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A B S T R A C T   

Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of mi
crobial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could 
provide information on their variability and stability over longer timescales (>20-year). However, information 
on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this 
study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to 
this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover 
rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the 
Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the 
deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 
0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species 
diversity and altering community composition. Due to environmental filtration pressure from 21 years of 
warming, the low turnover rate (v of warming: − 3.13/-2.00, v of control: − 2.44/− 1.48) of soil microorganisms 
reduces the resistance and resilience of ecological communities, which could lead to higher community similarity 
and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase se
lection pressure on specialist taxa, which directly causes dominant species (v of warming: − 1.63, v of control: 
− 2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than condi
tionally (v of warming: − 1.47, v of control: − 1.75) or always rare taxa (v of warming: − 0.57, v of control: 
− 1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the 
variability and stability of different microbial communities in different habitats had dissimilar biological and 
ecological performances when challenged with an external disturbance. The balance of competition and coop
eration, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosys
tems. Overall, our study enriches the limited information on the temporal variability in microorganism responses 
to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the 
temporal stability of soil ecosystems.   
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1. Introduction 

Microbial communities change over time, with seasonality as a reg
ular characteristic (Buckley and Schmidt, 2003; Docherty et al., 2015; 
Žifčáková et al., 2016; Li et al., 2021a). However, the lack of exploration 
of driving factors microbial dynamics limits our knowledge about their 
variability and stability under climate change. 

Time–decay relationship (TDR) is used to elucidate biological suc
cession dynamics, which quantifies how community similarity changes 
over time (Shade et al., 2013; Wang et al., 2020). Both stochastic and 
deterministic assembly processes influence TDR (Martiny et al., 2011; 
Wang et al., 2017; Xiang et al., 2022), because dispersal limitation and 
environmental selection are the two major drivers regulating time decay 
patterns when microbial communities are inspected over extended pe
riods (Hanson et al., 2012; Zhang et al., 2021). Environmental inter
ference pressure is mainly manifested via stochastic rather than 
deterministic processes (Zhang et al., 2011, 2016; Dang et al., 2022). To 
describe the temporal distribution patterns of microorganisms, several 
studies have attempted to unravel the potential processes and mecha
nisms (Liang et al., 2015a; Guo et al., 2018; Wang et al., 2023). Thus, 
understanding community assembly rules and defining their roles in 
regulating community succession, distribution, and diversity is a 
research topic (Zhou and Ning, 2017; Ning et al., 2020). However, 
estimating individual ecological processes at the microbial community 
level is difficult, because the effect-levels of various ecological processes 
are finer than those of whole communities (Ofiţeru et al., 2010; Caruso 
et al., 2011; Hanson et al., 2012; Nemergut et al., 2013; Graham et al., 
2016). Furthermore, the susceptibility of different microbial taxa to 
drift, diversification rates, and dispersal ability varies (i.e., dispersal 
rates depend on body or cell size) (Fenchel, 1993; Chen et al., 2023). 
Consequently, species within different taxa tend to respond differently 
to external interference. Thus, shifts in community assembly cannot be 
identified at the whole community level, rendering it necessary to 
evaluate assembly processes and other ecological processes at the mi
crobial taxa level. 

Information is also limited on temporal variability in microorganism 
responses to medium- and long-term global warming. Most studies have 
focused on the influence of short-term warming (i.e., days or weeks) 
(Zogg et al., 1997; Waldrop and Firestone, 2006; Liang et al., 2015a; 
Jurburg et al., 2017; Guo et al., 2018; Yan et al., 2022). However, 
studying how long term warming affect succession is required for 
climate change research. The long-term models of climate microbial 
feedback showed that warming usually yields different consequences 
over long- and short-term periods (Melillo et al., 2017; Metcalfe, 2017). 
Based on previous studies (Falk et al., 2013; Kim et al., 2013; Shade 
et al., 2013; Liang et al., 2015a; Xiong et al., 2015; Jiao et al., 2017; Guo 
et al., 2018), short-term warming cannot accurately reflect the overall 
microbial community succession law; thus, medium- and long-term field 
warming experiments must be developed that address this key deficit. 

Seasonal influences on the subsurface microbial community might 
also vary across habitat types and ecosystems (Kuffner et al., 2012; He 
et al., 2017; Chen et al., 2021; Wang et al., 2021). Consequently, tem
poral patterns in dynamics might vary with plant type (Korhonen et al., 
2010; Han et al., 2021). Thus, to elucidate the temporal patterns in the 
soil microbiome dynamics under climate change, a 21 year experimental 
warming was conducted in two typical ecosystems (meadow and shrub 
habitat) on the Qinghai-Tibet Plateau. Soil samples were collected at 
August 2018, December 2018, April 2019, August 2019 to represent the 
four seasons. We tested the following hypotheses: (i) 21 years simulated 
warming would lead to a more homogenous community due to warmed 
soil, resulting in fewer stochastic processes and increased adaptability of 
microorganisms to higher temperatures; (ii) different bacterial taxa or 
communities in different ecosystems would response differently to sea
sonal changes under temperature warming and (iii) assembly processes 
maintain diversity and adjust biogeochemical functionality when faced 
with environmental filtering from simulated warming. 

