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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A novel quasi-analytical algorithm 
(QAA716) produced robust results. 

• OHS images documented significant 
spatial-temporal patterns of Chl-a. 

• Total nitrogen was the key factor 
affecting the Chl-a variations in Dianchi 
Lake. 

• The OHS images' improved signal-to- 
noise ratio expedited the retrieval of 
Chl-a.  
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A B S T R A C T   

It can be challenging to accurately estimate the Chlorophyll-a (Chl-a) concentration in inland eutrophic lakes due 
to lakes' extremely complex optical properties. The Orbita Hyperspectral (OHS) satellite, with its high spatial 
resolution (10 m), high spectral resolution (2.5 nm), and high temporal resolution (2.5 d), has great potential for 
estimating the Chl-a concentration in inland eutrophic waters. However, the estimation capability and radio
metric performance of OHS have received limited examination. In this study, we developed a new quasi- 
analytical algorithm (QAA716) for estimating Chl-a using OHS images. Based on the optical properties in Dia
nchi Lake, the ability of OHS to remotely estimate Chl-a was evaluated by comparing the signal-to-noise ratio 
(SNR) and the noise equivalent of Chl-a (NEChl-a). The main findings are as follows: (1) QAA716 achieved 
significantly better results than those of the other three QAA models, and the Chl-a estimation model, using 
QAA716, produced robust results with a mean absolute percentage difference (MAPD) of 11.54 %, which was 
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better than existing Chl-a estimation models; (2) The FLAASH (Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes) atmospheric correction model (MAPD = 22.22 %) was more suitable for OHS image 
compared to the other three atmospheric correction models we tested; (3) OHS had relatively moderate SNR and 
NEChl-a, improving its ability to accurately detect Chl-a concentration and resulting in an average SNR of 59.47 
and average NEChl-a of 72.86 μg/L; (4) The increased Chl-a concentration in Dianchi Lake was primarily related to 
the nutrients input, and this had a significant positive correlation with total nitrogen. These findings expand 
existing knowledge of the capabilities and limitations of OHS in remotely estimating Chl-a, thereby facilitating 
effective water quality management in eutrophic lake environments.   

1. Introduction 

Chlorophyll-a (Chl-a) is an important optically active constituent 
(OAC) that directly correlates with the primary productivity of phyto
plankton. This makes it an essential indicator for assessing water quality 
and nutrient status (Beck et al., 2016; Ekstrand, 1992; Yang et al., 2010). 
Chl-a concentration (CChl-a) can be accurately measured in the field, but 
doing so is time-consuming and laborious, creating difficulty when 
monitoring large lakes over extended periods of time. Satellite remote 
sensing provides a promising solution for long-term and wide-spread 
monitoring of CChl-a in various environments (Lee et al., 2016; Li 
et al., 2019; Mishra et al., 2013; Yao et al., 2020). 

Numerous remote sensing algorithms have been developed to 
quantify CChl-a in inland waters, most being empirical. Additionally, 
machine learning has been used to retrieve CChl-a levels (Cao et al., 2020; 
Cao et al., 2022a). However, these methods usually lack a theoretical 
basis and are often used for multispectral images, especially with the 
development of hyperspectral images. Several algorithms based on 
hyperspectral data have been proposed, such as the Chl-a three-band 
model (Hu et al., 2012b; O'Reilly et al., 1998) and the four-band model 
(Le et al., 2013), developed for turbid waters. The spectral features of 
CChl-a have also been used in CChl-a retrieval (Bi et al., 2018a; Liu and 
Tang, 2019; Lyu et al., 2015). However, the above algorithms often rely 
on assumptions and lack a mechanistic investigation of Chl-a. The aph 
(absorption coefficient of phytoplankton) is closely related to CChl-a 
through its specific absorption characteristics (Bricaud et al., 1995; 
Nardelli and Twardowski, 2016) and can be used as a proxy parameter 
in the estimation of CChl-a (Jiang et al., 2021; Liu et al., 2020). Liu et al. 
(2020) developed an improved quasi-analytical algorithm (TC2) that 
uses aph to estimate the CChl-a for Case-II turbid waters. However, TC2 
requires extensive measurement data and produces unsatisfactory re
sults in eutrophic waters. Despite this limitation, TC2 enabled a direct 
investigation into the mechanistic changes of CChl-a using aph, indicating 
comprehensive explanation and generalizability. The quasi-analytical 
algorithm (QAA), developed by Lee et al. (2002), has been widely 
used to derive the inherent optical properties (IOPs) of oceanic waters 
(Liu et al., 2020; Shi et al., 2019). Even so, it has shown limitations in 
Case-II waters, rerating the reference band, and re-parametrizing the 
equation to produce more reasonable results in turbid waters (Rodrigues 
et al., 2017; Wang et al., 2009). 

