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A B S T R A C T   

Spatially and timely accurate information about tropical forest disturbances is crucial for tracking critical forest 
changes, supporting forest management, and enabling law enforcement activities. In recent years, forest 
disturbance monitoring and alerting using cloud-penetrating Synthetic Aperture Radar (SAR) imagery has proven 
effective at national and pan-tropical scales. Related detection approaches mostly rely on detecting post- 
disturbance altered backscatter values in C or L-band SAR backscatter time series. Some disturbances are 
characterized by post-disturbance tree remnants or debris. For the time periods where these kinds of remnants 
remain present at the surface, the SAR backscatter values can be similar to those of stable forest. This can cause 
omission errors and delayed detection and it is considered a key shortcoming of current backscatter-based ap-
proaches. We hypothesized that despite fairly stable backscatter values, different orientation and arrangement of 
tree remnants leads to an altered heterogeneity of neighboring pixel values and that this can be quantified by 
textural features. We assessed six uncorrelated Gray-Level Co-Occurrence Matrix (GLCM) textural features using 
dense Sentinel-1C-band SAR time series. Forest disturbances, based on each GLCM feature using a pixel-based 
probabilistic change detection algorithm, were compared against results from forest disturbances mapped 
based only on backscatter data. We studied the impact of speckle-filtering on GLCM features and GLCM kernel 
sizes. We developed a method to combine backscatter and GLCM features, and we evaluated its robustness for a 
variety of natural and human-induced forest disturbance types across the Amazon Biome. Out of the six tested 
GLCM features GLCM Sum Average (SAVG) performed best. GLCM features derived from non-speckle filtered and 
speckle-filtered backscatter data did not show a noticeable impact on accuracy. A combination of backscatter and 
GLCM SAVG resulted in a reduced omission error of up to 36% and an improved timeliness of detections by 
average of to 30 days, with individual detection showing even higher improvements on a pixel level. The method 
was found to be robust across a variety of forest disturbance types. The largest reduction of omission errors and 
greatest improvement of timeliness was evident for sites with large unfragmented disturbance patches (e.g., 
large-scale clearings, fires and mining). For increasing GLCM kernel sizes, we observed a trade-off between 
reduced omission errors combined with improved timeliness and increasing commission errors. A kernel size of 5 
was found to provide the best trade-off for reducing omission errors and improving timeliness while not intro-
ducing commission errors. The results emphasize that combining SAR-based textural features and backscatter can 
overcome omission errors caused by post-disturbance tree remnants or debris. This can help to improve the 
consistency and timelines of short (C-band) and long wavelength (L-band) based operational SAR disturbance 
monitoring and alerting. Result maps can be visualized via: https://johannesballing.users.earthengine.app/view/ 
forest-disturbance-texture.   

1. Introduction 

Tropical forests are a key component of global biodiversity and the 
global carbon cycle (Boulton et al., 2022; Sullivan et al., 2017). Both 

human-induced and natural forest disturbances have increased in recent 
years and have been significantly harming tropical forests (Sande et al., 
2019; Song et al., 2018). The ecological impact of forest disturbances 
varies considerably based on their type, intensity and the land 
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management practices at place (Bowd et al., 2021; Zambrano et al., 
2020). Forest disturbances caused by human-induced land management 
practices include large-scale commercial logging, mining, smallholder 
agriculture, and selective logging (Curtis et al., 2018; Tyukavina et al., 
2018), with many of these being unsustainable and illegal (Zimmerman 
and Kormos, 2012). Wildfire, windthrow, landslides, and meandering 
rivers are considered the dominant natural disturbances in the humid 
tropics (Espírito-Santo et al., 2014). Spatially and timely accurate in-
formation about new forest disturbances is crucial to empower policy 
makers and stakeholders to protect remaining forests and to reduce 
illegal and unsustainable activities (Moffette et al., 2021; Weisse et al., 
2019). 

Satellite-based remote sensing has proven a valuable tool for moni-
toring changes in humid tropical forests at large-scales (De Sy et al., 
2012; Hirschmugl et al., 2020). Synthetic Aperture Radar (SAR) satel-
lites are particularly capable in the tropics as radar signals are able to 
penetrate cloud cover (Ballère et al., 2021; Joshi et al., 2016). In the 
past, SAR-based forest disturbance monitoring relied mainly on long- 
wavelength L-band (~23 cm) radar from ALOS PALSAR and ALOS-2 
PALSAR-2 (Achard and Hansen, 2016; Shimada et al., 2014). Since 
2014, C-band data from Sentinel-1 satellites has been freely available, 
and a large number of studies have focused on exploiting the potential of 
dense short-wavelength radar for large-scale forest disturbance moni-
toring (Bullock et al., 2022; Langner and Carboni, 2021; Reiche et al., 
2018a, 2018b; Ygorra et al., 2021). However, the deeper penetration 
depth and lower saturation level of L-band radar makes it more suitable 
for forest disturbance monitoring when compared to shorter wave-
lengths like C-band radar (~5.6 cm) (Ulaby and Long, 2013). While L- 
band radar penetrates through the top part of the forest canopy and 
interacts with larger tree elements including stems and branches, C-band 
radar mainly interacts with the smaller elements of the tree canopy 
including smaller branches and leaves in the top part of the canopy 
(Woodhouse, 2006). 

In recent years, a number of SAR-based forest disturbance moni-
toring and alerting systems have been developed (e.g., RADD, JJ-FAST 

and Deter-B) (Doblas et al., 2022, Doblas et al. 2020; Hoekman et al., 
2020; Reiche et al., 2021; Watanabe et al., 2021). These systems aim to 
detect new forest disturbances as quickly as possible with as few omis-
sion and commission errors as possible. Implemented detection methods 
analyze SAR backscatter time series and utilize altered post-disturbance 
backscatter values as an indicator of disturbed forest (Doblas et al., 
2022; Reiche et al., 2021). For C-band disrupted or removed trees (e.g., 
branches, stems) lead to a reduction of direct surface scattering and/or a 
reduction of volume scattering resulting in decreased backscatter values 
in co– and cross-polarization respectively (Ulaby and Long, 2013; 
Woodhouse, 2006). For L-band similarly a reduction of volume scat-
tering in the cross-polarization result in decreased backscatter values, 
whereas for co-polarization (especially HH) a gain of double-bounce at 
the tree trunks result in increased backscatter values (Watanabe et al 
2021). 

Some disturbance events, such as fires and logging, are characterized 
by post-disturbance tree remnants (e.g., disrupted trees, piles of tree 
remnants, low secondary vegetation) (Fig. 1). 