2. Materials and methods 

2.1. Study site and sample collection 

This study was conducted at the Haibei Alpine Meadow Ecosystem 
Research Station (3220 m above sea level [a.s.l.]; 37◦36′N, 101◦19′E) at 
the Chinese Academy of Sciences, on the northeastern Tibetan Plateau 
(Fig. 1). The climate at the station is plateau continental, with an annual 
mean temperature and precipitation of − 2 ◦C and 500 mm, respectively. 
Two dominant ecosystems are widely distributed in this region: Kobresia 
humilis meadow habitats (grassland GL) and Potentilla fruticosa shrub 
habitats (shrubland SL). Silty clay loam and clay loam of Mat-Cryic 
Cambisol are the main soil type of the shrubland and meadow, respec
tively. Other plant species include Elymus nutans, Stipa aliena, Kobresia 
pygmaea, and Gentiana straminea (Zhang et al., 2017). 

In two field experimental sites (30 m × 30 m) established in 1997, six 
plots (2 m buffer zone between each plot) were randomly selected as 
replicates for each treatment (warming/control). The warming experi
ment was designed with open-top chambers (OTCs) (0.4 m height and 
1.5 m diameter) using Sun-Lite HP fiberglass (Solar Components Cor
poration, Manchester, NH, USA, 1.0 mm thick) to simulate climate 
warming (Fig. S1). The mean temperatures of the soil and air increased 
by 0.3–1.9 ◦C and 1.0–2.0 ◦C, respectively, while the soil moisture 
content declined by 3% between May and September in the warming site 
(see (Klein et al., 2004; Zhang et al., 2017)). The effect of OTCs on 
temperature varied depending on ecosystem type. For instance, gener
ally, the impact of warming was greater in GL than in SL (Klein et al., 
2004). 

Soil samples were collected in August and December 2018, and April 
and August 2019 from two sites. Four soil cores from each plot (50 cm ×
50 cm area) were collected at each event, resulting in 96 samples overall 
(2 ecosystems × 4 seasons × 2 treatments × 6 replicates). Samples from 
the same plot were mixed and sieved (2.0 mm) to remove stones, debris, 
and roots. The sieved sample was separated into two sub-samples and 
stored in a freezer (− 20 ◦C for <1 week) before analyzing 
microorganisms. 

2.2. DNA extraction, amplification, and sequencing 

Total bacterial DNA was extracted from 0.25 g frozen soil samples 
using a Power Soil DNA Isolation Kit (MO BIO Laboratories). Microbial 
communities were profiled by targeting a region of the 16S rRNA gene 
for bacteria. Corresponding polymerase chain reaction (PCR) assays 
were performed using 338F/806R primer pairs (Wang et al., 2019). The 
internal transcribed spacer amplification procedures are shown in Ap
pendix S1. High-throughput sequencing analysis was performed using 
the Illumina Hiseq 2500 platform (2 × 250 paired ends). 

2.3. Processing of sequencing data 

To obtain clean tags, sequences were filtered using QIIME quality 
control (Bokulich et al., 2013) and sorted by barcode using the UCHIME 
algorithm. Chimeric sequences were removed (Edgar et al., 2011). Using 
UPARSE software, sequences were clustered and assigned to operational 
taxonomic units (OTUs) with a 97% similarity cutoff. Bacterial repre
sentative sequences were then assigned to taxonomic lineages within the 
SILVA database using RDP Classifier, BLAST, and QIIME2 software. 
QIIME2 software was used to calculate the OTU richness, Chao1 esti
mator (Chao1), Shannon, Simpson, abundance-based coverage esti
mator (ACE) indices and phylogenetic diversity (PD). Shannon, 
Simpson, OTU richness, Chao1and ACE were used as taxonomic di
versity parameters, phylogenetic diversity as phylogenetic diversity 
parameters. 
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2.4. Definition of abundant, rare taxa and generalists, specialists 

In this study, we separated the whole community into sub
communities based on relative abundance thresholds (0.5% for abun
dant taxa and 0.05% for rare taxa). We then classified the 
subcommunities into six groups based on published studies (Liu et al., 
2015; Dai et al., 2016; Chen et al., 2017; Xue et al., 2018) (Table S1). The 
six groups were: CRAT, conditionally rare and abundant taxa; CAT, 
conditionally abundant taxa; AAT, always abundant taxa; CRT, condi
tionally rare taxa; ART, always rare taxa; and MT, moderate taxa. We 
defined CRAT, AAT, and CAT as dominant taxa to conduct further study 
(Chen et al., 2017) (Table S1). Moreover, we distinguished the OTUs as 
generalists or specialists based on their occurrence, and by using per
mutation algorithms as implemented in “EcolUtils” (Salazar, 2018). 

