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Abstract 
Crop water stress (CWS) caused by inadequate soil moisture content (SMC) is a major factor affecting 

agricultural productivity. Remote sensing technologies, such as thermal infrared (TIR) cameras on Unmanned 

Aerial Vehicles (UAVs), offer a potential solution for monitoring CWS. In this study, the relationships between 

canopy temperature (Tc) obtained from UAV-based TIR data and ground measurements of SMC, plant water 

content (PWC), and dried leaves weight (DLW) were investigated to support the use of TIR for CWS detection. 

Two different soil-pixel exclusion methods using the Otsu algorithm and Normalized Difference Vegetation 

Index (NDVI) thresholding were compared, and the influence of cover crops on UAV-ground measurement 

relationships was assessed. The study focused on maize at three different growth stages after six years of 

winter cover crop use, hypothesizing cover crops impact these relationships. The findings revealed a 

correlation between Tc and PWC and DLW (r=-0.45*/-0.67***, and -0.19**/-0.58***, respectively), 

suggesting Tc could serve as a proxy for crop water status. However, Tc was not effective in estimating SMC. 

In this relation, the cover crop represented by the grass species "oat" may have led to unfavourable 

conditions for maize that resulted in lower PWC and biomass than other treatments (p < 0.05). Furthermore, 

the performance of the Otsu algorithm varied depending on the maize growth stage, which affected its 

applicability. Overall, the study highlighted the challenges and opportunities associated with thermal imaging 

for CWS monitoring, emphasising the importance of data interpretation. Further research is needed to 

explore the relationship between Tc and SMC with the inclusion of NDVI as a normalization factor and to 

better understand the impact of long-term cover crops on the SMC in no-tillage conditions.  

 

Keywords: remote sensing, canopy temperature, thermography, UAV, crop water stress, maize, soil moisture content, 

cover crops. 
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List of Abbreviations: 

 

CWS = Crop Water Stress 

DFW = Dried Fruit Weight 

DLW = Dried Leaves Weight 

DN = Digital Number 

ExG index = Excess Green index 

Gs = stomatal conductance  

LST= land surface temperature 

NDVI = Normalised Difference Vegetation Index 

PSF = Plant-Soil Feedback 

PWC = Percentage of Water in the leaves 

RGB = Red Green Blue wavelengths 

sdTc  = standard deviation of canopy temperature 

SNR = Signal to Noise Ratio  

SOC = Soil Organic Carbon 

SOM = Soil Organic Matter 

SMC = Soil Water or Soil Moisture Content 

SWD = soil water deficit 

Tc = canopy temperature 

TIR = thermal infrared 

TVDI = temperature vegetation dryness index  

UAV = Unmanned Aerial Vehicles  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

8 
 

1 Introduction  
1.1 Context and background 

Crop water stress, which is defined as water deficiency in the soil for crop use, represents a problem for 

farmers since plant growth may be undermined in the long term, leading to overall decreased productivity 

(Gerhards et al., 2019). Therefore, techniques for water stress monitoring are of the utmost importance. 

Currently, techniques for the detection of water stress in crops rely on direct measurements of the soil water 

content or assessment of physiological and biophysical changes occurring in crops (Ekinzog et al., 2022). 

 

In recent years, with advancements in technology, imagery of plant or canopy temperature (Tc) using UAV-

mounted thermal infrared (TIR) cameras started being explored due to its ability to offer a more complete 

picture of the spatial variability of crop water status compared to ground measurements (Messina and 

Modica, 2020). With TIR data collected by Unmanned Aerial Vehicles (UAVs), the workload in the field can 

be minimized. However, issues linked to the limitations of TIR cameras are introduced and need to be tackled 

with procedures that correct for the sensor’s intrinsic characteristics and ambient environmental conditions 

(Kelly et al., 2019). Given that, protocols known to derive accurate temperature data have been developed 

and methods for Tc extraction have been proposed (Jones and Sirault, 2014; Kelly et al., 2019). 

 

Nonetheless, using thermal imaging for monitoring purposes is further complicated by the fact that Tc is not 

only influenced by soil water content. Another potential way for controlling Tc is through biomass growth, as 

increased foliage leads to higher evapotranspiration and lower Tc (Ekinzog et al., 2022). For example, as 

biomass grows, a confounding effect in the relation between soil water content and Tc is introduced. On the 

other hand, the isolated influence of canopy structural parameters, which are for example represented by 

the biomass allocation to leaves and stems, can be seen later in the phenological stages, when at 

physiological maturity the canopy is not transpiring anymore (Anderegg et al., 2021). The link between Tc and 

soil water content, which reflects plant water status, was established long ago. Since then, TIR images have 

been helping to drive irrigation strategies aimed at decreasing Tc through an increase in soil water content 

via irrigation (Ekinzog et al., 2022; Gerhards et al., 2019). However, sustainable agricultural practices claim 

that water-use efficiency can be not only achieved with punctual water inputs but also by encouraging 

mechanisms for water retention and decreased loss. One of the mechanisms is cover crop use. The purpose 

behind the cultivation of cover crops is to benefit from their influence on soil properties, which the following 

plants can take advantage of (Blanco-Canqui and Ruis, 2020). This concept is called plant-soil feedback (PSF). 

Cover crops were found to affect the soil structure through improved water infiltration and absorption, as 

well as soil fertility by improving nutrient retention and cycling (Blanco-Canqui and Ruis, 2020; Daryanto et 

al., 2018; Koudahe et al., 2022). 

To add complexity, these two benefits of PSF need different duration of cover crop use to become explicit; 

additionally, different cover crops are reported to impact them differently (Blanco-Canqui and Ruis, 2020; 

Hunter et al., 2021). 

 

1.2 Problem definition 

The UAV-derived Tc serves for crop water stress monitoring, and water in the soil is the interest around which 

the study revolves, as it can be targeted efficiently and timely to reduce Tc (Zhang et al., 2019).  A significant 

correlation between soil moisture in the first 40 cm depth and Crop Water Stress Index (CWSI) is reported in 

the study by Ru et al. (2020). As Tc, CWSI has a strong relationship with the plant water status indicators, but 

differently from Tc, CWSI requires an artificial setup with an irrigation scheme, which is often difficult to set 
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at the field level. Therefore, the choice of Tc lies in its simplicity and the fact Zhang et al. (2019) reported that 

it is an effective indicator of water stress in maize that it is better able to reflect the status of soil water 

content at shallow root zone depths (20 cm), typical of this crop. Because of its importance, the effect of soil 

water content on Tc measured with UAV must be evaluated. Moreover, it has to be verified if the relation 

between soil water content and Tc is maintained during the growing season. Existing literature focused on 

examining the relation on a single acquisition day at different soil depths for exploring the water uptake zone 

for maize (Zhang et al., 2019). While having this relationship confirmed for different crop stages with soil 

water content sampled at 20 cm would mean that remote sensing techniques with their advantages over 

ground measurements could gather information needed on the water in the soil, and Tc could be used as a 

proxy for plant status (Messina and Modica, 2020). However, given the confounding effect of biomass and 

soil water content on Tc, it becomes important to distinguish which influences the Tc the most at the field 

level and to separate the two during the crop growth to see if the strength of the relationship is maintained 

over the growing season. This research represents a novelty in the sense that existing literature has focused 

on determining the causative relation between crop water stress and the consequently reduced biomass 

growth rather than the influence of biomass on Tc  (Li et al., 2019; Song et al., 2019). Furthermore, some 

studies investigated other canopy aerodynamic characteristics such as roughness and crop height (Gerhards 

et al., 2019; Prashar and Jones, 2014), but so far no research focused on the influence of biomass on the 

canopy energy balance.  

Biomass accumulation and soil water content, and consequently Tc may be affected by the PSF after cover 

crops. The existing literature about cover crops suggests that their short-term use associated with tillage 

repeated for a few years has the potential to increase macropores' presence (Haruna et al., 2023), which 

however is not reported to bring benefits in terms of soil hydraulic properties (Hunter et al., 2021). The effect 

on soil water content for long-term studies on the cover crop is only documented in the case of no-tillage 

practices. For prolonged cover crop use and no-tillage, Araya et al. (2022) report an improvement in soil 

structure accompanied by increased water retention. Nonetheless, little is known about whether tillage’s 

positive effects on macropores may persist over time when combined with a cover crop grown in succession 

for several years. Therefore, a study on the long-term use of cover crops of different types associated with 

ploughing becomes relevant. Assessment of cover crop performances when compared to the control (fallow) 

could highlight a difference in soil water content, besides the expected biomass variations already reported 

in the literature due to the fertilizing properties of cover crops (Fageria et al., 2005). Cover crops have to be 

studied individually by measuring the soil water content and biomass of the following cash crop. The use of 

Tc could help evaluate the effects of different cover crops and shed light on important benefits on soil 

hydraulic properties due to their long-term use, however, it is unclear if (and how) the use of different cover 

crops affects the relationship between canopy temperature and soil water content. 

For the achievement of thermal observations with the temporal and spatial scales more suitable to the study, 

UAV is generally deployed because of its flexibility in timing and flight height (Delavarpour et al., 2021). 