Studies showed that tree remnants and debris can cause backscatter 
values similar to those of undisturbed forest (Balling et al., 2021; 
Hoekman et al., 2020) (Fig. 2). This might be the result of comparable or 
enhanced scatter mechanisms similar to those present for intact forest 
and can lead to a decrease in the forest/non-forest backscatter contrast. 
As a result, disturbances can go undetected, leading to omission errors or 
delayed detections in cases where the tree remnants are eventually 
removed (e.g., for preparing land for new cultivation). Large-scale forest 
disturbance events are predominantly affected, whereas for small-scale 
disturbances (e.g., logging roads, selective logging), a strong decrease 
in backscatter values is caused by radar shadow (Bouvet et al., 2018; 
Reiche et al., 2021). Stable radar backscatter from post-disturbance tree 
remnants is more dominant for shorter wavelengths, like X and C-band 
SAR data (Mitchell et al., 2014), but omission errors have also been 
observed for long wavelength L-band radar (Watanabe et al., 2021). 
These omission errors and delayed detections are evident in current 
SAR-based forest monitoring systems and are considered a major 

Fig. 1. Aerial photos of forest disturbances with post-disturbance tree remnants in the Brazilian Amazon. Medium (A) and large-scale (B) forest clearings, forest 
disturbance characterized by piled rows of tree remnants (C) and fire-related forest disturbance (D). Photos taken and provided by Juan Doblas/INPE/CEN-
IMA-IBAMA. 
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shortcoming that has not yet been addressed (Doblas et al., 2022a). 
Delayed detections can be as vivid for monitoring and alerting systems 
as omission errors, as these decrease the timeliness of detections and 
hamper swift support of law enforcement tools. 

Tree remnants and debris may alter the heterogeneity of the post- 
disturbance backscatter signal of adjacent pixels compared to the 
somewhat homogeneous pre-disturbance state of stable forest. This kind 
of heterogeneity of pixel values might be quantified by textural features. 
We hypothesize that textural features allow for a more complete and 
earlier detection of forest disturbances associated with tree remnants. 

A variety of remote sensing studies have shown that including 
neighborhood information (adjacent pixels) by means of textural fea-
tures can improve image analysis (Hamunyela et al., 2017, 2016; 
Jenicka and Suruliandi, 2014; Warner, 2011). Simple methods, such as 
including mean or standard deviation of adjacent pixel or high-/low- 
pass filters (e.g., Laplace or Sobel filter), do not account for the direct 
relationship with the neighboring pixel (Aquino et al., 2022; Warner, 
2011). Textural features using the Gray-Level-Co-occurrence Matrix 

(GLCM) (Haralick et al., 1973), however, take local adjacent neigh-
boring pixels and their relationship into account (Hall-Beyer, 2017; 
Warner, 2011). A large variety of GLCM features have been developed 
since its introduction in the 1970 s and applied to SAR and optical-based 
land cover classification (Caballero et al., 2020; Chen et al., 2020; 
Kupidura, 2019), as well as to several forest applications (Abu et al., 
2021; Champion et al., 2008; Danylo et al., 2021; Hethcoat et al., 2021; 
Niemi and Vauhkonen, 2016; Wood et al., 2012). Certain kernel sizes 
and pre-processing steps seem better suited for detecting and mapping 
different land cover types than others (Franklin et al., 2000; Tso and 
Mather, 1999). Studies showed the added benefit of GLCM features for 
detecting selective logging utilizing multi-sensor SAR data (Hethcoat 
et al., 2021). However, forest disturbance events besides selective log-
ging (especially forest disturbance showing post-disturbance tree rem-
nants) were not studied and the effect of pre-processing (speckle- 
filtering) and parameterization of the textural features (kernel sizes) was 
neglected. GLCM features might have the potential to quantify the 
changed heterogeneity associated with tree remnants and debris for 

Fig. 2. Illustration of radar scattering in C-band wavelength (thickness of black arrows illustrates to the amount of energy) for a forest clearing associated with post- 
disturbance tree remnants. Stable forest (A) showing logging operations with tree remnants (B), which are piled up (C) and later removed (D). PlanetScope imagery 
(monthly composites) and Sentinel-1 backscatter images of VV- [min: − 20 dB; max: 0 dB] and VH-polarization [min: − 30 dB; max: − 5 dB] are shown. Central 
coordinate: [ 59.676◦ W, 13.823◦ S]. 
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forest disturbances at large scales. However, the merit of GLCM features 
for improving the detection of humid tropical forest disturbances re-
mains largely understudied. 

This study assesses how GLCM features can improve forest distur-
bance mapping in the humid tropics using short-wavelength Sentinel- 
1C-band SAR data. 

The objectives of this study are threefold: 

• Evaluate different Sentinel-1-based GLCM features for forest distur-
bance mapping, and assess the effect of speckle-filtering and kernel 
size,  

• Combine backscatter and GLCM features and evaluate its detection 
accuracy for a variety of forest disturbance types, and  

• Assess the improvements in timeliness of forest disturbance detection 

We used dense time series of Sentinel-1C-band backscatter data and 
six GLCM features to map forest disturbances at seven different sites 
across the Amazon Biome. Two sites (development sites) were used to 
develop a methodology to combine backscatter and GLCM textural 
features for forest disturbance mapping. Five additional sites (testing 
sites) were used to evaluate the robustness of the method for a variety of 
different natural and human-induced forest disturbance types by 
assessing detection accuracy and improvement of timeliness. We define 
timeliness as the date of which a disturbance is detected by the algo-
rithm. Thus, improved timeliness is understood as an earlier detection 
date. 

2. Study area and data 

2.1. Study area 

The study area consisted of seven humid tropical forest sites located 
within the Amazon Biome, each covering about 500 km2 (Fig. 3). The 
Amazon Biome covers roughly 6.7 million km2 and extends from the 
lowland coastline of Brazil in the East to mountainous areas of up to 
6700 m elevation in Peru in the West (Davidson et al., 2012). Human- 
induced and natural forest disturbances have led to an estimated for-
est loss of up to 17% over the past 50 years (WWF, 2005). Human- 
induced forest disturbances are driven by medium to large-scale com-
modity agriculture, smallholder agriculture, mining and selective tree 
logging (Curtis et al., 2018). Fires and windthrows are considered the 
key natural disturbances in the Amazon Biome (Negrón-Juárez et al., 
2018; Tyukavina et al., 2017). 

Sites 1 and 2 were used as development sites to study the GLCM 
features and develop a method to combine backscatter and GLCM fea-
tures for disturbance mapping (Table 1). Site 1 is located in the Ama-
zonas State and is characterized by medium-scale forest clearings, 
whereas Site 2 experiences large-scale forest clearings and is located in 
the Mato Grosso State. These sites were selected as current alert systems 
(e.g., RADD) showed omission errors due to post-disturbance tree rem-
nants when detecting forest disturbances using only backscatter time 
series (Reiche et al., 2021). 

