Crop load estimation in orchards:
the potential of single RGB images
from unmanned aerial vehicles

Chenglong Zhang




Propositions

1. Real-time orchard management tasks can be accomplished by the use of single raw images
derived from unmanned aerial vehicles.
(this thesis)

2. Unmanned aerial vehicles are the key to establish orchard digital twins.
(this thesis)

3. A well-written introduction is already halfway to have a manuscript accepted by a scientific
journal.

4. Business models should not steer sciences.

5. Robots should not have the attributes of a human-like appearance but need to maintain the
characteristics of a functional machine.

6. Meditation and yoga can ease the negative emotions caused by the fast life pace but not solve

them.

Propositions belonging to the thesis, entitled

Crop load estimation in orchards: the potential of single RGB images from unmanned aerial vehicles

Chenglong Zhang
Defence date 28 February 2024


ZHANG Chenglong
28 February 2024


Crop load estimation in orchards: the potential of

single RGB images from unmanned aerial vehicles

Chenglong Zhang



Thesis committee

Promotor

Prof. Dr Lammert Kooistra

Personal chair at the Laboratory of Geo-information Science and Remote Sensing

Wageningen University & Research

Co-promotors
Prof. Dr Wensheng Wang
Professor, Agricultural Information Institute

Chinese Academy of Agriculture Science, Beijing, China

Dr Joao Valente
Assistant professor, Information Technology Group

Wageningen University & Research
Dr Leifeng Guo
Assistant professor, Agricultural Information Institute

Chinese Academy of Agriculture Science, Beijing, China

Other members

Prof. Dr Ricardo da Silva Torres, Wageningen University and Research

Dr Peter Lootens, Institute for Agricultural, Fisheries and Food Research, Merelbeke Belgium

Dr Mariana Belgiu, University of Twente, Enschede

Dr Alexandre Escola Agusti, Universitat de Lleida, Spain

This research was conducted under the auspices of the C. T. de Wit Graduate School for Production

Ecology and Resource Conservation (PE&RC).



Crop load estimation in orchards: the potential of

single RGB images from unmanned aerial vehicles

Chenglong Zhang

Thesis
submitted in fulfillment of the requirements for the degree of doctor at Wageningen University
by the authority of the Rector Magnificus,
Prof. Dr A.P.J. Mol,
in the presence of the
Thesis Committee appointed by the Academic Board
to be defended in public
on Wednesday 28 February 2024

at 11 am in the Omnia Auditorium.


ZHANG Chenglong
28 February 2024


Chenglong Zhang
Crop load estimation in orchards: the potential of single RGB images from unmanned aerial vehicles,

242 pages.

PhD thesis, Wageningen University, Wageningen, the Netherlands (2023)

With references, with summary in English

ISBN: 978-94-6447-871-6
DOI: https://doi.org/10.18174/637786



Contents

Chapter 1 Introduction

2

Chapter 2 Orchard management with small unmanned aerial vehicles: a survey of sensing and

analysis approaches

16

Chapter 3 Automatic flower cluster estimation in apple orchards using aerial and ground-

based point clouds

64

Chapter 4 Feasibility assessment of tree-level flower intensity quantification from UAV RGB

imagery: A triennial study in an apple orchard

96

Chapter 5 Orchard fruit load estimation in multi-temporal high-resolution UAV imagery using

deep learning
Chapter 6 Synthesis
References
Summary
Acknowledgments
About the author

PE&RC Training and Education Statement

134

176

197

222

226

231

234






Chapter1I

Introduction



Chapter 1

1.1. Site-specific orchard management to advance sustainable agro-production

Agriculture maintains the function of providing sufficient food and nutrition for human beings.
Confronting the projected 11.4 billion global population by 2050, the food demand, in global scenarios,
is required to increase by 35% to 56% between 2010 and 2050 (Bebber and Gurr, 2015; van Dijk et al.,
2021). Over the same period, -91% to +8% of the population at risk of hunger is expected. If natural
resource constraints and climate change are taken into consideration, the projected situation will be

more challenging for global food security.

Horticulture, hortus and cultura (garden culture), mainly hold the task of nutrition supply for humans
and suffer comparable or even more challenges as other agricultural domains to ensure food security. It
generally comprises ornamental plants like flowers and ornamental trees, and food plants like
vegetables and fruits. These high-value crops are intensively cultivated in a small but well-designed
space which is different from field crops like corn that are usually grown in an expansive field. Intensive
and individualized crop management is the main characteristic of horticulture. Yet current horticultural
practice still highly relies on manual efforts which are tedious and costly and the precision of decision-
making is hard to guarantee (Zhang et al., 2021). Faced with global food security challenges, precise

and automatic site-specific management of horticulture is greatly in demand.