However, as it occurs with satellite or airborne images, further steps for obtaining Tc are to be undertaken 

and these depend on the method used for Tc extraction. The choice of the method used for removing soil 

from the pixels still constitutes a determinant passage that affects the overall thermal map and the results 

(Jones and Sirault, 2014). Besides a routinely used method based on NDVI, more sophisticated approaches 

such as the Otsu algorithm have been studied and shown promising results (Jones and Sirault, 2014; Zhang 

et al., 2019). Zhang et al. (2019) demonstrated that Tc extracted by the Otsu method is highly correlated with 

the ground-truth measurements with R2 of 0.94 (n = 15) and RMSE of 0.7°C, and therefore representing the 

Tc with high accuracy. Decisions on which methods to use need to be drawn according to the achievable 

accuracy in removing soil pixels. 
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1.3 Overall research aim and research questions 

The main aim of this thesis is to assess whether UAV thermal data can be used to obtain information about 

soil water content which is a proxy of crop water status and to determine to what extent biomass and soil 

water content derived from ground measurements are responsible for Tc changes obtained from the thermal 

camera on a UAV. Secondly, the effects of cover crops on this relationship will be investigated. To address 

this aim, three research questions will be answered. The first research question evaluates the performance 

of the background soil removal methods. The second and the third research questions focus on exploring the 

relation between UAV-derived Tc with soil water content and structural parameter as biomass at the field 

and plot level respectively during the growing season of maize. 

 

 To execute the above-mentioned aim, the following research questions are set up:  

 

RQ1: Which soil background removal method performs best at different maize growth stages? 

  

RQ2: What is the relationship between Tc, biomass, and soil water content and how can the ground 

measurements of the last two help to interpret the thermal data of maize crops? 

  

RQ3: How do cover crops influence the interrelation of soil water content, maize Tc and biomass? 

 

 

2 Material and Methods 
2.1 Study site and Experimental Design 

This study was conducted in a 1.21 ha research field (Latitude 51.995123 Longitude 5.660100), located 500 

meters north of the Wageningen University and Research campus, the Netherlands, during the summer of 

2022 (Figure 1 A). The study field was divided into five blocks with eight plots each (Figure 1 B). Within a 

block, each plot, whose dimensions were 10 m x 6 m, was randomly assigned one of the eight selected cover 

crop treatments. The treatments consisted of different species of cover crops, which have been grown in the 

same location every winter since 2016: oat (Avena strigosa, abbreviated as “O” in the text), radish (Raphanus 

sativus – “R”) and vetch (Vicia sativa  – “V”), bi- or tri-species mixtures (“VO”, “VR”, “OR” and “VOR” with 

mixing ratios of 50:50 and 33:33:33); one control plot was the fallow treatment (“F” in the text).  
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A 

 
B 

 
 

Figure 1 A Location of the study area with zoom into the field level (RGB orthomosaic derived from DJI Matrice 210 (RTK) on 

09/08/2022) and Figure 1 B distribution of cover crop types in the blocks. Abbreviations: oat (Avena strigosa – “O”), radish 

(Raphanus sativus – “R”) and vetch (Vicia sativa – “V”), bi- or tri-species (“VO”, “VR”, “OR” and “VOR”); fallow (“F”). 

 

After cover crops, the cash crop of the year was grown. Although soil texture was reported to be of one type 

only and defined as sandy (B2) according to the Dutch system of soil classification (Heinen et al., 2022),  soil 

sampling in November 2021 (Appendix I) demonstrated that there is a soil organic matter (SOM) gradient 
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along the length of the field which must be taken into account for soil water content considerations. More 

specifically there is an increase of SOM from blocks 1-2 to block 5 (Appendix I).  

In 2022, the cash crop was maize (Zea mays), which was sown on April 14th, 2022 in 7 parallel rows following 

east–west row direction. The maize plants emerged on May 13th and were harvested on August 25th, 2022 

after a 135-day life span. To eliminate interference from nutritional stress and weeds, fertilizers, and 

herbicides were applied according to the local cultivation practices. As part of the weed management 

strategy and cover crop termination, ploughing of cover crop biomass was performed before maize sowing. 

The availability of water for plants is described by wilting point and field capacity. For this textural 

classification, wilting point and field capacity were obtained from the water retention curve (not displayed) 

and reported to be around 3 and 13%, respectively. Irrigation was not provided and, in the summer of 2022, 

the study area had several rainfalls which occurred before June 27th, which is the first day of data collection. 

In August, precipitation events were scarce and only two light rain occurrences were documented two days 

before the last data collection (Appendix II). 

 

2.2 Field and UAV Data Collection 

2.2.1 Field data 

During the growing season, 3 field campaigns and UAV flights took place on the days reported in Table 1. The 

choice of dates was dictated by the need to analyse maize throughout the growing season. These field 

campaigns correspond to the V12 stage considered to be the active growth and leaves/cob development 

stage, the R2 stage in which the kernel develops, and the R5 stage which is the final critical production stage 

of physiological maturity (grain filling). Biomass measurements occurred 1-5 days before or after the UAV 

flights. Biomass measurements include dried leaves weight (DLW) and water content in the leaves expressed 

as a percentage (PWC). Besides leaf measurements, samples of maize cob were collected (dried fruit weight 

or DFW) and used as a measure of maize production. 

In each plot, 3 sampling sites were selected for data collection of biomass weights and moisture (leaves and 

stem) and the average values of these three readings were used to represent the sampling plot. Analysis of 

the samples was conducted in the laboratories of Wageningen University, on the same day of biomass 

collection. Weights before and after sample drying at 105°C for 24 h were taken and moisture content in the 

plants’ components were calculated using the following formula (1): 

 

Moisture content (%) = (W2 - W3) / (W2-W1) x 100 (1) 

 

where, W1 corresponds to the weight of the container with the lid, while W2 and W3 are the weights of the 

container with lid plus sample before and after drying, respectively.  

Additionally, the soil water content (SMC, in Siemens) in the centre of each plot was measured every fifteen 

minutes using the traditional gravimetric method with TMS-4 dataloggers (Wild J., 2019). The gravimetric 

measurements are later converted into volumetric water content. The deployed sensor was located in the 

ground at the effective rooting depth (0–12 cm).  

Maize is expected not to be affected by rapid changes in external conditions, such as water in the soil, due 

to its isohydric nature (Ihuoma and Madramootoo, 2017). Because of this, an average of the SMC readings 

before and during the flight on the day of the UAV campaign was considered and used in the analysis (for 

timing refer to Table 1). 

 
 



   

 

13 
 

Table 1 Summary of UAV, ground measurements and captured growth stages of maize (from vegetative phases to physiological 

maturity) according to Nleya et al. (2019). 

 

   Field data UAV drone 

flight 

 Growth stage Stage 

description 

Biomass SMC Thermal and 

multispectral 

 

 
 

 

Vegetative 

V12 

 

Tassel develops 

rapidly. Lateral 

shoots and cob 

development. 

 

 

June 

22nd 

 

June 

27th – 

00:00-

12.45 

 

June 

27th - 12:30-

12:50 

 

 
 

 

Reproductive 

R2 

 

Kernel 

development. 

Silking stage 

 

August 

10th 

 

August 

9th – 

00:00-

16:30 

 

August 

9th - 16:08-

16:36 

 
 

Reproductive  

R5 

Physiological 

maturity and 

drying of kernels. 

End of mass gain 

August 

22nd 

August 

23rd – 

00:00-

17:45 

August 

23rd - 17:22-

17:50 

 

2.2.2 UAV Thermal and RGB Imaging Systems 

In this study, a quad-rotor UAV remote sensing system (DJI Matrice 210 (RTK)) equipped with a FLIR Tau 2 

thermal camera (FLIR Systems, Wilsonville, OR, USA) and an Hiphen Airphen multispectral camera (Hiphen, 

Agricultural Imaging Solutions, Avignon, France) was used. The main technical parameters are shown in Table 

2. Flight planning was conducted with DJIFlightPlanner software (DJI, 2022), which allows the user to 

generate a route of waypoints from the desired take-off point.  
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Table 2 Main parameters of UAV thermal and RGB image acquisition system. 

 

Camera Parameter Value 

UAV thermal image 

acquisition system 

(FLIR Tau 2 19 mm) 

Imager resolution 640 x 512 pixels 

Lens focal length 19 mm 

Spectral bands 7.5–13.5 μm 

Lens field of view 32°x 26° 

Accuracy -25 to +100°C 

Thermal sensitivity 

(NETD) 

<50mK 

Weight 

(camera + lens) 

< 70 g 

Multispectral image 

acquisition system 

(Hiphen Airphen, 6 

bands) 

Imager resolution 1280 x 960 pixels 

Band range 6 spectral bands among 

[450/530/570/675/710/730/750/850 nm] 

(FWHM=10nm) 

Lens field of view 8mm - 33°x26° / 4.2mm - 60°x46° 

Image format TIFF 

 

2.2.3 Acquisition and Pre-treatment of UAV Thermal and RGB Images  

The accuracy of temperature measurements is influenced by ambient environmental conditions such as 

relative humidity, air temperature, the temperature of the surrounding objects, and the distance between 

the FLIR Tau 2 camera and the target. In this case, the meteorological effect was minimized by flying in 

absence of rain, snow, and dust (Messina and Modica, 2020). However, the passage of clouds could not be 

avoided during certain flights (June 27th and August 23rd), and because of technical issues, all flights except 

the first were accomplished late in the afternoon, therefore the shadowing effect is always present to a 

certain degree (Table 1). A trade-off with the battery duration was obtained by flying at an altitude of 20 m, 

which allowed to cover the area of interest in 20 minutes with 80% front and side overlap between images. 

Before every flight, a 20 minutes stabilization on the ground was adopted for reducing the systematic error 

and camera digital number (DN) shift due to wind and ambient temperature (Kelly et al., 2019). Additionally, 

the camera was set to perform non-uniformity correction every 20 seconds throughout the flight to account 

for possible detector drifts. Besides the thermal data acquired with FLIR Tau 2 facing downward vertically, 

multispectral images were captured with Hiphen Airphen provided of 6 bands (specifics in Table 2). The 

colour balancing feature with Agisoft Metashape (AGISOFT, 2023) that aims to normalize pixel values based 

on a comparison of common areas was used at the moment of orthomosaic creation. Colour calibration was 

done using the tie points as the source data. After images were acquired, mosaic processing was performed 

using Agisoft Metashape software. Thermal and RGB orthomosaics were geo-referenced using from five to 

seven ground control points whose coordinates were measured using an RTK differential GNSS device 

(Topcon HIPER V) with precision within 1 cm. 

