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Key words and abbreviations   

HI: Harvest index, proportion of aboveground biomass as grain yield  

 

Grain N: Grain nitrogen concentration, in % of grain dry matter 

 

Residue N: Residue nitrogen concentration, in % of residue dry matter 

 

GY: Dry matter grain yield, in Mg ha-1  

 

RY: Dry matter residue yield, in Mg ha-1 

 

FN: Fertiliser nitrogen, total elemental nitrogen fertiliser applied in kg ha-1 

 

FP: Fertiliser phosphorus, total elemental phosphorus fertiliser applied in kg ha-1 

 

FK: Fertiliser potassium, total elemental potassium fertiliser applied in kg ha-1 

 

NDFA%: Nitrogen derived from atmosphere, expressed as a % of total nitrogen in aboveground plant 

biomass 

 

NDFAkg: Nitrogen derived from atmosphere, expressed in kg N ha-1 in aboveground plant biomass 

 

SoilP: Soil elemental phosphorus budget, cumulative soil phosphorus budget calculated with data from 

FAOSTAT  (2022) in kg P m-2 

 

SoilK: Soil elemental potassium budget, cumulative soil potassium budget calculated with data from 

FAOSTAT  (2022)  in kg K m-2 
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Abstract  

Managing nutrients to sustain yields and reduce environmental pressure is one of the largest challenges 

agricultural systems currently face. Accurately quantifying the removal of nitrogen through crops can aid 

decision-making regarding nutrient management. Harvest index is an important variable in accurately 

quantifying crop nutrient removal, as it allows for the distinction to be made between grain and residue. In 

addition, biological nitrogen fixation through leguminous crops has gained renewed interest as a nitrogen 

input because it can decrease the necessity of nitrogenous fertilisers to sustain crop yields. This study aimed 

to investigate whether variability in soybean (Glycine max) nitrogen concentrations of grain and residue, 

harvest index, and biological nitrogen fixation could be explained using variables in globally available data.  

 

Using a large database of 82 field experiments, harvest index and grain and residue nitrogen concentrations 

were predicted, comparing accuracy of linear mixed-effects models and random forest regression. Linear 

mixed-effects models were trained with 80% of the data to explain variation in response variables. 

Explanatory power of linear mixed-effects models was determined based on Nakagawa’s R2 and Akaike’s 

Information Criterion. The other 20% of the data was used to validate predictions of response variables by 

the best linear mixed-effects models and random forest regression.  

 

Across all experiments, mean harvest index for soybean was 0.38 (standard deviation (SD) = 0.09), mean 

nitrogen content of grain and residue was 5.9% (SD = 0.9%) and 1.1% (SD = 0.6%) and mean NDFA was 

139 kg N ha-1 (SD = 93 kg N ha-1) or 56% (SD = 19%). Region showed to be an important explanatory 

variable for all response variables. In addition, fertiliser application rates and cumulative soil phosphorus 

and potassium budgets also contributed to the explanatory power of many linear mixed-effects models. 

Higher nitrogen fertiliser application rates were consistent with lower harvest indices and higher nitrogen 

concentrations in both grain and residue. Prediction with random forest regression was more accurate 

compared to prediction with linear mixed-effects models across all response variables. Accurate predictions 

were made for harvest index and grain nitrogen concentration, with R2 values of 0.83 and 0.95. Lack of 

data was a limitation in explaining variability and predicting residue nitrogen concentration and biological 

nitrogen fixation. Expanding the dataset with response variable data and explanatory variables, such as 

yield potential and variety information, could further improve the understanding and prediction of nitrogen 

flows in soybean cultivation.  
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1. Introduction  

1.1 Intensification of Agriculture 

Agriculture in the past century has primarily focused on realising high yields. In Europe, after the Second 

World War, a number of policies were implemented to incentivise farmers to produce more, to increase 

food self-sufficiency and guarantee affordable food. This led to a rapid intensification of agriculture in 

Europe, with significant increases in yield as a result (Emmerson et al., 2016). Innovations in many fields 

of agriculture helped farmers realise higher yields, from new agricultural machinery and equipment to 

developments in synthetic fertiliser and crop protection products. A critical turning point being the 

invention of the Haber-Bosch process in 1908, which enabled the synthesis of ammonia as a nitrogen 

fertiliser (Iannetta et al., 2016; Zhang et al., 2015).  

 

Fertilisers, both synthetic and organic, have played an important role in realising yield increases over the 

past decades and are still vital to sustain production levels today. The percentage of crop yields attributable 

to commercial fertilisers is estimated to be as high as 60% in the USA and England (Stewart et al., 2005). 

However, more recently the use of fertilisers is put in a different perspective due to increased environmental 

concerns. Several of these environmental concerns are directly related to nitrogen pollution. Nitrogen is the 

most abundant nutrient in many fertilisers and is prone to volatilisation and leaching. Nitrogen pollution 

has negative effects on human health, contributes to climate change and threatens both aquatic and 

terrestrial ecosystems (Schulte-Uebbing et al., 2022; Van Egmond et al., 2002). In many agricultural 

systems, nutrient management is suboptimal. Nitrogen is often oversupplied as synthetic fertilisers are 

readily available and organic manures are accessible at low costs or even from an income stream to arable 

farmers due to a local, intensive livestock sector (Bos et al., 2017; Silva et al., 2021). Carefully managing 

nutrients to sustain yields and reduce environmental pressure is one of the largest challenges these 

agricultural systems currently face (West et al., 2014).     
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In contrast to a nitrogen surplus, there are many agricultural systems which lack sufficient nitrogen inputs, 

and face nitrogen stress or even scarcity. These agricultural systems are predominantly found in Sub-

Saharan Africa, Central and South America and Southeast Asia (Liu et al., 2010; Schulte-Uebbing et al., 

2022). This is illustrated in Figure 1, which shows exceedance of critical nitrogen surplus, where green 

areas indicate potential to increase nitrogen inputs without exceeding environmental limits. As a result, 

there are significant yield gaps in some of these areas. Moreover, it is predicted that many of these areas 

will experience rapid population growth in the near future (United Nations, 2015). In this context, 

agricultural intensification is not so much a problem but a necessity (Van Ittersum et al., 2016). To improve 

global food security and environmental sustainability, some regions will require an increase in nutrient 

inputs whilst others may benefit from a reduction of nutrient inputs (Schulte-Uebbing et al., 2022; West et 

al., 2014).  

