupervised and supervised MVA were employed for the assess-
ment of heterogeneity in the salmon metabolome for salmonid species 
differentiation, in addition to the country of origin in a targeted and 
untargeted form. 

3.1.1. Principal components analysis of the whole-sample dataset 
Mass spectra were generated from 426 samples representing five 

groups including Iceland farmed, Iceland wild, Alaska wild, Scotland 
farmed, and Norway farmed samples using the above-described method. 
The unsupervised PCA analysis was used to evaluate the sample differ-
ences. The PCA score plot showed clear separation amongst five salmon 
groups in PC1 and PC2 (Fig. 1a). The score plots across PC1-PC5 in 
differentiate five salmon groups are shown in Fig. S2(a). R2(X) = 0.99 
indicated the PCA model is well fitted, and Q2 = 0.98, signifying the 
goodness of prediction ability of the model. The screen plot of the PCA 
variance explained were shown in Fig. 1(b). The variance explained by 
all PCs is shown by the green line at the top and the individual PC 
variance is shown by the blue line below. The first principal component 
(PC1) explained 59.9 cumulative percent (cum %) of the variance. The 
PC2 explained 26.7 cum %. PC3, PC4, and PC5 explained 6.7 cum %, 1.6 
cum %, and 1.2 cum %, respectively. The first five principal components 
with 96.0 cum % of the total variance that could be considered adequate 
to demonstrate the variety of salmon samples. 

A clear separation between wild (Iceland and Alaska) and farmed 
(Iceland, Norway, and Scotland) groups can be seen in Fig. 1(c). 
Therefore, the data were divided into wild and farmed groups for 
principal component analysis. The PCA plot (Fig. 1d) clearly demon-
strates a distinct separation between the data from the wild and farmed 
groups, indicating the robustness and reproducibility of intra-group 
sample analysis. The first 3 principal components (PCs) can account 
for 93.3% of the observed group differences (Fig. 1e). The results indi-
cated that a PCA based on MALDI-ToF datasets of all 426 salmon sam-
ples revealed a clear separation between wild salmon and farmed 
salmon and clearly showed separation amongst 5 different salmon 
groups. 

3.1.2. Metabolic profiling analysis and univariate analysis 
Fig. 2a presents the correlation heatmaps of 5 groups of salmon 

samples. The expression profile of MALDI-ToF MS results was sufficient 
to discriminate 5 groups of salmon samples. Interestingly, Icelandic wild 
salmon exhibited weak correlations with other sample groups, with all 
correlation coefficients registering values below 0.5. To better interpret 
the MS information from the salmon analysis datasets, heatmaps were 
generated from the top 20 features in all samples amongst 5 groups using 
an ANOVA test (Fig. 2b). The top 20 features represent the top 20 
Variable Importance in the Projection (VIP) scores identified through 
ANOVA, which were selected as biomarkers. The VIP values corre-
sponding to these 20 features are provided in Table S1. 

In the heatmaps, blue indicates a lower intensity MS signal as 
opposed to red, which shows a higher intensity MALDI-ToF MS signal. 

The box plots provide a detailed view of the distribution of these 20 
features within each group (Fig. 2c). The differences between the wild 
and farmed groups are clearly to be seen in the box plot, constructed 
using mass bins m/z 120.8, m/z 146.8, m/z 148.8, m/z 152.4, m/z 162.8, 
m/z 181.2, m/z 191.2, m/z 206.8, m/z 210.4, and m/z 211.4. Compared 
to the other three farmed groups, the ion abundance of these features 
was found to be lower in the Alaska and Iceland wild groups. The mass 
intensity of mass bins with m/z 377.0, m/z 377.2, m/z 378.2, m/z 378.4, 
and m/z 379.2 was found to be higher in Scottish farmed salmon, 
compared to the other four groups. Additionally, a smaller mass bin 
value (m/z 104.2, m/z 105.2, m/z 116.2, and m/z 124.2) was found to 
have higher mass intensity in the Alaskan salmon group. 
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Two PLS-DA models were built using the whole dataset (Fig. 3a) and 
20 biomarkers (Fig. 3b), respectively, populated by the mass spectra of 5 
salmon groups, followed by an assessment of the modelling using a five- 
fold cross-validation. The differences between Alaska wild salmon and 
the other four groups can be found from PLS-DA loading plot by using 
the whole dataset (Fig. 3a). This likely resulted from Alaskan salmon 
being from a completely different genus/species Oncorhynchus nerka, 
while the other four groups are all Salmo salar, suggesting the variance is 
between Salmo salar and Oncorhynchus nerka. The PLS-DA model showed 
good performance with high R2X, R2Y, and Q2 values of 0.99, 0.94, and 
0.91, respectively. The first five components of the model accounted for 
95.6% of the total variance (Fig. S2b), indicating its strong validity and 
predictive capability. The 5-fold cross-validation assessment demon-
strated a 100% accuracy in identifying the 5 different salmon groups 
(Fig. 3c). 