 

2.3 Canopy Temperature Extraction Method 

For this study, two methods for extraction of vegetation pixels were investigated, based on thresholding of 

the NDVI and Otsu algorithm. For NDVI calculation (2), multispectral images were used and after several trials 
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with different thresholds for vegetation, an arbitrary value set to 0.45 was adopted (Nandibewoor et al., 

2015).  

 

NDVI = (NIR - RED) / (NIR + RED) (2) 

 

For the Otsu algorithm, RGB images were further processed following the steps shown in Figure 2. Following 

this method, georeferenced optical image orthomosaics were converted into greyscale imagery using 

equation (3). The resulting single-band orthomosaic underwent a back- and foreground separation based on 

the frequency distribution of pixels. Otsu algorithm segments the image making the variance on each of the 

classes of a greyscale image minimal (Otsu, 1979).  

 

GREYSCALE INTENSITY = 0.2989 * RED + 0.587 * GREEN + 0.1140 * BLUE (3) 

 

 
 

Figure 2 The main steps of the co-registration approach Otsu method proposed in this study using both unmanned aerial vehicle 

(UAV) thermal and red–green–blue (RGB) remote sensing imagery. FVC (fractional vegetation cover) and greyscale were derived 

from optical image. 

 

The segmented orthomosaic was then used to mask the georeferenced thermal image orthomosaic for 

having a resulting Tc map, after resampling from 0.43 to 1.75 cm by using the nearest-neighbour interpolation 

algorithm (Figure 2). The entire process of the RGRI-Otsu method was implemented in R programming 

language (RStudio, 2022) and ArcGIS Pro desktop (Redlands, 2022). Similarly, the resulting NDVI-based mask 

from the same day was overlaid with the thermal data. The resultant Tc maps for each of the three UAV flights 

were then subjected to an accuracy assessment. Accuracy assessment was done by comparing the results of 

the two adopted methods to the RGB orthomosaics. With random sampling, 500 thermal pixels were selected 

and assessed based on the visual interpretation of the RGB image. Paired pixels were counted as True 

Positive, predicted canopy pixels in the Tc map that were not paired with vegetation in RGB as False Positive, 
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and canopy in RGB without a pair in Tc were assigned False Negative. Based on this information, the 

producer’s accuracy for soil is calculated as the number of soil pixels in RGB classified accurately as such 

divided by the total number of reference sites for that class. As a further step for ensuring Tc was reflecting 

only vegetation, median Tc was used in the following analysis. 

 

2.4 Statistical Analysis 

2.4.1 Multilinear regression and correlation 

After the accuracy assessment, the method with the highest producer’s accuracy for soil pixels for each day 

was selected and used for statistical analysis. The relationships between ground measurements and maize 

median Tc for each field campaign-UAV flight were explored using multilinear regression. Specifically, linear 

regression models were used with the coefficient of determination (R2) and p-value calculated for 

comparisons. The regressions were implemented by using R programming language and lm() function (Fox 

J., 2019). DFW is not considered in multilinear regression since other components of maize plants such as 

maize fruit and stems are not determinant for plant transpiration, therefore DFW is assumed to be a variable 

with no effect on Tc. 

 

2.4.2 Analysis of Variance and Post-Hoc Test 

Two-way analysis of variance (ANOVA) was used to investigate the effect of varying cover crops and the  

effect of SOM gradient over the field on the median Tc. ANOVA was applied using R programming language. 

Tukey's Honestly Significant Difference (Tukey's HSD) post-hoc test was used to perform pair-wise 

comparisons between cover crop treatments. Homoscedasticity and normality were checked with Levene 

and Shapiro test, respectively. Finally, the p-value and the coefficient of determination (R2) were obtained to 

explore the significant relationships. During this study, a level of 5% was considered significant (p-value < 

0.05). 
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3 Results 
3.1 Removal of Soil Background Pixels in the Crop Research Plots 

On the 9th of August, NDVI selection results in an accurate classification of vegetation (0.98) at the expense 

of lower producer’s accuracy for soil compared to Otsu (0.55 and 0.87, respectively) (Table 3). On the same 

day, the Otsu method identified more soil pixels correctly than NDVI and have a comparable high producer’s 

accuracy for vegetation (0.86) (Table 3). Therefore, the Tc map derived from Otsu on the 9th of August offers 

a clearer picture of maize temperature, which is less contaminated by soil readings. Whilst the Otsu method 

performed at its best on the 9th of August 2022 (331 soil pixels correctly classified), its performance declined 

to 57 pixels on the 23rd of August 2022 (Table 3). Unlike Otsu separation, the NDVI method with a fixed 0.45 

threshold results in an overall low but stable performance on the two dates (85 and 82 soil pixels correctly 

classified), which makes it a better option for extracting Tc on 23rd August 2022. Furthermore, the NDVI 

method performed better on the 27th of June. In this case, the NDVI producer’s accuracy for soil is 0.96 against 

0.63 reported for the Otsu method (Table 3).  

 
Table 3 Results of accuracy assessments performed on 500 random points. 

 

  Otsu method NDVI method 

Dates Class Producer’s 

accuracy 

Pixels 

correctly 

classified 

Producer’s 

accuracy 

Pixels 

correctly 

classified 

27th of June Vegetation 0.80 231 0.83 238 

Soil 0.63 135 0.96 207 

9th of August Vegetation 0.86 301 0.98 342 

Soil 0.87 134 0.55 85 

23rd of August Vegetation 

Soil 

0.87 

0.47 

331 

57 

0.89 

0.67 

341 

82 

 

 

Figure 3 shows the frequency distributions of greyscale pixels (A) and thermal pixels (B and C). A greyscale 

image is the monochromatic representation of RGB in which only pixel intensity information counts. The 

greyscale image is computed before the Otsu algorithm and the pixel pattern distribution dictates the success 

of Otsu separation. The thermal pixels are displayed before (B) and after (C) use of Otsu and NDVI methods 

on data acquired on the three days with UAV flight campaigns. From the comparison of Figure 3 B-C and 

Figure 4 B on the 9th of August, the two methods show potential for removing the pixels with higher 

temperature values corresponding to soil or other non-vegetative components present in the field. Both 

methods give a skewed right distribution of pixels representing maize canopy temperature. However, they 

differ in the frequency of pixels that are classified as vegetation, with the NDVI method considering more 

pixels as a canopy on the 9th of August. Unlike the 9th of August, on 23rd August 2022, the overall temperature 

distribution within field plots, which has its maximum value at 41.6°C, does not present the two typical peaks 

associated with left- and right-shifted vegetation and soil temperatures. The resulting Tc maps show the same 

range of temperatures of the overall field temperature and do not significantly differ from each other. Similar 

patterns to (B) can be seen in the pixels frequency distribution of the greyscale images (A) for the 9th and 23rd 

of August. However, this does not apply on the 27th of June, as a different distribution is found for greyscale 
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and thermal pixels. In (A), unimodality is reported, while in (B) thermal pixels are spread over a narrow and 

low-temperature range (2-17° C). The thermal pixel distribution in this range has three peaks and the highest 

peak is at around 13° C. The distribution is maintained after the application of NDVI and Otsu separations.  
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Figure 3 Greyscale pixels distribution (A) and pixel-based temperatures before soil removal (B) and after (C). Median values for 

mixed temperature and Tc in B and C respectively are shown as dashed line. 
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3.2 Relationship between UAV-based and ground-based measurements  

From the results of correlation analysis which are shown in Figure 5, Tc negatively correlates with SMC and 

both biomass measurements (PWC and DLW) on all investigated days. However, the strength of this 

correlation varied. On the 9th of August, the relationship between Tc and PWC is the strongest (correlation 

coefficient=-0.67 ***), followed by DLW in the second place and SMC (correlation coefficient=-0.58 *** and 

-0.30 ***, respectively). These relations become overall weaker on the 23rd of August and the order 

changed. Similarly to the 9th of August, on the 23rd, a strong correlation between Tc and PWC is also 

highlighted (correlation coefficient=-0.40 ***). However, on this date SMC is reported to influence Tc more 

than DLW (correlation coefficient=-0.35 *** and -0.19 **, respectively). Furthermore, the correlation plot 

shows a positive relation between SMC and PWC which was taken one day after, on the 10th of August 

(Figure 5 A). On the 23rd of August, the relation subsides and is not significant (Figure 5 B).  

 

A B 

  
 

Figure 4 Zoomed RGB and NDVI-Otsu segmentation. The chosen 

selected method on each day is underlined (vegetation in green, 

soil in pink-brown. Block 3 “OR” is shown). 

 

C 
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A  - Reproductive phase R2 - 9/08/2022 

 
B - Reproductive phase R5 - 23/08/2022 

 
 

Figure 5 A and B correlation plots display the correlations on the 9th and 23rd of August, respectively. On the diagonal, the 

distribution of each variable is shown. Below the diagonal and above it, scatterplot with fitted lines and correlation with 

significance level are reported, respectively. p-values of 0.001, 0.01, 0.05, 0.1, 1 correspond to “***”, “**”, “*”, “.”, " “. 