Site-specific management requires decisions on the use of resources and the practical actions closely
match the requirements of individual crops (Mendez-Vazquez et al., 2019). Consequently, the
production of individual crops is maximized while conserving resources and mitigating environmental
impacts. Orchards as a special horticultural section, in this context, should also implement site-specific
management. Within a complete life-cycle of fruit trees, various activities are engaged. Within this time
frame the fruit tree develops from flower buds, and flower clusters, to fruitlets and mature fruits, till
tree dormancy period (Zhang et al., 2019a). Correspondingly, different actions are conducted for
individual trees to sustain tree health for a respectable yield. As an example, during the blooming period
only, diverse management activities have already been implemented. Firstly, it is crucial to quantify the
flower cluster per tree to guide flower thinning. Excessive flower load may lead to harvested fruits like
apples holding suboptimal sugar levels and even reduced storage life (Forshey, 1986). Growers need
the exact flower cluster amount per tree to decide how many flowers to remove. On the other hand, a
precise estimation of flower load on the tree also benefits the optimization of chemicals usage which is
friendly to natural environments. Next, the flowering intensity crossing a whole orchard needs to be
continuously monitored over a complete blooming season which usually lasts 2-3 weeks (Wang et al.,
2021b). This information is used to identify the full blooming date (Zhou et al., 2023) and assist the
growers to organize the upcoming activities at an earlier stage, such as pollination management (Chen

et al.,, 2019a). In addition, spatio-temporal flowering monitoring also aids the breeding program.
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However, currently, these management decisions are still banking on growers' empirical judgment.
Though a few investigations have already explored potential solutions, in general, the resulting

performance is still far from satisfactory (Tubau Comas et al., 2019; Vanbrabant et al., 2020a).

Orchard management, during the harvesting period, retains a major part of the total cost. For example,
in the case of citrus production, it can reach 35%-45% of the total cost which reveals the importance of
optimizing the current harvesting chain (Sanders, 2005). In the early stage of fruit maturation, fruit
counts per tree primarily benefit from the management of irrigation, fertilization and variable spraying
strategy (Bargoti and Underwood, 2016; Wang and He, 2021). At a more advanced maturation stage,
yield estimation supports market-related decision-making and logistics optimization, such as labor force
and harvest containers (Xia et al., 2022). Both stages require precise information on the fruit-bearing
status of individual trees for the optimization of resource usage like labor, water and chemicals.
Moreover, a variety of other management activities is also duty-bound to be employed throughout the
whole growing season. To track the growth of fruit trees and evaluate the effects of different pruning
strategies, geometric characteristics such as canopy volume and tree height need to be measured (Ganz
et al., 2019). This is also the central difference between orchards and other horticultural crops like
strawberries (Chen et al., 2019b). As fruit and nut trees in orchards hold a more complicated tree
structure which leads to additional data demand in the 3-dimensional (3D) space. Monitoring water
stress of individual trees directs precision irrigation (Ballester et al., 2018). While the inspection of
fruit-tree nutrition status (Garza et al., 2020) and diagnosis of the potential disease (Choosumrong et
al., 2023) are necessary to keep the orchard sustainable. In summary, multiple aspects of fruit and nut
trees (e.g., physical and biological characteristics) impact and steer decision-making in orchards which

discloses the urgency of automatic and precise monitoring.

1.2. UAVs are reforming site-specific orchard management

Since the projection that unmanned aerial vehicles (UAVs) were poised to depart as powerful platforms
for scientific research (Marris, 2013), the use of UAVs in supporting orchard management has been
progressively investigated in the past decade (Lucena et al., 2022; Yuan et al., 2023). Sensor
miniaturization is also increasing UAVs popularity in terms of the diversity of data sources, the quality
of sensing data, and the efficiency of data collection. Recent studies indicate that UAVs would be

indispensable in horticultural (Vinci et al., 2023) and other agricultural applications (Liu et al., 2023).

