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Abstract

Triadic comparison of technologies (tricot) is a recently developed on-farm evaluation method
involving farmers conducting small, simple trials on their farms. Farmers are provided with a
selection of three varieties from a larger set and report the best and worst varieties for traits,
such as yield, resistance and overall performance. The strength of the tricot approach is that it
involves a large number of farmers in diverse conditions so that researchers can obtain diverse
data on the actual differences in disease resistance. On the other hand, the tricot approach has
some limitations: information is lost due to ranking-based evaluation, and farmers may find it
hard to evaluate hard-to-score traits like pest and disease resistance reliably. In particular, the
potential of evaluating resistance using rankings is unknown, and this study focused on farmers’
pest and disease resistance evaluation in the tricot trial.

Results indicated that farmers’ evaluation in the tricot trial could find varietal differences in
potatoes' bacterial wilt resistance rankings in Rwanda, which suggests farmers’ evaluation for
this was not random. Bacterial wilt resistance was a significant predictor of overall
performance independently of confounding variables, yield and vigour. This indicated that
farmers evaluated disease resistance independently of potential confounders. The preferred
variety of bacterial wilt resistance varied depending on whether the maximum day temperature
during the vegetative period was above or below 25.43°C. This result aligned with the known
disease-occurring factor that bacterial wilt causes the most severe damage when the
temperature ranges between 25°C and 35°C. Additionally, the susceptible variety was selected
as the least preferred in warmer environments, where the disease is known to cause severe
damage. These results suggest that farmers’ evaluations of bacterial wilt resistance reflect the
actual differences in disease resistance. On the contrary, pest and disease resistance evaluations
in other crops did not show significant differences between varieties. There could be several
reasons for this, including the use of pesticides, unsuitable timing of evaluations, and not
focusing on a specific pest. Assessing pest resistance by farmers has been thought to be
challenging due to the requirement of specialised knowledge. However, this study suggested
the possibility of obtaining the actual differences in disease resistance from farmers’ best and
worst evaluations under the right conditions, potentially accelerating the selection of pest-
resistant varieties suitable for specific on-farm environments.
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1. Introduction

1.1 Plant breeding for pest and disease resistance and genotype-by-environment interaction

Farmers and breeders constantly improve crops to maintain a stable and sustainable food supply.
Plant breeding has contributed to improved crop productivity and increased biotic and abiotic
stress tolerance (Galluzzi et al., 2020). Pest and disease resistance is essential in crop breeding,
as withstanding pests and pathogens is a prerequisite for food safety and yield losses due to
insects, pathogens, and weeds can be up to 20-40% of global agricultural productivity (S.
Sharma et al., 2017). The emergence of new strains of plant diseases and the movement of
pests and diseases render conventional resistant varieties unusable and require the introduction
of varieties to cope with them.

In recent years, due to climate change, higher average temperatures and increased frequency
of extreme weather events are predicted to reduce crop yields, requiring the development of
new varieties in shorter cycles (Knox et al., 2012; Lesk et al., 2016). This is also the case for
pest and disease resistance. Due to climate change, the emergence and movement of pests and
diseases are changing as rising temperatures affect the prevalence of pests and pathogens
(Dawson et al., 2015). For example, plant viruses and their insect vectors favour high
temperatures until they reach their upper-temperature threshold (Trebick, 2020). Global
warming is therefore expected to promote insect vectors and the viruses they transmit (FAO et
al., 2021). In addition, crop-management adaptations to climate change, such as the
introduction of irrigation and changes in sowing dates, may affect the ecology of pests and
diseases and cause population increases (FAO et al., 2021). In this context, the resistant
varieties are one of the best pest and disease management methods (FAO et al., 2021). Rapid
cycle breeding is needed to ensure that farmers always have access to climate-appropriate
varieties.

1.2 Evaluation of variety performance under diverse conditions

The relative performance of crop genotypes is affected by environmental interactions, a
phenomenon known as genotype-by-environment interaction (GEI). GEI is the differential
response of crop genotypes from one environment to another (Elias et al., 2016). In other words,
if a variety expresses a superior trait value in one environment, it is not guaranteed to be
superior in another environment. GEI is a challenge for plant breeders because it reduces
selection efficiency. Therefore, GEI analysis is essential in variety evaluation to obtain an
improved phenotype in a targeted environment (Ngailo et al., 2019). Pest and disease resistance
is also affected by GEI since changes in the geographical differences within the agro-ecologies
will impact disease pressure and their distribution due to changing climatic conditions (Aruna
et al., 2011; Beebe et al., 2011). GEI analysis is usually done by so-called multi-environment
trials (MET) in which varieties are tested across a set of environmental contrasting locations



over several years (Smith et al., 2020). Since trials across a few locations and years may not
adequately cover the environments in which new varieties may be grown (Bustos-Korts et al.,
2019), there is a clear incentive to scale up as far as budget and resource constraints allow.

1.3 Triadic comparisons of technologies (tricot)

As mentioned above, GEI analysis benefits from scaling up, and one methodology for doing
so is the recently developed on-farm evaluation method, “triadic comparison of technologies”
(tricot). The tricot is a crowdsourcing approach where instead of large, complex trials
conducted in research facilities, farmers host a large number of small, simple trials on their
farms, with resulting data being analysed with specialised statistical methods (van Etten et al.,
2020).

There are four roles within the tricot approach: researchers, implementers, field agents and
farmers. Researchers choose the varieties for the project and provide seeds to implementers.
Implementers, people from development agencies or NGOs, train field agents and provide trial
packages to farmers. Farmers blindly receive and grow only three genotypes out of the portfolio
of varieties. Farmers report feedback to field agents from various perspectives, such as yield,
pest damage, marketability, taste and overall evaluation. Field agents report the feedback data
to implementers through a smartphone application. Implementers compile and analyse data,
and after the experiment, they provide feedback to farmers, such as the name of provided
varieties, suited varieties and how to get the variety (van Etten et al., 2020). Researchers can
statistically combine the rankings of the three varieties fed back from farmers (Brown et al.,
2020). Tricot is an iterative process; thus, following each project cycle, researchers,
implementers, field agents, and farmers jointly assess how the process might be improved in
the following cycle (van Etten et al., 2020).

1.4 Strengths and weaknesses of the tricot approach

The strength of the tricot approach is that it involves a large number of farmers in diverse
conditions so that researchers can obtain diverse data under actual on-farm conditions. The
tricot approach can consider sociocultural and environmental diversity that varies significantly
across the landscape. The tricot can help detect GEI by sampling different environments (van
Etten et al., 2019). As the data includes the latitude and longitude of the study site, existing
maps of temperature, rainfall, altitude, and other variables can be used to analyse varietal
performance as a function of environmental factors (van Etten et al., 2020). In a recent study
by van Etten (2019), a combined analysis of tricot trials on common bean (Phaseolus vulgaris
L.) in Nicaragua, durum wheat (Triticum durum Desf.) in Ethiopia, and bread wheat (Triticum
aestivum L.) in India demonstrated that the tricot approach could indicate specific effects of
climate diversity on the performance of crop varieties (van Etten et al., 2019).



A vital feature of the feedback of the tricot method is that it only requires choosing the best
and the worst. The ranking-based feedback allows farmers with low literacy and training needs
can remain low (de Sousa et al., 2021). It also reduces the need to explain rating scales and
precise yield measurements. Researchers can collect feedback through a digital platform,
saving time and effort in data cleaning (van Etten et al., 2020). A significant advantage is its
low cost because the farmers voluntarily participate (de Sousa et al., 2021). Besides, farmers
benefit directly from discovering new varieties that fit socio-economic and environmental
conditions.

Nevertheless, the tricot method has three possible limitations. The first is information loss, as
tricot data only provides ranking information. The lack of actual trait values may limit
obtaining information on traits. For example, there is no information on which and how many
pests have occurred in terms of pest resistance. This may make it challenging to capture inter-
varieties differences.

Second, evaluations rely on farmers’ judgement. In the tricot approach, farmers have a no-
choice option. The no-choice option provides a way of avoiding difficult choices in consumer
preference studies, but while such studies are conducted anonymously through surveys, the
tricot surveys are not anonymous and require reporting to local field agents. Farmers may
therefore feel obligated to answer questions politely in this situation. In pest and disease
resistance evaluation, farmers possibly answered as if pests occurred when pests did not occur.
This may induce inappropriate or random answers. Therefore, pest and disease resistance
rankings may not reflect the varieties' real pest and disease occurrence and resistance.

Third, farmers' evaluations may contain errors. In the case of pest and disease evaluation,
farmers may mistakenly diagnose as having physiological disorders since farmers are not
trained. Therefore, it is not sure that the pest and disease resistance score reflects the actual
resistance of the variety. In a study of farmers' knowledge of plant diseases in Ethiopia, some
highly damaging diseases, such as faba bean chocolate spot and chickpea ascochyta blight,
were not regarded as diseases but as problems caused by excessive soil moisture (Kiros-Meles
& Abang, 2008). In Honduras, a pilot test of the tricot was conducted to evaluate the disease
resistance ratings of farmers. The test found that farmers' disease resistance ratings had a low
internal agreement, and accuracy could be improved through training (Steinke, 2015).

1.5 Research questions

Currently, the extent to which above limitations limit the potential for pest and disease
resistance evaluation in the tricot approach is not known. Three research questions were
established to answer whether farmers’ evaluation of pest and disease resistance ranking
adequately evaluates resistance.