On the 27th of June, linear regression and correlation analysis were conducted twice, with all the blocks and 

with the exclusion of blocks 2 and 4, which from a visual inspection present non-uniform distribution of 

temperature (Figure 6). When blocks 2 and 4 are considered, the correlations with Tc are weak and 

insignificant either between biomass measurements which were taken five days before and the SMC 

sampled on the day of the flight (not displayed). Nonetheless, when the readings from the two blocks are 

excluded from analysis, PWC and DLW become able to influence Tc to a certain degree (correlation 
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coefficient=-0.49 * and -0.45 *, respectively) (Appendix III). However, in this scenario, there is no significant 

correlation between SMC and Tc. 

 
 

Figure 6 Canopy cover in green after application of the selected soil-pixel exclusion method (left) and thermal orthomosaic (right). 

Results from linear regression are presented in Table 4, which illustrates the relationships between selected 

Tc-predictor variables and median Tc. Overall, on the 9th of August, there was a significant negative correlation 

between Tc and PWC, DLW, and SMC (p < 0.001) with an adjusted R2 of 0.50 (Table 4). When the relationships 

are taken individually, the largest R2 of 0.44 is found for median Tc and PWC, while R2 of 0.33 and 0.09 for 

DLW and SMC, respectively (results not displayed). Interestingly, 4 out of 8 measurements from block 3 

present lower PWC than the rest of the samples for the 9th of August. In particular, maize after fallow 

treatment has less than 60% PWC (Figure 7 B). For the range of PWC within which most of the measurements 

are, 4 out of 8 samples from block 5 have the lowest Tc reported for the 9th of August. Similarly to the 9th of 

August, a significant negative correlation between Tc and PWC, DLW, and SMC is reported for the 23rd of 

August, which however results in R2 of 0.26 (p < 0.001). In the relationship between PWC, SMC, and DLW 

with Tc, changes of PWC show to be slightly better linearly related with variations of maize temperature 

(Figure 7 C). Also in this case, block 5 presents the lowest Tc reported for that day (Figure 7 C). On the 27th of 

June, PWC, SMC, and DLW do not impact the Tc, unless blocks 2 and 4 are excluded from the analysis (Table 

4). After this step is performed, PWC and DLW become relevant in influencing Tc (R2=0.44, p < 0.001) and 

PWC has the strongest influence (Figure 7 A).  From one day to the other, a progressive shift of the PWC 

range to lower values is documented. However, for some measurements, such as from block 5, the PWC on 

the 23rd of August continues to be similar to the initial values measured on the 27th of June (Figure 7 A, B, C). 
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Table 4 Results of multilinear regression of PWC, dried leaves weight and SMC on median Tc derived with NDVI/Otsu 

algorithm. p value: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

 

Dates R2 and p 

27th of June 0.03 / 0.44 *** 
(with and without 

block 2 and 4) 

9th of August 0.50 *** 

 

23rd of August 0.26 *** 

 

 
 

Figure 7 Pearson's correlation between median Tc and PWC for June 27th, August 9th and 23rd respectively (A, B and C). Block 

subdivision is highlighted in colours and treatment types are specified with their labels. p value: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1. 

 

3.3 Cover crop influence on the canopy temperature – soil water content relationship 

Results from two-way Anova confirm an influence of blocks for all factors on the 9th and 23rd of August (not 

displayed). For the two dates, treatment effect given by cover crops is generally present for all factors, except 

for SMC (Figure 8 and 9). In addition, on August 23rd, cover crop use does not show to influence median Tc 

(Figure 9). On the 27th of June, treatments influence SMC (Appendix IV) while block presence is reported to 

have a significant impact only on Tc and DLW (not displayed). Differences between blocks can be also visually 

assessed in Figure 6. On the 27th of June, block 5 and 4 present canopy gaps and larger areas of exposed soil 

(visible in Figure 6, on the top left), while the thermal map shows a gradient of lower to higher temperatures 

within blocks 2 and 4 moving from field border to inner aisle (Figure 6, on the top right). On the 23rd of August, 
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the vegetation in most blocks is yellow (Appendix V) with the exception of block 5 where green vegetation 

cover is present and accompanied by lower Tc (Figure 6, on bottom left and right).  

On the 27th of June, SMC is measured to be around field capacity values (10-13%) (Appendix II), and a small 

but significant difference is found between treatments (Appendix IV). Vetch-oat (“VO”) results in more soil 

water in comparison to vetch-oat-radish (“VOR”) and radish alone (“R”). On the 9th and 23rd of August, SMC 

readings suggest that the field is close to wilting capacity (Appendix II) and as stated beforehand SMC values 

do not differ significantly between the plots previously cultivated with different cover crops (Figure 8 and 9). 

However, a pattern is found between Tc, PWC, DLW, and DFW for certain crops. For example, on the 9th of 

August for control (fallow “F”), a higher maize Tc than vetch (“V”) and vetch-radish (“VR”) is associated with 

reduced dried leaves and fruit weight in comparison to vetch-radish (Figure 8 C, D and E) (significant 

difference (p < 0.05) between treatments is indicated with the letter “a” and “b”). At the same time, a lower 

Tc for maize grown after vetch relates with a significantly higher PWC than that found in maize after oat (“O”) 

(Figure 8 A and B). The latter one, when mixed with radish, does not differ from vetch alone in terms of PWC 

(Figure 8 A). A positive correlation between moisture in the leaves and DLW/DFW is found for oat-radish and 

oat, respectively (Figure 8 A, D, and E).  

 

 
 

Figure 8 The distributions of leaves moisture, maize Tc, soil moisture content, dried leaves weight and dried fruit weight of maize 

after 8 cover crops treatment for the 9th of August. Lowercase letters indicate significant differences between treatments and a 

different letter indicate significant differences between treatments (p < 0.05). 

 

On the 23rd of August, vetch and oat-radish maintain the significantly higher PWC found on the 9th of August, 

which is accompanied in this case by higher DFW for the oat-radish combination (Figure 9 A and E). As it was 

reported on the 9th, on the 23rd of August oat alone was associated with lower PWC and DFW in maize. For 
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the first time on the 23rd of August, the combination of the 3 cover crops (“VOR”) led to a significant increase 

in PWC and DFW (Figure 9 A and E).  

 

 
 

Figure 9 The distributions of leaves moisture, maize Tc, soil moisture content, dried leaves weight and dried fruit weight of maize 

after 8 cover crops treatment for the 23rd of August. Lowercase letters indicate significant differences between treatments and a 

different letter indicate significant differences between treatments (p < 0.05). 

 

 

4 Discussion 
4.1 Soil pixels removal - NDVI and Otsu algorithm accuracy for soil exclusion and 

vegetation selection 

In this paragraph, the effectiveness of the Otsu algorithm in excluding soil pixels is examined by analysing 

how different factors, such as maize size and colour, affect its performance at various stages of maize growth. 

Subsequently, the accuracy of NDVI is discussed in relation to these findings. 

In general, Otsu is frequently employed for image segmentation because of its straightforward algorithm and 

high level of automation. However, Otsu performs well in segmenting images with bimodal variance between 

classes, which may not always be present (Song et al., 2022). On August 9th, the bimodal variance was 

observed in the greyscale image obtained from RGB, allowing for the application of Otsu. In contrast, its 

absence on other dates hindered its effectiveness (Goh et al., 2018). Goh et al. (2018) also found that image 

parameters such as intensity level between vegetation class and background, vegetation size, vegetation 

position, and noise can impact the performance of Otsu thresholding. This was evident in the imagery from 

August 23rd, where vegetation intensity was very dim and close to background intensity (Appendix V), 

resulting in confusion between yellow leaves and bright soil. Additionally, the image was noisy and contained 

regions with different intensities, which may have affected the segmentation due to Otsu using the intensity 

of the entire image, potentially leading to local colour imbalances. 
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On the other hand, unlike on August 23rd, Otsu's accuracy on June 27th may have been limited by the inverted 

size of the foreground and background. In this case, the background represented by soil was predominant 

over maize as the crop was in the starting phase V12, which was especially noticeable in blocks 5 and 4 where 

vegetation growth appeared stunted and scarce (Figure 6, top left). Furthermore, sunlit leaves, which 

appeared brighter, were seemingly assigned to the background class, increasing the frequency of greyscale 

pixels for this class (Figure 3). 

Although Otsu thresholding may not be effective in extracting soil at the beginning and end of maize growth, 

it performs reasonably well in detecting vegetation on the three dates. The producer's accuracy for 

vegetation, which ranges between 80% to 87%, remains high throughout the summer, including the early 

growth stages, as reported by García-Martínez et al. (2020). Similarly to this thesis, García-Martínez et al. 

(2020) found vegetation cover estimations with errors of less than 5% in the early stages of maize 

development. During the crop's growth, García-Martínez et al. (2020) observed that applying Otsu after using 

the Excess Green index (ExGI) resulted in errors ranging from 2.2% to 17.8% in estimating the vegetation 

cover fraction. In the case of a complex photo background with soil and weeds, Meyer and Camargo Neto 

(2008) reported an accuracy of approximately 50% for ExG and Otsu in detecting vegetation, while accuracy 

reached 88% in the case of a simple background with bare soil. Song et al. (2022) also found that the accuracy 

of ExGI plus Otsu was approximately 50%, which is substantially lower than the accuracy found in this study 

for all three days. García-Martínez et al. (2020), Meyer and Camargo Neto (2008), and Song et al. (2022) use 

the Excess Green index on which Otsu thresholding is applied, instead of the more common greyscale 

intensity image obtained from RGB. The ExGI index uses the contrast between the green, red, and blue 

portions of the spectrum to differentiate between vegetation and soil (Camargo Neto and Meyer, 2005; 

Vidović et al., 2016). Studies have shown that it performs better than other indices that rely only on RGB to 

distinguish vegetation (M. Woebbecke et al., 1995; Vidović et al., 2016). Specifically, the ExGI index is more 

effective in identifying weeds from non-vegetation backgrounds at a significance level of 0.05, albeit with 

higher computation requirements than other methods (M. Woebbecke et al., 1995). From comparison of 

results using ExGI (García-Martínez et al., 2020; Meyer and Camargo Neto, 2008; Song et al., 2022) and this 

thesis, the variant ExGI index is likely to have similar accuracy in estimating vegetation cover compared to 

Otsu applied to greyscale orthomosaics. This is true when weeds are not the focus of the analysis. However, 

if the study requires an accurate analysis of maize by excluding weeds along the plot borders, the ExGI index 

may be more appropriate than greyscale intensity.  