2.5. Network analysis 

Network analyses were implemented to evaluate the patterns of 
coexistence among the bacterial community using the Python module 
“SparCC” (Friedman and Alm, 2012). SparCC correlations and p-values 
among bacterial communities were obtained based on 999 permutations 
of random selections (correlations ≥0.8 and P < 0.05). Then, the visu
alization of networks and property measurements of calculations were 
realized in Gephi (Bastian et al., 2009). By measuring the positive 
pairwise correlations with positive cohesion, it was possible to describe 
the degree of cooperative behavior among microorganism community 
members. In contrast, the degree of competitive behavior among 
microorganism community members was measured with negative 
cohesion. 

2.6. Time–decay relationship 

We evaluated TDRs of soil bacteria based on phylogenetic and 
taxonomic diversity, using linear regressions between temporal distance 

and community similarity to perceive the influence of warming on the 
temporal turnover of bacteria (Chen et al., 2015). Bray–Curtis distance 
was used as the taxonomic-based metric of difference in community 
composition based on the resampled OTU tables in R using the vegan 
package. Weighted UniFrac was used as the phylogenetic-based metrics 
of differences in community composition in R using the phyloseq pack
age. The Arrhenius (log–log) plot was used to model the species–time 
relationship as:  

ln (Ss) = constant− v ln (T)                                                                     

where Ss is the pairwise similarity of community structure, T is temporal 
span, and v is the evaluation of the rate of species turnover over time. 

The weighted UniFrac distances and Bray–Curtis dissimilarity met
rics were computed to measure the diversity of phylogenetic and 
taxonomic-based metrics in R via the “phyloseq” and “vegan” package 
using the resampled OTU tables (Dixon, 2003; McMurdie and Holmes, 
2013). We then tested whether differences in the slopes of TDRs were 
statistically significant using a permutation-based linear regression 
approach in the function of diffslope within the package of “simba” 
(Nekola and White, 1999). 

2.7. Community assembly 

The null model was used to evaluate the importance of deterministic 
mechanisms versus stochastic mechanisms underlying bacterial assem
bly processes. To evaluate the relative importance of stochastic pro
cesses in shaping community structure, the stochastic ratio was 
calculated using a modified method, which is detailed in a previous 
study, via the function of “ses.mntd” within the R package of “picante” 
(Zhou et al., 2014). Firstly, quantify the degree of phylogenetic turnover 
for each paired community (βMNTDobs) and zero distribution 
(βMNTDnull) for comparison, βNTI value characterization βMNTDobs and 
β the size of the deviation between MNTDnull. Significant βNTI value (| 

Fig. 1. | The TDRs based on taxonomic diversity measured by Bray–Curtis (a) and phylogenetic diversity measured by Weighted UniFrac (b) of bacterial communities 
under warming and control conditions. Temporal change in community differences based on Bray–Curtis dissimilarity metrics (c) and Weighted UniFrac dissimilarity 
metrics (d) between warming and control conditions. The shaded area around the lines covers 95% confidence interval of the correlations. 
GW, Grass Land warming; GCK, Grass Land-control; SW, Shrub Land-Warming; SCK, Shrub Land-control. 
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βNTI | > 2) is the result of the selection, βNTI < − 2 and βNTI >2 refers to 
homogeneous selection and heterogeneous selection, respectively. For 
non-significant βNTI values (| βNTI | < 2) refers to dispersal limitation 
(RCBray > 0.95), homogenizing dispersal (RCBray < − 0.95) and ecolog
ical drift (| RCBray | ≤ 0.95). 

The neutral community model (NCM) was used to analyze the 
dominance of stochastic processes on community assembly by predict
ing the correlation between relative abundance and OTU detection 
frequency (Sloan et al., 2006). In this model, immigration rate was 
defined by m, the overall fit to the neutral model was defined by R2 

(Sloan et al., 2006). The 95% confidence intervals around all fitting 
statistics were calculated by bootstrapping with 1000 bootstrap 
replicates. 

2.8. Statistical analysis 

PICRUSt was used to construct the bacterial metabolic pathways in a 
previous study (Langille et al., 2013) based on the Kyoto Encyclopedia of 
Genes and Genomes database (KEGG database, https://www.kegg. 
jp/kegg/) and NCBI NR database (https://www.ncbi.nlm.nih.gov/) 
(Zheng et al., 2019). 