RQ1: Does existing tricot data reveal significant variety differences in pest and disease
resistance rankings?

First, it is unknown to what extent farmer ranking data of pests and diseases is non-random. If
farmers randomly ranked the pest and disease resistance, there would be no difference between
varieties. Conversely, farmers' ranks are not random if a difference is observed between
varieties. For this reason, whether there are differences between varieties in pest resistance
scores will be tested. Hypothesised that there are statistically significant differences between
varieties in some data.

RQ2: Can other variables predict pest and disease resistance rankings? Or, can pest and disease
resistance rankings predict other variables?

The next step is to look at relationships with other variables. To begin with, the best method to
do the analyses will be explored since an efficacy of applying ranking data to predictive models
is still unknown. Then, the relationship with vigour will be analysed first. Diseases develop
when the pathogen, susceptibility and environmental factors are mutually favourable for the
outbreak. When plants grow unhealthily, they are more susceptible to the pathogen (Velasquez
et al., 2018). There may also be a relationship with yield. Generally, pests and diseases cause
yield loss; for example, a negative correlation between yield and disease damage has been
reported (Bruno et al., 2017). If this generally observed trend could be observed in the ranking
data, it could be said that the ranking data for pest and disease resistance is picking up the
differences in disease resistance. Additionally, if pest and disease resistance rankings were
significant predictors of overall evaluation independently of other variables, it would prove
that farmers’ evaluation can accurately reflect resistance independently of other variables. It
was hypothesised that statistically significant relationships could be observed in the data where
significant differences were observed in the first research question.

RQ3: Does the ranking of varieties of pest and disease resistance depend on environmental
variables? If so, are these relationships consistent with the expected pest and disease pressure
determinants?

Third, the relationship with environmental factors will be focused. Abiotic factors, such as
temperature and rainfall, drive pest and disease numbers, growth and survival. For instance,
whitefly (Bemisia tabachi) population build-up positively correlates with high temperature and
a high humidity (Pathania et al., 2020). In contrast, black bean aphids (Aphis fabae) infest
plants more during the dry season (Abate & Ampofo, 1996). Humidity is necessary for many
plant pathogens to infect their host (Wilks & Shen, 1991). Besides, some pathogens, including
late blight (Phytophthora infestans), prefer cool temperatures, and some pathogens, including
bacterial blight (Ralstonia solanacearum), prefer high temperatures (Muhinyuza et al., 2007;
Singh et al., 2014). If pest rankings depend on environmental variables and the relationship is
consistent with the information on pest and disease ecology, this would provide evidence that



the resistance rankings reflect the actual differences in disease resistance. Hypothesised that
ranking differences for pest and disease scores will be most significant under conditions that
favour pest and disease occurrence.

The tricot method has limitations, including information loss as it only provides ranking
information, reliance on farmers' judgement, and potential errors in their evaluations as farmers
are not specialists in pests and pathogens. However, if pest and disease resistance can be
correctly assessed using the tricot method, it would be viable option for GEI analysis. This
study will focused on whether the farmers' ranking evaluation in the tricot trials is adequate
and if the evaluation reflects pest and disease resistance.



2. Materials and methods

2.1 The Plackett-Luce model, PLADMM and Plackett-Luce trees

The Plackett-Luce model is the key to an analysis of the tricot trial. This model is based on
Luce’s axiom of choice (Luce, 1977), which assumes that the probability of choosing one item
over another is not influenced by the group of items from which the decision is being made.
When there is a set of J items

S = {iy, iz - i}

Then under Luce’s axiom, the probability of selecting some item j from S is given by
4

Yies@;

P(jl$) =

where «; represents the worth of item i. The Plackett-Luce model can estimate the probability
of each element being ranked first, called the worth parameter, from a partially overlapping
rankings (Brown et al., 2020). This allows ranking data to be treated as a quantitative variable.
The Plackett-Luce model specifies the probability of a ranking of J items, iy > -+ > i, is

given by
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where a;; represents the worth of item i; and 4; is the set of alternatives {i/, 41, ., 1)} from

which item i; is chosen. The parameters of the Plackett-Luce model are typically inferred by
the maximum likelihood estimation (Guiver & Snelson, 2009). One of the R packages
supporting the Plackett-Luce model called PlackettLuce uses the minorization-maximization
algorithm to maximise the likelihood (Hunter, 2004).

The original Plackett-Luce model does not accommodate covariates. Therefore, models that
can involve covariates have been developed. The Plackett-Luce Alternating Directions Method
of Multipliers (PLADMM) is one of the models that can model the log-worth as a linear
function of item covariates:

loga; = By + B1xix + -+ BpXip

where B, is fixed by the constraint that );;a; = 1. The PLADMM uses an Alternating
Directions Method of Multipliers (ADMM) algorithm to estimate the parameters. The
algorithm jointly estimates model parameters and the Plackett-Luce scores via a spectral
method. Also, ADMM allows them to reduce ranking regression to regularised maximum



likelihood estimation with precisely such a penalty (Yildiz et al., 2020). A function of the
PLADMM is available in the R library PlackettLuce (H. L. Turner et al., 2020).

The Plackett-Luce tree allows for the analysis of the effect of location-specific covariates on
variety ranks. The Plackett-Luce tree algorithm uses partitioning to identify subgroups of trials
with significantly different rankings in response to specific covariates (H. L. Turner, 2022).
The algorithm splits the data by the covariate if there is significant instability. The process is
repeated until no significant instabilities or sub-group are produced below a certain size
threshold. The generated subgroups, called nodes, show worth parameters in the node. In other
words, different rankings can be obtained in different environments. The tricot trial data
typically include coordinates of the survey sites so that the tricot trial data can link with
environmental factors. The Plackett-Luce tree is also available in the R library “PlackettLuce”
(H. L. Turner et al., 2020).

The analyses of this study were divided into two steps: the analysis of the efficacy of the
Plackett-Luce Alternating Directions Method of Multipliers (PLADMM); and the analysis of
the ranking data collected from farmers. All simulations and analyses were done with the
software program R version 4.1.3 (R Core Team, 2022).

2.2. The efficacy of PLADMM

Before analysing the ranking data collected from farmers, a test was conducted to evaluate the
efficacy of PLADMM, which has never been tested on on-farm ranking data. In research
question 2, a linear model with covariates was needed to find out if pest and disease resistance
rankings can predict or be predicted by other variables. PLADMM was one of the candidate
models as it accepts rankings as a response variable and models the log-worth of items by a
linear function of the item covariates (H. L. Turner etal., 2020). PLADMM accepts numerical
values as covariates. Although the data obtained from the tricot trials are in ranking format, the
Plackett-Luce model can convert these into worth parameters, allowing the values to be used
as covariates in the PLADMM. However, it remained uncertain whether using worth
parameters as covariates of the PLADMM would lead to accurate results. This analysis aimed
to evaluate the efficacy of the PLADMM with worth parameters using simulated data.

2.2.1. Data simulation

As the data collected from farmers were only available in the ranking format, a simulation
study was conducted to generate corresponding numeric values and rankings for analysis.

To generate the simulation data, ten simulated varieties and six simulated traits were
established, with a population mean of 1000 for each trait. The trait means for each variety was
randomly generated with the covariance matrix using the rmvnorm function of the R package



mvtnorm (Genz et al., 2021), and replicates of each variety were generated by adding a random
error of 50 to the trait means. Random triplets of three replicates were created to represent
individual on-farm trials, including all combinations of the simulated varieties. The trait means
were ranked within each triplet to obtain simulated ranking data, which were processed using
the R package PlackettLuce to calculate the worth parameters (H. L. Turner et al., 2020). The
resulting data frame contains the numeric values, ranking, and worth parameters for each
simulated trait and variety combination.

2.2.2. Statistical models
Three statistical modelling methods were used:

e linear regression with the numeric values: The response variable and covariates were
numeric. The Im function of the standard installation of the R was used,

e linear regression with the worth parameters: Both the response variable and covariates
were the worth parameters obtained from the Plackett-Luce. The Im function of the
standard installation of the R was used; and

e the PLADMM: The response variable was ranking. Covariates were the worth
parameters obtained from the Plackett-Luce. The pladmm function of the R package
PlackettLuce was used.

Each modelling method was tested on three simulation scenarios:

e correlated data: the response variable and all covariates were correlated,;

e non-correlated data: The response variable and covariates were not correlated; and

e data with correlated and non-correlated covariates: the response variable and one of
the covariates were correlated.

Therefore, there were nine combinations.

2.2.3. Comparison of the models

For all models except for the PLADMM, the analysis of variance (ANOVA) was used to test
each model against an intercept-only model. The chi-squared test was used for the PLADMM
with correlated and non-correlated covariates because the ANOVA function does not support
the PLADMM. The residual deviances were obtained from the analysis of the deviance table.
The tests were iterated 1,000 times. The obtained p values were stored in a data frame. The
frequency of p values in increments of 0.05 was compared among each model of each situation.



2.3. Data collection

The data for the analysis of the tricot trial was provided by the International Institute of Tropical
Agriculture (1ITA) via email. Four datasets were available; common bean in Central America;
common bean in East Africa; cowpea in Nigeria; and potato in Rwanda. All datasets include
the latitude and longitude of the trial sites, the date of planting and harvest, and the combination
of varieties distributed to farmers. Environmental covariates were obtained from the R package
“climatrends” that include the maximum and minimum daily temperatures, the maximum and
minimum night temperatures, and rainfall. Other variables from each dataset are listed in Table
1 and Section 2.3.