Despite the high accuracy of Otsu on greyscale in selecting vegetation, NDVI results in even higher accuracy, 

ranging between 83% to 98% for the three days. On June 27th, sunlit leaves tended to be misclassified as soil 

by Otsu algorithm, resulting in a reduced level of plant identification accuracy for Otsu compared to NDVI. 

For the other two days, shadows were present as the UAV campaigns were conducted in the afternoon. In 

the absence of complementary techniques like Hue Saturation Intensity, NDVI tends to classify more shaded 

pixels as vegetation (Cai et al., 2010) and darker green pixels with lower temperatures are considered as 

canopy in our ground truth. 

Since the initial stages, both Otsu and NDVI exhibited effective performance in vegetation selection. 

However, on August 23rd, NDVI could have achieved improved vegetation detection if the threshold value 

was set lower than 0.45. This is because in the later stages, some vegetation turns yellow, and accurate 

classification requires lower threshold values for NDVI. Generally, the histogram representation of thermal 

pixels reflects the typical temperature differences between soil and vegetation (Jones and Sirault, 2014), 

suggesting that TIR data could be used to fine-tune the NDVI threshold. As a recommendation for future 

research, incorporating initial temperature representation could optimize the separation process. 
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Additionally, incorporating thermographic information after applying the selected methods could provide an 

overview of the effectiveness of the separation process. 

 

4.2 Relationships between ground measurements and thermal maps on field level 

As hypothesized, this study shows that ground measurements of crop water stress are related to Tc. 

Correlation analysis results reported in Figure 5 indicate that on the 9th and 23rd of August, Tc negatively 

correlated with SMC, PWC, and DLW, suggesting that lower soil water content increases Tc through stomata 

closure. Similar effects were observed with the presence of water in the leaves (PWC) and the addition of 

vegetative layers represented by DLW. In the latter case, the total transpiration of a maize plant results from 

the sum of transpiration occurring in each leaf, indicating an additive effect. The choice to use DLW instead 

of the fresh weight of the leaves is because PWC already accounts for water content, and a measure of leaf 

weight alone or growth was needed. Acorsi and Gimenez (2021) used fresh biomass along with grain yield. 

Pearson's correlation analysis between these plant variables and Tc showed negative correlation values of 

0.56 and 0.45, respectively, which are similar to values reported in previous studies on maize by Zia-Khan et 

al. (2012).  In contrast, on the 27th of June, the correlations between biomass variables and Tc were weak and 

insignificant (correlation coefficient below 0.1) due to the passage of a cloud, which rendered 16 of 40 

measurements unusable. The deviation of several point measurements in a small dataset may cause a 

divergence from the true relationship, which may not be observed for this reason. However, when diverging 

readings from blocks 2 and 4 were removed from the analysis (Table 4 and Figure 7), variations in PWC and 

DLW became significantly linearly related to Tc also on this day. The relationships may not be strong due to 

the 5 days between ground measurements and the UAV campaign. However, due to the isohydric nature of 

maize, it is expected that PWC may not have changed considerably within the five days. Maize maintains a 

stable leaf water status over a wide range of evaporative demands or soil water supplies (Ihuoma and 

Madramootoo, 2017; Tardieu and Simonneau, 1998), and therefore, a sudden change in soil water is not 

reflected in fast water uptake. In the opposite situation, maize steadily maintains leaf water content to a 

certain extent, as reported in this case. Regarding the combination of DLW-Tc on the 27th of June, the 

significant negative relationship found can be attributed to the voluminous and highly transpiring biomass 

that is typical of the V12 stage of maize growth (Nleya et al., 2019). However, substantial changes may have 

occurred between the days of biomass sampling and thermal data collection, which could impact the strength 

of the relationship. Therefore, the relationship between DLW and Tc could have been stronger if DLW 

measurements were taken on the same day as the UAV flight. 

 

4.2.1 Soil water content-Tc 

Among the relationship found, correlation analysis confirms a weak negative correlation between Tc and SMC 

on the 9th of August, which becomes stronger on the 23rd of August, as shown in Figure 5. On the 23rd of 

August, it is possible that DLW did not increase any longer, and the current biomass could not be highly 

transpiring, resulting in a lower impact of PWC on Tc. At this point of maize growth, SMC could not be 

obscured anymore and play a role in Tc changes. However, SMC still explains little of the observed Tc 

variations. The finding that SMC has little influence on Tc on the 9th and 23rd of August contradicts the results 

of a study by González-Dugo et al. (2006), in which the standard deviation of canopy temperature (sdTc) was 

compared to CWSI, a well-known parameter used for irrigation scheduling and sdTc was found to reflect SMC 

(R2=0.77). Han et al. (2016) and González-Dugo et al. (2006) suggest that sdTc could be used as an indicator 

of water stress due to its significant relationship with soil water deficit (SWD). However, in this thesis, median 

Tc was adopted instead of sdTc to ensure that only vegetative pixels were used. Nevertheless, no evidence of 

sensitivity to water deficit was found for median Tc in this study, which contrasts with previous research on 
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sdTc as previously described and studies using mean Tc. For example, Acorsi and Gimenez (2021) found an R2 

of 0.42 between the mean Tc and soil water status, which substantially increased to R2=0.88 when soil 

physical attributes were introduced. According to the variable importance classification, Tc ranked second 

among the 11 attributes included in the model for predicting water content (Acorsi and Gimenez, 2021; 

DeJonge et al., 2020). In Zhang et al. (2019), the use of different irrigation systems, resulting in a wider range 

of soil water contents, led to even higher R2 values (between 0.40 and 0.53) for linear regression models 

between SMC at 0-0.2 m soil depth and Tc. In this thesis, there was no artificial irrigation, and the SMC 

observations were distributed over a narrow range of values, which may have unfavourably resulted in lower 

correlation values for the multilinear regression models. 

Little effect of SMC on Tc at later stages may also be due to variations in water uptake in the soil profile. 

Although maize typically relies on water from shallow soil depths taken up by lateral roots (Ahmed et al., 

2015), de Lara et al. (2019) found that maize yield has a significant relationship with deeper SMC readings 

(90 to 150 cm) later during the growing season. Similar trends were detected by Hupet and Vanclooster 

(2002), whose research demonstrated that well-developed maize crops source water from deeper soil layers 

(50 to 100 cm). In our study, the SMC sensor is fixed at a shallow depth, and may not be able to detect 

changes in water demand by deeper roots occurring at later stages. The water that potentially influences Tc 

on the 9th and 23rd of August may be located at deeper depths that are not considered by the SMC sensor. 

This fact may partially explain the absence of a significant relationship between SMC and Tc on the 9th and 

the weaker significant relationship between Tc and SMC on the 23rd of August. However, previous studies 

have indicated that around 40% of soil water extraction for maize still occurs in the first 25 cm depth, 

justifying the experimental setup (Zhang et al., 2019). As highlighted by Zhang et al. (2019), water uptake 

from superficial soil layers is seen in vegetative phases, and they reported significant correlations between 

Tc and SMC measured at depths of 10, 20, and 30 cm, and no significant relationships at depths of 45, 60, and 

90 cm. Additionally, the insignificant and weakly significant Tc-SMC relationship on the 9th and 23rd of August, 

respectively, may also be influenced by the fact that on both days, the observed SMC values were close to 

the wilting point. Wilting point was likely due to the dry season and the low water holding capacity of sandy 

soil. Consequently, there was little water in the soil for plant uptake.  

Based on the results of this study, thermography using median Tc cannot be considered a reliable proxy for 

SMC during the growing season of maize. However, recent research has shown the potential of RGB alone in 

assessing soil moisture. For instance, Lu et al. (2020) demonstrated that surface soil moisture (0-10 cm) in a 

mixed soil-vegetation setting can be estimated using the brightness of UAV visible images. While the 

application of RGB brightness is a novel concept, optical vegetation indices are a well-documented technique 

for SMC estimation. However, unlike thermography, vegetation indices capture past changes that occurred 

gradually in leaf pigments and do not provide real-time information. In their study, Wang et al. (2018) 

combined the advantages of vegetation indices and thermal information to estimate root-zone SMC in 

different soil-vegetation conditions, achieving accurate results (R2=0.58–0.69 and RMSDs around 0.025 

m3∙m−3) using the "temperature-vegetation triangle approach".  