 

Figure 1: Spatial variation in global exceedance of nitrogen thresholds. Reductions of agricultural nitrogen surplus to 
respect deposition, surface water and groundwater thresholds simultaneously. Positive values (red) indicate needed 
reductions and negative values (green) indicate possible increases within thresholds. Reprinted from Schulte-Uebbing 
et al. (2022).  
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1.2 Nitrogen Budgets 

Improved agronomic management can help reduce nutrient losses from croplands and increase yields in 

low input systems. Applying fertiliser at the right rate, source, time, and place can significantly reduce 

nitrogen losses whilst sustaining yields (Ma et al., 2022; Roberts, 2010). Accurate quantifications of 

nitrogen flows are important to optimise nutrient management. Nitrogen budgets, also known as nitrogen 

balances, are the difference between nitrogen inputs and outputs in a system. Nitrogen budgets can act as a 

tool to quantify and reduce nitrogen surpluses, which in turn can have economic benefits for farmers due 

to lower feed and fertiliser costs (Langeveld et al., 2007c). A complete nitrogen budget includes all the 

nitrogen inputs and outputs for a system. However, due to data limitations, partial nitrogen budgets can be 

calculated as an indicator for a specific nitrogen flow. Moreover, nitrogen budgets give insight on possible 

nitrogen stress or scarcity. These budgets can help identify areas in which yield gaps may be present due to 

nitrogen stress (West et al., 2014). Knowledge on the removal of nitrogen through crops can aid decision-

making regarding nutrient management. Accurately quantifying the flow of nitrogen between various 

boundaries helps farmers, policy makers, and scientists work towards global food security and reduce the 

environmental effects of agriculture (Zhang et al., 2021).   

 

An important component in nitrogen budget calculations is the nitrogen in aboveground plant biomass. 

Aboveground plant biomass captures the main nitrogen output from a field. Aboveground plant biomass 

can be further categorised into two separate components: crop products and residues. For an accurate 

nitrogen budget calculation, it is relevant to distinguish between these two components. Many crop 

products, such as grain or fruits, contain higher nitrogen concentrations compared to residues such as straw, 

stalks, and leaves (Nijhof, 1987). In addition, crop residues are sometimes left on the field and can be a 

nitrogen input, whilst crop products are taken off the field and are considered a nitrogen output. Widely 

available data on crop residue is lacking. Often, crop product yields are measured out of economic interest, 

but residue yields are not. For instance, country-level crop product yields are accessible in open-source 

databases, such as FAOSTAT  (2022), but data on residue yields are not included within this database. To 
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be able to distinguish between crop products and residues in nitrogen budget calculations, harvest index 

acts as an important conversion factor to calculate residue yield from crop product yield data. Together with 

the nitrogen concentration, the nitrogen component for residues can be calculated and included in a nitrogen 

budget calculation. Harvest index thereby allows for the distinction to be made between crop product and 

residue, resulting in a more accurate quantification of nitrogen budgets (Ludemann et al., 2022).  

 

1.3 Biological Nitrogen Fixation  

Biological nitrogen fixation (BNF) through leguminous crops has gained renewed interest as a nitrogen 

input because it can decrease the necessity of nitrogenous fertilisers to sustain crop yields (Iannetta et al., 

2016). BNF occurs naturally in the root nodules of leguminous plants by nitrogen-fixing bacteria such as 

Rhizobia, a genus of soil bacteria that can reduce atmospheric nitrogen to reactive forms of nitrogen. For 

this reason, BNF through legumes, on itself or in combination with fertilisers, may be implemented as a 

sustainable farming practice (Iannetta et al., 2016; Jensen & Hauggaard-Nielsen, 2003). A study by Sainju 

et al. (2016) suggests that crop rotations with legumes have potential for reducing nitrogen surpluses and 

losses in intense farming systems whilst they might facilitate sustainable intensification of African 

smallholder farms (Vanlauwe et al., 2019).  

 

1.4 Research Objective 

This thesis built upon previous research which developed a methodology to create predictive models for 

maize harvest index and nitrogen concentrations of grain and residue using globally available data 

(Ludemann et al., 2022). The present study aimed to investigate whether variability in nitrogen 

concentrations of soybean (Glycine max) grain and residue as well as harvest index could be explained 

using variables in globally available data. Soybean was chosen as its production has been steadily increasing 

in the past decades and it is the only legume amongst the world’s major staple crops (FAOSTAT, 2022). 

Harvest index and nitrogen concentrations of grain and residue as response variables are relevant for more 
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accurate quantification of (partial) nitrogen budgets. In addition, this study investigated whether these 

variables could explain the variability in biological nitrogen fixation of soybean. Biological nitrogen 

fixation response variables were Nitrogen Derived from Atmosphere (NDFA%), expressed as a percentage 

of total nitrogen and as an absolute value in kg N ha-1 in aboveground plant biomass (NDFAkg). Lastly, 

linear mixed-effects models and random forest regression were used to predict soybean grain and residue 

nitrogen concentrations, harvest index, NDFAkg and NDFA%. To achieve this main objective, the 

following three research questions (RQ) were formulated.  

 

1.5 Research Questions 

1. What is the variability observed in soybean harvest index, nitrogen concentrations of grain and 

residue, NDFAkg and NDFA%?  

2. What is the explanatory power of variables influencing soybean harvest index, nitrogen 

concentrations of grain and residue, NDFAkg and NDFA%?   

3. To what extent can linear mixed-effects models and random forest regression predict soybean 

harvest index and nitrogen concentrations of grain and residue?  

2. Material and Methods  

2.1 Data Collection  

The research questions were answered by analysing data from two main sources, including data from peer 

reviewed literature and from an open-source database. Data from peer reviewed articles all came from 

replicated field trials. Minimum required information for selection of data from peer reviewed literature is 

included in Table 1. 
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Peer reviewed literature  

An existing dataset from peer reviewed articles formed the basis to the dataset used in this project. The 

existing dataset included summary statistics from peer reviewed articles on the major staple crops, maize, 

wheat, soybean, and rice (Ludemann et al., 2023). For the purpose of this research, the dataset was filtered 

to data from soybean. Following, data from peer reviewed literature was added, under the premise that it 

met the requirements listed in Table 1.   

Open-source data   

The existing dataset was supplemented with data from the open-source database FAOSTAT. Nutrient 

budgets at country level were used to calculate accumulative soil phosphorus and potassium levels, which 

in turn were used as variables in linear mixed-effects modelling and random forest regression.  