The additional sites 3–7 are located in Bolivia, Peru, and Suriname 
and were selected as prime examples to test the developed method for a 
range of different natural and human-induced forest disturbance types. 
These disturbance types include mining, selective logging, fires, wind-
throw, and small to medium-scale clearings in mountainous terrain. 

Fig. 3. Study area and locations of the two development and five testing sites. Monthly composites of PlanetScope imagery are shown for all study sites [note: 3–7 are 
zoomed-in images for improved visibility of the disturbance event]. 
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2.2. Sentinel-1 data 

We used C-band Sentinel-1A/B radar data provided in Interfero-
metric Wide swath dual-polarization (VV- and VH-polarization) mode. 
We accessed Sentinel-1 Ground Range Detected (GRD) data from 2018 
to 2021 in Google Earth Engine, which was acquired in descending or-
bits with a temporal resolution of 12 days (ESA, 2022). Sentinel-1 GRD 
data has a spatial resolution of 20 m, with a pixel spacing of 10 m (ESA, 
2012). Initial pre-processing was applied on the GRD data prior to 
ingestion in Google Earth Engine, including orbit positioning correction, 
GRD border noise removal, thermal noise removal, radiometric cali-
bration, terrain correction and geocoding (Google Earth Engine Team, 
2022). We also applied an angular-based radiometric slope correction, 
adaptive multi-temporal speckle filtering, and conversion from linear to 
dB scale (Mullissa et al., 2021; Quegan and Yu, 2001; Vollrath et al., 
2020). 

2.3. Forest baseline map and definitions 

We generated a forest baseline map for our study period of 2020 
(Reiche et al., 2021) using a Landsat-based primary humid tropical 
forest product of 2000 (Turubanova et al., 2018) and removed all pixels 
that indicated disturbances prior to the monitoring period (2001–2019) 
using an annual Landsat tree cover loss product (Hansen et al., 2013). 
We defined forest disturbances as partial or complete removals of tree cover 
within one Sentinel-1 pixel similar to other recent studies (Hansen et al., 
2016, 2013; Reiche et al., 2021; Vargas et al., 2019). 

3. Methods 

3.1. GLCM features 

Images can be understood as a grid of grey values, which can form 
local clusters of similar or dissimilar values (Warner, 2011). These local 

clusters can be quantified by GLCM features (Armi and Fekri-Ershad, 
2019). These GLCM features are calculated by first forming a matrix 
(a so-called ‘grey level co-occurrence matrix’), in which the spatial 
relationship of adjacent pixel values to one another within a given 
neighborhood is expressed (Haralick et al., 1973). Neighborhoods are 
defined by a moving window or kernel around a central pixel (Hall- 
Beyer, 2017). GLCMs are formed for each central pixel’s neighborhood 
throughout an entire image. A manifold of GLCM features have been 
developed (Conners et al., 1984) for detecting and describing certain 
similarities and dissimilarities (e.g., locating edges, expressing homo-
geneity) (Hall-Beyer, 2017). We selected six uncorrelated and mean-
ingful GLCM features for testing our hypothesis (Table 2) and calculated 
them for different kernel sizes: 3, 5, 7, 9, 13, and 21 (Hall-Beyer, 2017; 
Haralick et al., 1973). Since the relationship of adjacent values within a 
GLCM depends on the look direction within the GLCM matrix, averages 
of four look directions (0◦, 45◦, 90◦, and 135◦) were calculated for each 
local GLCM separately (Warner, 2011). The six GLCM features were 
calculated for each Sentinel-1 image and VV and VH polarization 
separately. Studies showed the advantage of GLCM features derived 
from SAR data without speckle filtering over speckle-filtered SAR data in 
remote sensing applications (Chen et al., 2020; Marceau et al., 1990). 
We therefore calculated GLCM features based on Sentinel-1 data without 
speckle filtering and Sentinel-1 data with multi-temporal speckle 
filtering to assess the effect of speckle filtering. 

3.2. Combining backscatter and GLCM features 

We first mapped forest disturbances separately for each of the six 
GLCM features, kernel sizes and pre-processing scenarios (without 
speckle filtering and multi-temporal speckle filtering) and compared the 
results with forest disturbances that were mapped based only on back-
scatter information. These results were used to select the best perform-
ing GLCM feature and, subsequently, to combine backscatter and 
textural information for forest disturbance detection. 

We used a pixel-based probabilistic change detection algorithm 
(Reiche et al., 2018a, 2015) to map forest disturbances and their 
respective disturbance dates for 2020 within the boundary of the forest 
baseline map. Time series of 2018 and 2019 were used as a historic 
period to calculate the mean and standard deviation of stable forest and 
to parametrize a Gaussian Mixture Model. The Gaussian Mixture Model 
was used to derive the non-forest probability of each new Sentinel-1 
observation and afterwards used to detect and trigger a forest distur-
bance when a new observation diverted from the distribution of his-
torical stable forest observations. Subsequent observations were used to 
increase confidence and confirm or reject the forest disturbances. The 

Table 1 
Site overview and description.  

Site Disturbance 
type 

Description Median 
disturbance 
patch size [ha] 

Location 
[Central 
coordinates] 

1 Medium-scale 
clearings 

Medium-scale 
clearings associated 
partially with tree 
remnants located in 
fragmented forest 

19.1 Brazil 
[60.068◦ W; 
6.684◦ S] 

2 Large-scale 
clearings 

Large-scale clearings 
associated partially 
with tree remnants 
located in a mix of 
fragmented and 
intact forest 

159.0 Brazil 
[59.689◦ W; 
13.853◦ S] 

3 Mining Forest clearing 
associated to open- 
pit gold mining 

0.7 Suriname 
[55.470◦ W; 
4.975◦ N] 

4 Selective 
logging 

Network of logging 
roads accompanied 
by selective logging 

0.3 Peru [75.445◦

W; 7.737◦ S] 

5 Fire Severe and large- 
scale forest fire with 
tree remnants 
(burned trees) 

25.2 Bolivia 
[63.016◦ W; 
14.687◦ S] 

6 Windthrow Tornado resulting in 
a string of small 
-scale forest 
disturbance patches 

0.0.4 Peru [73.740◦

W; 6.940◦ S] 

7 Mountainous 
terrain 

Small to medium- 
scale forest 
disturbance patches 
in mountainous 
terrain 

1.1 Peru [75.896◦

W; 8.165◦ S]  

Table 2 
The six used GLCM features with p(i,j) being the probability of the (i,j)th entry in 
a GLCM matrix, and µx, µy, σx, σy are the means and standard deviations of px and 
py (Haralick et al., 1973).  