Inland waters have relatively complex optical properties, and un
stable factors such as climatic change and anthropogenic activities can 
affect CChl-a in eutrophic waters, making it challenging for multispectral 
remote sensing to accurately capture their spectral characteristics 
(Zheng et al., 2022). Hyperspectral satellites, such as PRISMA (PRe
cursore IperSpettrale della Missione Applicativa), OLCI (Ocean and Land 
Color Instrument), DESIS (DLR Earth Sensing Imaging Spectrometer), 
and HICO (Hyperspectral Imager for the Coastal Ocean), have shown 
promising performances in water quality monitoring within various 
environments (Bresciani et al., 2022; Lima et al., 2023; O'Shea et al., 
2021). The Orbita Hyperspectral (OHS) satellite, launched in China, has 
in-orbit image (Complementary Metal-Oxide-Semiconductor, CMOS) 
technology that combines high spectral resolution (2.5 nm), high spatial 
resolution (10 m), and high temporal resolution (2.5 d), with 256 
spectral bands (32 optional band width at 5–14 nm) within a band range 

of 400–1000 nm. This makes it suitable for detecting water quality in 
inland eutrophic lakes (Cao et al., 2019; Zhong et al., 2021). The three 
high resolutions of OHS make it highly sensitive to the optical charac
teristics of complex and dynamically variable inland waters, thereby 
enhancing its ability to monitor inland water quality (Kutser et al., 
2001). However, the assessment of OHS's capability to monitor water 
quality parameters is limited (Zhang et al., 2021). 

The main objective of this study is to evaluate the CChl-a spatial- 
temporal patterns in eutrophic lake using OHS images and the semi- 
analytical model. Specifically, our aims are: (1) To develop a re- 
parametrized QAA model (QAA716) that could estimate CChl-a, based 
on the characteristics of eutrophic waters; (2) to evaluate the feasibility 
and radiometric capability of CChl-a measurements using OHS images; 
(3) to explore the spatial-temporal patterns of CChl-a in Dianchi Lake. 

2. Materials and methods 

2.1. Study area 

Dianchi Lake (Fig. 1), the largest freshwater lake (330 km2) in the 
Yunnan-Guizhou Plateau region, is located southwest of Kunming City, 
Yunnan Province. It plays a crucial role for both residents and the 
environment. Unfortunately, Dianchi Lake's water environment and 
aquatic ecosystem have suffered serious damage in recent years due to 
rapid economic development, urbanization, and population pressure. 
This has resulted in a continuous decline in water quality and an in
crease in nutrient levels (Yang et al., 2018), making it one of the most 
environmentally polluted lakes in China (Liu et al., 2015; Yang et al., 
2018). Despite attempts to clean up the lake, Dianchi Lake remains at an 
extremely eutrophic level, emphasizing the importance of monitoring its 
water quality. 

2.2. Data and processing 

2.2.1. Field data 
Two field campaigns were conducted on April 13–16, 2017 and 

November 13–15, 2017. A total of seventy-one remote sensing reflec
tance (Rrs), Secchi-disk depth (SD), and water samples were selected and 
studied (Fig. 1c). Rrs spectra were measured with ASD FieldSpec Pro 
portable spectrometer (ASD Inc., Boulder, CO, USA). The observation 
geometry with an azimuth of the Sun of 135◦ and a nadir angle of 40◦

(Mobley, 1999; Mueller et al., 2003). The SD was measured at the 
sample sites using a standard Secchi-disk with a diameter of 30 cm 
(Preisendorfer, 1986). Water samples from each site (0.5 m depth) were 
collected for laboratory analysis, and the longitude and latitude were 
recorded using global positioning system receivers. Additionally, the 
Dianchi Lake Administration provided measured CChl-a for April 2, 2019 
(N = 9), and China National Environmental Monitoring Centre provided 
measured CChl-a data for March 19 (N = 5), March 26 (N = 4), and April 
16 (N = 7), 2021. A total of 25 in-situ CChl-a measurements were syn
chronized with the OHS observation. Rrs was derived through the 
following equation (Tang et al., 2004): 

Rrs(λ) =
(
Lw − ρLsky

)
*Rg

Lgπ (1) 

Z. Zheng et al.                                                                                                                                                                                                                                   



Science of the Total Environment 904 (2023) 166785

3

where Lw, Lsky, Lg, and Rg denote the total radiance measured on the 
water surface, the radiance of the skylight, the radiance of the reference 
panel, and the reflectance of the gray diffuse panel (30 %), respectively; 
ρ represents the skylight reflectance at the air-water interface and the 
impact of wind (2.2 % for calm water surface, 2.5 % for 5 m/s, 2.6 %– 
2.8 % for 10 m/s). 

A total of seventy-one water samples were taken to the laboratory to 
measure water quality parameters (Chl-a, total suspended matter (TSM), 
total phosphorus (TP), and total nitrogen (TN)) and optical parameters 
(absorption coefficient of particulates (ap), absorption coefficient of 
phytoplankton (aph), absorption coefficient of non-algal particulates 
(aNAP), and absorption coefficient of chromophoric dissolved organic 
matter (aCDOM)). After the water samples' phytoplankton pigments were 
extracted using 90 % hot ethanol at 80 ◦C and acidified with 1 % diluted 
hydrochloric acid, the concentrations of Chl-a were measured using 
spectrophotometric techniques (Jespersen and Christoffersen, 1987). 
Water samples were filtered through fiberglass filters (Whatman GF/F, 
0.7 μm pore-size) and pre-combusted at 550 ◦C for 4 h to remove organic 
traces and dried at 105 ◦C for 4 h and then weighed to obtain the con
centrations of TSM using the gravimetric method (Zheng et al., 2016). 
The concentrations of TP and TN were measured using a UV-VIS spec
trophotometer (Etheridge et al., 2014; Huang et al., 2015). Absorption 
coefficient components were measured using the quantitative filtering 
technique (QFT) (Brian Gregory, 1990; Prieur and Sathyendranath, 
1981). 