Table 1 Variables in each dataset. V: vegetative season, V1: the first survey in the vegetative season, V2: the second survey
in the vegetative season. R: reproductive season, P1: the first survey in the post-harvest season, P2: the second survey in the
post-harvest season and P3: the third survey in the post-harvest season.

Variables Common bean Common bean Cowpea Potato
in Central America in East Africa in Nigeria in Rwanda

Pest resistance P V,R V, P -
Disease resistance P V,R V,P -
Pest/disease resistance - - - V1, V2
Bacterial wilt resistance - - - V1, V2
Drought tolerance P V,R V,P -
Flood tolerance P V,R - -
Vigour P P - V1
Yield P P P P1
Maturity P P P P1
Grain size - P P -
Tuber size - - - P1
Appearance - - - P1
Marketability P P P P1, P2
Taste - - - P1, P2
Tuber quality - - - P3
Quality - - - P3
Preference - - - P3
Overall P P P P3

2.4. Data overview
2.4.1. Common bean in Central America

The trial was conducted from 2015 to 2018 in Nicaragua, El Salvador, Honduras, Guatemala,
and Costa Rica (Fig.1a). Thirty-eight varieties of common bean (Phaseolus vulgaris) were used.
The dataset has resistance to pests and diseases, vigour, maturity, tolerance to drought, yield,



marketability, and overall appreciation, all in the best and worst format (Table 1). All items
were asked only once in post-harvest. The dataset has 3556 observations in total. Two thousand
five hundred fifty-three observations contained pest resistance data, and 2654 observations
contained disease resistance data.

2.4.2. Common bean in East Africa

The trial was conducted in 2021 and 2022 in Tanzania, Uganda and Ethiopia (Fig.1b). Forty-
two varieties of common beans were used. The dataset includes resistance to pests and diseases
and tolerance to drought and flood in the vegetative and reproductive seasons. Also, the dataset
has disease severity, vigour, maturity, yield, grain size, marketability, and overall appreciation
in post-harvest, all in the best and worst format (Table 1). The dataset has 1995 observations
in total. 908 and 412 observations contained pest resistance data in the vegetative and
reproductive seasons, respectively. 809 and 412 observations contained disease resistance data
in the vegetative and reproductive seasons, respectively.

2.4.3. Cowpea in Nigeria

The trial was conducted in 2021 in Nigeria (Fig.1c). 18 varieties of cowpea (Vigna unguiculata)
were used. The dataset has resistance to pests and diseases, disease severity, and tolerance to
drought in vegetation season and post-harvest; also, the dataset has maturity, yield, grain size,
and marketability in post-harvest, all in the best and worst format (Table 1). The dataset has
320 observations in total. 241 and 299 observations contained pest resistance data in the
vegetative and post-harvest seasons, respectively. 237 and 268 observations contained disease
resistance data in the vegetative and post-harvest seasons, respectively.

2.4.4. Potato in Rwanda

The trial was conducted in 2020 and 2021 in Rwanda (Fig.1d). 11 varieties of potato (Solanum
tuberosum) were used. The dataset has resistance to bacterial wilt (Ralstonia solanacearum)
and pest/disease obtained twice in the vegetative season; maturity, yield, tuber size, and
marketability were obtained post-harvest, all in the best and worst format (Table 1). The dataset
has 463 observations in total. 137 and 347 observations contained bacterial wilt resistance data
in the two vegetative seasons, respectively. 83 and 228 observations contained pest/disease
resistance data in the two vegetative seasons, respectively.
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Figure 1 Places where data were taken. (a) Central America, (b) East Africa, (c) Nigeria and (d) Rwanda.

2.5. Analysis
2.5.1. Data cleaning and processing

Four datasets were analysed separately because the target crops and the regions where
conducted the test were different. Rows that do not have data on pest resistance or disease
resistance were removed from the datasets. The best and worst data were processed by the R
package PlackettLuce to obtain rankings and estimate worth parameters that represent the
probability of each element being ranked first.

2.5.2. Analysis of the difference between varieties in terms of pest/disease resistance (RQ1)

The likelihood ratio test tested the significant difference between varieties. The R package
PlackettLuce was used to obtain the log-likelihood of the null model and the full model. The
chi-square value was calculated and compared to the chi-square probability of p = 0.05.

2.5.3. Analysis of a relationship between pest/disease resistance and other variables (RQ2)

The pest and disease resistance ranking with a significant difference in RQ1 was used. The
modelling method was determined by the result of the efficacy of the PLADMM (Section 2.2.3).
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Whichever modelling method was chosen, the worth parameters of traits were used as a
response variable and explanatory variables. The selection of explanatory variables was based
on their correlation coefficients and relevance, as the number of variables was excessive. The
best model was chosen by the backward stepwise method using the step function of the library
Imer. The best-fit model was chosen by Akaike's Information Criterion (AIC). The
multicollinearity was detected by the variance inflation factor using the vif function in the
library car (Fox & Weisberg, 2019).

2.5.4. Analysis of specific patterns between pest/disease resistance and environmental factors

(RQ3)

For the analysis of specific patterns between pest and disease resistance rankings and
environmental factors, a Plackett-Luce tree, the R package gosset was used. The Plackett-Luce
tree determines subgroups of rankings with significantly different sets of worth parameters
based on the ranking-specific covariates (Turner et al., 2020). Also, the Plackett-Luce tree can
detect an influential covariate, shown as a node in a hierarchical tree. The pest and disease
resistance ranking with a significant difference in RQ1 was used as a response variable.
Environmental variables, such as the maximum and minimum day and night temperature and
precipitation per day, were used as covariates. When the Plackett-Luce tree detected a split,
varietal difference of each node were tested. The identified influential covariates were
compared with favourable/unfavourable pest and disease conditions collected from the
literature.
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3. Results
3.1. The efficacy of the PLADMM

Analyses were conducted to assess PLADMM's efficacy, incorporating item covariates and
comparing it to the alternative models, namely linear regressions with actual values and with
worth parameters. Figures 2, 3, and 4 present histograms of the probability of p values in 0.05
increments, resulting from ANOVA of the targeted model against a intrcept-only model. In
addition, Q-Q plots were generated to assess whether p values were uniformly distributed as
expected when the response variable and covariates are correlated or uncorrelated. When the
observed and expected values correspond, the blue line representing observed values aligns
with or lies close to the diagonal red line indicating expected values. In contrast, if some
observed p values prove more significant than anticipated, the blue line will skew towards the
x-axis. Four situations were considered: with an uncorrelated covariate, with a correlated
covariate, with five uncorrelated variables, and with a correlated and four uncorrelated
variables.
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3.1.1 With an uncorrelated covariate (null model)

Figure 2 shows the histogram and Q-Q plot of the p values of models with an uncorrelated
covariate. The linear regression with actual values was almost uniformly distributed (top in
Figure 2). The proportion of p < 0.05 was 0.047. The linear regression with worth parameters
showed a proportion of 0.052 when p < 0.05 and had a slightly high proportion of 0.075 in the
rightmost bar in the histogram, p > 0.95 (middle in Figure 2). However, the Q-Q plot indicates
that the p values were uniformly distributed. In contrast, the p-values for PLADMM were not
uniformly distributed. The leftmost bar, p < 0.05, shows a probability of 0.133 (bottom in
Figure 2). The Q-Q plot, which is right-skewed, also shows that the p value distribution is not
uniform and has a long tail heading towards the right-hand side of the distribution. These results
suggested that the PLADMM have a high proportion of p < 0.05 compared to linear regressions,
even when there is no correlation between the response variable and covariate.

Linear regression with actual values
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Figure 2 Histogram and Q-Q plot for the uniformly distributed random variable of p values of each model. The response
variable and the covariate were uncorrelated. Top: linear regression with the actual values, middle: linear regression with the
worth parameters, bottom: the PLADMM with the worth parameters. The x-axis of histograms is in 0.05 increments, and the
y-axis is the probability density of p values. The red line on histograms shows y=0.05. The red line on Q-Q plots represents the
expected distribution of p value, while the blue trend represents the observed distribution. The x-axis values on Q-Q plots are
expected p value and the y-axis values are observed p value.
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3.1.2 With a correlated covariate

Figure 3 shows the histogram and Q-Q plot of the p values of models with a correlated covariate.
The correlation coefficient was 0.03 with correlated covariate and was less than 0.001 with
uncorrelated covariate. The linear regression with actual values shows a proportion of 0.126
when p < 0.05 (top in Figure 3). The observed distribution, the blue trend on the Q-Q plot, is
slightly skewed downward. The linear regression with worth parameters shows high
proportions of 0.217 when p < 0.05 compared to the linear regression with actual values
(middle in Figure 3). The PLADMM with worth parameters shows the highest proportion of
0.386 when p < 0.05 (bottom in Figure 3), and the skewness of the blue line on the Q-Q plot is
the largest among the three models. These results suggested that the PLADMM have a high
proportion of p < 0.05 compared to other models. Also, the linear regression with worth
parameters showed a high proportion of p < 0.05 compared to the linear regression with actual
values.
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Figure 3 Histogram and Q-Q plot for the uniformly distributed random variable of p values of each model. The response
variable and the covariate were correlated. Top: linear regression with the actual values, middle: linear regression with the
worth parameters, bottom: the PLADMM with the worth parameters. The x-axis of histograms is in 0.05 increments, and the
y-axis is the probability density of p values. The red line on histograms shows y=0.05. The red line on Q-Q plots represents the
expected distribution of p value, while blue trend represents the observed distribution. The x-axis values on Q-Q plots are
expected p value and the y-axis values are observed p value.
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3.1.3 With five uncorrelated covariates

Figure 4 shows the histogram and Q-Q plot of the p values of models with five uncorrelated
covariates. The linear regression with actual values was almost uniformly distributed (top in
Figure 4). The proportion of p < 0.05 was 0.057. The linear regression with worth parameters
showed a proportion of 0.042 when p < 0.05 (middle in Figure 4). However, the Q-Q plot
indicates that the p values were uniformly distributed. In contrast, the PLADMM with worth
parameters was not uniformly distributed. The leftmost bar, p < 0.05, shows a probability of
0.267 (bottom in Figure 4). The Q-Q plot, which is right-skewed, also explains that the p value
distribution is not uniform and has a long tail heading towards the right-hand side of the
distribution. These results suggested that the PLADMM have a high proportion of p < 0.05
compared to linear regressions, even when there is no correlation between the response variable
and covariates. Compared to the result with an uncorrelated covariate (section 3.1.1), the
skewness and the proportion of p < 0.05 of the PLADMM were larger.