GLCM textural 
measure 

Abbreviation Description Equation 

Angular 
Second 
Moment 

ASM Numbers of repeated 
pairs within a GLCM 

∑
i
∑

j{p(i, j)}2 

Correlation COR Correlation of pixel 
pairs within a GLCM 

∑
i
∑

j
(ij)p(i, j) − μxμy

σxσy 

Entropy ENT Randomness of grey- 
level distribution 
within a GLCM 

−
∑

i
∑

jp(i,j)log(p(i,j)
)

Inverse 
Difference 
Moment 

IDM Homogeneity of pixel 
pairs along the 
diagonal of a GLCM 

∑
i
∑

j
1

1 + (i − j)2 p(i,

j)
Sum Average SAVG Average of pixel pairs 

within a GLCM 

∑2Ng
i=2 ipx+y(i)

Variance VAR Variance of pixel pairs 
within a GLCM 

∑
i
∑

j(i − μ)2p(i, j)
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date of the forest disturbance was set to the date of the image that first 
triggered the forest disturbance (Reiche et al., 2018a, 2015). The 
method was used to map forest disturbances for backscatter and all 
GLCM features separately. Hereby, co-polarization (VV) and cross- 
polarization (VH) were used to account for a change of the radar 
signal resulting from altered surface scattering/double bounce or vol-
ume scattering respectively. We applied a minimum mapping unit of 0.1 
ha (8-connected Sentinel-1 pixels). More detailed information on the 
method and parametrization is given in Reiche et al. (2021). 

After using the pixel-based probabilistic change detection algorithm 
to separately map disturbances using backscatter time series and the 
best performing GLCM feature time series we combined both de-
tections.. Prior to combining, we applied an inverse buffer (shrinking 
detections) to the forest disturbances mapped using the GLCM feature to 
mask out blurring effects at forest edges resulting from the GLCM 
smoothing values of adjacent pixels (Fig. 4). As this blurring effect is 
directly linked to the kernel size, we defined the size of the inverse buffer 
as half of the kernel size. For disturbances present in both maps we 
selected the earliest detection date. 

3.3. Validation and assessment of timeliness 

High resolution multi-spectral PlanetScope data (~4.7 m) was used 
to visually check for the presence of forest disturbances and therefore to 
validate the mapped forest disturbances (Planet Team, 2022). In case of 
persistent cloud coverage hampering the visual interpretation of Plan-
etScope data, we used Sentinel-2, Landsat-7/-8 images or Sentinel-1 
time series (ESA, 2015; USGS, 2019a, 2019b). We used a stratified 
random sampling approach with four strata: two stable forest strata and 
two forest disturbance strata (Olofsson et al., 2014). The two stable 
forest strata consisted of stable forest – outside 200 m buffer and stable 
forest – inside a 200 m buffer around detected forest disturbances. The 
latter was included to mitigate the effect of underrepresenting omission 
errors (Olofsson et al., 2020). The two forest disturbance classes were 
defined as forest disturbance disagreement – mapped in either the back-
scatter or GLCM feature and forest disturbance agreement – mapped in 
both backscatter and GLCM feature. Hereby, the strata forest distur-
bance disagreement was used to specifically reduce the effect of 
underrepresenting commission or omission errors in either the back-
scatter or GLCM feature forest disturbance detection. We used 500 
samples for the development sites 1 and 2 and 250 samples for the 
testing sites 3–8. The samples were distributed equally between the 
stable forest classes (150: sites 1 and 2; 75: sites 3–8) and the disturbance 
classes (100: sites 1 and 2; 50: sites 3–8). The sample strata and area- 
statistics were created based on a combination map utilizing speckle 
filtered backscatter and GLCM SAVG derived from speckle filtered 

backscatter (kernel size 9). As the samples of our sample design were not 
proportionally allocated to the strata areas we used sample inclusion 
probabilities (Stehman et al., 2003). Sample inclusion probabilities were 
calculated using strata areas and number of sample points. Estimation 
weights, i.e. the inverse of inclusion probability, were used to calculate 
User’s Accuracy (UA) and Producer’s Accuracy (PA) based on an area 
weighted confusion matrix (Stehman, 2014; Stehman et al., 2003). UA 
(1 − comission error) and PA (1 − omission error) were further used to 
calculate commission and omission errors respectively. Errors due to the 
underlying forest baseline map were noted in the response design, but 
they were excluded for calculating UA or PA. These errors were caused 
by omitted disturbances of 2019 due to cloud coverage in the optical 
remote sensing products, which was used to generate the forest baseline 
map (Verhelst et al., 2021). 

We assessed the improvement of timeliness by comparing distur-
bances detected using backscatter time series and disturbances detected 
by combined backscatter and GLCM SAVG time series. We calculated the 
mean of the difference of forest disturbance dates. We only considered 
forest disturbances that were detected in backscatter and the combined 
backscatter and GLCM SAVG time series. 

4. Results 

4.1. GLCM features 

Forest disturbances mapped using only backscatter information 
showed similar results for sites 1 and 2 (Fig. 5). The UA and corre-
sponding standard errors for mapped disturbance using speckle filtered 
backscatter (Site 1: 95.1 ± 5.3% and Site 2: 98.2 ± 3.4%) were com-
parable to results achieved for non– backscatter without speckle filtering 
(Site 1: 98.6 ± 4.6% and Site 2: 100 ± 0%). The PA was higher for 
speckle filtered backscatter (Site 1: 64.0 ± 12.7% and Site 2: 81.9 ±
11.5%) compared to backscatter without speckle filtering (Site 1: 41.3 
± 12.1% and Site 2: 62.1 ± 14.1%). The low PA indicates omission er-
rors related to the described post-disturbance tree remnants. 

Forest disturbance mapped utilizing the six GLCM features showed 
similar results for sites 1 and 2. GLCM COR produced the poorest results 
with low PA regardless of pre-processing or varying kernel-size. The 
other GLCM features showed better results. Larger kernel sizes led to 
higher PA. However, most of the GLCM features showed low UA. For 
increasing kernel sizes, we observed a trade-off between increasing UA 
and decreasing PA (introducing commission errors). GLCM features 
calculated based on backscatter data without speckle filtering and 
backscatter data with multi-temporal speckle filtering resulted in similar 
accuracies. GLCM SAVG resulted in the best accuracy and showed higher 
PAs and UAs compared to the other GLCM features. The optimal kernel 

Fig. 4. Blurring effect of a GLCM feature along edges of forest clearings. Displayed are forest disturbances mapped utilizing GLCM SAVG based on kernel sizes 3, 9 
and 21 without applied inverse buffer (orange) and with applied inverse buffer (grey). Additionally a manually digitized forest edge (yellow) is provided. A monthly 
composite of PlanetScope imagery for January 2021 is shown as a base map. [Central coordinate: 59.711◦ W, 13.822◦ S] 
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size for GLCM SAVG – which can be understood as improved PA without 
reduced UA compared to the mapped disturbance based on backscatter 
alone – varied from 5 (Site 1) to 7 (Site 2) depending on the test site. 