Statistical analyses were performed with the vegan package in R 
software 3.1.1, unless otherwise stated. The effects of warming on soil 
variables, plant characteristics, and ecosystem function were tested by 
repeated-measures analysis of variance (ANOVA). Temporal patterns in 
bacterial communities under different treatments were estimated by 
principal coordinate analysis (PCoA) based on the Bray–Curtis dissimi
larity. Non-parametric multivariate analysis of variance (Adonis) was 
used to detect the effects of warming on soil bacterial communities via 
the function Adonis within the R package vegan (Zhou et al., 2012). 
Linear mixed-effects models (function lmer from the lme4 package), in 
which warming (or season) was regarded as a fixed factor and block, 
treated as a random factor, were used to detect the effect of warming on 
microbial responses (diversity, cohesion and network properties). 

3. Results 

3.1. Responses of bacterial community alpha diversity and community 
structure to 21 years of simulated warming across seasons 

After 21 years of simulated warming, bacterial OTU richness, ACE, 
Chao1, and PD significantly decreased in GL (P < 0.05). In contrast, the 
bacteria of each index (except for Simpson) remained unchanged under 
warming in SL (P > 0.05) (Fig. S1). The diversity of bacteria decreased in 
GL in spring, summer, and fall, but not winter based on the analysis of 
ACE, Chao1 index (P < 0.05). However, diversity did not alter between 
the warming and control treatments across all four seasons in SL (P >
0.05) (Fig. S2). The variance in plant community and soil variables in 
response to climate warming and seasonal variations could induce shifts 
in microbial communities. The structure of the bacterial community was 
altered by warming, as shown in the PCoA (Bray-Curtis dissimilarity), 
both in GL and SL (Fig. S3). For example, the relative abundance of 
Acidobacteria, Actinobacteria, Chloroflexi, Verrucomicrobia, Rokubac
teria, Gemmatimonadetes and Nitrospirae between the warming and 
control site of GL (Fig. S4) and the Proteobacteria, Acidobacteria, Bac
teroidetes, Chloroflexi, Verrucomicrobia, Nitrospirae and Firmicutes in 
SL were different. 

To quantify temporal dynamics in the community, we classified all 
OTUs into abundant and rare taxa (Fig. S5). A small portion of the whole 
community was classified as dominant (5.252–6.521% OTU richness), 
and accounted for 37.676–40.232% of the total abundance. However, 
OTUs that were CRT encompassed a huge proportion of taxa 
(64.234–67.318% OTU richness), accounting for 50.862–51.302% of 
total abundance. OTUs that were ART also encompassed a large pro
portion of taxa (25.261–29.202% OTU richness), accounting for 
5.487–6.524% of total abundance (Table S1). 

Climate warming had a significant effect on both the composition of 
abundant and rare subcommunities in both GL and SL. The structure of 
each bacterial subcommunity was altered by climate warming and 
seasonal variations, as shown in the PCoA (Bray–Curtis dissimilarity), in 
both GL and SL (Fig. S6). Adonis showed that the structure of each 
bacterial subcommunity in warmed plots significantly differed from that 
of subcommunities in control plots (P < 0.05) (Table S2). The structure 
of each bacterial subcommunity also differed among seasons, as shown 
in the PCoA based on Bray-Curtis dissimilarity in both GL and SL 
(Fig. S6). Adonis also showed that season led to differences in the 
structure of each bacterial subcommunity (P < 0.05) (Table S2). 

3.2. Changes in microbial temporal turnover under 21 years simulated 
warming 

The GL and SL microbiomes exhibited significant TDRs, under both 
warming and ambient temperature, based on taxonomic diversity (P <
0.001) (Fig. 1a). Bacteria in GL and SL also exhibited significant TDRs 
both under warming and ambient temperature, based on phylogenetic 
diversity (P < 0.001) (Fig. 1b). The slopes of TDRs in GL based on both 
diversity metrics (weighted UniFrac and Bray–Curtis) were significantly 
shallower under warming than the control for bacteria (Bray–Curtis: v =
− 3.1 to − 2.44, P = 0.036; weighted UniFrac: v = − 1.48 to − 2.00, P <
0.011) (Fig. 1a and b). However, there was no difference between the 
warming and control treatments for the slopes of TDRs in SL (P =
0.4331; P = 0.357) (Fig. 1a and b). 

The bacterial subcommunities in GL and SL had significant TDRs 
under both warming and ambient temperature based on taxonomic and 
phylogenetic diversity (P < 0.05) (Fig. 2, S7). The slopes of ART and 
dominant taxa TDRs in GL based on the diversity metrics (weighted 
UniFrac and Bray–Curtis) were significantly less steep under warming 
than the control for bacteria (P < 0.05) (Fig. 2 and S7a–c). However, 
there was no difference between warming and control treatments for the 
slopes of TDRs in SL based on the two diversity metrics (P > 0.05) (Fig. 2 
and S7d–f). Thus, the continuous changes induced by warming in each 
subsurface GL subcommunity over time differed from those under 
ambient temperature, but were the same as those in SL. 