Data standardisation and cleaning  

Data from peer reviewed articles were standardised and gathered in a single dataset. This dataset had 

uniform units per variable and fertiliser application rates were standardised to elemental fertiliser 

application. Before further analysis, the variables grain N, residue N, NDFAkg, NDFA%, harvest index 

and grain yield were checked for outliers. Data points under the 1st quartile (Q1) by 1.5 times the 

interquartile range (IQR) and above the 3rd quartile (Q3) by 1.5 times the IQR were deemed outliers. 

Statistical outliers were found and removed from the dataset for grain N (N = 19), residue N (N = 22), 

harvest index (N = 1), NDFAkg (N = 2), NDFA% (N = 1) and grain yield (N = 98). Moreover, data from 

Table 1  
List of required information and data variables within the peer reviewed articles for inclusion in 
this analysis 

Variable  

Name of author and organisation responsible for field trial  
Year of sowing  
Trial location  
Number of replicates  
Yield of soybean grain and/or residue and/or harvest index 
Soybean grain and/or residue nitrogen concentration 
Fertiliser application rates  
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trials with extreme fertiliser application rates were also excluded from the dataset. Maximum elemental 

nitrogen, phosphorus and potassium fertiliser application rates included in the data were 250 kg N ha-1, 100 

kg P ha-1 and 100 kg K ha-1 respectively. Fertiliser data were excluded for all fertiliser application rate 

variables; FN (N = 98), FP (N = 6) and FK (N = 103).  

 

After outliers were removed, the analysis included data from 82 studies (Table 9, Appendix 4) and 31 

different countries, with experimental years ranging between 1967 and 2020. The dataset included 1706 

datapoints across all response variables for soybean, with sample sizes for the respective response variables 

ranging from 110 to 619 data points (Table 7, Appendix 1). This dataset was used to determine the 

variability of response variables (RQ1). Hereafter, data was split randomly in two subsets: a training and 

testing subset. The training subset included 80% of the data and was used to train linear mixed-effects 

models (RQ2) and random forest regression. The testing subset included 20% of the data and was used to 

validate predictions of response variables using both linear mixed-effects models and random forest 

regression (RQ3). Due to the lack of data for NDFAkg and NDFA% within the dataset, no attempt was 

made to predict these response variables. The full dataset was used for explaining variation in NDFAkg and 

NDFA% with linear mixed-effects models.   

 

2.2 Statistical Analysis 

All statistical analyses, modelling, prediction, as well as creating figures and graphs were performed using 

the programme R (R Core Team, 2022) following methodology described by Ludemann et al. (2022).   

 

Data Variability  

To answer the first research question on the variability of soybean grain N, residue N, harvest index, 

NDFAkg and NDFA% within the dataset, the range and distribution of data were plotted and analysed using 

summary statistics and the “ggplot2” package in R. Variables for linear mixed-effects modelling were 



 15 

chosen visually using the “chart.Correlation” function in R (Figure 12, Appendix 3) and available 

knowledge on biological processes. These first analyses were performed on the complete dataset, after 

outliers were removed.  

Linear mixed-effects models  

To identify which variables best explained the observed variability within the dataset, linear mixed-effects 

models were made for each response variable using the “lme4’ package in R. UN sub-region in which the 

data was gathered was used as a random effect in all linear mixed-effects models. Nakagawa’s conditional 

R2 was used to evaluate how well the linear mixed-effects models explain variation in the response 

variables. Akaike’s Information Criterion was used to determine whether adding certain variables 

contributes to the explanatory power of the model. These indicators were determined by using the 

“performance” package in R. Data were weighed based on the years of data and the number of replicates 

from each mean value. Explanation of variation using linear mixed-effects models was performed on the 

training subset. Variable inflation factors were used to ensure no unacceptably high correlations between 

explanatory variables in linear mixed-effects models were present.  

 

2.3 Prediction  

Linear mixed-effects models 

For each of the response variables grain N, residue N and harvest index, three linear mixed-effects models 

were subjectively chosen as predictor models. This was done based on the highest Nakagawa’s Conditional 

R2, lowest AIC, as well as the number of observations within the dataset for a particular model. The number 

of observations were an important factor in choosing predictor models. It could therefore be the case that 

models with few observations were not chosen as predictor models despite their high Nakagawa 

Conditional R2 and low AIC. The predictor models were tested using the testing subset (Figure 11, 

Appendix 2). The predicted values were plotted against the actual values and the R2 was determined through 
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linear regression analysis.  The best linear mixed-effects predictor model was chosen based on the highest 

R2 of the actual versus predicted plot and used to compare to prediction with random forest regression.   

Random forest regression  

The R package “randomForest” was used to perform random forest regression. The same explanatory 

variables as the best linear mixed-effects predictor model were used as input variables for random forest 

regression, for a fair comparison between the two methods of prediction. Predicted values from random 

forest regression were also plotted against actual values and the R2 was determined through linear 

regression. Prediction with random forest regression was also performed on the testing subset. 

 

3. Results 

3.1 Descriptive Statistics  

The variability of grain N, residue N, NDFAkg, NDFA% and harvest index within the dataset is shown in 

boxplots in Figure 2. Grain N ranged between 3.61% and 8.16%,  with a mean of 5.93%. In comparison, 

residue N had a lower mean of 1.11%, whilst values ranged from 0.11% to 2.64%. Mean harvest index 

within the dataset was 0.39, with values ranging between 0.11 and 0.55. NDFAkg ranged between 3 kg N 

ha-1 and 354 kg N ha-1 with a mean of 139 kg N ha-1. The mean of NDFA%, expressed as a percentage of 

total N in aboveground plant biomass, lies at 56%, with a minimum value of 9% and a maximum of value 

of 98% .  
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Figure 2: Box plots for the variables (a) Grain N, (b) Residue N, (c) NDFA%, (d) NDFAkg and (e) Harvest Index. 
The box plots represent all data within the dataset after outliers were removed.    
 
 
The distribution of data for all response variables per UN sub-region is shown in Figure 3. Although there 

is overlap, grain N ranges and means differ between regions (Figure 3a). In Southern Europe and South-

eastern Asia, grain N content of soybean is highest, with respective mean values of 6.48% and 7.04%. In 

Eastern Europe, grain N content of soybean is the lowest with a mean of 4.49%. The density plot for residue 

N shows that Northern America and Southern Europe have more residue N values at the upper range relative 

to other regions with mean values of 1.51% and 1.85% respectively (Figure 3b). Southern Asia also has a 

relatively high mean residue N content of 1.65%, but the data is distributed across a wider range of 0.53% 

to 2.64%.   