4.2. Combing backscatter and GLCM features 

We used speckle filtered backscatter for the combination of 

backscatter and GLCM SAVG features as they resulted in better initial PA 
when compared to backscatter without speckle filtering (Fig. 5). Out of 
the six tested GLCM features, GLCM SAVG showed the highest reduction 
of omission error, while introducing the lowest amount of new com-
mission error for sites 1 and 2. We did not observe a difference in ac-
curacies between disturbances mapped based on GLCM SAVG data 
derived from backscatter data without or with speckle filtering. The 

Fig. 5. UA (black) and PA (red) of mapped forest disturbances based on GLCM features for sites 1 and 2. GLCM features were calculated based on Sentinel-1 time 
series without speckle filtering (A and C) and Sentinel-1 time series with multi-temporal speckle filtering (B and D). UA and PA of backscatter time series are provided 
within the respective scatterplots as horizontal dashed lines. A description of the GLCM features are given in Table 2. See Appendix 1 for all accuracies ± stan-
dard errors. 
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remaining results are therefore presented based on speckle filtered 
backscatter and GLCM SAVG based on speckle filtered backscatter data. 

The improvement from the combination of backscatter and GLCM 
SAVG was especially visible for larger patches, for which disturbances 
regularly were not detected in backscatter data alone (Fig. 6). Blurring 
effects at the edges of forests and disturbance patches present in the 
mapped disturbances using GLCM SAVG were not visible in the com-
bination maps. 

Results obtained based on combined backscatter and GLCM SAVG 
data showed similar UAs as disturbance mapped based on backscatter 
alone across all sites. The PA was found to improve for the combination 
of backscatter and GLCM SAVG. This was especially visible for sites 
showing medium-scale clearings, large-scale clearings, mining, and 
fires, for which we observed an increasing PA for increasing kernel sizes 
(Fig. 7). However, large kernel sizes of 7 and increasing resulted in lower 
UAs than the initial backscatter detection. Overall, the critical kernel 
size for an accuracy trade-off was 5 across all sites, with only Large-scale 
clearings showing kernel size 7 or even higher being optimal. For kernel 
sizes of 5, we found improved PA with less omission errors between 8 
and 36%, while maintaining the UA of the initial backscatter results. For 
selective logging and windthrow, the combination of backscatter and 
GLCM SAVG did not show increased or decreased PA and UA. 

4.3. Assessment of timeliness 

Forest disturbances mapped by both backscatter information and by 
combined backscatter and GLCM SAVG information showed an 
improved timeliness of the detection based on combined information 
compared to backscatter data alone Areas with larger disturbance 
patches and areas with distinct tree remnants showed particular 
improvement in terms of timeliness (Fig. 8). 

The largest temporal improvement was obtained for large-scale 

clearings (Site 2) and mining (Site 3), with disturbances being detec-
ted up to 34 days earlier on average (Table 3). Large standard deviations 
(up to 55 days) indicate even greater temporal improvements for indi-
vidual disturbances. Results for medium-scale clearings (Site 1), fire 
(Site 5) and mountainous areas (Site 7) were smaller, with temporal 
improvements of up to 17 days on average. For these sites, we also 
observed earlier detections for larger kernel sizes compared to smaller 
kernel sizes. Negligible temporal improvements were visible for sites 
defined by windthrow and selective logging (<1.4 days). 

5. Discussion 

We showed how texture can be used to successfully overcome 
omission errors caused by post-disturbance tree remnants and eventu-
ally improve the quality of current monitoring and alerting systems. 
Post-disturbance tree remnants cause altered heterogeneity of neigh-
boring backscatter pixels due to different composition and orientation. 
GLCM SAVG was the most effective in detecting the described hetero-
geneity. Our findings confirm the usefulness of GLCM SAVG for forest 
applications found by previous studies, which showed its benefit for 
mapping oil palm (Danylo et al., 2021), linking vegetation structure or 
biomass to remote sensing data (Niemi and Vauhkonen, 2016; Wood 
et al., 2012), and detecting selective logging (Hethcoat et al., 2021). 

Our developed method strongly benefited from the combined use of 
backscatter and GLCM SAVG. GLCM SAVG texture improved detections 
of medium to large-scale events. Small-scale events such as selective 
logging were excluded in the GLCM SAVG disturbance mapping due to 
masking of blurring effects along disturbance patch edges. Backscatter 
allowed identifying such small-scale events due to its sensitivity to 
detect radar shadows (Bouvet et al., 2018). Combining backscatter and 
GLCM SAVG resulted in decreased omission errors of up to 36% when 
compared to disturbance detection based on backscatter alone. 

Fig. 6. Forest disturbance dates [DoY] for combinations of backscatter and GLCM SAVG (kernel size 7) data for Site 1 (A) and Site 2 (B). Detailed maps are given for 
disturbances mapped based on backscatter (bottom left), GLCM SAVG (bottom middle) and a combination of both (bottom right). Combination results for all sites can 
be visualized via https://johannesballing.users.earthengine.app/view/forest-disturbance-texture. 
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A kernel sizes of 5 was found best for reducing omission errors while 
not introducing new commission errors across all sites. Increased com-
mission errors when using large kernel sizes were caused by spatial 
blurring along borders of disturbance patches and forest edges in the 
GLCM SAVG data (Zhang and Moore, 2015). To counteract these blur-
ring effects, we implemented additional edge masking using an inverse 
buffer. Outer edges of disturbances detected based on GLCM SAVG were 
masked based on a GLCM kernel-size dependent buffer. Despite this 
masking, we observed increased commission errors for larger kernel 
sizes (>=7) for some test sites. Larger kernel sizes led to merging of 
multiple neighboring small disturbance patches into a single disturbance 
patch. This did not allow to exclude blurred edge areas of the small 
patches via the proposed edge masking. This was evident for test sites 
characterized by medium-sized disturbance patches and fragmented 
forest (e.g., medium-scale logging, mining) (Fig. 7). 

We observed a general steady decrease of omission errors with 
increasing kernel-sizes due to an inclusion of more adjacent pixels and 
therefore a higher chance of detecting changed heterogeneity. However, 
for some disturbance types (medium-scale clearings, mining, and 
mountainous terrain), larger kernel sizes (>=13) resulted in fewer 
increased omission errors (Fig. 7). This can be linked to the proposed 
masking of the GLCM SAVG disturbance map, which excludes smaller 
isolated disturbance patches via the kernel-size dependent inverse 
buffer. Hereby, larger kernel sizes result in same size disturbance 
patches as smaller kernel sizes but, at the same time, an increased buffer 
excludes valid disturbance detection. This might explain why distur-
bance types characterized by smaller disturbance patches (e.g., wind-
throw, selective logging) did not show increased accuracies when using 
GLCM SAVG as shown in other studies (Hethcoat et al., 2021). Follow-up 
studies might explore the possibility of including the size of a 

Fig. 7. UA and PA for forest disturbances mapped for all test sites utilizing combined information of backscatter and GLCM SAVG data. UA and PA of mapped 
disturbances using only on backscatter information are also shown (dashed line). See Appendix 2 for all accuracies ± standard errors. 
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disturbance patch and its fragmentation in addition to the kernel size in 
the masking of disturbances mapped using GLCM SAVG. 