2.2.2. Climatic data 
The monthly averages of temperature, precipitation, and wind speed 

data were collected from the Kunming meteorological station in 
Kunming City (Fig. 1c). These data were downloaded from the National 
Oceanic and Atmospheric Administration from 2019 to 2021 (htt 
ps://www1.ncdc.noaa.gov/pub/data/paleo/). 

2.2.3. Satellite data and processing 
In this study, OHS Level-1A (Digital Number) data, including 

radiometric calibration data for the sensor, were obtained from Zhuhai 
Orbita Aerospace Technology Co., Ltd. From April 2, 2019 to September 
13, 2021, with a total of 10 cloudless OHS images collected over Dianchi 
Lake (https://ohs.obtdata.com/). To calculate the radiometric perfor
mance of OHS imagery, Fuxian Lake, a clean body of water, was used for 
the signal-to-noise ratio (SNR) estimation (Fig. 1d) (Cao et al., 2022b). 
The Landsat-9 OLI2 (Operational Land Imager 2), a new generation 
satellite in the Landsat family, was used for the CChl-a retrieval by Cao 
et al. (2022b), but its radiation performance lacked sufficient research. 
The OLI-2 imagery of an open and cloudless ocean area was collected on 
April 9, 2023 (https://glovis.usgs.gov/), and the details of the SNR area 
were estimated (Cao et al., 2018). Additionally, Hyperion imagery 
collected on October 22, 2009, as OLI2 describes, was used to compare 
the radiometric performance with another hyperspectral image (https 
://glovis.usgs.gov/). 

To determine the suitable atmospheric correction (AC) model for 
OHS imagery, four different AC models were used: the FLAASH (Fast 
Line-of-sight Atmospheric Analysis of Spectral Hypercubes) model, the 
QUAC (Quick Atmospheric Correction) model, the 6S (Second Simula
tion of Satellite Signal in the Solar Spectrum) model, and the DOS (Dark 
Object Subtraction) model. The details of the AC models are found in 
Zhang et al. (2021). The FLAASH Guide Setting in ENVI (Environment 
for Visualizing Images) 5.3 was used to determine parameters, such as 
the aerosol models. The QUAC and DOS models were integrated into 
ENVI 5.3 and automatically selected parameters. The 6S model was 
applied in the OPENOHS, a software specifically designed for processing 
OHS imagery (https://www.obtdata.com/#/content/scheme/use 
rGuide). The user only needs to select the aerosol model. The conti
nental aerosol model was also used for the 6S model (Bi et al., 2018b). 
After atmospheric correction, a geometric deviation of OHS (<1 km) 
was discovered. As a result, all OHS images underwent calibration, using 

Fig. 1. Location and sampling data distribution of Dianchi Lake in China. (a) Location of study area in China; (b) distribution of Dianchi Lake and Fuxian Lake; (c) 
distribution of sampling data in Dianchi Lake; (d) distribution of signal-to-noise ratio (SNR) calculation area (yellow symbol) in the Fuxian Lake obtained by Orbita 
Hyperspectral image on February 1, 2023. 
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the orthorectification tool in the OPENOHS. To assess the effectiveness 
of AC model for OHS images, satellite-ground synchronous measured 
CChl-a were used to compare with OHS-derived CChl-a obtained by 
different AC models. 

2.3. Semi-analytical model development 

2.3.1. Relationship between Chl-a and aph(λ) 
For the Chl-a retrieval, CChl-a can be expressed as (Liu et al., 2020): 

CChl− a =
aph(λ)
a*

ph(λ)
(2)  

where a*
ph(λ) is the absorption per unit CChl-a. Previous researches (Bri

caud et al., 1995; Ciotti et al., 2002) had shown that the values of a*
ph(λ) 

are connected to cell size, intracellular pigment concentration varia
tions, and photoadaptation within the local population. Accurately 
calculating these values was difficult and required a massive number of 
estimates on a regional or global scale. However, there is a strong cor
relation between CChl-a and aph(λ), allowing for the development of an 
empirical relationship that estimated aph(λ) as a function of CChl-a. Thus, 
Eq. (2) can be rewritten as (Cleveland, 1995): 

CChl− a∝aph(λ) (3)  

where the wavelength λ was usually the aph(λ) peak at the red band for 
inland waters (Liu et al., 2020). For our purposes, the relationship be
tween aph(λ) and CChl-a was firstly analyzed, and the wavelength with the 
highest correlation was chosen. After making the necessary modifica
tions, CChl-a could be obtained from the aph(λ). After deriving aph(λ) from 
the Rrs using QAA, a total of 71 CChl-a data were randomly divided into 
modeling data sets (N = 48) and validation data sets (N = 23) to 
construct and validate the Chl-a estimation model (Fig. 3). 