Linear regression with actual values

08

-
]
]
]
]
II
]
]

Probability

0.00 004 008
I
I

Observed
a0 04

=
=1

0z 0.4 06 08 10 0.0 0z 0.4 06 08 1.0

Expactad

Linear regression with worth parameters

Probability
0.00 0.04 008
IS - -
]
]
]
|
]
]
I
]
I

Observed

I

T 1 T T T T T
0z 0.4 06 08 10 0.0 0z 0.4 06 08 1.0

0.0

g
o

Expactad

PLADMM with worth parameters

=
= | o
o T o
2 ow g
i s 3 0=
-] (=]
£ S o
g JU T M e o
=] r T T T T 1 =
0.0 0z 0.4 08 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Expeclad

Figure 4 Histogram and Q-Q plot for the uniformly distributed random variable of p values of each model. The response
variable and five covariates were uncorrelated. Top: linear regression with the actual values, middle: linear regression with
the worth parameters, bottom: the PLADMM with the worth parameters. The x-axis of histograms is in 0.05 increments, and
the y-axis is the probability density of p values. The red line on histograms shows y=0.05. The red line on Q-Q plots represents
the expected distribution of p value, while the blue trend represents the observed distribution. The x-axis values on Q-Q plots
are expected p value and the y-axis values are observed p value.
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3.1.4 With a correlated covariate and four uncorrelated covariates

Figure 5 shows the histogram and Q-Q plot of the p values of models with a correlated covariate
and four uncorrelated covariates. The correlation coefficient between the explanatory variable
and the response variable before adding a random plot error was 1. The linear regression with
actual values shows a proportion of 0.091 when p < 0.05 (top in Figure 5), which is less than
the model only with one correlated covariate. The observed distribution is slightly skewed
downwards. The linear regression with worth parameters shows proportions of 0.090 when p
< 0.05 (middle in Figure 5), almost the same as the proportion of p < 0.05 of the linear
regression with actual values. As well as the linear regression with actual values, the observed
distribution is slightly skewed downwards, and the skewness is lower than the model only with
one correlated covariate. The PLADMM with worth parameters shows a high proportion of
0.363 when p < 0.05 (bottom in Figure 5). These results suggested that the PLADMM have a
high proportion of p < 0.05 compared to other models.
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Figure 5 Histogram and Q-Q plot for the uniformly distributed random variable of p values of each model. The response
variable and one of five covariates were correlated. Top: linear regression with the actual values, middle: linear regression
with the worth parameters, bottom: the PLADMM with the worth parameters. The X-axis of histograms is in 0.05 increments,
and the y-axis is the probability density of p values. The red line on histograms shows y=0.05. The red line on the Q-Q plots
represents the expected distribution of p value, while the blue trend represents the observed distribution. The x-axis values
on Q-Q plots are expected p value, and the y-axis values are observed p value.
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3.1.5 Summary of the efficacy of the PLADMM

In summary, the PLADMM consistently had high proportions of p < 0.05 with any covariates.
With uncorrelated covariate(s), the linear regressions with actual values and with the worth
parameter showed almost the same proportion of p < 0.05. The proportion was around 0.05,
the ideal value when the p values were uniformly distributed. While the PLADMM showed
high proportions of p < 0.05, 0.133 with one covariate and 0.267 with five covariates. The high
proportion of p < 0.05, even when the covariate(s) were uncorrelated with the response variable,
indicates a high false positive rate, which is an undesirable property for a statistical model.

In the simulation with a correlated covariate and four uncorrelated covariates, the linear
regression with the worth parameter showed almost the same proportion of p < 0.05 (0.090)
compared to the linear regression with actual values (0.091). This result suggested that the
power of the linear regression with the worth parameter was assumed to be sufficient.

Based on these findings, the linear regression with worth parameters was chosen to conduct
analyses for research question two (Section 3.3).

3.2. Significant variety differences in pest/disease resistance rankings (RQ1)

Table 2 shows the results of the likelihood ratio test on each variable. 14 variables exhibited
significant differences among the various varieties (bold in Table 2). These variables include
the yield of common beans in Central America and East Africa, as well as the yield of potatoes
in Rwanda. Furthermore, the maturity of cowpea in Nigeria and potato in Rwanda, as well as
the overall appreciation of common beans in Central America and potatoes in Rwanda, also
varied significantly across the different varieties. Additionally, there were variations in vigour,
tuber size, marketability, taste, tuber quality, and preference for potatoes in Rwanda.

The only significant trait related to pest and disease resistance was found to be bacterial wilt
resistance of potatoes, particularly in the vegetative season 2 evaluation (p = 0.003; Table 2).
Figure 6 shows the varietal difference in bacterial wilt resistance worth parameters of potatoes
in Rwanda in vegetative season 2. Standard error bars that do not cross indicate significant
differences between Jyambere and Twihaze, as well as between Cruza and Twihaze. These
findings indicate that ranking data can detect significant varietal differences in pest and disease
resistance, supporting the initial hypothesis. The following analyses will focus on bacterial wilt
resistance in vegetative season 2.
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Table 2 Results of the likelihood ratio test on varietal difference. V: vegetative season, V1: the first survey in the vegetative
season, V2: the second survey in the vegetative season. R: reproductive season, P1: the first survey in the post-harvest season,
P2: the second survey in the post-harvest season and P3: the third survey in the post-harvest season. P values less than 0.05

are in bold.

Variables Common bean Common bean Cowpea Potato
in Central in East Africa in Nigeria in Rwanda
America
Pest resistance p=0.238 (P) p =0.350 (V) p =0.460 (V) -
p=0.515 (R) p=0.572 (P)
Disease resistance p=0.093 (P) p =0.061 (V) p =0.445 (V) -
p =0.837 (R) p =0.468 (P)
Pest/disease - - - p =0.654 (V1)
resistance p =0.580 (V2)
Bacterial wilt - - - p = 0.056 (V1)
resistance p =0.003 (V2)
Drought tolerance p =0.504 (P) p =0.227 (V) p=0.915 (V) -
p=0.882 (R) p =0.900 (P)
Flood tolerance - p =0.947 (V) - -
p=0.999 (R)
Vigour p =0.075 (P) p=0.221 (R) - p <0.001 (V1)
Yield p =0.017 (P) p =0.013 (P) p=0.750 (P) p <0.001 (P1)
Maturity p =0.626 (P) p=0.077 (P) p =0.012 (P) p <0.001 (P1)
Grain size - p =0.497 (P) p=0.318 (P) -
Tuber size - - - p <0.001 (P1)
Marketability p=0.161 (P) p=0.999 (P) p=0.220 (P) p =0.700 (P1)
p <0.001 (P2)
Taste p =0.205 (P) p=0.999 (P) - p =0.568 (P1)
p =0.024 (P2)
Quality - - - p <0.001 (P3)
Preference - - - p <0.001 (P3)
Overall p=0.011 (P) p =0.695 (P) p=0.833 (P) p <0.001 (P3)
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Figure 6 Worth parameters of bacterial wilt resistance (vegetative season 2) of potato varieties in Rwanda. Nkunganire is the
reference. Intervals are based on quasi-standard errors. The x-axis is varieties and the y-axis is worth parameters.
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3.3. Relationship between pest and disease resistance rankings and other rankings (RQ2)

3.3.1 Correlation between variables of potatoes in Rwanda

Figure 7 displays a correlation chart indicating the relationship between variables of potatoes
in Rwanda. A statistically significant correlation was observed between bacterial wilt
resistance in vegetative season 1 and vegetative season 2, with a correlation coefficient of 0.75
(p < 0.01). Additionally, a significant correlation was found between bacterial wilt resistance
in vegetative season 2 and taste, with a correlation coefficient of 0.63 (p < 0.05). No other
correlation with bacterial wilt resistance in vegetative season 2 was found.
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Figure 7 Correlation chart of variables of potatoes in Rwanda. The distribution of each variable is shown on the diagonal. on the bottom of the
diagonal, the scatter plots with a fitted line are displayed. On the top of the diagonal, the values of the correlation and the significance levels are
displayed. Each significance level is associated with symbols; p values (0.001, 0.01, 0.05, 0.1): symbols (“***” “**» «*” « %) The fourth column and
row are bacterial wilt resistance in vegetative season 2, highlighted with green boxes.
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3.3.2 As aresponse variable

The worth parameters of the bacterial wilt resistance of potatoes in Rwanda surveyed in
vegetative season 2 were focused on as a response variable because significant differences
between varieties were found in Section 3.2. The worth parameters of pest and disease
resistance and vigour in vegetative season 1 and pest and disease resistance in vegetative season
2 were used as explanatory variables as these variables were assumed to be related to bacterial
wilt resistance in the dataset. The linear regression was used based on Section 3.1.