 

In Australia and New Zealand and Latin America and the Caribbean observed soybean NDFAkg values 

were highest, with respective means of 178 kg N ha-1 and 276 kg N ha-1 (Figure 3d). Latin America and the 
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Caribbean also has a relatively high mean NDFA% of 66%, followed by Sub-Saharan Africa and Northern 

America with respective means of 64% and 61%. Eastern Asia has the highest mean NDFA% at 67% 

(Figure 3c).  

 

Harvest index distributions between regions show much overlap, with means for most regions ranging 

between 0.37 and 0.43 (Figure 3e). Australia and New Zealand and Northern Africa are two regions which 

stand out with a larger share of harvest index values at the lower range. Australia and New Zealand and 

Northern Africa are the only two regions which fall outside the abovementioned range of means, with 

respective means of 0.22 and 0.28. Latin America and the Caribbean has the highest mean harvest index of 

0.43, followed by Northern America and Western Europe with mean harvest indices of 0.42.  

 

 
Figure 3: Density plots for the variables (a) Grain N, (b) Residue N, (c) NDFA%, (d) NDFAkg and (e) Harvest Index. 
The density plots represent all data within the dataset after outliers were removed.     
 
 
3.2 Explanatory Variables  

Variables explaining variation in harvest index  

A positive relationship was observed in which harvest index increases with grain yield. However, high 

nitrogen fertiliser application rates were consistent with lower harvest indices (Figure 4). Model H1_10, 

which included GY and FN as fixed effects, had a Nakagawa’s R2 of 0.20 (Table 2).  
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Figure 4: Soybean harvest index in relation to grain yield (GY) and elemental nitrogen fertiliser application rate (FN). 
Regression lines show linear mixed-effects model with GY and FN as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at 0 kg N ha-1 (solid line), 100 kg N ha-1 (dashed line) and 200 kg N ha-1 
(dotted line) FN. 
 
A similar positive relationship between harvest index and grain yield was found for linear mixed-effects 

model H1_9, however higher SoilP values were consistent with lower harvest indices. Model H1_9, the 

linear mixed-effects model explaining harvest index with GY and SoilP as fixed effects, has a Nakagawa 

R2 value of 0.96.  

 

Model H1_6  and H1_9 had the highest Nakagawa’s R2 value of 0.96 out of all linear mixed-effects models 

explaining variation in harvest index. Model H1_6 included only SoilP as a fixed effect, whilst H1_9 
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included both SoilP and GY as fixed effects (Table 2). The addition of GY as a fixed effect to model H1_6 

did not increase the explanatory power of the model.   

 
Figure 5: Soybean harvest index in relation to grain yield (GY) and cumulative soil phosphorus budget (SoilP). 
Regression lines show linear mixed-effects model with GY and SoilP as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at 0.02 kg P m-2 (solid line), 0.04 kg P m-2 (dashed line) and 0.06 kg P m-2 
(dotted line) SoilP.  



 21 

 

Variables explaining variation in grain N  

A positive trend is observed in which grain N increases with grain yield and FN (Figure 6a). Higher SoilP 

values, however, are consistent with lower grain N values (Figure 6b). The R2 value of the linear mixed-

effects model including GY and SoilP as fixed effects (Nakagawa’s R2 = 0.27) is higher than the model 

including grain yield and FN (Nakagawa’s R2 = 0.23) as fixed effects (Table 3).  

Table 2  
Akaike Information Criterion (AIC) and Nakagawa’s conditional R2 values for linear mixed-effects models 
explaining variation in soybean harvest index (HI). Models in bold were chosen as predictor models.   

Model name Model equation (“Region” was 
used as a covariate in all equations) AIC R2 Number of 

observations 
H1_1 HI ~ GY -624 0.09 265 
H1_2 HI ~ GY + (GY)2 -631 0.12 265 
H1_3 HI ~ FN -523 0.14 222 
H1_4 HI ~ FP -612 0.12 283 
H1_5 HI ~ FK -465 0.19 204 
H1_6 HI ~ SoilP -876 0.96 340 
H1_7 HI ~ SoilK -765 0.89 340 
H1_8 HI ~ FN + SoilP -609 0.87 222 
H1_9 HI ~ GY + SoilP -707 0.96 265 
H1_10 HI ~ GY + FN -443 0.20 162 
H1_11 HI ~ GY + FN + FP -404 0.34 143 
H1_12 HI ~ GY + FN + FP + FK -343 0.33 125 
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Figure 6: (a) Soybean grain N in relation to grain yield (GY) and elemental nitrogen fertiliser application rate (FN). 
Regression lines show linear mixed-effects model with GY and FN as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at 0 kg N ha-1 (solid line), 100  kg N ha-1 (dashed line) and 200 kg N ha-1 
(dotted line) FN. (b) Soybean grain N in relation to grain yield (GY) and cumulative soil phosphorus budget (SoilP). 
Regression lines show linear mixed-effects model with GY and SoilP as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at 0.1 kg P m-2 (solid line), 0.3 kg P m-2 (dashed line) and 0.5 kg P m-2 (dotted 
line) SoilP.  
 

The linear mixed-effects model with the highest Nakagawa’s R2 value of 0.27 was H2_10, which included 

FN and SoilP as fixed effects. Model H2_2 had a Nakagawa’s R2 value of 0.26 and a lower AIC compared 

to H2_10 (Table 3).  
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Variables explaining variation in residue N  

A positive trend was observed between residue N, GY, and FN (Figure 7a). The Nakagawa’s R2 of H3_10, 

the model with GY and FN as fixed effects, was 0.81 (Table 4). Similarly, a positive trend was also observed 

for residue N, GY and SoilP. However, lower SoilP values were consistent with higher residue N (Figure 

7b). The linear mixed-effects model with GY and SoilP as fixed effects had a Nakagawa’s R2 of 0.73 (Table 

4). Model H3_11 and H3_12 had the highest Nakagawa’s R2 value of 0.81. These models both included 

GY and FN as fixed effects. In addition, H3_12 also included SoilP as a fixed effect.  