2.3.2. Improving QAA model for deriving aph(λ) 
Lee et al. (2002) developed the QAA model to establish the rela

tionship between Rrs and IOPs based on theoretical analysis and nu
merical simulation of the radiative transfer models (Lee et al., 2002; Lee 
et al., 2014a). The QAA consists of two primary parts: the inversion step, 
which yields the a (total absorption coefficient) and bbp (backscattering 
coefficient of particulates) at each wavelength, and the partition step, 
which yields the aph and adg (absorption coefficient of colored dissolved 
organic matter and detritus). The QAA model has been updated to its 
sixth version (QAA670). However, researchers have found that directly 
applying QAA670 estimate a and bbp for lakes following ocean waters 
assumption may lead to significant underestimation, due to the distinct 
optical characteristics among different bodies of water (Rodrigues et al., 
2017; Zhang et al., 2012). 

Therefore, the main goals in developing the QAA716 model for Dia
nchi Lake were: (1) Adjusting the original reference band to ensure that 
the original assumption (absorption coefficient of pure water, aw, 
dominates absorption at the reference band) remained applicable at the 
adjusted reference band; (2) incorporating the measured IOPs specific to 
Dianchi Lake for re-parameterization (Huang et al., 2014; Ogashawara 
et al., 2016; Rodrigues et al., 2017; Watanabe et al., 2016; Yang et al., 
2013); (3) referring the band settings and central wavelengths for OHS 
images. The improved steps of the QAA716 are as follows (Zheng, 2018): 

Improved step 1: Based on the measured optical characteristics in 
Dianchi Lake and the theoretical foundation of the reference wave
length proposed by Lee et al. (2002), the reference wavelength in this 
study was redefined as 716 nm. The reasons were as follows: (a) In 
QAA670, the reference wavelength was 670 nm, where the ap domi
nated the absorption in Dianchi Lake; (b) at 716 nm, the aw domi
nated the absorption in Dianchi Lake; (c) the aCDOM at 716 nm was 
negligible compared to aw; (d) the central wavelength of the near- 

infrared band of the OHS was at 716 nm. Consequently, the a(716) 
can be calculated as: 

a(λ0) = aw(λ0) + Δa(λ)

= aw(716) + α rrs(555)
rrs(710)

+ β
rrs(670)
rrs(710)

+ γ
rrs(760)
rrs(555)

α = − 0.649, β = 1.149, γ = 0.037

(4)  

where rrs(λ) is the lower-water surface remote sensing reflectance 
and Δa(λ) is the sum of the absorption of OAC. The bbw (backscat
tering coefficient of pure water) was negligible compared to the bbp 
in Dianchi Lake, while the a at 716 nm can be roughly estimated from 
aw in this band. The coefficient in the Δa(λ) function was determined 
by referring to the method proposed by Mishra et al. (2013) and 
Rodrigues et al. (2017). 
Improved step 2: After reselecting the new reference band, bbp(716) 
can be obtained as follows: 

bbp(716) =
u(716) × a(716)

1 − u(716)
− bbw(716) (5)   

Improved step 3: Calculating the probability of the η (particle 
backscattering coefficient), an empirical value calculated from in- 
situ measurement data. For oceanic Case-I waters, Lee et al. (2002) 
considered η values as 0–1, and 1–2 for Case-II waters. For Dianchi 
Lake, there were no established numbers to determine the range of η 
values. Therefore, this study referred to Lee et al. (1998) and used a 
band optimization algorithm. Initially, 760 nm was used as the de
nominator, and the numerator varied from 400 to 800 nm. Eventu
ally, 555 nm was determined to be the optimal band. As a result, η 
can be calculated from the following equation: 

η = 2.0×

[

1 − 1.2× e

(

− 0.9×rrs (555)
rrs (760)

)
]

(6) 

Based on the aforementioned steps, the values of a, aph, and bbp at any 
wavelength can be derived by calculating the values of a and bbp at the 
reference wavelength (Table 1). The reference band used in this study, 
716 nm, was similar to that seen with turbid waters in previous studies, 
such as Taihu Lake and Poyang Lake (Huang et al., 2014; Le et al., 2009). 
This indicated that the original assumptions of the QAA670 were not 
applicable in lakes like Dianchi Lake. Thus, the reference band needed to 
be rerated and then re-parametrized. 

2.3.3. Generating virtual bands from OHS image 
Despite having 32 bands, the OHS image lacked two bands centered 

at 412 nm and 443 nm, which were crucial for deriving aph with the QAA 
model. Fortunately, Wei et al. (2019) proposed an algorithm for esti
mating the reflectance of the virtual band. The virtual band at 443 nm 
can be obtained using Wei et al.'s example of estimating the virtual band 
at 412 nm. This is illustrated in the succeeding paragraphs. 

First, the in-situ Rrs and the spectral response function (SRF) were 
convolved spectrally to obtain Rrs (Bi): 

Rrs(Bi) =

∫ 800
400 SRF(λ)Rrs(λ)dλ
∫ 800

400 SRF(λ)dλ
, i = 1, 2,⋯, 32 (7)  

where SRF represents the OHS's spectral response function for each 
band. Rrs(B0) was derived by assuming a bandwidth of 5 nm for the 
virtual band and interpolating hyperspectral data at 412 nm. 

Next, the 33 bands of each sample point were normalized by the 
arithmetic square root of B0 to B32 (Wei et al., 2016): 

Z. Zheng et al.                                                                                                                                                                                                                                   
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nR*
rs(Bi) =

Rrs(Bi)
[
∑32

j=0
Rrs

(
Bj
)2

]1
2
, i = 0, 1, 2,⋯, 32 (8)  

where nR*
rs(Bi) is the normalized Rrs. The nR*

rs(Bi) spectra were used to 
represent the shape of the spectra in the OHS-detected inland waters. 