The stepwise method selected a model that included two explanatory variables, disease/insect
resistance in vegetative seasons 1 and 2, based on the AIC (Table 3). The regression
coefficients indicated that both explanatory variables had positive effects on the response
variable, with a value of 0.408 for vegetative season 1 and 0.785 for vegetative season 2. The
standardised regression coefficients showed that the vegetative season 2 was more important
than the vegetative season 1. However, the t values for the vegetative season 1 and the
vegetative season 2 were not significant, with p values larger than 0.05, indicating that neither
variable was a significant predictor of bacterial wilt resistance. The model itself was not
statistically significant, with an F value of 2.677 and a p value of 0.129, and an R? value of
0.251 (Table 3). The AIC of the model was -49.27, while the AIC of the intercept-only model
was -47.63. This suggests that the model was not a significant improvement over the intercept-
only model. Furthermore, there was no multicollinearity between the variables. Contrary to the
initial hypothesis, other variables were unable to predict pest and disease resistance rankings.

Table 3 Summary of regression analysis for the bacterial wilt resistance (vegetative season 2) of potatoes in Rwanda. The
adjusted R? value in the intercept row is the value of the full model. Otherwise, it shows the adjusted R? values when the
variable in the same row is removed.

Response variable  Explanatory variable Estimate  Std.error t-value pvalue Fvalue Adj.R? AIC
Bacterial wilt Intercept -0.018 0.048  -0.368 0.722 F(2,8)=2677, 0251 @ -49.27
resistance p=0.129

(vegetative season

2)

Disease/insect resistance 0.408 0.272 1.499 0.172 0.148
(vegetative season 1)
Disease/insect resistance 0.785 0.433 1.811 0.108 0.062

(vegetative season 2)
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3.3.3 As an explanatory variable

The worth parameters of the bacterial wilt resistance of potatoes in Rwanda surveyed in
vegetative season 2 were focused on as an explanatory variable. The worth parameter of yield
and overall performance were selected as response variables as these variables are assumed to
be more important for variety selection.

For the model with yield as a response variable, the candidate variables were disease/insect
resistance, bacterial wilt resistance and vigour (vegetative season 1), disease/insect resistance
and bacterial wilt resistance (vegetative season 2), and tuber size, appearance and maturity
(post-harvest 1). A model with vigour (vegetative season 1), disease/insect resistance and
bacterial wilt resistance (vegetative season 2), tuber size, appearance and maturity (post-harvest
1) as explanatory variables was selected. The model was statistically significant with an F value
of 87.73 and a p value less than 0.001, and a high R? value of 0.981, indicating that the model
explained a large portion of the variance in the yield. There was no multicollinearity among
them. The AIC value was -85.09, while the AIC value of the intercept-only model was -43.33.
The analysis revealed that five variables, including bacterial wilt resistance (vegetative season
2), were significant predictors of yield. The adjusted R2 values in Table 4 showed the values
when the explanatory variable in the same row was removed from the full model. When
bacterial wilt resistance (vegetative season 2) was removed from the selected model, the
adjusted R? value was decreased to 0.832. This reduction was next to vigour (vegetative season
1). These results were consistent with the hypothesis that statistically significant relationships
could be observed between bacterial wilt resistance and yield.

Table 4 Summary of regression analysis for the yield of potatoes in Rwanda. The adjusted R? value in the intercept row is
the value of the full model. Otherwise, it shows the adjusted R? values when the variable in the same row is removed.

Response Std.
variable Explanatory variable Estimate error  t-value pvalue Fvalue Adj.R? AlC
Yield Intercept 0.012 0.013 0.927 0.406 F(6,4)=87.73, 0981 -85.09
(post-harvest 1) p <0.001
Vigour 0.546 0.055 9.915 <0.001 0.614
(vegetative season 1)
Disease/insect resistance 0.263 0.105 2.496 0.067 0.961
(vegetative season 2)
Bacterial wilt resistance 0.551 0.087 6.369 0.003 0.832
(vegetative season 2)
Tuber size 0.297 0.062 4.768 0.009 0.899
(post-harvest 1)
Appearance -1.074 0.195  -5.505 0.005 0.871
(post-harvest 1)
Maturity 0.281 0.048 5.871 0.004 0.855

(post-harvest 1)
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For the overall performance, firstly, the candidate variables were vigour and bacterial wilt
resistance (vegetative season 1), bacterial wilt resistance (vegetative season 2), yield,
appearance and maturity (post-harvest 1), marketability and taste (post-harvest 2) and quality
(post-harvest 3). A model with vigour and bacterial wilt resistance (vegetative season 1),
bacterial wilt resistance (vegetative season 2), yield and appearance (post-harvest 1), taste
(post-harvest 2) and quality (post-harvest 3) as explanatory variables was chosen (F (7, 3) =
111.3, p < 0.001) with an R? value of 0.987. The AIC value was -85.97, while the AIC value
of the intercept-only model was -38.77. The adjusted R2 values in Table 5 showed when the
explanatory variable in the same row was removed from the full model. Bacterial wilt
resistance (vegetative season 2) was a significant predictor. When bacterial wilt resistance
(vegetative season 2) was removed from the selected model, the adjusted R? value was
decreased to 0.842.

Table 5 Summary of regression analysis for the overall performance of potatoes in Rwanda. The initial model contains vigour
as an explanatory variable. The adjusted R? value in the intercept row is the value of the full model. Otherwise, it shows the
adjusted R? values when the variable in the same row is removed.

Response Std.
variable Explanatory variable Estimate error  tvalue pvalue Fvalue Adj.R? AlC
Overall Intercept -0.054 0.014  -3.913 0.030 F(7,3)=111.3, 0.987 -85.97
(post-harvest 3) p <0.001
Vigour -0.563 0.131 -4.315 0.023 0.931
(vegetative season 1)
Bacterial wilt resistance 0.331 0.104 3.175 0.050 0.958
(vegetative season 1)
Bacterial wilt resistance -0.986 0.145  -6.805 0.006 0.842
(vegetative season 2)
Yield 0.975 0.152 6.399 0.008 0.860
(post-harvest 1)
Appearance 0.275 0.153 1.802 0.169 0.980
(post-harvest 1)
Taste 0.957 0.091 10.566 0.002 0.634
(post-harvest 2)
Quality 0.601 0.058 10.344 0.002 0.649

(post-harvest 3)

However, the above model had multicollinearity, with the variance inflation factor (VIF) of
vigour being 21.46, so vigour was removed. Then, bacterial wilt resistance (vegetative season
1), bacterial wilt resistance (vegetative season 2), yield, appearance and maturity (post-harvest
1), marketability and taste (post-harvest 2) and quality (post-harvest 3) were used as candidate
variables. A model with bacterial wilt resistance (vegetative seasons 1 and 2), yield (post-
harvest 1), taste (post-harvest 2) and quality (post-harvest 3) as explanatory variables was
selected. The model was statistically significant, with an F statistic of 34.28 and an R? value of
0.943 (Table 6). The bacterial wilt resistance (vegetative season 2), yield (post-harvest 1), taste
(post-harvest 2) and quality (post-harvest 3) were significant predictors. There was no
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multicollinearity between the variables in the second model based on the VIF. The AIC value
was -67.97, while the AIC value of the intercept-only model was -38.77. The adjusted R2
values in Table 6 showed when the explanatory variable in the same row was removed from
the full model. When bacterial wilt resistance (vegetative season 2) was removed from the
selected model, the adjusted R? value was decreased to 0.875. These results supported the
hypothesis that statistically significant relationships between bacterial wilt resistance and
overall performance could be observed.

Table 6 Summary of regression analysis for the overall performance of potatoes in Rwanda. Vigour was removed from the
initial model in consideration of multicollinearity. The adjusted R? value in the intercept row is the value of the full model.
Otherwise, it shows the adjusted R? values when the variable in the same row is removed.

Response Std.
variable Explanatory variable Estimate error  tvalue pvalue Fvalue Adj.R? AIC
Overall Intercept -0.031 0.105 -2.151 0.084 F(55)=34.28, 0.943 -67.97
(post-harvest 3) p <0.001
Bacterial wilt resistance 0.378 0.201 1.883 0.118 0.919
(vegetative season 1)
Bacterial wilt resistance -0.773 0.269  -2.869 0.035 0.875
(vegetative season 2)
Yield 0.352 0.113 3.117 0.026 0.861
(post-harvest)
Taste 0.871 0.184 4.723 0.005 0.742
(post-harvest)
Quality 0.518 0.115 4.491 0.006 0.762

(post-harvest)
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3.4. Relationship between pest and disease resistance rankings and environmental variables

(RQ3)

The rankings of bacterial wilt resistance of potatoes in Rwanda surveyed in vegetative season
2 were analysed with the Plackett-Luce tree. The x-axis indicates the logarithmic scale of the
worth parameter estimates, which are the probabilities of each variety to be ranked first. The
maximum daytime temperature during the growing season split the rankings into two nodes
(Figure 8). Preference for varieties differed over the maximum daytime temperature. In regions
with maximum daytime temperatures of 25.43 °C or below, Cruza was most preferred, and
Ndamira was least preferred. In regions with maximum daytime temperatures higher than
25.43 °C, lzihirwe was most preferred, closely followed by Nkunganire. Twihaze, in contrast,
was the least preferred. The likelihood ratio test tested varietal differences in each node, and
both nodes showed significant differences between varieties (p = 0.007 in node 2 and p < 0.001
in node 3).