Combining backscatter and GLCM SAVG data resulted in more timely 
disturbance detections when compared to disturbances detected by 
backscatter alone. Larger kernel sizes led to increased improvement in 

timeliness. However, increasing kernel sizes also led to increased com-
mission error. This trade-off needs to be considered when assessing 
optimal kernel sizes. Spatially optimal GLCM SAVG kernel sizes of 5 
improved the timeliness of detections between 10 and 30 days on 
average. Individual disturbance events repeatedly showed an improved 
timeliness of 2 to 3 months. It is important to stress that for many ap-
plications timeliness of detections can be of equal importance as spatial 
accuracy (Bullock et al., 2022, Reiche et al. 2018a). Timely information 
is crucial to support effective law enforcement tools, especially for near 
real-time alerting systems. 

No differences in accuracies for the previously applied speckle 
filtering of the backscatter data used to calculate GLCM SAVG were 
observed. Other studies showed that GLCM SAVG based on SAR data 
without speckle filtering resulted in superior accuracy for land cover 
classifications (Chen et al., 2020). The insignificance of speckle-filtering 
in our study may be explained by the use of multi-look Sentinel-1 GRD 
data, and results may vary when using single-look complex data. 

Assessing performance individually for several sites allowed us to 
show the benefit of textural features for specific forest disturbance types. 
This showed a wide range of spatial and temporal improvements. Using 
one larger region only would have led to averaged accuracies and would 
have not allowed to study the advantages and disadvantages on 
combining backscatter and GLCM SAVG in such detail. 

It is expected that SAR-based monitoring systems operating at longer 
wavelength (e.g., L-band) will also benefit from using GLCM SAVG for 
overcoming reported omission errors due to post-disturbance tree rem-
nants (Watanabe et al., 2021). Different orientations and composition of 
tree remnants and debris are expected to alter the heterogeneity of 
neighboring pixel values at L-band similar to C-band. 

Fig. 8. Sentinel-1 VV- or VH-backscatter 
[solid] and VV- or VH-GLCM SAVG 
[dashed] time series of a forest disturbance 
event located in test site 2. The forest 
disturbance event is characterized by a 
stage of stable forest (A), a stage of initial 
disturbance with tree remnants (B) and a 
stage showing complete land clearing (C). 
Forest disturbance detected using back-
scatter time series [blue line] and back-
scatter and GLCM SAVG together [red line] 
are given. Monthly composites of Planet-
Scope imagery are provided for the 
different disturbance stages.   

Table 3 
Mean temporal improvement in days (bold) ± standard deviation of distur-
bances mapped using combined backscatter and GLCM SAVG data compared to 
backscatter data alone.  

Site Kernel Size 

3 5 7 9 13 21 

Site 1: Medium-scale 
clearings 

9.5 
±

17.0 

13.5 
±

20.6 

16.0 
±

22.1 

16.7 
±

22.3 

16.9 
±

21.6 

15.5 
±

19.9 
Site 2: Large-scale 

clearings 
22.2 
±

32.0 

29.8 
±

36.0 

32.7 
±

37.3 

33.7 
±

37.8 

34.3 
±

38.4 

33.8 
±

38.8 
Site 3: Mining 14.3 

±

37.1 

19.8 
±

45.2 

22.8 
±

49.8 

23.8 
±

52.2 

24.3 
±

54.5 

22.3 
±

54.5 
Site 4: Selective logging 0.9 

± 6.5 
0.8 
± 6.4 

0.4 
± 4.6 

0.3 
± 3.5 

0.1 
± 2.5 

0.0 
± 1.6 

Site 5: Fire 7.8 
±

10.3 

10.4 
±

11.6 

11.8 
±

12.1 

12.5 
±

12.4 

12.9 
±

12.4 

12.7 
±

11.9 
Site 6: 

Windthrow 
1.4 
±

12.4 

0.8 
± 9.6 

0.2 
± 4.6 

0.0 
± 2.5 

0.0 
± 0 

0.0 
± 0 

Site 7: 
Mountainous terrain 

9.1 
±

27.8 

10.5 
±

31.3 

10.8 
±

32.4 

9.7 
±

31.2 

8.3 
±

29.0 

5.5 
±

23.3  
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6. Conclusion 

We have showed that textural features can overcome omission errors 
in SAR-based forest disturbance detections caused by post-disturbance 
tree remnants. We tested six GLCM textural features derived from C- 
band Sentinel-1 time series. GLCM SAVG performed best. We developed 
a method that combines backscatter and GLCM SAVG. The proposed 
method has proven robust across a variety of forest disturbance types in 
the Amazon Biome. Forest disturbance detections showed reduced 
omission errors of up to 36% and improved timelines of up to on average 
30 days when compared against backscatter detections. We observed a 
trade-off for larger GLCM kernel sizes leading to higher improvements of 
timeliness and a reduction of omission error, while introducing 
increasing commission error. GLCM kernel size of 5 proved to be 
optimal, as it consistently led to spatial and temporal improvements, 
without introducing new commission error. Our method showed the 
largest spatial and temporal improvement for disturbance types char-
acterized by large unfragmented disturbance patches (e.g., large-scale 
clearings, mining and fires). Large-area SAR-based monitoring and 
alerting systems can strongly benefit from the proposed method to 
further improve their consistency and robustness. Increasing accuracy 
and timeliness of forest disturbance mapping in the tropics is crucial to 
law enforcement and forest management activities to reduce illegal and 
unsustainable forest practices. 
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Appendix A:  

Appendix 1 
UA, PA and corresponding standard error [%] of mapped forest disturbances using backscatter or GLCM features derived from backscatter data with and without 
speckle-filtering for sites 1 and 2. Results of disturbances detected by a GLCM features are given for different GLCM kernel sizes (Ks).   