Our results further revealed that the differences of microbiome GL 
structure between warming and control increased linearly with time 
(weighted UniFrac and Bray–Curtis) diversity metrics (slope = 0.004, P 
= 0.029; slope = 0.003, P = 0.024), however, the increases of SL were 
not significant (slope = 0.005, P = 0.056; slope = 0.004, P = 0.079) 
(Fig. 1c and d). Moreover, the distinctions of bacterial subcommunity 
structure in GL between control and warming all increased linearly with 
time based on the Bray–Curtis and weighted UniFrac diversity metrics 
(but not for ART) (P < 0.05), nonetheless, the increases of SL were not 
significant (apart from dominant taxa) (P > 0.05) (Fig. 3a–d). In general, 
the response sensitivity (the high slope of the community differences) of 
dominant species to warming was higher than that of CRT and ART 
(Fig. 3a–d). 

3.3. Fit to the neutral model and null model of community assembly 

The NCM successfully estimated much of the relationship between 
the occurrence frequency of OTUs and variation in their relative abun
dance (Fig. 4), with 52.4% and 55.6% of explained overall microbiome 
variance for GL and SL, respectively, under ambient temperature 
(Fig. 4). For any treatment or site, there were several bacterial sub
communities that occurred more or less (below (yellow: lower dispersal 
ability) or above (red: higher migration ability) neutral prediction) 
frequently than predicted by NCM (Fig. 4). However, the NCM of bac
terial community showed large explained community variance for 
overall bacterial community (GL range: 52.4–46.7%, SL range: 
55.6–52.2%), particularly at each subcommunity level: dominant taxa 
(GL range: 43.6–37.5%, but not for SL), CRT (GL range: 56.6–48.3%, SL 
range: 54.8–54.3%), and ART (GL range: 64.0–59.3%, SL range: 
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65.1–60.6%) (Fig. 4). The high temperature decreases the dispersal 
limitation with the increase in undominated process in the various 
subcommunities in GL based on quantifying the deviation of phyloge
netic turnover, however, the phenomenon in SL is just the opposite 
(Fig. S8). Moreover, the species dispersal of ART was higher than CRT 
and dominant taxa under both warming and ambient temperature of GL 
and SL (Fig. 4). These results suggest that the essential characteristics of 
bacterial taxonomy determine the characteristics of their community 
assembly processes to some extent. 

The dominant taxa included a relatively high proportion of non- 
neutral taxa and a low proportion of neutral taxa. CRT included a 
more balanced ratio of neutral and non-neutral taxa. ART were 
composed of a relatively high proportion of neutral taxa (Table 1). The 
dominant taxa also included a relatively high proportion of specialist 
taxa, and lacked generalist taxa. CRT comprised a more balanced com
bination of specialist and generalist taxa. ART comprised a relatively 
high proportion of generalist taxa (Table 1). 

Climate warming significantly affected both neutral and non-neutral 
fractions of community composition in both GL and SL. The community 
structures of both GL and SL were altered by warming, as shown in the 
PCoA (Bray–Curtis dissimilarity) (Fig. S9). Adonis also showed that each 

fraction of community composition in the control plots differed signif
icantly from the warming plots (P < 0.05) (Table S2). 

The neutral and non-neutral fractions of the bacterial communities in 
GL and SL had significant TDRs under both warming and ambient 
temperature based on phylogenetic and taxonomic diversity (P < 0.05) 
(Figs. S10 and S11). The slopes of each TDR fraction (neutral and non- 
neutral) in GL were gentler under warming than the control for bacte
ria (P < 0.05), based on the diversity metrics (weighted UniFrac and 
Bray–Curtis) (Fig. S10 and S11a–b). However, there was no difference 
between the warming and control plots for the slopes of TDRs in SL 
based on the two diversity metrics (P > 0.05) (Fig. S10 and S11c–d). 

Differences to the neutral and non-neutral fractions in the composi
tion of the bacterial community in GL increased linearly with time in 
both the control and warming plots based on weighted UniFrac and 
Bray–Curtis diversity metrics (P < 0.05). SL also showed a significant 
increase (P < 0.05), but not for neutral taxa (P > 0.05) (Figs. S12a–d). 
Thus, the neutral fractions of bacteria appeared to be more stable than 
those of non-neutral fractions. 

Fig. 2. | The TDRs based on taxonomic diversity (measured by Bray–Curtis) of bacterial subcommunities under warming and control conditions in Grassland (a, b, c) 
and in Shrubland (d, e, f). 
The shaded area around the lines covers 95% confidence interval of the correlations. 
Dominant represents taxa including three categories of abundant taxa including AAT (always-abundant taxa), CAT (conditionally abundant taxa) and CRAT 
(conditionally rare and abundant taxa), CRT, conditionally rare taxa; ART, always-rare taxa. 
GW, Grass Land warming; GCK, Grass Land-control; SW, Shrub Land-Warming; SCK, Shrub Land-control. 