By resolving the distances of Rrs(B0) and nR*
rs(Bi), Rrs(B0) can be 

determined as: 

Rrs(B0) = D× nR*
rs(412) (9)  

where D is the scaling factor (Wei et al., 2019): 

D =

[
∑32

i=1
Rrs(Bi)

2

]1
2
/[

∑32

k=1
R*

rs(Bk)
2

]1
2

(10) 

Based on the estimated Rrs(412) and Rrs(443) bands, the OHS was 
able to derive the source of the separation of aph. Both R2 values for 
Rrs(412) and Rrs(443) are 0.95, and the values fall within the 95 % 
prediction band. This indicates that Rrs(412) and Rrs(443) could be 
derived from Rrs(466) using a relationship, making it feasible to use 
QAA716 to yield aph from OHS data (Yin et al., 2021). The results and 
data are depicted in Fig. S1. 

2.4. Image evaluation 

The SNR is a crucial sensor evaluation parameter, in which a higher 
SNR denotes less noise, less uncertainty, and greater accuracy (Cao 
et al., 2018). The local variance method was used to determine the SNR 
of the OHS images (Cao et al., 2018). Fuxian Lake, a clean water body in 
the Yunnan-Guizhou Plateau region (Fig. 1b), was selected for the SNR 
estimation (Cao et al., 2022b). The main steps were: (1) Using the Canny 
operator to extract the pure window of the image (Fig. 1d); (2) Screening 
the image pixels in the range within a 3*3 window, with a threshold set 
at 1.002 (Hu et al., 2012a); (3) Calculating the standard deviation within 
this region as the ‘noise estimate’ (LSD) and determining the mean value 
as the ‘signal estimate’ (DN). The SNR was calculated as follows: 

SNR =
DN
LSD

(11) 

The remote estimation of CChl-a relied on both algorithm accuracy 
and the quality of remote sensing images. Previous studies have evalu
ated noise-equivalent studies using empirical bands (Ren et al., 2018; 
Vanhellemont and Ruddick, 2014). Consequently, a new noise- 
equivalent Chl-a (NEChl-a) was proposed to evaluate the ability of the 
imagery based on the semi-analytical model. 

To quantitatively assess and compare the radiometric performance of 
different images and the uncertainty caused by noise, the noise equiv
alent reflectance (NEρ) was calculated as follows (Vanhellemont and 
Ruddick, 2014): 

NEρ =
π × NEL × d2

F0 × cosθ
(12)  

where NEL is the noise equivalent irradiance (Eq. (13)), d is the Sun-to- 
Earth astronomical distance, approximated by 1 AU (Astronomical 
Unit), F0 is the extraterrestrial solar irradiance, and θ is the solar zenith 
angle. The NEL was calculated as follows: 

NEL =
Lref

SNR
(13)  

where Lref is the radiance of the reference wavelength, and SNR is the 
SNR at the Lref. The NEChl-a was calculated using the Chl-a semi-analyt
ical model proposed in this study. 

2.5. Accuracy evaluation 

Several indicators were used for statistical analysis: (1) The Pearson 
correlation coefficient (r), and the coefficient of determination (R2) were 
used to determine the relationship between two variables; (2) p-value 
was used to detect significance (p < 0.05) or non-significance (p > 0.05); 
(3) the mean absolute percentage difference (MAPD) and the root mean 
square difference (RMSD) were used to demonstrate the statistical ac
curacy of the model. The equations are as follows (Li et al., 2023; Zheng 
et al., 2016): 

MAPD =
1
N

∑N

i,j=1
∣
Xi − Xj

Xi
∣× 100% (14)  

RM SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i,j=1

(
Xi − Xj

)2

√
√
√
√ (15)  

where N is the number of samples, and Xi and Xj are the derived and 
measured values, respectively. The r, R2, and p-values were used in the 
CChl-a model's calibration and driving force analysis (Figs. 3, S3, S4, S5, 
Table S1). MAPD and RMSD were used in model validation. Fig. 2 shows 
the validation of QAA716, while Figs. 3, 4, S5, S6, and Table S1 show 
CChl-a's validation. 

Table 1 
QAA716 remote sensing estimation steps. Steps with a gray background indicate 
improvements proposed in this study. u(λ) is a function of the a and bb. ξ, S, and 
ζ are all parameters from Lee et al. (2014a). 
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Fig. 2. Validation and comparison of a at 490 nm, 565 nm, and 665 nm. (a) The new re-parametrized QAA (QAA716) proposed in this study. (b) The original QAA 
(QAA670) proposed by Lee et al. (2014a); (c) the improved QAA (TC2) proposed by Liu et al. (2020); (d) QAA710 proposed by Huang et al. (2014). 

Fig. 3. Calibration and validation of CChl-a with aph(670) based on simulated OHS. (a) Fitting curves of measured CChl-a with aph(670) based on simulated OHS; (b) 
comparison of measured CChl-a with derived CChl-a based on simulated OHS. 
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Fig. 4. Validation and comparison of the OHS-derived CChl-a with measured CChl-a after different atmospheric correction models. (a) FLAASH model; (b) QUAC 
model; (c) 6S model; (d) DOS model. 