 

4.2.2 Biomass-Tc  

As crop growth progresses, there is a documented shift in the range of PWC towards lower values, from 70-

85% on June 27th to 60-75% and 40-75% on the other two days, respectively. This suggests that maize leaves 

are maturing and approaching senescence. However, measurements from block 5 show that PWC on August 

23rd remains similar to the initial values measured on June 27th, as mentioned in 0. This could be attributed 

to the later establishment of maize in block 5. Notably, at the time of harvest, NDVI of the entire block 

appears to have higher values, indicating good overall vegetation coverage and noticeable photosynthetic 
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activity, as evidenced by the lower Tc for that block (Figure 6, bottom right). Photosynthetic activity is closely 

related to SMC and PWC. In fact, increased soil water availability generally leads to increased stomatal 

conductance, allowing for transpiration and consequent cooling, as well as CO2 assimilation for 

photosynthesis (Rossini et al., 2015). Results by Feng and Zhou (2018) indicate that maize PWC and SMC 

significantly affect the net photosynthetic rate in all developmental stages, which in turn is closely related to 

fruit yield and biomass growth (Rossini et al., 2015; Zhou et al., 2021), consistent with findings by Junior et 

al. (2021). Junior et al. (2021) reported that at 30% irrigation compared to 150% setting, only half of the 

stomatal conductance was observed, resulting in limited cooling of leaves. In this study, the SMC values found 

on August 9th and 23rd (maximum of 8%) correspond to the 30% irrigation condition in Junior et al. (2021), 

while the range of SMC values found on June 27th (around 10-14% SMC) can be compared to the 150% 

irrigation condition. Junior et al. (2021) also found that the highest net CO2 assimilation rates, stomatal 

conductance, and transpiration rates were observed under the highest soil water availability conditions. 

Similarly to the limited water availability situation described by Junior et al. (2021), the reported Tc on August 

9th and 23rd is likely a result of stomatal closure, indicating possible water stress in the crops. On August 23rd, 

the absence of bimodality in thermal pixels, as shown in Figure 3, suggests that the maize may no longer be 

actively transpiring or photosynthesizing, as its temperature is similar to that of the soil. Furthermore, the 

observed curled yellow leaves on August 23rd may also indicate dryness, as the PWC on that day does not 

strongly affect Tc. In contrast, on June 27th, when the soil is reported to be at field capacity, the canopy may 

still be actively transpiring and cooling down through stomata action. Furthermore, in V12 stage, high foliage 

leads to increased surface conductance, resulting in higher evapotranspiration, energy dissipation, and lower 

Tc, as reported by Ekinzog et al. (2022). Tall and dense canopies also attenuate radiation and reduce Tc, 

according to Westreenen et al. (2020). Through these mechanisms, biomass affects Tc in all stages, except 

during maturity when the DLW remains constant. 

Besides the findings about SMC and leaves transpiration, Junior et al. (2021) indicated that the physiological 

indicators considered (stomatal conductance, transpiration, and net CO2 assimilation rate), as well as NDVI, 

correlate with CWSI, suggesting that NDVI could be used as an alternative to assess maize water stress (R2 = 

0.763; p < 0.001). Similarly, in Appendix VI, NDVI is shown to have a strong correlation with median Tc, 

indicating that it could be used not only to exclude soil pixels but also as a support for assessing maize water 

stress in conjunction with Tc. Recent methodologies have investigated integration of vegetation and 

temperature indices. Among these approaches, the temperature vegetation dryness index (TVDI), which is 

derived from land surface temperature (LST) and the NDVI, has gained widespread popularity to estimate 

soil moisture and vegetation water content (Wang et al., 2011). 

 

In this study, we found that Tc can be used as a proxy for crop water status (PWC), but it is also influenced by 

DLW during growth. Incorporating NDVI as a normalization factor for Tc can offer advantages in assessing 

crop water stress, as it enables real-time monitoring of photosynthetic activity changes with higher temporal 

resolution compared to structural parameters such as DLW. Furthermore, previous reports by Wang et al. 

(2011) and Wang et al. (2018) have demonstrated NDVI's capability in estimating both SMC and PWC, 

indicating its potential to enhance the model when used with Tc.  

Moreover, besides adding NDVI, the removal of SMC from the model may lead to an improvement, as it 

provides minimal or negligible information. Another rationale for excluding SMC is the interactive effect 

between PWC and SMC on August 9th (Figure 5 B). However, multicollinearity was not detected, as evidenced 

by VIF values close to 1 (Appendix VII). 
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4.3 Cover crop influence on the canopy temperature – soil water content relationship  

4.3.1 Block effect 

The role of soil organic matter (SOM) in influencing crop growth and water retention is explored in this 

paragraph through an analysis of its impact on various factors at different stages of maize growth, revealing 

the significance of SOM differences between blocks and their effect on crop establishment, development, 

and water retention. The prior knowledge about an existing SOM gradient in the field provides some 

explanation for our findings (Appendix I). The difference in SOM between blocks is found to be responsible 

for a significant difference for all the considered factors on all dates, except for SMC, DFW, and PWC on the 

27th of June. In the beginning, on the 27th of June, maize may be facing equal conditions in all blocks, which 

start diverging with crop growth, kernel formation, and changing climatic factors due to SOM differences. In 

fact, on the 27th of June, the young thriving maize, which presents comparably high PWC in all blocks, is in 

the initial phase of cob development. Cob constitutes a fixed part of the DFW which is added to a variable 

kernel weight forming in the following phases. Besides, SMC in the starting phase ranges around higher 

values (field capacity) for all blocks and the SOM gradient effect in retaining water may not play a role. SOM’s 

abilities to increase water retention in coarse sandy soils may start to be effective in more limited SMC 

conditions which are reported in August. According to Lal (2020), a small increase of SOM along the field 

leads to an increase in water holding capacity and stored water. The higher stored water in block 5 may be 

responsible for later maize establishment but at the same time may be the reason for healthier and 

transpiring vegetation observed in late August. As Tian et al. (2022) describe, with improved water content 

there is often lower soil temperature which leads to retarded germination rate and crop growth. 

 

4.3.2 Treatment effect 

(Expected) effect on SMC by treatments through soil structure and SOM addition mechanisms  

The contribution of SOM within the field appears to have a greater impact on SMC compared to the expected 

SOM contribution from cover crop treatments. This is because variations in organic matter levels between 

blocks led to the observed effect on SMC, while treatments (except for "VO" on June 27th) did not show a 

significant influence. One documented mechanism by which cover crops are expected to contribute to 

changes in SMC is the addition of biomass, which is decomposed into organic compounds upon cover crop 

termination (Dabney et al., 2001; Koudahe et al., 2022). However, results from this study and Acharya et al. 

(2022) suggest that 6 and 5 years of repeated cover crop use may not have a significant impact on SOM 

storage. 

Another mechanism by which cover crops could impact SMC is through the varying rooting system, which 

leads to different degrees of soil structure improvement (Koudahe et al., 2022). The use of cover crops in 

non-irrigated systems can be motivated by the potential for higher SMC after cover crop utilization, which is 

particularly desirable during the initial phase of cash crop growth. However, for reasons that are not 

identified, only on June 27th, the "VO" treatment contributed significantly higher SMC compared to "VOR" 

and "R". The treatment effect on SMC found on June 27th does not persist and remains limited to the initial 

phase. 

The finding of no significant effect of cover crops on SMC or finding it only on one date suggests that there 

may be factors hindering this relationship, such as tillage. Araya et al. (2022) reported that soils under no-till 

and cover cropping systems improved soil structure in terms of pore size distribution, while changes in 

hydraulic conductivity under these systems led to increased infiltration rate and water retention. Tillage for 

terminating the cover crop and incorporating it may have compacted the soil, reducing pore size distribution 

and disturbing the soil structure improvement operated by cover crop roots. Soil structure is also conditioned 

by soil aggregates, and aggregates form and stabilize more easily in the presence of increasing levels of SOM 
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(Celik, 2005). Tillage may alter aggregate formation through the mechanical destruction of organic matter, 

which becomes more exposed to chemical and biological decomposition. Tian et al. (2022) indicate that no-

tillage could be the solution for enhancing SOM, especially in sandy soil where soil aggregation is more 

difficult to obtain (Ayoubi et al., 2020). Restovich et al. (2022), in their no-till setup, demonstrated that the 

presence of SOM-enriched soil after 5-year cover crops, accompanied by stable soil aggregation due to a 

higher proportion of macropores and mesopores over 300 μm. 

As previously mentioned, the higher SMC in the "VO" treatment during vegetative development on June 27th 

does not seem to bring any advantages over the other treatments. Even though higher water provision during 

the most demanding phase would be expected to favour maize growth in the following phases (de Lara et 

al., 2019), the "VO" treatment does not show any clear benefits in terms of maize growth and transpiration 

 

Effect on biomass by treatments  

The effect of some treatments on PWC and biomass growth can be seen on the 9th and 23rd of August. These 

effects are reflected in different maize Tc on the first day. Treatment “V” maintains a higher PWC over the 

two days which is accompanied by a significantly lower Tc on the 9th. When vetch is combined with radish to 

form “VR”, there is an additional fertilizing effect seen as an increase of DLW and DFW, which however is not 

relevant for the final yield on the 23rd of August.  

In general, legumes such as vetch result in a larger contribution of soil inorganic N compared to non-legume 

residues due to fast decomposition and nitrogen (N) release (Blanco‐Canqui and Ruis, 2020; Koudahe et al., 

2022; Piva et al., 2021). Furthermore, maize can benefit from additional N availability given by atmospheric 

N fixation during legume growth (Piva et al., 2021; Thapa et al., 2022). Elhakeem et al. (2023) showed how 

pure radish or in mixtures could increase N availability for the following crop by reducing N leaching up to 

70% through a rapid uptake in autumn. Subsequently, residues from radish were reported to mineralize 

quickly, resulting in an increase of soil mineral N in spring at the time of maize sowing (70–110% more than 

fallow).  