Additionally, the 20-feature PLS-DA model (Fig. 3b) shows slightly 
different results compared to Fig. 3(a). These top 20 metabolite markers 
exhibited a better separation amongst wild (Alaska and Iceland) and 
farmed (Scotland, Norway, and Iceland) groups in the PLS-DA loading 
plot. This PLS-DA model explained 99.9% of the total variance with 
components 1 to 3 (Fig. S2c). The R2X, R2Y, and Q2 values of 0.99, 0.86, 
and 0.85, respectively, indicate that the PLS-DA model was highly 
reliable and possessed strong predictive capabilities. The cross- 
validation outcomes demonstrated that the 20-feature PLS-DA model 
achieved a classification accuracy of 97.4% in distinguishing among five 
groups of salmon samples. 

3.1.3. Wild and farmed salmon authenticity validation 
A supervised model was developed to authenticate global salmon 

production. Both the PLS-DA and OPLS-DA models demonstrate good 
classification results in wild (n = 192) and farmed (n = 234) salmon 
authenticity validation. The PLS-DA model (Fig. 4a) was a good fit for 

classifying wild and farmed salmon. The R2X, R2Y, and Q2 values were 
0.99, 0.98, and 0.93, respectively. Similarly, the OPLS-DA model 
(Fig. 4b) had R2X, R2Y, and Q2 values of 0.99, 0.98, and 0.96, indicating 
that PLS-DA model and OPLS-DA model were not overfit and had strong 
predictive abilities. Cross-validation of both the PLS-DA and OPLS-DA 
models showed a 100% accuracy rate. 

Fig. 4(c) illustrates the receiver operating characteristic (ROC) curve 
for the salmon modality production predictive models between wild 
salmon and farmed salmon groups (whole-sample dataset). The sepa-
ration and discriminatory ability of the predictive models is demon-
strated in ROC curves analysis. The area under the ROC curve (AUC) is 
0.99 indicating that ROC analysis was acceptable based on a PLS-DA 
model with good sensitivity (99%) and specificity (99%), and the con-
fidence intervals are greater than 97.5%. Two thirds of the samples were 
used to evaluate importance of the marker elements and to build clas-
sification models which were then validated using one third of the 
samples (Quinn et al., 2022). To assess the performance and confidence 
interval of the model, the process was repeated multiple times, and the 
predicted class probabilities (average of the cross-validation) for each 
sample using the PLS-DA classifier was shown in Fig. 4(d). All samples 
were correctly identified with a 99% accuracy. 

The top 20 features in VIP analysis, combined with high S-plot 
(Fig. 4e) reliability (correlation) p[1]＞|5E6| and p(corr)＞|0.8| 
(Fig. 4f), were then selected as biomarkers (Table S1). PLS-DA model 
(Fig. 4g) and OPLS-DA (Fig. 4h) model were developed using these 20 
features. Clear separation was obtained between wild and farmed 
salmon group. Fig. 4(g) displays the PLS-DA scores plot revealing the 
identification of two distinct clusters. The first two components 
accounted for a cumulative 98.8% of the total variation, with the first 
component explaining 98.4% of the variation and the second component 
explaining the variation between wild and farmed salmon samples 
(0.4%), while the cumulative variation of first 5 components was shown 

Fig. 1. PCA results. (a) PCA score plot between PC1 and PC2 for 5 groups of salmon samples (b) Scree plot. (c) PCA Plot of PC1 and PC2 for five salmon groups 
differentiated by wild (yellow) and farmed (green) production type. (d) PCA plot of PC1 and PC2 between wild and farmed salmon groups. (e) Data distribution 
between wild-type and farmed salmon group in PC1, PC2, and PC3. (f) Loading plot of PC1 and PC2. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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in Fig. S2(e). R2X = 0.99, R2Y = 0.92, Q2 = 0.89, and accuracy = 99.3% 
shows good fit of the PLS-DA model. The OPLS-DA resulted in 20 com-
ponents with R2X = 0.99, R2Y = 0.92, and Q2 (cum) = 0.91, evaluating 
using five-fold cross-validation. The classification accuracy of 99.3% 
was achieved for differentiation wild and farmed salmon samples. 