Table 2 
The measured water quality parameters and optical parameters in Dianchi Lake. S.D. is the standard deviation. C.V. is the coefficient of variation.  

Sampling time Parameters Max Min Mean S.D. C.V. Usage 

2017/04 (N = 32) Chl-a (μg/L)  106.18  61.86  81.52  15.34 18.82 % Model development and validationa 

TSM (mg/L)  53.75  21.33  33.70  6.00 17.80 % 
SD (m)  0.60  0.20  0.32  0.07 21.88 % 
TN (mg/L)  2.70  1.66  2.15  0.23 10.70 % 
TP (mg/L)  0.21  0.09  0.14  0.02 14.29 % 
aph(490) (m− 1)  2.66  1.28  2.16  0.25 11.57 % 
aNAP(490) (m− 1)  2.21  0.86  1.65  0.32 19.39 % 
aCDOM(490) (m− 1)  0.24  0.11  0.18  0.03 16.67 % 

2017/11 (N = 39) Chl-a  213.13  60.18  90.35  29.02 32.12 % 
TSM  59.38  29.50  36.03  6.30 17.49 % 
SD  0.54  0.24  0.38  0.06 15.79 % 
TN  4.18  2.00  2.55  0.42 16.47 % 
TP  0.25  0.04  0.09  0.04 44.44 % 
aph(490)  4.42  0.93  1.90  0.73 38.42 % 
anan(490)  1.80  0.61  1.13  0.40 35.40 % 
aCDOM(490)  0.70  0.10  0.31  0.14 45.16 % 

2019/04/02 (N = 9) Chl-a  72  29  53.56  14.14 26.40 % Satellite synchronous validationb 

2021/03/19 (N = 5)  62  29  48  11.31 23.57 % 
2021/03/26 (N = 4)  73  47  61.5  9.55 15.53 % 
2021/04/16 (N = 7)  59  37  47.86  6.01 12.56 %  

a Seventy-one optical data were used to improve and validate the QAA (Table 1, Fig. 2). Seventy-one Chl-a data were used to calibrate and validate the Chl-a semi- 
analytical model (Fig. 3), as well as to compare with existing algorithms (Figs. S5, S6, Table S1). Seventy-one TSM, SD, TN, and TP data were used to analyze the 
driving forces of CChl-a (Fig. S3). 

b In those data, which came from Dianchi Lake Administration and China National Environmental Monitoring Centre, only CChl-a data were measured in syn
chronization with OHS images, validating the OHS-derived CChl-a (Fig. 4). 
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3. Results 

3.1. Water quality parameters and optical properties 

Dianchi Lake exhibited high CChl-a (>80 μg/L on average) during two 
field campaigns and a high percentage of aph. The variability of CChl-a in 
autumn (32.12 %) was higher than that seen in spring (18.82 %). TSM 
and SD remained at prominent levels with low variability in both sea
sons. Additionally, Dianchi Lake had an abundance of TN and TP, sup
porting the rapid growth of algae. The lake's optical properties were 
more variable and received stronger seasonal influences, especially 
when obtained in autumn. In conclusion, the elevated content of Chl-a, 
TSM, aph, and organic matters, along with the low SD, indicates that 
Dianchi Lake is an extremely turbid and Chl-a-dominated eutrophic 
lake. 

In this study, a total of twenty-five CChl-a measurements were 
collected synchronously with OHS observations. The measurements 
covered a wide range of CChl-a, ranging from the lowest value of 29 μg/L 
to the highest value of 73 μg/L (Table 2). 

3.2. Validation and calibration of the semi-analytical model 

3.2.1. Validation of QAA716 
To demonstrate the applicability and uncertainty of the QAA716, we 

compared its performance to those of QAA670 and two other modified 
QAAs proposed by Liu et al. (2020) (TC2) and Huang et al. (2014) 
(QAA710). Fig. 2 compares seventy-one derived a from QAAs with the 
measured a at 490 nm, 565 nm, and 655 nm. The QAA716 had the best 
estimation accuracy (MAPD ranged from 22.00 % to 27.46 %, and RMSD 
ranged from 0.57 m− 1 to 0.82 m− 1). The QAA670 estimations were found 
to be extremely poor and significantly underestimated (MAPD ranged 
from 58.45 % to 76.24 %, and RMSD ranged from 1.33 m− 1 to 1.76 
m− 1). The TC2 estimations for each band were better than the QAA670, 
but still significantly underestimated (MAPD ranged from 37.02 % to 
52.41 %, and RMSD ranged from 0.98 m− 1 to 2.05 m− 1). The QAA710 
estimations were significantly overestimated, especially for 490 nm, and 
its bias was higher than that of the QAA670 (MAPD ranged from 50.89 % 
to 68.15 %, and RMSD ranged from 1.46 m− 1 to 4.43 m− 1). The results of 
QAA716 were practically along the 1:1 line, achieving more satisfactory 
results than the other QAAs, and the deviation from the measured data 
was within the acceptable band. 