Table 3  
Akaike Information Criterion (AIC) and Nakagawa’s conditional R2 values for linear mixed-effects models 
explaining variation in soybean grain N (kg N ha-1). Models in bold were chosen as predictor models.   

Model name 
Model equation (“Region” was 
used as a covariate in all 
equations) 

AIC  R2 Number of 
observations 

H2_1 Grain N ~ GY 702 0.18 306 
H2_2 Grain N ~ FN  641 0.26 311 
H2_3 Grain N ~ FP 673 0.20 308 
H2_4 Grain N ~ FK 453 0.21 216 
H2_5 Grain N ~ SoilP  1168 0.15 495 
H2_6 Grain N ~ SoilK 1168 0.15 495 
H2_7 Grain N ~ GY + FN 426 0.22 189 
H2_8 Grain N ~ FN + FP  549 0.23 253 
H2_9 Grain N ~ FN + FP + FK  394 0.24 184 
H2_10 Grain N ~ FN + SoilP  643 0.27 311 
H2_11 Grain N ~ GY + SoilP  704 0.18 306 
H2_12 Grain N ~ GY + FN + SoilP 428 0.22 189 
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Figure 7: (a) Soybean residue N in relation to grain yield (GY) and elemental nitrogen fertiliser application rate (FN). 
Regression lines show linear mixed-effects model with GY and FN as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at 0 kg N ha-1 (solid line), 100  kg N ha-1 (dashed line) and 200 kg N ha-1 
(dotted line) FN. (b) Soybean residue N in relation to grain yield (GY) and cumulative soil phosphorus budget (SoilP). 
Regression lines show linear mixed-effects model with GY and SoilP as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at -0.1 kg P m-2 (solid line), 0 kg P m-2 (dashed line) and 0.1 kg P m-2 (dotted 
line) SoilP. 
 
 



 25 

 

Variables explaining variation in NDFA  

There is a strong correlation between NDFAkg, GY and FK (Figure 8a). Linear mixed-effects model H4_8, 

which includes GY and FK as fixed effects has a Nakagawa’s R2 of 0.71. Model H4_11 with GY, FP and 

SoilK as fixed effect had the highest Nakagawa’s R2 of 0.94 (Table 5).   

 

Linear mixed-effects models explaining NDFA% generally show lower Nakagawa’s R2 values compared 

to those explaining NDFAkg. Figure 8b shows a weak positive correlation between NDFA%, grain yield 

and FP. NDFA% was best explained by model H5_10 which included GY, FN, and FP as fixed effects and 

had a Nakagawa’s R2 of 0.20 (Table 6).   

Table 4 
Akaike Information Criterion (AIC) and Nakagawa’s conditional R2 values for linear mixed-effects models 
explaining variation in soybean residue N (kg N ha-1). Models in bold were chosen as predictor models.   

 Model name Model equation (“Region” was used 
as a covariate in all equations) AIC  R2 Number of 

observations 
H3_1 Residue N ~ GY -17 0.75 75 
H3_2 Residue N ~ FN  44 0.49 55 
H3_3 Residue N  ~ FP 75 0.27 62 
H3_4 Residue N  ~ FK 55 0.38 52 
H3_5 Residue N  ~ SoilP  87 0.54 91 
H3_6 Residue N  ~ SoilK 90 0.44 91 
H3_7 Residue N  ~ SoilP + SoilK 86 0.57 91 
H3_8 Residue N  ~ FN + FP 42 0.40 32 
H3_9 Residue N  ~ GY + SoilP  -16 0.73 75 
H3_10 Residue N  ~ GY + SoilP + SoilK -16 0.71 75 
H3_11 Residue N  ~ GY + FN  -8 0.81 47 
H3_12 Residue N  ~ GY + FN + SoilP -7 0.81 47 
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Figure 8: (a) Soybean NDFAkg in relation to grain yield (GY) and elemental nitrogen fertiliser application rate (FN). 
Regression lines show linear mixed-effects model with GY and FK as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at 0 kg K ha-1 (solid line), 50  kg K ha-1 (dashed line) and 100 kg K ha-1 (dotted 
line) FN. (b) Soybean NDFA% in relation to grain yield (GY) and cumulative soil phosphorus budget (SoilP). 
Regression lines show linear mixed-effects model with GY and SoilP as fixed effects, UN sub-region as random effect 
and years of data x replicates as weight, at 0 kg P m-2 (solid line), 0.2 kg P m-2 (dashed line) and 0.4 kg P m-2 (dotted 
line) SoilP. 
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Table 5  
Akaike Information Criterion (AIC) and Nakagawa’s conditional R2 values for linear mixed-effects models 
explaining variation in soybean NDFAkg (kg N ha-1).  

 Model name Model equation (“Region” was 
used as a covariate in all equations) AIC  R2 Number of 

observations 
H4_1 NDFAkg ~ GY 1241 0.51 118 
H4_2 NDFAkg ~ FN  951 0.12 91 
H4_3 NDFAkg ~ FP 1578 0.33 143 
H4_4 NDFAkg ~ FK 865 0.42 79 
H4_5 NDFAkg ~ SoilP 3100 0.24 277 
H4_6 NDFAkg ~ SoilK 3093 0.36 277 
H4_7 NDFAkg ~ GY + FP   723 0.69 71 
H4_8 NDFAkg ~ GY + FK 520 0.71 52 
H4_9 NDFAkg ~ GY  + FP + FK 520 0.72 52 
H4_10 NDFAkg ~ GY + SoilK  1242 0.48 118 
H4_11 NDFAkg ~ GY + FP + SoilK  709 0.81 71 
H4_12 NDFAkg ~ GY + FK + SoilP 521 0.70 52 

Table 6  
Akaike Information Criterion (AIC) and Nakagawa’s conditional R2 values for linear  mixed-effects models 
explaining variation in soybean NDFA% (%).  

 Model name Model equation (“Region” was used 
as a covariate in all equations) AIC  R2 Number of 

observations 
H5_1 NDFA% ~ GY 778 0.09 86 
H5_2 NDFA% ~ FN 831 0.12 98 
H5_3 NDFA% ~ FP  985 0.11 117 
H5_4 NDFA% ~ FK 495 0.10 58 
H5_5 NDFA% ~ FN + FP 708 0.13 84 
H5_6 NDFA% ~ SoilP 2450 0.02 276 
H5_7 NDFA% ~ SoilK 2451 0.02 276 
H5_8 NDFA% ~ FN + FP + SoilK  698 0.12 84 
H5_9 NDFA% ~ GY + FP  351 0.06 40 
H5_10 NDFA% ~ GY + FN + FP  227 0.19 26 
H5_11 NDFA% ~ GY + SoilP   780 0.09 86 
H5_12 NDFA% ~ GY + SoilK 779 0.10 86 
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3.3 Prediction Accuracies   

Prediction of the response variables harvest index, grain N and residue N with random forest regression 

was more accurate compared to prediction with the best linear mixed-effects predictor model (Figure 9). 