The results demonstrate that the combination of MALDI-ToF MS and 
chemometric analysis is competent in verifying the authenticity of wild- 
farmed salmon samples. 

3.1.4. Discriminant analysis of Salmo salar 
Salmo salar is the most commonly farmed salmon species in Europe 

and the most abundantly wild-caught salmon species in North Atlantic. 
Four groups of Salmo salar sample analysis results were examined to 
develop a model to identify the authenticity of Salmo salar production. 

The unsupervised PCA model obtained from the MALDI-ToF MS 
analysis of all Salmo salar samples revealed the general structure of the 
complete dataset. The PCA plot (Fig. 5a) shows a clear two-part sepa-
ration amongst farmed Norwegian salmon, farmed Scottish salmon, 
farmed Icelandic salmon, and wild Icelandic salmon. Thus, these 4 
groups of Salmo salar were classified as the farmed group (farmed 
Norwegian salmon, farmed Scottish salmon, farmed Icelandic salmon) 
and the wild group (wild Icelandic salmon) for further analysis. The PLS- 

Fig. 2. Metabolic profiling and univariate analysis results: (a) the correlation heatmaps of these 426 salmon samples. (b) Heatmap of top 20 features in salmon 
samples among 5 groups. (c) Box plots of top 20 significant metabolites according to ANOVA. 
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DA model and OPLS-DA model was used to investigate wild and farmed 
Salmo salar. Within a total of 426 salmon samples dataset, 324 of these 
were Salmo salar, with 90 of these being wild-caught salmon and 234 
being farmed salmon. However, a significant difference in sample sizes 
among the various groups could potentially distort the model. To 
address this issue, three groups of farmed salmon were randomly 
sampled according to their proportional representation, thereby 
ensuring balance in the dataset. Specifically, in total of 180 Salmo salar 
samples were used for model building, 90 farmed salmon (21 samples 
from the Iceland-farmed group, 30 from the Scotland group, and 39 from 
the Norway group) and 90 wild salmon (Iceland wild). The remaining 
samples were held for use as external validation datasets. 

The PCA between wild and farmed Salmo salar was performed 
(Fig. 5b), in which first three principal components cumulatively 
accounted for 95.4% of the total variation with PC1 explaining 86.3%, 
PC2 explaining 6.4%, and PC3 explaining 2.8% of the total variation 
respectively (Fig. 5c). The values of R2X = 0.98 and Q2 = 0.93 
demonstrate both the goodness of fit and the predictive capability of the 
PCA model. The PLS-DA model generated from wild and farmed Salmo 
salar sample varieties revealed the overall structure of the complete data 
set, with components 1 to 5 explaining 86.2%, 5.7%, 3%, 1.2%, and 
0.8% of the total variance, respectively (Fig. S2f). Clear clustering was 
observed between the wild and farmed sample groups, as evident from 
the PLS-DA scores plot presented in Fig. 5(d). To assess the predictive 
accuracy, five-fold cross-validation was performed. The cumulative 

values of the PLS-DA model, R2X value of 0.89, R2Y value of 0.98, and Q2 

value of 0.96, and a cross-validation correct classification rate of 100% 
suggest that the model has the potential to predict the classification of 
Salmo salar. The OPLS-DA model (Fig. 5e) also demonstrates good 
discriminatory ability in wild and farmed Salmo salar identification, R2X 
= 0.91, R2Y = 0.98, and Q2 = 0.97 indicate that the model has a high 
capability to explain the wild and farmed Salmo salar differences. The 
results of 100% correct classification rate of cross-validation of OPLS-DA 
model indicating the model allows the authenticity analysis of the wild 
and farmed Salmo salar production patterns. 

ROC curve analysis was performed to evaluate the performance of 
the model in predicting wild and farmed Salmo salar samples. The AUC 
= 1 indicating that ROC analysis was good based on PLS-DA model with 
good sensitivity (100%) and specificity (100%), and the confidence in-
tervals are 100% in discriminate wild and farmed Salmo salar samples. 
Twenty biomarkers were found between the wild and farmed Salmo salar 
groups (Table S2) according to VIP (Fig. S3a) and S-plot (Fig. S3b) re-
sults. A PLS-DA model (Fig. S3c) and an OPLS-DA (Fig. S3d) model were 
developed using these 20 biomarkers. The classification accuracy of the 
PLS-DA model was 98.8% and 98.4% for the OPLS-DA model when 
evaluating the differentiation between wild and farmed Salmo salar 
samples. 