Orchard sensing data, in the data-driven age, is normally produced by ground-based (Tsoulias et al.,
2023), aerial (Tang et al., 2023) and space-based monitoring platforms (Sandonis-Pozo et al., 2022)
which construct a complete space-air-ground observation network. Distance between the target fruit

trees and cameras onboard these platforms are dissimilar, and thus, this distance difference further
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creates orchard data with various resolutions. On the other hand, the difference among the running
tracks of these platforms makes them desirable in different survey scales. For these two aspects, each

one of the orchard monitoring platforms is dominant in certain application scenarios (Zhang et al., 2021).

Handheld cameras are one of the earliest emerging inspection platforms in the orchards (Srivastava and
Sadistap, 2018). Device portability, ease of use and high-resolution make it a strong sensing approach.
Rapid development in the smartphone industry limits handheld cameras to RGB sensors. With the
extremely high-resolution RGB images, the adjustable distance between the camera and target fruit
trees enable this approach to capture the entire tree structure for tree height calculation and on-tree fruit
detection (Zhao et al., 2023b), and to diagnose fruit disease like scab and rust with a zoom-in camera
view (Ozden, 2021). However, the methods developed from handheld cameras, in some cases, are
unrepeatable because of uncertainties derived from different sensing distances (Xia et al., 2022).
Another widely used terrestrial monitoring system is ground vehicles. Compared with handheld
cameras, one ground vehicle is capable to carry multiple sensors like RGB (Koirala et al., 2020a) and
multispectral cameras providing orchard data derived from abundant spectral segments. Thus this
sensing approach holds a wider range of applications. For example, ground vehicles with RGB-D
cameras (Gene-Mola et al., 2019b) or a laser scanner have been applied for apple detection (Gene-Mola
et al., 2019a). Fruit shape like apple diameter is also feasible when LiDAR was employed (Tsoulias et
al., 2020). Ground vehicle-based sensing platforms are more efficient in data collection than handheld
approaches and the data quality is more unified. However, overall, observational terrestrial systems are
labor-intensive which is greatly time- and labor-cost for time-series orchard data. And they are more
feasible for small size orchard monitoring. Current advancements in robotic automation still cannot
fully meet the requirements of unmanned ground self-driving vehicles in modern orchards (Lyu et al.,
2018). And the complex environment in modern high-density orchards (Zine-El-Abidine et al., 2021)
makes it more challenging. In addition, though these terrestrial systems are regarded as non-destructive
sensing approaches (Srivastava and Sadistap, 2018), they are only non-destructive for the surveyed fruit
trees. The effects derived from the operators and vehicles on the orchard like the soil are an attention

point.

Conventional remote sensing mainly comprises airborne and satellite-based observations. Airborne
imaging holds a relatively comparable resolution to that of the terrestrial systems but it is more powerful
for large-size orchards and regional surveys. For example, an area of 17 ha can be mapped in 0.5 h with
an airborne platform (Garcia-Ruiz et al., 2013). Flying altitude of airborne platforms can reach 1km
which takes into account the image resolution while improving sensing efficiency (Sepulcre-Canto et
al., 2007). This characteristic enables airborne platforms to survey not only orchards but the surrounding
landscape like forests as well (Hycza and Kupidura, 2021). Similar to the capability of ground vehicles,

airborne platforms equipped with multiple sensors are feasible in fruit quality estimation (e.g., peach
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and olive water content) (Sepulcre-Canto et al., 2007), fruit disease detection (e.g., the Huanglongbing
in citrus production) (Garcia-Ruiz et al., 2013) and water stress monitoring by using time-series data of
photochemical reflectance index (PRI) (Suarez et al., 2010). Yet constraints related to data accessibility,
platform availability and weather conditions result that airborne observation is uncommon in

operational orchard management.

By contrast, the public availability of satellite images makes space-based observations also practicable
in supporting orchard monitoring. Satellite images embrace mainly optical multi-spectral images which
would allow the physical characterization of the temporal development of fruit trees feasible. For
example, Sentinel-2 derived vegetation indices like normalized difference vegetation index (NDVI) and
the green normalized difference vegetation index (GNDVI) can be applied for almond-tree geometric
characteristics estimation such as width and cross-sectional area (Sandonis-Pozo et al., 2022). The
canopy chlorophyll content index (CCCI) produced by WorldView-2 is feasible for macadamia leaf
nitrogen estimation and can further assist variable fertilizer spraying (Felderhof and Gillieson, 2011).
In addition, the planting year of apple orchard (Zhu et al., 2020), kiwifruit dry matter content estimation
(Mills et al., 2019) and water stress monitoring (Van Beek et al., 2013) has also been predicted by space-
based multispectral imagery. This type of approach is powerful in regional, national (Brinkhoff and
Robson, 2020) or even continental-level orchard-related monitoring. Its disadvantage can be suboptimal
spatial and spectral resolutions, and an unfavorable re-visit time. With the increasing spatial resolution
of images from satellite-based platforms (e.g., satellites from Maxar Technologies and Planet Labs),

space-based observations are becoming a viable complementary source for orchard management.