The greatest absolute difference in accuracy between prediction with linear mixed-effects models and 

random forest regression was observed for grain N. The difference between the R2 values of the linear 

mixed-effects model (R2 = 0.75) and random forest (R2 = 0.83) for grain N was 0.08. In terms of 

percentages, the difference between prediction accuracies of random forest regression (R2 = 0.038) and 

linear mixed-effects models (R2 = 0.0097) was largest for residue N. A smaller difference between 

prediction with linear mixed-effects models and random forest regression was found for harvest index. 

Harvest index prediction was more accurate using random forest regression (R2 = 0.96) than prediction with 

linear mixed-effects models (R2 = 0.92).  

 

In predicting harvest index, grain N and residue N using random forest regression, region is the most 

important predicting variable. Region has a variable importance percentage of over 65% for all three 

response variables (Figure 10).  
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Figure 9: Linear regression of predicted versus actual soybean harvest index (HI), crop product nitrogen concentration 
(CPN, as % of dry matter yield) and crop residue nitrogen concentration (CRN, as % of dry matter yield), comparing 
linear mixed-effect models (left column) with random forest (right column).  
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Figure 10: Importance of variables for prediction with random forest regression for (a) Harvest Index, (b) Grain N 
and (c) Residue N. 
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4. Discussion  

4.1 Data Variability  

The variability of grain N and residue N within the dataset exceeded the minimum and maximum limits of 

nitrogen concentration reported in an article by Nijhof (1987). Nijhof (1987) reported grain N minimum 

and maximum ranges for soybeans of 4.60% to 7.60% respectively and minimum and maximum residue N 

ranges from 0.40% to 1.70% respectively. In comparison, grain N within the present dataset ranged between 

3.61% and 8.16%, whilst residue N ranged from 0.11% to 2.64%. Although comparable, the extremes go 

beyond the ranges of Nijhof (1987). This could be because Nijhof (1987) excluded 10% of the most extreme 

values as outliers and based the minimum and maximum soybean nitrogen concentrations on data from 30 

articles. The present study included data from 84 different studies from 31 countries, which could explain 

the larger variability of harvest index. Collecting more data and re-analysing the data variability of these 

response variables may allow for a clearer exclusion of outliers, other than on statistical grounds.  

 

Harvest index ranged from 0.11 to 0.55 with a mean of 0.39, within the dataset. However, the interquartile 

range was much smaller, ranging between 0.32 and 0.47. Unkovich et al. (2010) reported Australian harvest 

index minimum and maximum ranges for several leguminous crops, including faba bean (0.11-0.58, N = 

48), chickpea (0.06-0.55, N = 188) and field pea (0.06-0.58, N = 185). These values suggest that the range 

found within the present dataset is not uncommon for legumes. The large minimum and maximum range 

found in the dataset compared to the interquartile range could also be a result of differences in methods 

used to calculate harvest index between articles from which these values derive. Articles may have 

calculated harvest index including different plant components and reported measurements at varying 

moisture contents. Moreover, mature soybean plants regularly drop leaves, and it is often unclear whether 

articles have included this biomass in their calculations of total aboveground biomass (Herridge et al., 

2022). These factors could have contributed to the variability in harvest index found within the dataset.  
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NDFA% ranged from 9% to 98% within the dataset, with a mean of 56%. NDFAkg ranged between 3 kg 

ha-1 and 354 kg ha-1, with a mean value of 139 kg N ha-1. Comparable ranges were found by Schipanski et 

al. (2010) which reports NDFAkg values between 40 kg N ha-1 and 224 kg N ha-1 and NDFA% values 

ranging from 36% to 82%. The trials in this study were treated with inoculant containing nitrogen fixating 

bacterial strains, which could explain the higher lower limit reported by Schipanski et al. (2010) compared 

to the range within this dataset. Furthermore, a review article by Salvagiotti et al. (2008) reports a similar 

mean value for NDFAkg of 111 kg N ha-1 and a minimum and maximum range between 0 and 337 kg N 

ha-1. The same article reports an NDFA% range of 0 to 98% with a mean of 52% (Salvagiotti et al., 2008). 

The high variability in NDFA% and NDFAkg found in the present dataset are comparable to those found 

in literature.   

 

4.2 Explanatory Variables  

Variability in harvest index was best explained by the linear mixed-effects model with SoilP as a fixed 

effect. There was a negative relationship between harvest index and SoilP; higher SoilP values were 

consistent with lower harvest indices. A similar relationship was found between harvest index and nitrogen 

fertiliser application, in which higher nitrogen fertiliser application rates were consistent with lower harvest 

indices. A possible explanation of this observed trend could be that high nitrogen availability leads to 

increased vegetative growth, resulting in a lower harvest index.  

 

Variability in grain N was best explained by the linear mixed-effects model with FN and SoilP as fixed 

effects (Nakagawa’s R2 = 0.27). Although, SoilP did not add much to the explanatory power of this model. 

The model with FN as sole fixed effect had a Nakagawa’s R2 of 0.26 and a lower AIC compared to the 

model including both FN and SoilP. Higher nitrogen fertiliser application rates were consistent with higher 

grain nitrogen concentrations. High nitrogen availability can lead to nitrogen accumulation and therefore 

higher nitrogen grain concentrations (Divito et al., 2016; Salvagiotti et al., 2008). On the contrary, higher 
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SoilP values were consistent with lower grain nitrogen concentrations. This can be explained by high 

potassium availability leading to nitrogen dilution (Janssen et al., 1990). 

 

Residue N showed the same relationship to nitrogen fertiliser application and SoilP as grain N. Residue 

nitrogen concentration increase with nitrogen fertiliser application rates and decrease with SoilP. Variability 

in residue N was best explained by the linear mixed-effects model with GY and FN as fixed effects 

(Nakagawa’s R2 = 0.81). Although the model with grain yield as sole fixed effect had a comparable 

Nakagawa’s R2 of 0.75 and a higher number of observations.  