Fig. 3. Differential analysis among Alaskan wild salmon, Icelandic farmed salmon, Icelandic wild salmon, Norwegian farmed salmon, and Scottish farmed salmon. 
(a) PLS-DA for discrimination of 5 salmon groups using whole dataset. (b) PLS-DA model created by using top 20 metabolite markers. (c) Cross-validation classi-
fication table using whole dataset PLS-DA model. (d) Cross-validation classification table using the 20-biomarker PLS-DA model. 
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3.1.5. Discriminant analysis of wild Salmo salar and wild Oncorhynchus 
nerka 

The use of advanced models for accurate classification between wild 
Salmo salar and Oncorhynchus nerka requires consideration in this 

research. Thus, the difference between two groups of wild salmon was 
further evaluated. The PCA score plot for wild Salmo salar and Onco-
rhynchus nerka was shown in Fig. 6(a), the first three principal compo-
nents (PC1-PC3) contributed to 95.5% of the total explained variations 

Fig. 4. Supervised model for authenticity validation of salmon modality production: (a) the PLS-DA scores plot between wild and farmed salmon group (component 1 
and component 2). (b) OPLS-DA score plot of wild salmon and farmed salmon group. (c) ROC analysis between wild salmon and farmed salmon group. The specified 
number of latent variables (LV) for each model is set at 10. (d) The predicted class probabilities for each sample. (e) s-plot. (f) VIP scores plot with top 20 features (g) 
PLS-DA model created using 20 markers. (h) OPLS-DA model created using 20 markers. 

Fig. 5. Discriminant analysis results of Salmo salar: (a) the PCA scores plot amongst 4 groups Salmo salar. (b) The PCA scores plot between wild and farmed Salmo 
salar. (c) The first 5 PC scores plot between wild and farmed Salmo salar. (d) PLS-DA score plot and CV results of wild and farmed Salmo salar; (e) OPLS-DA score plot 
and CV results. (f) ROC analysis between wild salmon and farmed salmon group, AUC = 1. The specified number of LVs for each model is set at 10. (g) The predicted 
class probabilities for samples. 
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(Fig. 6b). The model exhibited good performance when the initial 20 
variables were employed to construct the PCA, resulting in high values 
for both R2X (0.99) and Q2 (0.99). 

The PLS-DA model (Fig. 6c) demonstrated great applicability and 
predictive ability with the R2X = 0.99, R2Y = 0.99, Q2 = 0.93, indicating 
that the model is in good fit and has a high level of predictive ability. The 
cross-validation result showed that the model achieved a 100% correct 
classification rate, indicating that it is highly accurate and reliable in 
predicting the samples. While The ROC curve between two wild groups 
is shown in Fig. 6(d). A value of AUC = 1 indicates that the prediction 
model can achieve a perfect prediction using at least one threshold. The 
predicted class probabilities using the PLS-DA classifier are shown in 
Fig. 6(e) with 100% accuracy. The OPLS-DA model achieved an R2X 
value of 0.97, R2Y value of 0.99, and Q2 value of 0.98 and had a cross- 
validation correct classification rate of 100%, indicating that the model 
was not overfitted and had good prediction capabilities. 

To distinguish between wild Salmo salar and Oncorhynchus nerka 
samples, the top twenty significant features were selected according to 
VIP analysis (Fig. S4a) and S-plot (Fig. S4b). The results are listed in 
Table S3. PLS-DA model (Fig. S4c) and OPLS-DA model (Fig. S4d) were 
developed using these 20 features. A classification accuracy of 100% 
was achieved in distinguishing between wild Salmo salar and Onco-
rhynchus nerka samples using both the PLS-DA and OPLS-DA models. 

4. Conclusions 

In this study, we demonstrated the potential of using MALDI-ToF MS 
coupled with chemometric analysis for the discrimination of wild and 

farmed salmon samples. The differences between wild and farmed Salmo 
salar, and the differences between wild Salmo salar and wild Onco-
rhynchus nerka were also explored. This technology provides the basis 
for the high-throughput identification of salmon resources in the market 
and unlocks the potential application areas of MALDI-ToF MS. The PCA, 
PLS-DA, and OPLS-DA models were successfully used in sample classi-
fication with 100% classification accuracy in wild and farmed salmon 
samples authentication. Owing to the high capacity to profile and 
distinguish amongst the different types of salmon samples, MALDI-ToF 
MS combined with chemometric analysis could be viewed as an effec-
tive approach for identifying salmon fraudulence related to wild/farmed 
production methods. Considering the important and growing role 
salmon currently plays in global protein production, the development of 
such technologies can effectively monitor incidences of fraud in the 
seafood sector and further safeguard the legal rights of consumers. 
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