When faced with a high risk of disease, a difference in estimates between resistant varieties
and susceptible varieties assumes to be large compared to a low risk of disease. If the difference
in the estimate is larger for one node, the variance is also expected to be larger and not equal
to the variance of the other node. For this reason, the standard deviation and the equality of
variance were checked. The standard deviation of estimates of nodes 2 and 3 were 0.32 and
0.42, respectively. Levene’s test showed that nodes 2 and 3’s variances did not significantly
differ (F (1, 20) = 0.68, p = 0.421).

= 2543 > 25.43
Node 2 (n=157) Node 3 (n=185)
Cruza— —_— —
Gisubizo— —— ——
1zihirwe — —_— —_—
Jyambere —| —— —
Kazeneza— —_—— —_——
Kirundo— —_— —_—
Ndamira—| ———— —_—
Ndeze — — ——
Nkunganire — —_— —
Seka— —_—— —_—
Twihaze — — —
1I33 O|O1 1 !31 -1 ‘|33 0|01 1 !31

Figure 8 Effect of the maximum daytime temperature (maxDT) on bacterial wilt resistance in on-farm trials. The y-axis
presents potato varieties. The x-axis presents worth, the log-probability of outperforming the other varieties in the set.

26



Table 7 shows that there were two susceptible varieties in the tested varieties. Twihaze, one of
the susceptible varieties, was the least preferred when the maximum temperature was higher
than 25.43 °C, shown in node 3 of Figure 8. In contrast, Kirundo, another susceptible variety,
was not chosen as the least preferred in both nodes.

In summary, the maximum daytime temperature during the growing season split the bacterial
wilt resistance rankings into two nodes. One of the susceptible varieties, Twihaze, was the least
preferred in regions where the maximum daytime temperatures were higher than 25.43 °C.
Each node showed significant varietal differences between varieties. A difference in the
variance of estimates between nodes was expected, but there was none.

Table 7 Resistance of varieties. A: (Rwanda Agriculture Board, 2020), B: (Uwamahoro et al., 2020), C: (K. Sharma et al.,
2021)

Name of varieties  Introduced year ~ Bacterial wilt resistance Reference
1 Nkunganire 2019 Yes A
2 Izihirwe 2019 Yes A
3 Ndamira 2020 Yes A
4 Ndeze 2019 Yes A
5 Seka 2020 Yes A
6 Kirundo 30 years ago Susceptible B
7 Jyambere 2020 Yes A
8 Gisubizo 2020 Yes A
9 Cruza 30 years ago Yes B
10 Kazeneza 2019 Yes A
11 Twihaze 2019 Susceptible C
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4. Discussion

This study aimed to analyse the rankings of pest and disease resistance in tricot trials, which
were conducted in two steps. First, the efficacy of the Plackett-Luce Alternating Directions
Method of Multipliers (PLADMM) was analysed since the effectiveness of using the worth
parameter from the Plackett-Luce model as a covariate in the PLADMM was unknown. The
efficacy analysis showed that the PLADMM with worth parameters was highly likely to reject
the null hypothesis, even when the covariate was uncorrelated with the response variable. This
suggested that the PLADMM has a high false positive rate. Therefore, the linear model with
worth parameters was selected to investigate the relationship between pest and disease
resistance and other variables. Next, pest and disease resistance ranking data collected from
tricot trials were analysed with three research questions. The first research question aimed to
confirm significant variety differences in pest and disease resistance rankings to see if farmers
can discriminate varieties. It was found that the bacterial wilt resistance rankings of Rwandan
potatoes had significant variety differences. This result suggested that farmers’ evaluation of
bacterial wilt resistance was not random. The second research question sought to investigate
whether pest and disease resistance could be predicted by other variables or vice versa to see
if the trends generally observed in non-ranking are also available in the ranking. Hypothesised
that vigour and other pest and disease resistance rankings would be significant predictors of
bacterial wilt resistance. However, none of these variables were found to be significant. It was
also hypothesised that the bacterial wilt resistance would be a significant explanatory variable
of yield and overall performance. This hypothesis was confirmed, as bacterial wilt resistance
proved to be one of the significant predictors of yield and overall performance. Notably,
bacterial wilt resistance predicted overall performance independently of other variables, such
as vigour and vyield. It was proof that farmers evaluated based on disease resistance
independently of yield and vigour, which are potential confounders. The third research question
was formulated to determine whether environmental variables influence the ranking of pest
and disease resistance of varieties and, if so, whether these relationships are consistent with the
expected determinants of pest and disease pressure. The assumption was that the resistance
rankings would provide evidence of the actual differences in disease resistance by showing the
expected determinants' relationship. The results revealed that the maximum temperature during
the vegetative season significantly affected potatoes' bacterial wilt resistance in Rwanda. This
relationship's consistency with the expected disease-pressure determinants is discussed in detail
below.

4.1 The efficacy of the PLADMM

The efficacy analyses indicated that the PLADMM with worth parameters had a higher
probability of rejecting the null hypothesis than the linear regression with actual values and
parameters. This trend was observed even when the response and explanatory variables were
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uncorrelated, although linear regression showed a uniform distribution. This suggested that the
PLADMM with worth parameters had a high false positive rate. This was expected to be due
to the sensitivity of the PLADMM to even small correlations based on the PLADMM with five
uncorrelated covariates (Section 3.1.3).

This study selected the linear regression with worth parameters for the following analyses
because the simulations without correlation revealed a low false positive rate. Additionally, in
the model with one correlated and four uncorrelated covariates, the probability of rejecting the
null hypothesis was almost the same as in the linear regression with actual values. However, in
the model with a correlated covariate, the linear regression with the worth parameter showed a
higher rejection rate than the linear regression with actual values. A possible reason is that the
Plackett-Luce model already summarised the worth parameters, representing only partial
information. In particular, the effect of outliers may have been reduced when parameterising,
which may affect the model's predictions. This factor should be considered to improve selecting
models with worth parameters as covariates.

4.2 The randomness of farmers’ evaluation

A significant variety difference was found in the bacterial wilt resistance of potatoes in Rwanda.
This result indicated that farmers’ ranks were not random in this evaluation. Evaluating pest
and disease resistance was assumed to pose a challenge to farmers since they possibly answer
as if pests occurred when pests did not occur, as they may feel obligated to answer questions
politely and are not trained to diagnose plant pests and diseases. Nevertheless, a possible reason
for the statistically significant difference could be that the evaluation focused on a single
disease, a primary constraint for potato production in Rwanda (Shimira et al., 2020). A study
reported bacterial wilt disease in 86% of potato farms (Uwamahoro et al., 2018). Untrained
farmers may find identifying the wilting symptom caused by bacterial wilt straightforward.
According to Uwamahoro et al. (2018), 98.3% of Rwandan potato farmers recognise that
wilting of the leaves is one of the symptoms of bacterial wilt. Focusing on one critical disease
and the high proportion of farmers familiar with the disease may have contributed to the
accurate evaluation by farmers.

Pest and disease resistance rankings of potatoes in Rwanda, other than bacterial wilt, showed
no statistical differences between varieties. Some pests and diseases other than bacterial wilt
cause potato yield loss in Rwanda, namely white grubs (Phyllophaga spp. and other
Scarabaeidae), potato tuber moths (Phthorimaea operculella) and late blight disease
(Phytophthora infestans) (Shimira et al., 2020). Assuming that farmers can diagnose these pests
and diseases, three possible explanations exist for the lack of differences in pest and disease
resistance rankings. First, insecticides are commonly used against late blight and white grubs
(Muhinyuza et al., 2007; Shimira et al., 2020), whereas bactericides are unavailable for
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bacterial wilt during the growing season. The pesticides might give protection other than the
varieties' resistance, and resistance could not be correctly evaluated. Second, white grubs and
potato tuber moths can cause damage to potatoes in the soil. However, pest and disease
resistance was evaluated during the growing season. It is, therefore, possible that damage in
the soil caused by these pests was not taken into account in the evaluation. Symptoms of
bacterial wilt are visible on the ground. Third, a grouping of several pests and diseases made
evaluations difficult. This is also true for common beans in Central America and East Africa
and cowpea in Nigeria, which did not exhibit significant variety differences in pest and disease
resistance. Except for the bacterial wilt resistance evaluation of potatoes in Rwanda, other
evaluation items lumped pests and diseases together in one or two categories, such as pest
resistance and disease resistance or pest and disease resistance. Grouping pests and diseases
may cause inaccurate evaluations as different pests and diseases might attack different varieties.
Therefore, considering the specific pest or disease of interest in genotype-by-environment
interaction tests for pest and disease resistance is assumed to be necessary. Previous studies
have also focused on specific pests, such as charcoal rot in common beans and thrips in cowpea,
which support this assumption (Garcia-Olivares et al., 2012; Toyinbo et al., 2021).

4.3 Relationship between pest and disease resistance and other variables

The relationship between pest and disease resistance and other variables was tested to see if
the trends commonly observed in non-ranking are also available in the ranking. If this
commonly observed trend could be observed in the ranking data, it could be said that the
ranking data for pest and disease resistance is picking up actual differences in disease resistance.