Fig. 3. | Temporal change in subcommunity differences based on Bray–Curtis dissimilarity metrics(a, b) and weighted UniFrac dissimilarity metrics (c, d) between 
warming and control conditions. The shaded area around the lines covers 95% confidence interval of the correlations. a,c Grassland. b,d Shrubland. 
Dominant represents taxa including three categories of abundant taxa including AAT (always-abundant taxa), CAT (conditionally abundant taxa) and CRAT 
(conditionally rare and abundant taxa), CRT, conditionally rare taxa; ART, always-rare taxa. 
GL, Grass Land; SL, Shrub Land-Warming. 
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3.4. Co-occurrence patterns of bacteria and mechanism of ecosystem 
functions 

Positive and negative cohesion was significantly higher in the 
warming plot than in the control plot GL, due to ART and CRT having 
higher cohesion (P < 0.05) (Fig. S13). Thus, climate warming might 
enhance biotic interactions by increasing connectedness between spe
cies. The ratio of negative cohesion to positive cohesion significantly 
decreased in the warming plots of SL (P < 0.05) (Fig. S14), but not for 

that in GL. In short, under 21 years pressure of climate warming, the 
dominant position of positive cohesion in molecular networks was 
strengthened in SL. The lower modularity in the warming plot was 
significantly lower than that of the control in GL and SL (P < 0.05) 
(Fig. S15). 

Warming temperature significantly increased the average degree, 
average path length, connectance, global clustering coefficient, 
centralization closeness and centralization betweenness in SL (P <
0.05). In comparison, warming temperature caused average path length, 
centralization betweenness, centralization closeness and global clus
tering coefficient to decrease in GL (P < 0.05 (Fig. S15). Overall, the 
responses of molecular ecological networks to warming temperature 
differed substantially between the two habitats. Pairwise comparisons of 
βNTI values for the bacterial community were significantly and posi
tively correlated with the positive/negative cohesion of dominant taxa, 
CRT, and ART (Fig. 5a), with a shift from stochastic processes to 
deterministic processes increasing cohesion within each subcommunity. 
The ratio of negative to positive cohesion created a stronger correlation 
with community functions associated with plant polymer degradation 
and nitrogen and phosphorus cycling than other network characteristics 
and species diversity (Shannon, ACE, Chao1, OTU richness) (Fig. 5b). 

Fig. 4. Fit of the neutral community model (NCM) of community assembly. The solid blue lines indicate the best fit to the NCM, and the dashed black lines represent 
95% confidence intervals around the model prediction. OTUs that occur more(Red) or less(Yellow) frequently than predicted by the NCM. Values of m indicate the 
estimates of dispersal rate between communities, R2indicates the fit to this model. 
Dominant represents taxa including three categories of abundant taxa including AAT (always-abundant taxa), CAT (conditionally abundant taxa) and CRAT 
(conditionally rare and abundant taxa), CRT, conditionally rare taxa; ART, always-rare taxa. 
GW, Grass Land warming; GCK, Grass Land-control; SW, Shrub Land-Warming; SCK, Shrub Land-control. 

Table 1 
| Species composition of different subcommunities.  

Category Dominant(%) CRT(%) ART(%) 

GL SL GL SL GL SL 

Neutral 12.195 5.102 44.058 40.991 57.699 58.251 
Non-neutral 87.805 94.898 55.942 59.009 42.301 41.749 
Specialist 11.382 5.102 13.248 13.690 10.575 9.076 
Generalist 0.000 0.000 12.869 9.205 20.408 20.297 
Non significant 88.618 94.898 73.883 77.105 69.017 70.627 

Dominant represents taxa including three categories of abundant taxa including 
AAT (always-abundant taxa), CAT (conditionally abundant taxa) and CRAT 
(conditionally rare and abundant taxa), CRT, conditionally rare taxa; ART, 
always-rare taxa. 
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4. Discussion 

4.1. Simulated warming disturbance drives seasonal variability in 
bacterial communities 

Our results revealing that climate warming interferes with seasonal 
dynamics in microbial community composition and community assem
bly processes, creating new and uncertain consequences regarding 
community structure and species diversity. As expected, PCoA showed 
that each bacterial subcommunity in the warming sites was distinct to 
the control community in both SL and GL ecosystems. Twenty-one years 
of warming promotes deterministic over stochastic processes in con
trolling community composition in all four seasons, resulting in a 
determinism-dominated assembly (except for winter in GL). Strong 
environmental pressure deterministically selects species, reducing 
neutrality and historic contingency. Environmental filtering from 
deterministic processes only selects individuals with high environmental 
tolerance or other beneficial characteristics to survive (Gamez-Virues 
et al., 2015), which results in biotic homogenization, with the same 
β-diversity each summer (Mori et al., 2015). When environmental 
filtering pressure was lacking after 1 year of warming, the stochastic 
assembly process of the community led to the higher β-diversity of the 
community than the previous year, as observed in the control sites of GL 
and SL. 