 

NDFAkg was best explained by a linear mixed-effects model which included the variables grain yield,  FP 

and SoilK as fixed effects (Nakagawa’s R2 = 0.81). In all models, FK and FP were shown to be better 

explanatory variables for NDFAkg than FN. NDFAkg has a strong positive relationship with GY. A 

negative relationship is found between NDFAkg and fertiliser application rates.  

 

NDFA% variability was best explained by grain yield, FN, and FP as fixed effects in a linear mixed-effects 

model (Nakagawa’s R2 = 0.19), although this model only has 26 data observations. Unlike NDFAkg, 

NDFA% variability was better explained by FN than FP or FK as fixed effects in linear mixed-effects 

models.   

 

4.3 Prediction 

Predictor models were chosen subjectively based on the number of observations within the dataset, AIC 

and Nakagawa’s R2 of the linear mixed-effects models. In some cases, predictor models were chosen which 

therefore did not have the highest Nakagawa R2 or lowest AIC. In the case of residue N especially, there 

were very few observations, making it difficult to assess models on their prediction accuracy. The lack of 

observations was also the reason no predictor models were tested for NDFAkg and NDFA%.   
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Prediction with random forest regression was more accurate compared to prediction with linear mixed-

effects models across all predicted response variables. Accurate predictions were made for harvest index 

and grain nitrogen concentration, with R2 values of 0.83 and 0.95 for linear regression on actual versus 

predicted plots. Prediction accuracies for residue N were low using linear mixed-effects model (R2 = 

0.0097) as for random forest regression (R2 = 0.038). The same input variables were used for random forest 

as the best predictor linear mixed-effects model, for a fair comparison. Using more variables in random 

forest regression and optimising its prediction may increase its prediction accuracy. This was not done 

within this study, as the objective was to compare it to linear mixed-effects model predictions. The study 

by Ludemann et al. (2022) estimating maize harvest index and nitrogen concentrations of grain and residue, 

also found that random forest regression prediction was more accurate compared to linear mixed-effects 

models. Ludemann et al. (2022) reported R2 values for actual versus predicted plots for harvest index, and 

nitrogen concentration of grain and residue of 0.58, 0.68 and 0.56 respectively.  

 

Random forest outperformed linear mixed-effects models in terms of prediction accuracies. It is expected 

that machine learning will be used more often in future research. Although it does increase the necessity 

for standardised, high-quality databases. Machine learning can help get the most out of data collected 

around the world. A downside of random forest regression is that it is more difficult to interpret how 

variables relate to one another. Coefficients in linear mixed-effects modelling give insight on the strength 

of a relationship and its direction. Therefore, linear mixed-effects models allow for a better understanding 

of the relationships between variables  and thus give a better insight into the mechanisms behind the results. 

Which of the two methods is better, depends on the goal of the research.  
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4.4 Limitations  

The greatest limitation of this study is the lack of data points, especially for response variables residue N, 

NDFAkg and NDFA%. Few data points means that potential outliers are given more weight, which could 

influence the outcome of the results. Both in linear mixed-effects modelling and random forest regression, 

region was an important variable despite uneven data distribution across regions. More data points across 

regions could further improve explanatory models and prediction accuracies. 

 

This study looked at a limited selection of explanatory variables, due to findings from previous research 

and the wide availability of data points for variables found within the dataset. There are more variables to 

be explored which could potentially contribute to explaining variation and prediction of these response 

variables.    

 

Lastly, the struggle of standardising data from literature is not without bias or human error. Unfortunately, 

there is still some ambiguity in articles about definition, units and how measurements are taken which 

makes it a challenge to correctly standardise data. For example, ambiguity in whether grain yield is reported 

in kilograms of dry matter or fresh weight for soybeans with a harvest index of 0.5 could results in about a 

7.6% difference in harvest index assuming a moisture proportion of 0.86. This highlights the importance of 

unambiguous reporting in scientific literature and transparent data collection in meta-analyses.   

 

4.5 Improvements and Further Research 

To improve linear mixed-effects models’ explanatory power and prediction accuracies, collecting more 

data across all regions would deliver more robust results, especially for residue N, NDFAkg and NDFA%. 

Further research could focus on including explanatory variables to the dataset such as crop variety, climate, 

growing season length and yield potential variables. An interesting variable for explaining NDFA could 

include information on inoculation with nitrogen fixing bacterial strains. In the context of soybean 
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cultivation, research into biological nitrogen fixation could further improve nutrient management plans. 

Creating conditions suitable for nitrogen fixation and looking into inoculation rather than fertilisation may 

improve yields and reduce nutrient losses further (Sogut, 2006).  

5. Conclusions 

Creating explanatory models for soybean harvest index, grain N, residue N and NDFA using globally 

available data helps understand and improve nitrogen use in agriculture. The widely available variables  

including grain yield, fertiliser application rates, and cumulative soil phosphorus and potassium budgets 

can be used in linear mixed-effects models to explain these response variables. Furthermore, these variables 

can be used to accurately predict harvest index and grain N. Random forest regression outperforms linear 

mixed-effects modelling in terms of prediction accuracy but does not give insight in the relationships 

between variables. The high Nakagawa’s R2 of explanatory models and accurate prediction for grain N 

shows that both linear mixed-effects modelling and random forest regression can be important tools to 

develop nutrient management plans. Expanding the dataset with response variable data and explanatory 

variables, such as yield potential and variety information, could further improve the understanding and 

prediction of nitrogen flows in soybean cultivation.
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Appendices  

Appendix 1 

 
 

Table 7  
Mean values, sample size and standard deviation per UN sub-region for Harvest Index, Grain N, Residue N, NDFAkg and NDFA%.  