3.2.2. Calibration and validation of the OHS-simulated Chl-a estimation 
model 

To construct a Chl-a estimation model, Fig. S2 analyzed the corre
lation between OHS-simulated derived aph and CChl-a. The highest cor
relation coefficient was found at B14 (r = 0.88), with the B14 central 
wavelength of the OHS at 670 nm. A relationship was constructed using 
aph(670) and CChl-a. Fig. 3 depicts the calibrated and validated model for 
estimating CChl-a, demonstrating the excellent performance of the pro
posed CChl-a estimation model based on simulated OHS image (MAPD =
11.54 %, RMSD = 13.35 μg/L). The data points were roughly located 
along the 1:1 line, showing that the proposed model in this study could 
be applied to the retrieval of CChl-a data from OHS images. The following 
CChl-a estimation model was constructed based on simulated OHS: 

CChl− a = 94.3× aph(670) − 35.509 (16)  

where aph(670) is the aph at 670 nm obtained using QAA716 based on 
simulated OHS. 

3.3. Validation of Chl-a for OHS images 

Twenty-five uniformly distributed satellite-ground synchronous CChl- 

a data from Dianchi Lake were used to validate the feasibility of OHS 
images for the Chl-a semi-analytical model. Furthermore, the FLAASH, 

QUAC, 6S, and DOS models were used to evaluate the impact of different 
AC models on the Chl-a semi-analytical model. As seen in Fig. 4, the 
FLAASH model yielded the best results (MAPD = 22.22 %, RMSD =
14.81 μg/L) and could be applied to OHS images. Conversely, the QUAC 
and the DOS models led to the overestimation and underestimation of 
CChl-a, respectively, and were not acceptable. The AC results were 
consistent with the findings of Zhang et al. (2021) in Dianchi Lake, 
indicating that the FLAASH model was a suitable atmospheric correction 
model for the OHS imagery. 

3.4. Spatial-temporal patterns of Chl-a concentration 

The spatial-temporal patterns of CChl-a in Dianchi Lake from 2019 to 
2021, derived from OHS images using our proposed QAA716 model, are 
presented in Fig. 5. Overall, CChl-a demonstrated significant spatial- 
temporal variation in Dianchi Lake. Spatially, the central and south
western parts of Dianchi Lake displayed lower CChl-a levels, while the 
northern part of Dianchi Lake exhibited higher CChl-a levels. This finding 
is consistent with the studies conducted by Bi et al. (2019). Briefly, the 
average CChl-a was higher in 2021 (75.14 μg/L) than in 2020 (60.88 μg/ 
L) and 2019 (50.00 μg/L). The highest CChl-a (102.62 μg/L) was observed 
on September 13, 2021, while the lowest CChl-a (41.40 μg/L) was 
observed on November 24, 2020. According to the Kunming Environ
mental Monitoring Centre, the multi-year average CChl-a in Dianchi was 
reported as 83.67 ± 39.95 μg/L (Mu, 2020). 

4. Discussion 

4.1. Comparing with existing algorithms 

We reselected the reference band to be 716 nm, based on the optical 
characteristics of Dianchi Lake, and then conducted a re- 
parameterization. Compared to the QAA670, the QAA716 displayed a 
significant reduction in the MAPD (from 58.45 %–76.24 % to 22.00 %– 
27.46 %), resulting in a more robust estimation. The QAA716 also out
performed the TC2 and QAA710. Fig. 2 illustrates the necessity of rese
lecting the reference band and conducting re-parameterization when 
using the QAA model in Dianchi Lake. 

Additionally, we compared the Chl-a estimation model using the 
QAA716 alongside the more commonplace Chl-a estimation models, 
based on in-situ data from Dianchi Lake (Table S1). Table S1 indicates 
that the semi-analytical model proposed in this study had the highest R2 

and the best estimation accuracy (R2 = 0.85, MAPD = 11.54 %, RMSD =
13.35 μg/L). Overall, it provides a novel approach for Chl-a detection in 
inland waters. Liu et al. (2020) considered a*

ph(665) to be equal to 0.017 
m2mg− 1 based on global data collection. However, the accuracy of 
a*

ph(665) for Chl-a estimation in Dianchi Lake was unsatisfactory 
compared to the model used in this study. By modifying the parameters 
based on measured data, it is possible to develop a more applicable 
model. Further study should be conducted to determine the applicability 
of the values of a*

ph using the extensive data collected from Dianchi Lake. 
Such research could assess the applicability and generality of the Chl-a 
model and QAA716 to other types of inland waters. 

4.2. Driving forces 

4.2.1. Relationship between Chl-a concentration and water quality 
parameters 

Fig. S3 shows the relationship between CChl-a and water quality pa
rameters. CChl-a showed a weak correlation with transparency (r = 0.20, 
p > 0.05) and a significant positive correlation with TSM (r = 0.60, p <
0.05), both of which were associated with the underwater light envi
ronment. This indicates that the increased CChl-a was related to the 
degradation of the underwater light environment in Dianchi Lake, which 
is consistent with Zhang et al.'s (2016) study. TN and TP are important 
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Fig. 5. The spatial-temporal patterns of OHS-derived CChl-a in Dianchi Lake from 2019 to 2021.  
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nutrients for phytoplankton growth (Yang et al., 2016). In the case of 
Dianchi Lake, it receives nutrients from its surroundings, resulting in the 
TN and TP concentrations that are sufficient to support normal algal 
growth. This, in turn, affects the variations in CChl-a. The correlation 
between CChl-a and TN (r = 0.77, p < 0.05) was stronger than the cor
relation between CChl-a and TP (r = 0.36, p > 0.05), which could be 
attributed to the dominant algal species present in Dianchi Lake. 