UA ± standard error PA ± standard error 

Site 1: Without speckle filtering 

Back-scatter 98.6 ± 4.6 41.3 ± 12.1 

Kernel size Ks 3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 Ks3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 

GLCM ASM 0 ± 0 100 ± 0 81.1 
±31.6 

76.3 
±22.5 

69 
±21.0 

46.6 
±20.9 

0 
±0 

0.6 
±1.9 

5.0 
±5.3 

12.6 
±8.1 

35.9 
±12.8 

73.6 
±14.0 

GLCM COR 100 ± 0 100 
±0 

100 
±0 

23.4 
±72.5 

16.5 
±57.1 

16.5 
±57.1 

0.4 
±1.2 

2 
±3.2 

2 
±3.2 

3.4 
±4.4 

2.2 
±3.5 

2.2 
±3.5 

GLCM ENT 0 
±0 

82 
±26.7 

80.1 
±18.2 

77.0 
±19.7 

70.1 
±18.2 

41.1 
±18.0 

0 
±0 

8 
±6.6 

17.4 
±9.3 

26.2 
±11.7 

51.7 
±14.1 

79.4 
±13.8 

GLCM IDM 100 
±0 

100 
±0 

90.1 
±21.1 

87.3 
±21.6 

87.0 
±15.9 

76.5 
±20.1 

1.2 
±2.7 

6.7 
±6.1 

7.1 
±6.3 

8.0 
±6.6 

17.0 
±9.2 

35.1 
±12.2 

GLCM SAVG 94.9 ± 5.2 90 
±8.3 

79.5 
±14.0 

72.9 
±14.5 

66.1 
±14.3 

45.5 
±16.8 

73.9 
±14.4 

81.5 
±14.6 

82.3 
±14.6 

86.6 
±13.5 

88.2 
±12.7 

91.3 
±10.5 

GLCM VAR 69.9 
±30.1 

63.6 
±24.7 

64.9 
±21.8 

65.1 
±20.1 

46.2 
±23.6 

35.5 
±14.9 

17.4 
±10.3 

30.9 
±13.2 

39.9 
±13.7 

42.6 
±13.4 

63.8 
±14.0 

85.3 
±10.7 

Site 1: With speckle filtering 
Back-scatter 95.1 ± 5.3 64 ± 12.7 
Kernel size Ks 3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 Ks3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 
GLCM ASM 100 

±0 
100 
±0 

80.3 
±33.5 

58.5 
±41.5 

63.4 
±24.1 

47.2 
±20.5 

0.6 
±1.9 

0.6 
±1.9 

5.6 
±5.6 

8.6 
±6.7 

25.1 
±11.5 

61.0 
±14.3 

GLCM COR 46.8 
±93.8 

70.3 
±59.6 

61.9 
±80.5 

90.7 
±28.1 

15.6 
±51.6 

10.2 
±26.0 

10.2 
±7.1 

5.6 
±5.4 

3.2 
±4.2 

3.8 
±4.6 

2.2 
±3.5 

2.8 
±4.0 

GLCM ENT 79.6 
±42.1 

72.9 
±30.5 

59.5 
±30.2 

54.1 
±24.4 

52.6 
±20.3 

37.5 
±17.7 

3.0 
±4.2 

14.2 
±9.7 

18.8 
±10.5 

24.6 
±11.5 

36.7 
±13.2 

69.1 
±13.9 

GLCM IDM 43.8 
±70.8 

71.0 
±34.2 

57.9 
±35.6 

57.3 
±34.7 

50.7 
±29.8 

34.1 
±34.7 

12.2 
±9.3 

12.0 
±9.2 

13.8 
±9.5 

14.0 
±9.6 

15.2 
±9.8 

17.1 
±10.1 

GLCM SAVG 92.2 
±8.4 

89.8 
±8.2 

79.8 
±13.9 

72.9 
±14.5 

65.9 
±14.3 

45.5 
±16.8 

79.2 
±14.4 

83.1 
±14.1 

83.8 
±14.1 

87.0 
±13.5 

88.2 
±12.7 

91.3 
±10.5 

GLCM VAR 63.5 
±29.5 

47.6 
±35.0 

44.3 
±28.2 

47.3 
±27.2 

41.2 
±20.3 

33.3 
±13.5 

22.0 
±11.8 

32.7 
±13.3 

37.1 
±13.6 

42.9 
±13.7 

61.4 
±14.1 

84.3 
±10.9 

Site 2: Without speckle filtering 

(continued on next page) 
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Appendix 1 (continued )  

UA ± standard error PA ± standard error 

Site 1: Without speckle filtering 

Back-scatter 98.6 ± 4.6 41.3 ± 12.1 

Kernel size Ks 3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 Ks3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 

Back-scatter 100 ± 0 62.1 ± 14.1 
Kernel size Ks 3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 Ks3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 
GLCM ASM 0 

±0 
97 
±9.6 

91.8 
±11.3 

89.0 
±10.9 

84.5 
±9.5 

74.8 
±8.4 

0 
±0 

5.3 
±6.4 

27.0 
±12.8 

38.6 
±14.1 

60.0 
±14.5 

72.6 
±14.2 

GLCM COR 0 
±0 

0 
±0 

0 
±0 

0 
±0 

0 
±0 

100 
±0 

0 
±0 

0 
±0 

0 
±0 

0 
±0 

0 
±0 

0.8 
±2.6 

GLCM ENT 100 
±0 

93.1 
±10.7 

89.8 
±9.2 

86.8 
±9.2 

81.0 
±8.7 

63.5 
±13.1 

1.7 
±3.7 

28.2 
±13.0 

48.7 
±14.6 

59.0 
±14.6 

70.8 
±14.1 

78.5 
±14.0 

GLCM IDM 100 
±0 

100 
±0 

95.9 
±7.0 

94.7 
±6.9 

92.8 
±7.0 

84.2 
±13.7 

7.5 
±7.6 

28.8 
±13.1 

44.5 
±14.4 

50.9 
±14.6 

63.7 
±14.3 

78.3 
±13.4 

GLCM SAVG 97.6 
±3.6 

95.3 
±4.7 

93.2 
±5.5 

92.0 
±5.9 

88.0 
±6.7 

82.5 
±7.1 

89.6 
±12.5 

93.1 
±12.8 

93.7 
±12.8 

93.7 
±12.8 

93.9 
±12.8 

93.1 
±13.0 

GLCM VAR 92.9 
±9.2 

87.4 
±9.9 

84.8 
±9.5 

74.5 
±19.5 

67.2 
±17.2 

56.7 
±14.5 

37.2 
±14.0 

50.5 
±14.7 

63.3 
±13.3 

70.2 
±12.0 

75.6 
±11.2 

79.2 
±10.8 

Site 2: With speckle filtering 
Back-scatter 98.2 ± 3.4 81.9 ± 11.5 
Kernel size Ks 3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 Ks3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 
GLCM ASM 0 