Region Mean value and standard deviation for each variable  

 Harvest 
Index (-) 

SD 
(-) 

Grain N 
(%) 

SD 
(%) 

Residue N 
(%) 

SD 
(%) 

NDFAkg 
(kg N ha-1) 

SD 
(kg N ha-1) 

NDFA% 
(%) 

SD 
(%) 

Australia and 
New Zealand  0.22(N=2) 0.02 6.23(N=2) 0.56 0.83(N=2) 0.37 178(N=33) 62 55(N=35) 16 

Eastern Asia  -  -  5.72(N=36) 1.17 - - 94(N=27) 34 67(N=27) 6 

Eastern Europe  0.37(N=12) 0.05 4.49(N=12) 0.32 0.57(N=12) 0.05 -  -  - - 

Latin America 
and the 
Caribbean  

0.43(N=54) 0.08 6.34(N=114) 0.36 0.75(N=36) 0.36 276(N=49) 57 66(N=38) 18 

Northern Africa 0.28(N=27) 0.02 5.44(N=38) 1.10 - - - - - - 

Northern 
America 0.42(N=90) 0.07 6.14(N=129) 0.50 1.51(N=9) 0.15 138(N=39) 80 61(N=42) 23 

Northern Europe - - 5.44(N=24) 0.29 - - - - - - 

South-eastern 
Asia  0.39(N=11) 0.06 7.04(N=19) 0.38 0.69(N=11) 0.11 118(N=28) 31 60(N=11) 11 

Southern Asia 0.38(N=159) 0.07 5.82(N=47) 0.75 1.65(N=19) 0.57 - - - - 

Southern Europe - - 6.48(N=25) 1.03 1.85(N=16) 0.11 - - - - 

Sub-Saharan 
Africa 0.40(N=64) 0.13 5.02(N=78) 0.85 - - 69(N=78) 58 64(N=100) 20 

Western Asia - - 6.12(N=18) 0.26 - - - - - - 

Western Europe 0.42(N=5) 0.02 6.18(N=77) 0.79 0.79(N=5) 0.39 106(N=23) 65 46(N=23) 7 

World 0.39(N=424) 0.09 5.93(N=619) 0.87 1.11(N=110) 0.59 139(N=277) 93 56(N=276) 19 
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Appendix 2  

Linear Regression of predicted versus actual harvest index, grain N and residue N showing all three 
chosen linear mixed-effects models for prediction  
 
            Harvest Index      Grain N          Residue N 
             

     
Figure 11: Scatter plots of actual values versus predicted values for all linear mixed-effects predictor models for 
Harvest Index (left), Grain N (middle) and Residue N (right). Model names are mentioned in the top left of each 
scatter plot. Model equation, Nakagawa’s R2 and Akaike’s Information Criterion per model can be found in Table 3 
for Harvest Index, Table 4 for Grain N and Table 5 for Residue N.  
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Appendix 3 

Correlation matrix including response variables and key explanatory variables 

Figure 12: Correlation matrix including the variables Harvest Index (unitless), Grain N (kg N ha-1), Residue N (kg N 
ha-1), GY (Mg ha-1), FN (kg N ha-1), FP (kg P ha-1), FK (kg K ha-1), SoilP (kg P m-2) and SoilK (kg K m-2). Variable 
definitions can be found on Page 6. The diagonal shows the distribution of data for each variable in histograms. Below 
the diagonal are bivariate scatter plots with fitted density lines in red. Above the diagonal are correlation coefficients, 
with level of significance is displayed by symbols indicating p-values as: 0 – 0.001 = ***, 0.001 – 0.01 = ** , 0.01–
0.05 = *, 0.05–0.1 = ”.”, and 0.1–1 = ” ”. 
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Appendix 4 

Table 9 
Publications from which data is included in the dataset used in this study  

# Publication 

1 Adjei-Nsiah et al. (2021) 

2 Aher et al. (2022) 

3 Amadou et al. (2021) 
4 Amiri et al. (2021) 
5 Andriani et al. (1991) 
6 Asres and Tiruneh (Preprint (2020)) 

7 Basal and Szabó (2020) 

8 Bellaloui et al. (2011) 

9 Bender et al. (2015) 

10 Bhangoo and Albritton (1972) 

11 Boddey et al. (1990) 

12 Bortolon et al. (2018) 
13 Cafaro La Menza et al. (2019) 
14 Cafaro La Menza et al. (2020) 

15 Cannon et al. (2021) 
16 Chețan et al. (2021) 
17 Coale et al. (1985) 
18 Deibert et al. (1979) 
19 Di Ciocco et al. (2008) 

20 Domingos et al. (2021) 

21 Dragicevic et al. (2022) 

22 Eliçin et al. (2021) 

23 Engy et al. (2020) 

24 Erbil et al. (2020) 

25 Gan et al. (2002) 
26 Gan et al. (2003) 
27 Gelfand and Robertson (2015) 
28 George et al. (1988) 
29 Ghani et al. (2021) 
30 Guafa et al. (1993) 
31 Gyogluu et al. (2016) 
32 Ham and Caldwell (1978) 

33 Hiep et al. (2002) 

34 Jansone et al. (2021) 
35 Jarecki and Bobrecka-Jamro (2021) 
36 Jat et al. (2021) 

37 Jefing et al. (1992) 
38 Kakabouki et al. (2020) 
39 Karhale (2021) 

40 Kubar et al. (2021) 
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41 Kucey et al. (1988) 

42 Landriscini et al. (2019) 

43 Latifinia and Eisvand (2022) 

44 Lohar et al. (2020) 

45 Machado et al. (2021) 

46 Machiani et al. (2021) 

47 Mamun et al. (2022) 

48 Mandić et al. (2020) 

49 Movalia and Savalia (2021) 

50 Munyinda et al. (1988) 

51 Nassar et al. (2021) 
52 Oberson et al. (2007) 
53 Ojiem et al. (2007) 

54 Okogun et al. (2005) 

55 Peoples et al. (1995) 
56 Radzka et al. (2021) 
57 Raj et al. (2021) 
58 Rashmi et al. (2022) 
59 Rennie and Dubetz (1984) 

60 Rochester et al. (2001) 

61 Rurangwa et al. (2018) 
62 Rushovich (2020) 
63 Rymuza et al. (2020) 
64 Sanginga et al. (1997) 
65 Santachiara et al. (2017) 

66 Santachiara et al. (2018) 

67 Sathyanarayana et al. (2021) 

68 Schapaugh Jr. and Wilcox (1980) 
69 Singh et al. (2021) 
70 Stajković et al. (2021) 
71 Suciu et al. (2021) 
72 Tanwar and Shaktawat (2003) 
73 Tavares et al. (2022) 
74 Tolokonnikov et al. (2021) 

75 Toomsan et al. (1995) 

76 Urquiaga et al. (2006) 

77 Van Vugt et al. (2018) 

78 Vasilas and Ham (1985) 

79 Walker et al. (1985) 

80 Zimmer et al. (2016) 
81 Zingore et al. (2008) 
82 Zotarelli et al. (2012) 

 
 

 