Shifts in community structure generally alter species diversity; 
however, the bacterial diversity of shrub sites might have recovered 
through a combination of colonization/re-establishment (through 
dispersal and seed banks) and/or competitive release (transfer of 
dominant species) after simulated warming (21 years in our study), 
similar to the restoration of diversity in above-ground vegetation (Zhang 
et al., 2017). Twenty-one years of observations of increasing tempera
ture in the Plateau meadow showed that the decline in diversity was 
permanent, or that the negative impact of high temperature on diversity 
was still in progress, because warming strongly altered the balance of 
community diversity in this ecosystem. Except for winter, the negative 
effects of warming on soil bacterial diversity in the plateau meadow 
ecosystems appeared to be stable in all seasons. 

4.2. Warming disturbed the dominant role of stochastic processes in 
controlling community structure 

We found that 21 years of simulated warming reduced stochasticity 
in the turnover of community structure. There was a significant linear 
decline in the similarity of the bacterial community and subcommunities 
across the 1-year warming experiment; however, v values were low. 
Furthermore, control plots had considerably steeper slopes for TDRs 
within the bacteria community (Bray–Curtis and/or weighted UniFrac 
metrics) than did warming plots. The shift in TDRs was strongly corre
lated with the decline in stochastic assembly. Twenty-one years of 
simulated warming increased determinacy, reducing stochasticity in the 
microbial community, selecting for temperature adaptive advantages. 
This phenomenon led to greater community similarity as the conse
quence of a gentler turnover pattern. Due to the continuation of 21 years 
simulated warming effects, the soil environments of GL and SL were 
subjected to stress during periodic high summer temperatures, which 
enhanced environmental filtration pressure in warming plots compared 
to the control. This pressure prevented species lacking certain physio
logical characteristics from appearing in local communities (Kraft et al., 
2015). In a population system of a species exposed to large environ
mental changes, deterministic processes overwhelm stochastic processes 
(Wang et al., 2013). The warming climate might also indirectly 
strengthen the selection of the subsurface community by altering the 
plant community (Yuan et al., 2016) or through more regular inputs of 
organic accessible C and N from plants influencing plant community 
composition (Liang et al., 2015b; Huang et al., 2019). Thus, a more 
specialized habitat would promote the dominance of important deter
ministic processes for shaping the bacterial community structure in our 
findings (Robinson et al., 2010; Valyi et al., 2016). However, our results 
are contradictory to those of a previous study, which showed that 6 
years of simulated warming significantly increased the rates of temporal 
soil microbial turnover (Guo et al., 2018). This difference might be 
attributed to higher microbial activity during dispersal, reproduction, 
extinction, and colonization caused by faster metabolic kinetics under 
warmer circumstances at the earlier stage of global warming (Allen 
et al., 2002; Brown et al., 2004). Based on results from one unusually 
long time series of global warming (26 years), the microbiome passed 
through four main stages characterized by different structural and 

Fig. 5. | Relationships between the bacterial cohesion and β-nearest taxon index (βNTI), network properties and community functional traits under warming. a, 
Linear regressions models and associated correlation coefficients are provided on each panel. 
b, Pearson correlations of network properties and relative abundances of predicted functional gene. For significant (P ≤ 0.05) correlations, positive correlation 
coefficients are highlighted in red, while negative correlation coefficients are highlighted in blue. 
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functional properties (Melillo et al., 2017). Hence, the warming climate 
likely influences microbial assembly processes and associated underly
ing mechanisms differently at different stages. 

4.3. Different successional patterns of dominant, always-rare, and 
conditionally rare subcommunities 

We found that CRT were more resistant to disturbance caused by 
climate warming than dominant taxa and ART, which was reflected in 
the lack of significant differences in CRT temporal turnover slopes be
tween warming and control plots. Temporal turnover in microbes tends 
to be lower than that of large organisms (Shade et al., 2013), due to the 
specific biological characteristics of microbes (massive population sizes, 
high dispersal rates, rapid asexual reproduction, and resistance to 
extinction). Thus, different microbial subcommunities with various 
biological traits (body and cell size (Fenchel, 1993) and the existence of 
spores or cysts (Hanson et al., 2012)) exhibited different slopes for 
time-decay relationships in response to a warming climate, which 
resulted in varying sensitivity and resilience to disturbance. Thus, 
comparing the resilience and resistance of different microbial taxa could 
be measured using temporal turnover when challenged by outside dis
turbances (Shade et al., 2011, 2012). 