In the analysis with bacterial wilt as the response variable, vigour and pest/disease resistance
other than bacterial wilt were used as explanatory variables. The variables were selected since
the plant’s resistance can decrease due to the damage caused by other pests and diseases or its
inherent vigour, making it more susceptible to bacterial wilt infection. However, the model did
not show a relationship between the resistance and selected variables. This could be due to
other conditions affecting bacterial wilt resistance. Plant diseases occur when the pathogen,
plant susceptibility and environmental factors are three favourable conditions for disease
development (Velasquez et al., 2018). The model explained only part of this plant susceptibility.
Bacterial wilt is a soil-borne disease affected by soil disinfection, crop rotation, and wider
spacing planting (Ahmed et al., 2013; Katafiire et al., 2005; Uwamahoro et al., 2018). If these
variables were available, it could be checked whether the bacterial wilt resistance ranking
reflects actual differences.

The ranking of bacterial wilt resistance was a significant predictor of yield, essential factor for
selecting varieties. A study reported a negative correlation between yield and disease damage
(Bruno et al., 2017). Bacterial wilt causes severe damage as it induces chlorosis, stunting and
wilting, eventually killing leaves and stems (Ahmed et al., 2013). Previous studies have
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reported that pests and diseases can cause yield reductions ranging from 50% to 100% in Kenya
(Muthoni et al., 2014a) and up to 75% in Australia (Stansbury et al., 2001). Thus, bacterial wilt
resistance can be inferred to have been a significant explanatory variable for yield.

Bacterial wilt resistance was a significant predictor of overall performance, even when
potential confounder vigour was removed. Furthermore, there was no multicollinearity
between bacterial wilt resistance and yield, which is also a potential confounder. These results
showed that bacterial wilt resistance predicted overall performance independently of other
confounding variables, such as vigour and yield. It was one of the proofs that farmers evaluated
disease resistance independently of potential confounders.

4.4 Relationship between bacterial wilt and environmental factors

The varietal differences in bacterial wilt resistance of potato plants in Rwanda were shown to
be related to the maximum day temperature during the vegetative period. The variety
performance changed as the maximum day temperature crossed the threshold of 25.43°C. The
bacterium causing wilt disease, Ralstonia solanacearum, is known to cause the most severe
damage to plants when the temperature ranges between 25°C and 35°C (Singh et al., 2014).
Therefore, it was assumed that the node above 25.43°C showed a high disease pressure.
Twihaze, one of the susceptible varieties, was selected as the least preferred under high disease
pressure. It suggested that bacterial wilt was present, reflected in differences in resistance, and
farmers correctly discriminated. Kirundo was also a susceptible variety, although it performed
well above and below 25.43°C. This result indicated that farmers’ resistance evaluation might
identify susceptible varieties but not always.

In high disease pressure, differences in resistance performance between susceptible and
resistant varieties are assumed to be larger. Therefore, it was expected to see a significant
difference in the variance above or below 25.43°C in high disease pressure. However, low
disease pressure, where the maximum day temperatures were below 25.43°C, showed an equal
variance as high disease pressure. This could be due to a significant difference between Cruza,
the most preferred, and Ndamira, the least preferred. Research has shown bacterial wilt
becomes less aggressive when temperatures are below 18°C (Singh et al., 2014); however, the
minimum daytime temperature remained above 18°C at all sites in the trials of potatoes in
Rwanda. So it is quite possible that the disease could have occurred. Even with low disease
pressure, plants can be made vulnerable or more resistant to disease because the interaction
between plants and pathogens can be affected by abiotic stress (Sinha et al., 2016). This
possibly caused differences among varieties, even when at lower temperatures.

Bacterial wilt is also known to cause more damage when rainfall is heavy. For example, R.
solanacearum is famous as a waterborne pathogen that spreads to non-infested plants after
rainfall (Manda et al., 2020). Also, it develops when there are high soil moisture accumulations
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due to heavy rainfall (Hayward, 1991). However, this trend was not shown in the Plackett-Luce
tree. This was probably because there were only 342 observations in the dataset used for the
Plackett-Luce tree. Increasing the sample size may increase the statistical power and detect
more relationships with environmental factors. Collecting more data may reveal other
relationships with environmental variables not captured in this study.

45 Recommendations

In order to improve the accuracy of evaluating pest and disease resistance by tricot trials, it
may be more beneficial to collect rankings for one target pest or disease rather than a broad
target of pests and diseases. Farmers are more likely to be familiar with the symptoms of a
critical pest or disease, so this would make rankings more accurate. It is also recommended to
include other factors related to pests and diseases in the survey, such as the use of pesticides
and crop rotation history. Furthermore, it is essential to identify the relevant environmental
factors that affect the developmental conditions of targeted pests and diseases, such as
temperature, rainfall, humidity, light intensity, and wind speed. These factors can significantly
impact pest and disease outbreaks and dispersion and, thus, should be taken into account during
the evaluation process. It is necessary to conduct a literature review and consult with plant
pathologists. By doing so, the evaluation process can be more reliable and effective in
determining target crops' pest and disease resistance, which can lead to improved crop
management practices and increased crop yields.

4.6 Conclusion

This study indicates that farmers’ evaluation in the tricot trial can find varietal differences in
potatoes' bacterial wilt resistance rankings in Rwanda, which suggests that farmers’ evaluation
was not random. Bacterial wilt resistance was a significant predictor of overall performance
independently of yield and vigour, potential confounding variables. It was one of the proofs
that farmers evaluated disease resistance independently of potential confounders. The preferred
variety of bacterial wilt resistance varied depending on whether the maximum day temperature
during the vegetative period was above or below 25.43°C. This result was aligned with the
known disease-occurring factor that bacterial wilt causes the most severe damage when the
temperature ranges between 25°C and 35°C. Additionally, the susceptible variety was selected
as the least preferred in warmer environments, where the disease is known to cause severe
damage. These results indicated that farmers’ evaluations of bacterial wilt resistance seemed
to reflect the actual differences in disease resistance. On the contrary, pest and disease
resistance evaluations in other crops did not show significant differences between varieties.
There could be several reasons for this, including the use of pesticides, unsuitable timing of
evaluations, and not focusing on a specific pest. Assessing pest resistance by farmers has been
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thought to be challenging due to the requirement of specialised knowledge. However, this study
suggested the possibility of obtaining the actual differences in disease resistance from farmers’
best and worst evaluations under the right conditions. The tricot trial will accelerate the
selection of pest-resistant varieties suitable for their environment.
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Appendix. Relationship between rankings (related to RQ2)

The analyses below were conducted on the variables selected on the basis of research question
2. The stepwise regression was used to select the model, and the best model was selected based
on AIC. The candidate variables were selected that seemed relevant. Abbreviations used in this
appendix are V for vegetative seasons, R for reproductive seasons, and PH for post-harvest.

1. Common bean in Central America

For the yield, disease resistance, pest resistance and vigour were selected as the candidate
variables. A model with vigour as an explanatory variable was chosen (F (1, 36) = 8.434, p =
0.006) with an R? of 0.167 (Table 1). For the overall appreciation, disease resistance, pest
resistance vigour and yield were selected as the candidate variables. A model with pest and
yield as explanatory variables was chosen (F (2, 35) = 22.12, p < 0.001) with an R? of 0.533
(Table 1). The yield was a significant predictor of the overall appreciation. There was no
multicollinearity between the variables.

Table 1 Relationship between variables of common bean in Central America

Response Explanatory
variable variable Coefficient  t-value p value F-value  R-squared AlC
Yield Intercept 0.016 4.212 <0.001 F(1,36)=8.434, 0.167 -399.67
p < 0.006
Vigour 0.402 2.904 0.006
Overall Intercept 0.006 1.978 0.056 F(2,35)=22.12, 0.533 -429.37
p <0.001
Pest resistance 0.180 1.608 0.117
Yield 0.577 5.270 < 0.001
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2. Common bean in East Africa

The candidate variables were disease resistance (V), pest resistance (V), drought tolerance (V),
vigour (R), disease resistance (R), pest resistance (R), plant survival (R), plant survival (PH)
and grain size (PH). A model with disease resistance (vegetative and reproductive), pest
resistance (reproductive) and plant survival (PH) as explanatory variables was chosen (F (4,
25) =9.357, p < 0.001) with an R? of 0.536 (Table 2). The disease (vegetative and reproductive)
and plant survival (PH) were significant predictors of the yield. There was no multicollinearity

between the variables.

Table 2 Relationship between variables of common bean in East Africa

Response
variable  Explanatory variable  Coefficient  t-value  p value F-value  R-squared AlIC
Yield Intercept 0.061 7.002 <0.001 F(4,25)=9.357, 0.536 -260.74
p < 0.001
Disease resistance -0.520  -2.737 0.011
(vegetative season)
Disease resistance 1.130 2.757 0.011
(reproductive season)
Pest resistance -0.818  -1.756 0.091
(reproductive season)
Plant survival -0.743  -4.130 <0.001
(post-harvest)
3. Cowpea in Nigeria
The candidate variables were disease resistance (V), pest resistance (V), drought tolerance (V),
disease resistance (PH), pest resistance (PH), drought tolerance (PH) and striga resistance (PH).
A model with drought tolerance (V) and disease resistance (PH) as explanatory variables was
chosen (F (2, 15) = 3.08, p = 0.076) with an R? of 0.197 (Table 3). Both predictors did not have
a significance on the maturity. There was no multicollinearity between the variables.
Table 3 Relationship between variables of cowpea in Nigeria
Response Explanatory
variable variable Coefficient  t-value p value F-value  R-squared AIC
Maturity Intercept 0.059 2.601 0.020 F (2, 15) = 3.08, 0.197 -148.74
p=0.076
Drought tolerance -0.523  -1.947 0.071
(vegetative season)
Disease resistance 0.464 1.546 0.143

(post-harvest)
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4. Potato in Rwanda

For the vigour (V1), disease/insect resistance and bacterial wilt resistance (both in V1) were
candidate explanatory variables. A model with bacterial wilt resistance as an explanatory
variable was chosen (F (1, 9) = 2.78, p = 0.130) with an R? of 0.151 (Table 4). The bacterial
wilt resistance was not a significant predictor of vigour.