UAVs, as relatively new sensing platforms, have been proven a dominant and complementary tool in
the space-air-ground orchard observation network that was introduced above (Zhang et al., 2021). It
integrates the high-resolution characteristic of proximal terrestrial sensing systems and the spatial-
temporal mapping efficiency of airborne and space-based observations. Its capability of employing
various optical cameras makes it fast expanding to diverse orchard application scenarios ranging from
resource efficiency monitoring (Ballester et al., 2018), to yield estimation (Tang et al., 2023) and disease

detection (Ali et al., 2023), and to fruit-tree geometric characteristics calculation (Vinci et al., 2023).

Extensive research induced the UAVs equipped with RGB cameras to be the most prevailing in orchard
management (Zhang et al., 2019a). There are, in general, three ways that have been incorporated into
the analysis of the geotagged RGB images. The first one is direct use which means image processing is
conducted on the raw images directly. This approach mostly is suitable for on-tree fruit load detection
by using advanced object detection algorithms. For example, it can be used for yield estimation of the
late-autumn shoots of litchi (Liang et al., 2023) and pear (Li et al., 2023b). Since the UAVs were fully

manual-controlled during the flights and usually the flying altitude is low, such as less than 9m. The
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resulting performance normally was high, for instance, the correlation between the deep learning
algorithm YOLOv4 detected chestnut burs and the ground truth collected in situ can reach an R? of 0.83
(Arakawa et al., 2023).

The other two ways of RGB image analysis were on the basis of the structure from motion (SfM)
technique. The SfM-derived methods retrieved the nadir-view and 3D structure of fruit trees by
producing orthomosaics and colored point clouds. With RGB orthomosaics, projected canopy area,
potential fruit tree location and counting can be detected with object detection methods like Faster-
RCNN (Neupane et al., 2019). While colored point clouds are well-known for the geometric
characteristics calculation, such as canopy volume (Jimenez-Brenes et al., 2017), canopy perimeter and
area (Johansen et al., 2018). Its main advantage is the reconstructed 3D information and, in comparison
with LiDAR point clouds, unique color information. In summary, the introduced RGB image-based
methods are affected by illumination conditions, and the orthomosaic and colored point clouds normally

require certain computational sources for reconstruction.

Multispectral cameras are the other more general UAV-equipped sensor adopted in orchard management.
With the aid of additional spectral bands compared to RGB imagery like red-edge (RE) and near-
infrared (NIR) (Catania et al., 2023), aerial multispectral imaginghas a wider range of applications. The
produced spectral indices are capable to accomplish monitoring tasks like production (Chen et al.,
2019a) and water stress estimation (Zhao et al., 2017), and disease detection (Pourazar et al., 2019). For
instance, the aerial modified ratio vegetation index (RVI) was proven to be most sensitive to apple fire
blight (Mahmud et al., 2023). Applied methods, in general, are based on the correlation between aerial
vegetation indices and the pre-measured biological status like stem water potential and stomatal
conductance. With high-resolution multispectral images, in addition, geometric traits like canopy area
can also be calculated from orthomosaics (Catania et al., 2023). Compared to multispectral cameras,
hyperspectral and thermal cameras have drawn much less attention in assisting UAVs for orchard
management. Aerial thermal imagery is mostly used for water stress monitoring since temperature
correlates to the photosynthesis of fruit trees and affects the stomatal conductance directly (Egea et al.,
2017; Ortega-Farias et al., 2016). Regarding hyperspectral cameras, the complexity of spectral analysis
and high-cost traits severely limit their application in orchards. But they provide continuous spectra
covering a large part of the optical range. This makes hyperspectral advantageous in the diagnosis of

serious fruit diseases like Huanglongbing in citrus (Garcia-Ruiz et al., 2013).