Variation in the dominant bacterial taxa composition between the 
control and warming plots increased gradually with time. Dominant 
species included a greater percentage of habitat specialists than habitat 
generalists, whereas CRT and ART were composed of a balanced per
centage of the two groups. Habitat generalists can occupy a wider range 
of habitats, and so are more ubiquitous. In contrast, specialists have very 
limited environmental tolerances, and are more susceptible to changes 
in temperature (Pandit et al., 2009; Vazquez et al., 2017). A previous 
study suggested that there is stronger filtration pressure from deter
ministic processes on specialists than generalists (Mo et al., 2021). The 
process of selection generally differentiates microbial composition 
among locations. The environment selects for taxa that are relatively 
better adapted to the conditions at a given moment, based on the 
different responses of microbes to environmental conditions (Vellend, 
2010). As selective factors have a continuous temporal effect, higher 
degrees of selection tend to produce a more frequent temporal turnover 
in the TDR. In particular, the distance–decay relationship of dominant 
taxa subjected to the stress of global warming should be stronger when 
dispersal is more limited, such as across disconnected freshwater bodies 
(Barberán and Casamayor, 2010). Overall, our findings revealed the 
multiple significant influences of experimental warming on the succes
sion of soil bacterial subcommunities. In summary, the influence of 
global warming on the bacterial TDR varied with respect to time-scale, 
habitat, and taxon resolution in our study. Therefore, the interaction 
among these factors likely shapes the distinct succession sequences in 
community composition, leading to temporally changing patterns in 
ecological functional processes (Fierer et al., 2007; Strickland et al., 
2009). 

4.4. Impact of community assembly on interaction patterns and ecosystem 
function 

Our results showed that the interactions among taxa are driven by 
environmental selection. Previous studies confirmed that the interaction 
pattern of microbes is correlated to assembly processes in subsurface 
ecosystems (Plerou et al., 1999) and river systems (Aitchison, 1982). 
Our study showed that higher temperatures induced more bacterial as
sociations (both negative and positive) in the GL warming plot, with the 
ratio of negative to positive cohesion significantly decreasing in the SL 
warming plot. Negative/positive cohesion also increased with the 
importance of deterministic processes and was induced by high tem
peratures. This result indicated that the interaction model became more 
complex when the community was increasingly dominated (controlled) 
by deterministic processes. This phenomenon might be attributed to 

more cooperative behaviors that provide direct benefits to other com
munity members, offsetting pressures on environmental selection. 
Alternatively, environmental filtering might be more intense in the 
subsurface community when the temperature is higher, causing a higher 
degree of negative cohesion among bacteria, due to multiple antago
nistic interspecific behaviors arising under the pressures of environ
mental selection. Overall, a higher negative/positive cohesion or a 
decrease in the ratio of negative to positive biotic cohesion appeared to 
affect bacterial responses to temperature stress in our study. 

Biodiversity is a vital driver of ecosystem functioning, because the 
major loss of biodiversity is expected to negatively impact ecosystem 
functions and services (Cardinale, 2011). However, the network prop
erties typically exhibit stronger correlations with the abundance of 
genes related to plant polymer degradation and nitrogen and phos
phorus cycling, particularly the ratio of negative and positive cohesion, 
when compared to other network properties and other indices like 
alpha-diversity. The weak correlation between diversity and ecosystem 
function might be influenced by functional redundancy, complemen
tarity (Becker et al., 2012; Liang et al., 2016; Maynard et al., 2017), or 
species competition based on our results. Functional variation in the 
ecosystem might arise because adaptation to environmental stress 
induced from global warming might enhance interspecific environ
mental selection pressure, resulting in competitive and cooperative be
haviors (Ma et al., 2020), which are further mediated by changes to 
community functions (Li et al., 2021b). Thus, our results confirm prior 
observations that the balance between negative and positive cohesion 
among the bacterial community determines the comprehensive perfor
mance of functional processes in the ecosystem (Bardgett and Van Der 
Putten, 2014). Overall, intrinsic linkages between community assembly 
and microbial interactions are regarded as the mechanism of deter
ministic (niche-based) assembly shaping community composition (Nazir 
et al., 2009; Chase and Myers, 2011; Zhou and Ning, 2017) and related 
functional processes. 

5. Conclusion 

Our study found that global warming affects the seasonal dynamics 
of bacterial communities, and this is due to stronger selective pressure 
from deterministic processes. This impacts the community structure and 
related functions under climate warming. The succession dynamics of 
bacteria were notably affected by simulated warming, and dominant 
specialist species were subjected to higher impact under such condi
tions. The study showed that 21 years of warming regulated the rhythm 
of seasonal turnover and coexistence relationships of microbes, and 
contributed to maintaining ecosystem services. This study enhances our 
knowledge about the temporal variability in microorganism responses to 
global warming, and provides a scientific foundation for assessing the 
influence of climate warming on soil ecosystems. 
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