For the maturity (PH1), the candidate variables were disease/insect resistance, bacterial wilt
resistance and vigour (V1), disease/insect resistance and bacterial wilt resistance (V2), and
tuber size and appearance (PH1). A model with vigour as explanatory variables was chosen (F
(1,9)=2.78,p=0.130) with an Rz 0f 0.151 (Table 4). The vigour was not a significant predictor
of bacterial wilt resistance.

For the tuber size (PH1), the candidate variables of the tuber size were disease/insect resistance,
bacterial wilt resistance and vigour (V1) and disease/insect resistance and bacterial wilt
resistance (V2). A model with vigour in V1 and bacterial wilt resistance in V2 as explanatory
variables was chosen (F (2, 8) = 5.935, p = 0.026) with an R? of 0.497 (Table 4). The vigour
was a significant predictor of maturity. There was no multicollinearity between the variables.

For the marketability (PH2), the candidate variables were vigour and bacterial wilt resistance
(V1), bacterial wilt resistance (V2), yield, tuber size, appearance, maturity and taste (PH1) and
taste (PH 2). A model with vigour and bacterial wilt resistance in V1, appearance and maturity
in PH1 and taste in PH 2 as explanatory variables was chosen (F (5, 5) = 30.69, p < 0.0001)
with an R? of 0.937. The bacterial wilt resistance, maturity and taste were significant predictors
of the marketability. There was no multicollinearity between the variables.

For the taste (PHZ2), the candidate variables were vigour, bacterial wilt resistance and
disease/insect resistance (V1), bacterial wilt resistance and disease/insect resistance (V2) and
taste (PH2). A model with vigour in V1 and bacterial wilt resistance in V2 as explanatory
variables was chosen (F (2, 8) = 4.957, p = 0.040) with an R? of 0.442 (Table 4). The bacterial
wilt resistance was a significant predictor of the taste (PH2). There was no multicollinearity
between the variables.

For the quality (PH 3), firstly, the candidate variables were vigour and bacterial wilt resistance
(V1), bacterial wilt resistance (V2), yield, tuber size and appearance (PH1) and marketability
and taste (PH2). A model with vigour and bacterial wilt resistance (V1), bacterial wilt
resistance (V2), yield, appearance and tuber size (PH1) and marketability (PH2) as explanatory
variables was chosen (F (7, 3) = 3.154, p = 0.187) with an R? of 0.601. However, there was
multicollinearity between the variables, so vigour and appearance were removed. Secondly,
bacterial wilt resistance (V1), bacterial wilt resistance (V2), yield and tuber size (PH1) and
marketability and taste (PH2) were selected as candidate variables. A model with bacterial wilt
resistance (V1), appearance, marketability and taste (PH1), and taste (PH2) as explanatory
variables was chosen (F (5, 5) = 3.57, p = 0.094) with an R? of 0.562 (Table 4). There was no
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significant predictor. There was no multicollinearity between the variables in the second
model.

For the overall, firstly, the candidate variables were vigour and bacterial wilt resistance (V1),
bacterial wilt resistance (V2), yield, appearance and maturity (PH1), marketability and taste
(PH2) and quality (PH3). A model with vigour and bacterial wilt resistance (\VV1), bacterial wilt
resistance (V2), yield and appearance (PH1), taste (PH2) and quality (PH3) as explanatory
variables was chosen (F (7, 3) = 111.3, p < 0.001) with an R? of 0.987. However, there was
multicollinearity between the variables, so vigour was removed. Secondly, bacterial wilt
resistance (V1), bacterial wilt resistance (V2), yield, appearance and maturity (PH1),
marketability and taste (PH2) and quality (PH3) were used as candidate variables. A model
with bacterial wilt resistance (V1 and 2), yield (PH1), taste (PH2) and quality (PH3) as
explanatory variables was chosen (F (5, 5) = 34.28, p < 0.001) with an R? of 0.943 (Table 4).
The bacterial wilt resistance (V2), yield (PH1), taste (PH2) and quality (PH3) were significant
predictors. There was no multicollinearity between the variables in the second model.
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Table 4 Relationship between variables of potato in Rwanda

Response
variable Explanatory variable Coefficient  t-value pvalue F-value  R-squared AIC
Vigour Intercept 0.157 3.778 0.004 F(1,9) =278, 0.151 -67.71
(vegetative p=0.130
season 1)

Bacterial wilt -0.724  -1.667 0.130

resistance

(vegetative season 1)
Maturity Intercept 0.097 2.022 0.078 F (2, 8) =5.935, 0.497 -73.2
(post-harvest 1) p =0.026

Vigour 0.604 2.698 0.027

(vegetative season 1)

Bacterial wilt resistance -0.673  -1.582 0.152

(vegetative season 2)
Tuber size Intercept 0.232 3.522 0.010 F(3,7)=12.45, 0.775 -79.3
(post-harvest 1) p =0.003

Vigour 0.575 3.230 0.014

(vegetative season 1)

Disease/insect resistance -1.147  -3.719 0.007

(vegetative season 1)

Disease/insect resistance -0.978 -1.834 0.109

(vegetative season 2)
Marketability Intercept -0.104  -4.007 0.010 F (5,5)=30.69, 0.937 -103.3
(post-harvest 2) p <0.001

Vigour 0.157 1.521 0.189

(vegetative season 1)

Bacterial wilt resistance 0.333 2.734 0.041

(vegetative season 1)

Appearance 0.652 2.549 0.051

(post-harvest 1)

Maturity 0.257 2.891 0.034

(post-harvest 1)

Taste 0.740 5.867 0.002

(post-harvest 2)
Taste Intercept 0.011 0.418 0.687 F(2,8)=4.957, 0.442  -86.69
(post-harvest 2) p =0.040

Vigour 0.202 1.668 0.134

(vegetative season 1)

Bacterial wilt resistance 0.678 2.943 0.019

(vegetative season 2)
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Quality
(post-harvest
3)

Intercept

Bacterial wilt resistance
(vegetative season 1)
Appearance
(post-harvest 1)
Marketability
(post-harvest 1)

Taste

(post-harvest 1)

Taste

(post-harvest 2)

-0.217

-0.585

-2.480

2.850

2.436

1.169

-1.790

-1.640

-1.481

2.045

1.896

2.193

0.134

0.162

0.199

0.096

0.117

0.080

F (5,5) = 3.57,
p = 0.094

0.562

74

44



	Abstract
	1. Introduction
	1.1 Plant breeding for pest and disease resistance and genotype-by-environment interaction
	1.2 Evaluation of variety performance under diverse conditions
	1.3 Triadic comparisons of technologies (tricot)
	1.4 Strengths and weaknesses of the tricot approach
	1.5 Research questions

	2. Materials and methods
	2.1 The Plackett-Luce model, PLADMM and Plackett-Luce trees
	2.2. The efficacy of PLADMM
	2.2.1. Data simulation
	2.2.2. Statistical models
	2.2.3. Comparison of the models

	2.3. Data collection
	2.4. Data overview
	2.4.1. Common bean in Central America
	2.4.2. Common bean in East Africa
	2.4.3. Cowpea in Nigeria
	2.4.4. Potato in Rwanda

	2.5. Analysis
	2.5.1. Data cleaning and processing
	2.5.2. Analysis of the difference between varieties in terms of pest/disease resistance (RQ1)
	2.5.3. Analysis of a relationship between pest/disease resistance and other variables (RQ2)
	2.5.4. Analysis of specific patterns between pest/disease resistance and environmental factors (RQ3)


	3. Results
	3.1. The efficacy of the PLADMM
	3.1.1 With an uncorrelated covariate (null model)
	3.1.2 With a correlated covariate
	3.1.3 With five uncorrelated covariates
	3.1.4 With a correlated covariate and four uncorrelated covariates

	3.2. Significant variety differences in pest/disease resistance rankings (RQ1)
	3.3. Relationship between pest and disease resistance rankings and other rankings (RQ2)
	3.3.1 Correlation between variables of potatoes in Rwanda
	3.3.2 As a response variable
	3.3.3 As an explanatory variable

	3.4. Relationship between pest and disease resistance rankings and environmental variables (RQ3)

	4. Discussion
	4.1 The efficacy of the PLADMM
	4.2 The randomness of farmers’ evaluation
	4.3 Relationship between pest and disease resistance and other variables
	4.4 Relationship between bacterial wilt and environmental factors
	4.5 Recommendations
	4.6 Conclusion

	5. References
	Appendix. Relationship between rankings (related to RQ2)
	1. Common bean in Central America
	2. Common bean in East Africa
	3. Cowpea in Nigeria
	4. Potato in Rwanda