LiDAR is the last widely used sensor for UAVs in supporting orchard management (Tsoulias et al.,
2023; Zhang et al., 2021). Recent development in the miniaturization and lightweight of LIDAR enable
UAV-based LiDAR measurements to become popular. It contributes to the precise delineation of fruit-

tree geometric traits like crown volume and main trunk (Lombardi et al., 2022) because of the high-
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density point clouds, in comparison with colored point clouds. And LiDAR-derived point clouds are
not affected by illumination conditions. Currently, more and more comparisons between aerial LIDAR-
and RGB images-based point clouds were conducted (Ganz et al., 2019; Lombardi et al., 2022). It
reveals that the use of point clouds in orchards is already moving toward data source optimization. In a
nutshell, with the last piece (LiDAR) of the puzzle (UAV-derived orchard management) complete, it is

believed that the use of UAVs will reform orchard management in the near future.

1.3. Opportunities of UAVs in crop load estimation

Crop load initially is an industrial parameter defined as fruits per trunk cross-sectional area (Racsko,
2006). Later it was extended to a broader denotation — quantifying the number of fruits per tree (Gongal
et al., 2016; Suo et al., 2016). In this thesis, crop load comprises the number of flowers per fruit tree

(flower load) and the number or weight of fruits per tree (fruit load).

Crop load estimation is fundamental in orchard management as this information directly correlates to
the harvested yield and its quality. Fruit load estimation benefits the decision-making for the market.
Yet fruit yield at row level or plot level can also contribute to this purpose. By contrast, flower load
estimation holds a more strict standard for accuracy. Because this information guides the flower
thinning, and the operators, either a thinning robot or a technician, need this estimation to quantify the

exact number of flowers required to be removed for individual trees (Zhang et al., 2022b).

Traditional fruit load estimation is conducted in an indirect way. It explores the correlation between
optical sensor-derived indices and the exact yield harvested or recorded in the field. These indices
consist of Vegetation indices (VI) and fruit-tree geometric characteristics. For example, the NDVI
derived from UAVs can be used for banana yield estimation (Machovina et al., 2016). Yet, the
correlation of these indices to the fruit amount is poorly understood. Investigated geometric
characteristics comprise canopy projected area (CPA) (Sola-Guirado et al., 2017), tree height (Sarron
et al., 2018a) and canopy perimeter (Uribeetxebarria et al., 2019). 3D morphological characteristics
such as crown volume can also be good yield predictors (Lopez-Granados et al., 2019b). The correlation
of estimated crown volume from aerial imagery to actual yield can be higher than 0.7 (R?) for some
almond varieties. In addition, VI and geometric traits can also be combined for a yield model

development using methods like ensemble learning (Chen et al., 2022b).

Fruit yield, in orchards, correlates to the exact fruit number and size (Mitchell, 1986; Stajnko et al.,
2009b). Thus, fruit counting is a potential approach to provide more accurate yield estimation than
traditional methods. From current achievements of robotics and sensing approaches, however, it is

impossible to automatically obtain the exact fruit or flower load. Because fruit trees suffer heavily from
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occlusion produced by leaves, branches and other fruits (Zine-El-Abidine et al., 2021). Even so, it is
believed that the flower or fruit counting derived from the external feature of fruit trees highly correlates

to the actual yield and can be regarded as a yield indicator (Apolo-Apolo et al., 2020b).

Advances of object detection in computer vision community make fruit or flower amount can be well
quantified in the images. Conventional object detection is mostly conducted at pixel level. Color
thresholding is the most famous (Horton et al., 2017). Yet it is significantly affected by illumination
conditions. More advanced machine learning methods are support vector machines (SVM) (Dias et al.,
2018Db), clustering methods (Tubau Comas et al., 2019) and convolutional neural networks (Dias et al.,
2018a). Such approaches, in the case of CNN combined with SVM, can reach a precision and recall
rates of 90%. By contrast, object-based deep learning algorithms are proven to be the most powerful. It
generally comprises one-stage detectors and two-stage detectors. Algorithms like fast R-CNN, faster R-
CNN (Fu et al., 2020) and mask R-CNN (Jia et al., 2022) are two-stage detectors. They normally hold
more accurate fruit detections than one-stage detector but are more time-consuming. Lightweight one-
stage detectors such as single shot multibox detector (SSD), YOLO series (Li et al., 2023b; Zhang et
al., 2022d) and RetinaNet have drawn more attention in fruit and flower detections. These achievements,
in general, were based on terrestrial images. But they are transferable to the use of RGB images derived
from UAVs. Yet, the variability of fruit size and shape in UAV images can be challenging. In addition,
previous studies demonstrated fruit or fruit flower counting at image level only which means those
algorithms only recognize the number of visible fruits in the image (Liu et al., 2021). The link between
these detections to the actual fruit count in the field is still not fully investigated. A few studies used
terrestrial sensing approaches like ground vehicles and handheld cameras to build up this link. Yet strict
manual control was involved either during the data collection stage or the postponed data processing.
In the first case, the purpose was to ensure each image covered one tree (Hocevar et al., 2014). While,
in the later, manual segmentation was applied for individual trees. From this aspect, the geotagged RGB

images derived from UAVs potentially provide a good solution for crop load estimation.