±0 
100 
±0 

87.6 
±14.9 

88.1 
±11.7 

86.0 
±9.1 

74.4 
±11.5 

0 
±0 

2.7 
±4.6 

23.1 
±12.2 

37.1 
±14.0 

62.5 
±14.4 

80.9 
±13.6 

GLCM COR 100 
±0 

100 
±0 

0 
±0 

100 
±0 

100 
±0 

100 
±0 

1.8 
±3.7 

0.8 
±2.6 

0 
±0 

0.8 
±2.6 

1.7 
±3.7 

2.5 
±4.5 

GLCM ENT 87.0 
±17.7 

88.3 
±11.8 

86.8 
±9.9 

85.0 
±9.2 

79.6 
±8.5 

64.3 
±11.0 

16.1 
±10.6 

33.7 
±13.7 

51.5 
±14.7 

61.8 
±14.6 

73.8 
±14.0 

82.3 
±13.7 

GLCM IDM 91.7 
±10.0 

89.4 
±8.9 

89.5 
±8.1 

87.4 
±8.3 

84.5 
±8.0 

65.7 
±15.6 

36.4 
±14.0 

53.9 
±14.7 

63.2 
±14.4 

68.3 
±14.1 

76.9 
±13.6 

85.2 
±13.2 

GLCM SAVG 97.1 
±3.9 

94.6 
±4.9 

92.8 
±5.6 

91.6 
±6.0 

88.4 
±6.7 

82.1 
±7.1 

90.7 
±12.7 

93.7 
±12.8 

93.7 
±12.8 

93.7 
±12.8 

93.9 
±12.8 

93.1 
±13.0 

GLCM VAR 70.9 
±28.9 

74.1 
±23.1 

77.1 
±18.5 

67.5 
±20.5 

63.7 
±15.8 

53.8 
±14.1 

41.4 
±14.3 

56.7 
±14.8 

66.5 
±12.9 

69.6 
±12.4 

75.8 
±11.4 

78.7 
±11.2   

Appendix 2 
UA, PA and corresponding standard error [%] for forest disturbances mapped for all test sites using backscatter data, GLCM SAVG or combined information of 
backscatter and GLCM SAVG data. Results for the combined forest disturbance method are shown for different GLCM kernel sizes (Ks).   

UA ± standard error 

Backscatter GLCM SAVG Backscatter & GLCM SAVG 

Ks 3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 Ks 3 Ks 5 Ks7 Ks 9 Ks 13 Ks 21 

Site 1 95.1 
±5.3 

100.0 
±0 

99.0 
±2.2 

96.2 
±4.0 

89.2 
±6.3 

89.2 
±6.3 

82.7 
±13.0 

95.6 
±4.7 

95.1 
±4.7 

92.7 
±5.3 

87.3 
±6.3 

87.3 
±6.3 

82.1 
±11.5 

Site 2 98.2 
±3.4 

98.4 
±3.6 

97.8 
±3.5 

97.9 
±3.1 

97.2 
±3.2 

97.2 
±3.2 

95.7 
±4.6 

97.9 
±3.6 

97.1 
±3.6 

97.3 
±3.2 

96.6 
±3.3 

96.6 
±3.3 

95.2 
±4.6 

Site 3 96.8 
±4.9 

98.1 
±4.2 

98.2 
±4.0 

95.1 
±6.0 

90.7 
±7.6 

73.3 
±38.9 

58.0 
±43.1 

95.6 
±5.4 

95.9 
±5.1 

93.7 
±6.0 

90.6 
±6.8 

76.8 
±32.5 

67.6 
±36.5 

Site 4 100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

Site 5 100.0 
±0 

100.0 
±0 

100.0 
±0 

93.1 
±7.4 

87.1 
±8.8 

76.3 
±9.8 

65.0 
±8.8 

100.0 
±0 

100.0 
±0 

93.1 
±7.4 

87.1 
±8.8 

76.3 
±9.8 

65.2 
±8.7 

Site 6 98.0 
±4.5 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

100.0 
±0 

98.0 
±4.5 

98.0 
±4.5 

98.0 
±4.5 

98.0 
±4.5 

98.0 
±4.5 

98.0 
±4.5 

Site 7 97.6 
±5.2 

100 
±0 

91.8 
±11.9 

89.2 
±10.9 

87.5 
±11.1 

88.4 
±11.7 

63.6 
±59.4 

97.9 
±4.6 

94.1 
±7.2 

91.8 
±7.6 

90.8 
±7.8 

91.8 
±7.6 

76.5 
±43.3  

PA ± standard error 
Site 1 64.0 

±12.7 
66.4 
±13.6 

74.6 
±14.5 

78.0 
±14.8 

77.2 
±14.7 

77.2 
±14.7 

77.7 
±14.8 

72.5 
±14.1 

79.5 
±14.9 

81.5 
±15.1 

83.0 
±15.2 

83.0 
±15.2 

82.6 
±15.2 

Site 2 81.9 
±11.5 

86.6 
±12.7 

91.0 
±12.7 

92.6 
±12.8 

92.3 
±12.8 

92.3 
±12.8 

91.0 
±12.9 

88.9 
±12.5 

91.7 
±12.7 

93.3 
±12.9 

93.5 
±12.9 

93.5 
±12.9 

92.6 
±12.8 

Site 3 52.0 
±26.8 

43.5 
±22.6 

46.1 
±23.9 

50.3 
±26.0 

50.3 
±26.0 

49.8 
±26.0 

39.5 
±21.4 

56.2 
±28.9 

59.7 
±30.5 

63.1 
±32.1 

65.6 
±33.3 

65.6 
±33.3 

63.1 
±32.1 

Site 4 49.6 
±46.7 

8.8 
±10.0 

5.4 
±6.5 

3.0 
±3.7 

3.2 
±3.9 

2.0 
±3.1 

0.1 
±0.1 

49.6 
±46.7 

49.6 
±46.7 

49.6 
±46.7 

50.8 
±47.7 

50.8 
±47.7 

49.6 
±46.7 

Site 5 26.5 
±3.6 

44.5 
±10.5 

61.8 
±11.1 

71.7 
±10.8 

81.0 
±9.1 

84.8 
±8.8 

86.2 
±8.7 

45.1 
±10.4 

62.3 
±11.4 

71.7 
±10.8 

81.0 
±9.1 

84.8 
±8.8 

86.7 
±8.6 

Site 6 47.1 
±47.1 

1.1 
±2.4 

2.1 
±3.7 

0.1 
±0.1 

1.1 
±2.5 

0 
±0 

0 
±0 

47.1 
±47.1 

47.1 
±47.1 

47.1 
±47.1 

48.1 
±48.0 

47.1 
±47.1 

47.1 
±47.1 

Site 7 46.5 
±30.5 

27.1 
±18.8 

25.3 
±17.4 

37.4 
±25.0 

39.7 
±26.4 

34.7 
±23.5 

30.9 
±21.3 

52.2 
±33.8 

54.4 
±35.2 

63.5 
±40.4 

66.9 
±42.3 

63.5 
±40.4 

61.2 
±39.1  
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