 

If “V” and “VR” show to contribute positively to maize, “O” is not helping the crop physiology and in addition, 

this treatment may have a more deteriorating effect on maize than fallow. Fallow, with an accompanying rise 

in Tc during growth, may result in delayed growth as observed on the 9th day. Despite this initial delay, the 

growth of maize after fallow is comparable to most of the treatments on the 23rd of August. Similarly, “O” 

treatment starts showing lower PWC associated with reduced DFW on the 9th, and this effect persists till the 

end, in accordance with Piva et al. (2021). Thapa et al. (2022) reported that oat, a grass cover crop with a 

high C:N ratio resulting in a lower mineralization rate, ultimately provided higher levels of SOC and total N 

compared to other cover crops. In this case, slower mineralization may be mismatched with maize growth 

and cash crop may not be benefitting from any of the positive effects of oat on the soil. Nitrogen and water 

are the major requirements for maize (Rafique, 2020), and oat treatment on the 9th and 23rd of August may 

be lacking both in different degrees. Since plant response to water stress is expressed by a variety of 

physiological changes such as leaf water content, but also biophysical changes as biomass and yield (de Lara 

et al., 2019; Khatun et al., 2021), it may be possible that maize after oat experiences water stress recognizable 

by low PWC and DFW. From the moment crop water stress occurs on the 9th and 23rd of August, which are 

the later stages between flowering to the grain filling, yield formation rather than biomass growth is affected. 

However, with the association of “O” with “VR”, the negative effects of oat may be averted. On the 23rd of 

August, this treatment is the only one which gives maize an advantage in terms of higher PWC and fruit yield. 

As Thapa et al. (2022) suggest, a mixture of legume, grass species, and brassica (“VOR”) could complement 

each other and provide all necessary and positive aspects for improving soil biological, chemical, and physical 
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properties (Dabney et al., 2001; Elhakeem et al., 2023). Despite the variability in crop yield responses, the 

results of this treatment suggest that cover cropping has no significant effect on SMC and SOM levels, which 

aligns with the findings of Acharya et al. (2022) who observed similar conclusions after a 5-year study of 

limited-irrigation cover crop use. Furthermore, Pavinato et al. (2017) emphasized in a shorter 3-year 

experiment that cover crops were unable to influence maize yield, highlighting the importance of longer-

term studies to accurately assess the effects of cover cropping on maize aboveground production. 

 

 

5 Conclusions 
This study investigated the correlation between canopy temperature (Tc) obtained from thermal infrared 

(TIR) sensors on unmanned aerial vehicles (UAVs) and ground-based measurements used in crop water stress 

assessment, such as dried leaves weight (DLW), plant water content (PWC), and soil moisture content (SMC). 

Additionally, the study examined the influence of cover crops on the relationship between Tc and ground-

based measurements, and compared the effectiveness of the Otsu algorithm and NDVI in removing soil pixels 

from TIR data. 

The results revealed that the effectiveness of the Otsu algorithm in removing soil pixels varied depending on 

the date of analysis, as it was influenced by environmental conditions and the growth stage of maize. 

Specifically, Otsu performed better than NDVI in classifying soil when vegetation was established but not yet 

ripened, while NDVI showed higher performance in the early and maturity phases. After employing the most 

precise soil removal technique on each day, Tc was determined to be an indicator of crop water status (PWC). 

In addition, the influence of DLW on the Tc-PWC relationship was found and should be considered, 

particularly during stages of active crop growth, when DLW varies substantially, and the additive effect of 

multiple transpiring leaves becomes evident. Interestingly, Tc was assessed to be a non-significant predictor 

of 0-12 cm SMC in this model. 

The repeated cover crop use and tillage did not result in any improvement on SMC retention compared to 

the control group. However, differences in SMC and Tc were observed with an unrelated soil organic matter 

(SOM) gradient in the field. Plant-soil feedback was evident with pure grass species, and the negative effect 

of oats was expressed through physiological and biophysical changes in maize (decrease of biomass and PWC, 

while higher Tc), likely linked to nitrogen deficiency and water stress.  

In conclusion, Tc derived from TIR sensors on UAVs has the potential to serve as an alternative to PWC for 

evaluating the water status of maize plants, highlighting the promising role of remote sensing as a valuable 

tool for detecting water stress in crops. However, further research is needed to explore the use of NDVI as a 

normalization factor for Tc for better understanding of the impact of long-term cover crops on the soil water 

content in no-tillage conditions. 
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Appendix 

 
APPENDIX I - SOM readings in November 2021, during cover crop growth. 

 

 

 
 

 

 

APPENDIX II - Rain (mm) from Nergena weather station and SMC readings during summer 2022. 

 

 



   

 

34 
 

 

 

 

 

APPENDIX III - Results of correlation analysis for 27th of June. 
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APPENDIX IV - The distributions of leaves moisture, maize Tc, soil moisture content, dried leaves weight and dried fruit weight 

of maize after 8 cover crops treatment for the 27th of June. Lowercase letters indicate significant differences between treatments 

and a different letter indicate significant differences between treatments (p < 0.05). 

 

 
 

 

APPENDIX V -  RGB orthomosaics for 27th of June, 9th and 23rd of August highlight the different illumination levels and noise. 
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APPENDIX VI - Significant relation between median NDVI and median Tc on 27th of June, 9th and 23rd of August. 

 

 
 
 

APPENDIX VII - Results from test for multicollinearity (VIF) in multilinear regression. 

 

 PWC DLW SMC 

VIF 1.54 1.40 1.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

37 
 

References 

Acharya P., Ghimire R., Cho Y., Thapa V., Sainju U. (2022). Soil profile carbon, nitrogen, and crop yields 

affected by cover crops in semiarid regions. Nutrient Cycling in Agroecosystems 122. 

Acorsi M.G., Gimenez L.M. (2021). Predicting Soil Water Content on Rainfed Maize through Aerial Thermal 

Imaging. AgriEngineering 3:942-953. 

AGISOFT. (2023). Agisoft PhotoScan User Manual. Petersburg: Agisoft LLC. 

Ahmed M., Zare M., Kaestner A., Carminati A. (2015). Measurements of water uptake of maize roots: the 

key function of lateral roots. Plant and Soil 398. 

Anderegg J., Aasen H., Perich G., Roth L., Walter A., Hund A. (2021). Temporal trends in canopy 

temperature and greenness are potential indicators of late-season drought avoidance and functional stay-

green in wheat. Field Crops Research 274:108311. 

Araya S.N., Mitchell J.P., Hopmans J.W., Ghezzehei T.A. (2022). Long-term impact of cover crop and reduced 

disturbance tillage on soil pore size distribution and soil water storage. SOIL 8:177-198. 

Ayoubi S., Mirbagheri Z., Mosaddeghi M.R. (2020). Soil organic carbon physical fractions and aggregate 

stability influenced by land use in humid region of northern Iran. International Agrophysics 14:343-353. 

Blanco-Canqui H., Ruis S.J. (2020). Cover crop impacts on soil physical properties: A review. Soil Science 

Society of America Journal 84:1527-1576. 

Blanco‐Canqui H., Ruis S. (2020). Cover crop impacts on soil physical properties: A review. Soil Science 

Society of America Journal 84. 

Cai D., Li M., Bao Z., Chen Z., Wei W., Zhang H. (2010). Study on shadow detection method on high 

resolution remote sensing image based on HIS space transformation and NDVI index. In: 2010 18th 

International Conference on Geoinformatics, 1-4. 

Camargo Neto J., Meyer G.E. (2005). Crop species identification using machine vision of computer extracted 

individual leaves. In: Optical Sensors and Sensing Systems for Natural Resources and Food Safety and 

Quality, Vol. 5996,  (Chen Y-R, Meyer GE, Tu S-I, eds), 64-74. 

Celik I. (2005). Land-use effects on organic matter and physical properties of soil in a southern 

Mediterranean highland of Turkey. Soil and Tillage Research 83:270-277. 

Dabney S.M., Delgado J., Reeves D.W. (2001). Using Winter Cover Crops to Improve Soil and Water Quality. 

Communications in Soil Science and Plant 32. 

Daryanto S., Fu B., Wang L., Jacinthe P.A., Zhao W. (2018). Quantitative synthesis on the ecosystem services 

of cover crops. Earth-Science Reviews 185:357-373. 

de Lara A., Longchamps L., Khosla R. (2019). Soil Water Content and High-Resolution Imagery for Precision 

Irrigation: Maize Yield. Agronomy 9:174. 



   

 

38 
 

DeJonge K., Zhang H., Taghvaeian S., Trout T. (2020). Canopy Temperature Bias from Soil Variability 

Enhanced at High Temperatures. Transactions of the ASABE 63:95-104. 

Delavarpour N., Koparan C., Nowatzki J., Bajwa S., Sun X. (2021). A Technical Study on UAV Characteristics 

for Precision Agriculture Applications and Associated Practical Challenges. Remote Sensing 13:1204. 

DJI. (2022). DJIFlightPlanner. 

Ekinzog E.K., Schlerf M., Kraft M., Werner F., Riedel A., Rock G., et al. (2022). Revisiting crop water stress 

index based on potato field experiments in Northern Germany. Agricultural Water Management 

269:107664. 

Elhakeem A., Porre R.J., Hoffland E., Van Dam J.C., Drost S.M., De Deyn G.B. (2023). Radish-based cover 

crop mixtures mitigate leaching and increase availability of nitrogen to the cash crop. Field Crops Research 

292:108803. 

Fageria N.K., Baligar V., Bailey B. (2005). Role of Cover Crops in Improving Soil and Row Crop Productivity. 

Communications in Soil Science and Plant Analysis 36. 

Feng X.Y., Zhou G.S. (2018). Relationship of leaf water content with photosynthesis and soil water content 

in summer maize. Shengtai Xuebao 38:177-185. 

Fox J. W.S. (2019). An R Companion to Applied Regression. Part Third. 