1.4. Underlying problems and motivations for the use of UAVs in orchard management

The use of UAVs in supporting orchard management is still in its infancy but it has been receiving
considerable attention (Zhang et al., 2019b). It is crucial, in this context, to conduct a systematic analysis
for the identification of current achievements and research gaps, and for searching potential
opportunities. In application scenarios, unbalanced development in various orchard-related fields was
observed. As an example, the monitoring of water stress (Ballester et al., 2018; Zhao et al., 2017) and
the calculation of fruit-tree geometric characteristics (Sun et al., 2019; Tu et al., 2019) have been
investigated by extensive research. Yet yield estimation and disease detection should also be given more

attention. From a methodology aspect, the majority of current practices applied a single method to
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survey one single fruit species under certain environmental and weather conditions (Hobart et al., 2020;
Osco et al., 2020b). It is essential to explore the generalization or scalability of these methods which
enhance the recognition of an optimal and robust UAV-based solution. In addition, because of the unique
way of UAV-derived sensing, the effects of different flying parameters on monitoring performance are
also one of the most frequently stated questions (Hou et al., 2019; Meng et al., 2020). Overall, a

systematic field campaign design or a systematic review is required at the current stage.

UAVs were introduced to the space-air-ground orchard monitoring network at a relatively late phase.
Though high accuracy of UAV-derived predictions was demonstrated by broad studies (Vélez et al.,
2023; Vinci et al., 2023), for a specific case, the fair comparison between UAV- and other platform-
based performance was still not fully answered. The complexity of orchard circumstances (Zine-El-
Abidine et al., 2021), the unevenness of data quality produced by different monitoring platforms and
variability of adopted methods lead to a poor understanding of the pros and cons of each individual
system in the space-air-ground network. Thus, with consistent settings of these aspects, a systematic
comparison is suggested. For example, it is essential to identify the difference in disease detection
derived from UAVs (Ali et al., 2023) and ground-based platforms (Bleasdale et al., 2022) to recognize
the optimal solution. Moreover, terrestrial colored point clouds were capable of in-situ apple detection
(Gené-Mola et al., 2020). In a same scene, the performance of aerial colored point clouds in apple

detection also needs to be examined.

Existing orchard monitoring produced by UAVs mostly focuses on tree-level predictions where
individual trees are regarded as the minimum units, such as the identification of disease-infected trees
(Selvaraj et al., 2020), the counting of trees (Osco et al., 2020b) and the canopy volume of individual
trees. This meets the requirement of site-specific management. Such approaches, however, have failed
to monitor the intra-canopy information like flower and fruit amount. Current achievements, in
computer vision community, are proven potent in fruit detection using advanced deep learning
algorithms (Zhao et al., 2023b). The performance of fruit load estimation derived from ground vehicles
is already satisfactory. For example, rotational region CNN can produce an F1-score of 82% for on-tree
mango panicle classification (Koirala et al., 2020c). Yet this knowledge has not been fully transferred
to UAV-based aerial images for orchard management. Though flower load estimation can be conducted
with RGB-derived orthophoto, it was confirmed that information from nadir-view canopy only is not
sufficient (Tubau Comas et al., 2019). Raw UAV RGB images comprise both the nadir-view and side-
view of fruit trees which are a potential source for crop load estimation. But its performance is still
unclear. One reason can be the heavy fruit occlusion found in UAV images due to the aerial camera
view. Overall, further research should be carried out to test the feasibility of aerial images-based crop

load estimation.

10
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Individual tree identification is fundamental for orchard spatial mapping. Each of the introduced
orchard applications requires this information to further achieve tree-level analysis. Previous research
mainly established tree detection methods for orthomosaic-based applications (Sandric et al., 2022;
Vélez et al., 2023). Yet, the complexity of modern high-density orchards limits the adoption of computer
vision technology. For example, the tree space in a modern orchard can reach 1 m which induces fruit
trees in the same row to suffer the issue of interlacing and touching branches (Zhang et al., 2022b). This
complicated situation within a row further makes the segmentation or even identification of individual
trees impossible. This relates to both orthomosaics (Apolo-Apolo et al., 2020b) and point clouds (Zine-
El-Abidine et al., 2021). To enhance the use of UAVs in site-specific orchard management, therefore,

there is an urgent need to establish a new approach to solve individual tree identification problems.