4.2.2. Relationship between Chl-a concentration and climatic factors 
Fig. S4 analyzes the relationship between OHS-derived CChl-a in 

Dianchi Lake and climatic factors during the month of study. The rela
tionship between CChl-a, temperatures (r = 0.32, p > 0.05), and wind (r 
= 0.26, p > 0.05) were found to be insignificant, which could be 
attributed to the short-term nature of the observations. However, there 
was a significant correlation (r = 0.60, p < 0.05) between CChl-a and 
precipitation. Previous studies (Reichwaldt and Ghadouani, 2012) have 
confirmed that rainfall can result in a transient increase in nutrients, 
promoting the increase in CChl-a. This phenomenon was observed in 
Dianchi Lake (Mu et al., 2019). 

In summary, the strongest correlations with TN and the transient 
increase in nutrients caused by precipitation are both related to the 
promotion of nutrient inputs. This indicates that the CChl-a in Dianchi 
Lake is primarily influenced by the input of nutrients. Controlling 
nutrient input could effectively reduce CChl-a. 

4.3. Radiometric performance of OHS image 

Fig. 6 compares the SNR and NEChl-a for various images, most of 
which were designed for marine and continental applications. In Fig. 6a, 
the SNR of MODIS (Moderate-resolution Imaging Spectroradiometer) 
(Barnes et al., 2003), MERIS (Medium Resolution Imaging Spectrom
eter) (Morel, 1998), OLCI (Ocean and Land Colour Instrument) (Shi
moda et al., 2012), and OLI2 were significantly higher than those of OHS 
and Hyperion. This was due to wider bandwidth, coarser spatial reso
lution, and higher radiation energy intake. Compared to Hyperion, 
another hyperspectral satellite, OHS had a higher spatial resolution and 
overall higher SNR. However, the low SNR of OHS at 760 nm may result 
in significant deviations when the QAA716 was applied. Fig. 6b showed 
that Hyperion (81.28 μg/L on average) and OHS (72.86 μg/L on 
average) had comparable NEChl-a, while OLCI (55.44 μg/L on average), 
MODIS (35.72 μg/L on average), and MERIS (40.49 μg/L) had relatively 
lower NEChl-a. A high SNR in each spectral band is crucial for accurately 
estimating water quality parameters. Compared to Hyperion, OHS had a 
higher overall SNR, which resulted in lower NEChl-a. On the other hand, 
OLCI, which is the successor of MERIS, exhibited a relatively high SNR. 

In spite of that, OLCI had a high overall NEChl-a due to the low SNR at 
760 nm. 

According to previous studies (Hu et al., 2012a; Lee et al., 2014b), a 
high SNR in a satellite sensor can be achieved by having a low spatial 
resolution (e.g., 1000 m for MODIS) or a wide spectral band (e.g., 
50–100 nm for Landsat). This allows enough photons to ensure image 
quality. OHS, with its high spatial and high spectral resolution, radiated 
less energy, possessed stable state photons, and had a low, predictable 
SNR. However, it still had better overall SNR compared to Hyperion. 
NEChl-a is a quantity that varies with the solar zenith angle (θ, Eq. (12)). 
However, when the semi-analytical model proposed in this study was 
used, the relationship between NEChl-a and θ was not evident (Fig. 6b). 
This finding contradicts the results of Vanhellemont and Ruddick (2014) 
on noise-equivalent suspended matter in the English Channel. This 
discrepancy may be caused by the fact that most QAA equations were 
based on ratio calculations, which indirectly reduced the impact of 
variations in θ variations on estimates. 

In conclusion, the OHS imagery had relatively moderate SNR and 
NEChl-a, possibly producing some differences in image applications. 
However, OHS had significant advantages for remotely estimating CChl-a 
in eutrophic lakes, due to its three high features and overall suitable 
performance. 

5. Conclusions 

Based on our study of Dianchi Lake, we completed the rate deter
mination and re-parameterization of the reference band in QAA. Then, 
we evaluated the feasibility and applicability of OHS for estimating CChl- 

a. QAA716 demonstrated significantly higher accuracy compared to 
QAA670, TC2, and QAA710, with MAPD reduced to 22.00 %–27.46 % and 
RMSD reduced to 0.57 m− 1–0.82 m− 1. Among the tested Chl-a estima
tion models for CChl-a, the one with aph(670) as a proxy parameter per
formed the best, with MAPD of 11.54 % and RMSD of 13.35 μg/L. When 
applied to OHS images, the FLAASH model was preferred over the 
QUAC, 6S, and DOS models, with MAPD of 22.22 % and RMSD of 14.81 
μg/L. The improved SNR of OHS image promoted the capability of Chl-a 
estimation. The increased CChl-a in Dianchi Lake was primarily associ
ated with the nutrients input, showing a significant positive correlation 
with total nitrogen. In summary, the semi-analytical model proposed in 
this study can be applied to estimate CChl-a in inland eutrophic waters. 
OHS, as an orbiting hyperspectral satellite with three high features, 
could effectively capture the spectral features and spatial details in 
water bodies, providing a new tool for monitoring inland waters. 

Fig. 6. Comparison of SNR and NEChl-a of OHS images with that of other mainstream images. (a) SNR comparison of various images; (b) variation of NEChl-a with solar 
zenith angle for various images. 
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