García-Martínez H., Flores-Magdaleno H., Ascencio-Hernández R., Khalil-Gardezi A., Tijerina-Chávez L., 

Mancilla-Villa O.R., et al. (2020). Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant 

Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial 

Vehicles. Agriculture 10:277. 

Gerhards M., Schlerf M., Mallick K., Udelhoven T. (2019). Challenges and Future Perspectives of Multi-

/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote 

Sensing 11:1240. 

Goh T.Y., Basah S.N., Yazid H., Aziz Safar M.J., Ahmad Saad F.S. (2018). Performance analysis of image 

thresholding: Otsu technique. Measurement 114:298-307. 

González-Dugo M., Moran M.S., Mateos L., Bryant R. (2006). Canopy temperature variability as an indicator 

of crop water stress severity. Irrigation Science 24. 

Han M., Zhang H., DeJonge K., Comas L., Trout T. (2016). Estimating maize water stress by standard 

deviation of canopy temperature in thermal imagery. Agricultural Water Management 177:400-409. 

Haruna S.I., Ritchey E., Mosley C., Ku S. (2023). Effects of cover crops on soil hydraulic properties during 

commodity crop growing season. Soil Use and Management 39:218-231. 

Heinen M., Mulder H.M., Bakker G., Wösten J.H.M., Brouwer F., Teuling K., et al. (2022). The Dutch soil 

physical units map: BOFEK. Geoderma 427:116123. 



   

 

39 
 

Hunter M.C., Kemanian A.R., Mortensen D.A. (2021). Cover crops and drought: Maize ecophysiology and 

yield dataset. Data in Brief 35:106856. 

Hupet F., Vanclooster M. (2002). Intraseasonal dynamics of soil moisture variability within a small 

agricultural maize cropped field. Journal of Hydrology 261:86-101. 

Ihuoma S.O., Madramootoo C.A. (2017). Recent advances in crop water stress detection. Computers and 

Electronics in Agriculture 141:267-275. 

Jones H.G., Sirault X.R.R. (2014). Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel 

Problem. Agronomy 4:380-396. 

Junior A.S.D.A., Bastos E.A., De Sousa C.A.F., Casari R.A.D.C.N., Rodrigues B.H.N. (2021). Water status 

evaluation of maize cultivars using aerial images. Revista Caatinga 34:432-442. 

Kelly J., Kljun N., Olsson P.-O., Mihai L., Liljeblad B., Weslien P., et al. (2019). Challenges and Best Practices 

for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sensing 

11:567. 

Khatun M., Sarkar S., Era F.M., Islam A.K.M.M., Anwar M.P., Fahad S., et al. (2021). Drought Stress in Grain 

Legumes: Effects, Tolerance Mechanisms and Management. Agronomy 11:2374. 

Koudahe K., Allen S.C., Djaman K. (2022). Critical review of the impact of cover crops on soil properties. 

International Soil and Water Conservation Research 10:343-354. 

Lal R. (2020). Soil organic matter and water retention. Agronomy Journal 112. 

Li X., Ingvordsen C.H., Weiss M., Rebetzke G.J., Condon A.G., James R.A., et al. (2019). Deeper roots 

associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three 

wheat populations grown on stored soil water. J Exp Bot 70:4963-4974. 

Lu F., Sun Y., Hou F. (2020). Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water 

12:2334. 

M. Woebbecke D., E. Meyer G., Von Bargen K., A. Mortensen D. (1995). Color Indices for Weed 

Identification Under Various Soil, Residue, and Lighting Conditions. Transactions of the ASAE 38:259-269. 

Messina G., Modica G. (2020). Applications of UAV Thermal Imagery in Precision Agriculture: State of the 

Art and Future Research Outlook. Remote Sensing 12:1491. 

Meyer G., Camargo Neto J. (2008). Verification of color vegetation indices for automated crop imaging 

applications. Computers and Electronics in Agriculture 63:282-293. 

Nandibewoor A., Hebbal S.M.B., Hegadi R. (2015). Remote monitoring of Maize crop through satellite 

multispectral imagery. In: Procedia Computer Science, Vol. 45, Part C, 344-353. 

Nleya T., Chungu C., Kleinjan J. (2019). Corn Growth and Development. 5-8. 



   

 

40 
 

Otsu N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, 

Man, and Cybernetics 9:62-66. 

Pavinato P., Rodrigues M., Soltangheisi A., Sartor L., Withers P. (2017). Effects of Cover Crops and 

Phosphorus Sources on Maize Yield, Phosphorus Uptake, and Phosphorus Use Efficiency. Agronomy Journal 

109:1039-1047. 

Piva J., Bratti F., Locatelli J.L., Ribeiro R., Besen M., Brancaleoni E., et al. (2021). Use of winter cover crops 

improves maize productivity under reduced nitrogen fertilization: a long-term study. Bragantia 80. 

Prashar A., Jones H.G. (2014). Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. 

Agronomy 4:397-417. 

Rafique S. (2020). Drought Responses on Physiological Attributes of Zea mays in Relation to Nitrogen and 

Source-Sink Relationships. 

Redlands. (2022). ArcGIS Pro Desktop. Part 3.0.1:Environmental Systems Research Institute. 

Restovich S.B., Andriulo A.E., Portela S.I. (2022). Cover crop mixtures increase ecosystem multifunctionality 

in summer crop rotations with low N fertilization. Agronomy for Sustainable Development 42:19. 

Rossini M., Panigada C., Cilia C., Meroni M., Busetto L., Cogliati S., et al. (2015). Discriminating Irrigated and 

Rainfed Maize with Diurnal Fluorescence and Canopy Temperature Airborne Maps. ISPRS International 

Journal of Geo-Information 4:626-646. 

RStudio. (2022). In: R: A language and environment for statistical computing, Vol. 4.1.2. Vienna, Austria:R 

Foundation for Statistical Computing. 

Ru C., Hu X., Wang W., Ran H., Song T., Guo Y. (2020). Evaluation of the Crop Water Stress Index as an 

Indicator for the Diagnosis of Grapevine Water Deficiency in Greenhouses. Horticulturae 6:86. 

Song C., Sang J., Zhang L., Liu H., Wu D., Yuan W., et al. (2022). Adaptiveness of RGB-image derived 

algorithms in the measurement of fractional vegetation coverage. BMC Bioinformatics 23:358. 

Song L., Jin J., He J. (2019). Effects of Severe Water Stress on Maize Growth Processes in the Field. 

Sustainability 11:5086. 

Tardieu F., Simonneau T. (1998). Variability among species of stomatal control under fluctuating soil water 

status and evaporative demand: Modelling isohydric and anisohydric behaviours. Journal of Experimental 

Botany 49:419-432. 

Thapa V., Ghimire R., VanLeeuwen D., Acosta-Martínez V., Shukla M. (2022). Response of soil organic 

matter to cover cropping in water-limited environments. Geoderma 406:115497. 

Tian M., Gao W.D., Ren T.S., Li B.G. (2022). Spatio-temporal variation of soil water and temperature 

between maize rows as affected by no-tillage and strip crop straw mulching in southern Jilin Province. 

Journal of Plant Nutrition and Fertilizers 28:1297-1307. 



   

 

41 
 

Vidović I., Cupec R., Hocenski Ž. (2016). Crop row detection by global energy minimization. Pattern 

Recognition 55:68-86. 

Wang J., Bao Y., Zhang Y., Qu J. (2011). Soil moisture and vegetation water content estimation using two 

drought monitoring index. 

Wang S., Garcia M., Ibrom A., Jakobsen J., Josef Köppl C., Mallick K., et al. (2018). Mapping Root-Zone Soil 

Moisture Using a Temperature–Vegetation Triangle Approach with an Unmanned Aerial System: 

Incorporating Surface Roughness from Structure from Motion. Remote Sensing 10:1978. 

Westreenen A.v., Zhang N., Douma J.C., Evers J.B., Anten N.P.R., Marcelis L.F.M. (2020). Substantial 

differences occur between canopy and ambient climate: Quantification of interactions in a greenhouse-

canopy system. PLOS ONE 15:e0233210. 

Wild J. K.M., Macek M., Šanda M., Jankovec J., & Haase T. . (2019). Climate at ecologically relevant scales: A 

new temperature and soil moisture logger for long-term microclimate measurement. Vol. Agricultural and 

Forest Meteorology, 268. 

Zhang L., Niu Y., Zhang H., Han W., Li G., Tang J., et al. (2019). Maize Canopy Temperature Extracted From 

UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Front Plant Sci 10:1270. 

Zhang L., Niu Y., Zhang H., Han W., Li G., Tang J., et al. (2019). Maize Canopy Temperature Extracted From 

UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Frontiers in Plant Science 10. 

Zhou H., Zhou G., He Q., Zhou L., Ji Y., Lv X. (2021). Capability of leaf water content and its threshold values 

in reflection of soil–plant water status in maize during prolonged drought. Ecological Indicators 

124:107395. 

Zia-Khan S., Romano G., Spreer W., Sanchez C., Cairns J., Araus J., et al. (2012). Infrared Thermal Imaging as 

a Rapid Tool for Identifying Water-Stress Tolerant Maize Genotypes of Different Phenology. Journal of 

Agronomy and Crop Science 199:1-10. 

 

Annex  
Zip file containing:  

- ArcGIS project, 4 R scripts (one for each day and an additional one for extra visualisations), excel 

tables, shapefiles and rasters used; 

Pictures of field campaigns; 

- EndNote library with references and downloaded papers in “Literature” folder; 

- AgiSoft Methashape procedure used for generating orthomosaics; 

- Report and proposal (Word, PDF) in “submission_presentations” folder, 

- Midterm & Final presentation (PPTX) in “submission_presentations” folder. 

 

 