11
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1.5. Research objectives

The main objective of this thesis is to optimize the use of single raw aerial RGB image source to enhance
UAV application in monitoring agricultural production which is required to make management
decisions, especially in horticulture. To identify the research gaps and examine the potential
technologies of UAVs in orchard management, current status of UAV-derived practice was first
reviewed (RQ1). Inevitably, the core focus was determined as crop load estimation in an apple orchard
which comprises apple flower intensity estimation and yield estimation. Next, as a benchmark,
conventional photogrammetric measurement (structure from motion (SfM)) was applied to UAV- and
ground-based images to evaluate the potential of colored point clouds in flower intensity estimation
(RQ2). For comparison, the feasibility of estimating flower intensity with single raw UAV images was
evaluated (RQ3). Finally, the use of single raw aerial RGB images was further examined and optimized

in another other orchard application - apple yield mapping (RQ4).

RQ1: What are the research gaps and opportunities of UAV-derived monitoring in orchard management?

RQ2: How can apple flower load be spatially mapped from UAV-based colored point clouds?

RQ3: What is the feasibility of estimating the spatial distribution of flower load in apple orchards with

single raw UAV images only?

RQ4: How can a deep learning approach using single raw UAV images support the automatization of

apple yield spatial mapping?

12
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1.6. Thesis outline

Taking the underlying problems identified in section 1.4 as starting points, and to further investigate the

use of UAVSs in orchard management, the present thesis was organized as follows:

Chapter 2: A comprehensive literature review was conducted firstly to identify the current status of
UAVs in orchard management. Opportunities of UAVs were investigated by searching research gaps

and examining the potential technologies.

Chapter 3: In the case study of apple flowering intensity estimation, the performance of a conventional
UAV photogrammetry method, based on colored point cloud, was evaluated and taken as a benchmark.

Its performance against ground vehicle-derived point clouds was also compared and discussed.

Chapter 4: In comparison with the benchmark established in Chapter 3, the feasibility of flower load
estimation with single raw aerial images was examined first. Next, the effects of vertical (nadir) and

horizontal (angular) overlapping of flower clusters within the canopy were investigated.

Chapter 5: To further improve the single raw UAV RGB images-based methods demonstrated in
Chapter 4, an automatic fruit load estimation method was developed. The performance of YOLOvSs in
aerial image-based fruit detection was tested. And fruit load estimation was accomplished by using a

proposed pixel-geolocate method.
Chapter 6: Finally, the main findings of the present thesis were discussed. Based on these findings,

projections for future research were also made, in parallel with the latest research that is relevant to this

thesis project.

13
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Orchard management with small
unmanned aerial vehicles: a survey of
sensing and analysis approaches
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Zhang, C., Valente, J., Kooistra, L., Guo, L., Wang, W., 2021. Orchard management
with small unmanned aerial vehicles: A survey of sensing and analysis approaches.
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Abstract

Advances in sensor miniaturization are increasing the global popularity of unmanned aerial vehicle
(UAV)-based remote sensing applications in many domains of agriculture. Fruit orchards (the source of
the fruit industry chain) require site-specific or even individual-tree-specific management throughout
the growing season — from flowering, fruitlet development, ripening, and harvest — to tree dormancy.
The recent increase in research on deploying UAV in orchard management has yielded new insights but
challenges relating to determining the optimal approach (e.g., image-processing methods) are
hampering widespread adoption, largely because there is no standard workflow for the application of
UAVs in orchard management. This chapter provides a comprehensive literature review focused on
UAV-based orchard management: the survey includes achievements to date and shortcomings to be
addressed. Sensing system architecture focusing on UAVs and sensors is summarized. Then up-to-date
applications supported by UAVs in orchard management are described, focusing on the diversity of
data-processing techniques, including monitoring efficiency and accuracy. With the goal of identifying
the gaps and examining the opportunities for UAV-based orchard management, this chapter also
discusses the performance of emerging technologies and compare similar research providing technical
and comprehensive support for the further exploitation of UAVs and a revolution in orchard

management.
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2.1. Introduction

Faced with the challenges of a growing global population, rural poverty, and natural resource
management, public awareness about sustainable practices in food production has become prominent.
Food productivity, e.g., in fruit crops, and the economics of cultivation and irrigated agriculture are
important topics in precision agriculture that relate to these challenges. In the case of fruit orchard
management, the challenges also concern processes. Within the context of precision agriculture, site-
specific management is key to reducing environmental impact and enhancing agricultural economics.
Such management includes the general stages of collecting data, mapping orchard variability, and
making decisions (Zhang and Kovacs, 2012) and enables each aspect of crop cultivation (e.g., physical,

biological, chemical factors) to be understood.

Throughout the growing cycle of fruit crops, a variety of management activities are employed (Fig. 2.1).
Different activities focus on the management of fruit trees at specific growth stages, and some activities
are not limited to one growth stage. For instance, thinning generally occurs during the flowering and
fruitlet stages. The management activities attracting most research attention have been fruit thinning,
fruit-tree pruning, and the assessment of irrigation strategy. Apple-flower number strongly correlates
with the final yield (Aggelopoulou et al., 2009). Improving fruit size and quality will bring more
economic benefits because of the higher market prices (Bound, 2018). However, without precise
management, an excessive number of flowers per tree might lead to poor fruit quality and size. Overload
of fruits also threatens the trees (Dennis, 2000). For example, only 7% of apple flowers are necessary
for final harvest, which means that flower thinning should be conducted regularly (Greene and Costa,
2013). In some cases, manual thinning represents 31% of all cultural costs (costs of activities carried
out during an entire fruit-tree growing cycle) (Glozer and Hasey, 2006). Though mechanical thinning
effectively reduces labor input, the bottleneck is the precise estimation related to flower intensity.
Changes in fruit-tree structural properties can be used to monitor tree crop growth status, and site-
specific treatments with fungicides and water can be implemented with the aid of a spatial structural
variation map (Mu et al., 2018). Fruit tree physical structure, such as canopy volume, affects fruit quality
and yield by intercepting light (Rom, 1991). Trees in fruit orchards are therefore pruned at certain fruit-
growing stages, following a pruning strategy. Geometric characteristics like canopy area are the main
way of assessing the pruning effects. By measuring this parameter, optimal pruning type and intensity
can be selected and applied, to help guarantee the final income of local growers (Castillo-Ruiz et al.,
2015; Miranda-Fuentes et al., 2015). In addition, because of the global water shortage, agricultural
irrigation is a relevant topic. In the context of deficit irrigation, the water inputs for orchards should
meet the realistic demands of individual fruit trees. Mild water stress is often employed to maintain or
improve fruit quality and yield in orchards. Thus, to optimize water resources usage, appropriate

monitoring is necessary. In summary, projecting into the future, precision orchard management not only
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saves labor resources and increases the income of growers, but also has great significance in improving

resource utilization.

Mature
1sanien

Fig. 2.1. Natural yearly cycle of fruit crops and associated management activities (outer ring) during

the seasons of a year (yellow ring).

Broadly, remote sensing (RS) describes a group of techniques that from a distance collect sensor data
on the target of interest. This involves sensing, recording, processing, analyzing, and applying reflected
or emitted energy by employing various sensing devices, such as imaging sensors, radar, and sonar and
satellite sensor arrays (Usha and Singh, 2013). Recently, a considerable amount of research has
demonstrated the applicability of RS in orchard management for processing the data derived from
various platforms (Barbagallo et al., 2009; Garcia-Ruiz et al., 2013; Salgadoe et al., 2018). The methods,
which vary according to monitoring scale, are manual observation (MO), handheld detection (HD),
sensor networks (SN), ground vehicle (GV), unmanned aerial vehicles (UAVs), aerial sensing (AS),
and spectral satellite sensing (SSS). These methods can be adopted for data collection relating to
specific orchard management activities (e.g. thinning assessment, spraying, disease detection and yield
estimation and prediction) throughout the whole fruit-trees growing cycle. Each monitoring method has
its own pros and cons, depending on the application scenarios (Table 2.1) (Dias et al., 2018a; Shakoor
etal., 2017). Although tedious, visual assessment of a limited number of trees, is the basis of a relatively
accurate management strategy that depends on manual efforts to achieve the assessments (Sarron et al.,
2018a). Handheld detection has a similar detection range, it can provide a more accurate evaluation,
and requires less expertise on fruit-tree growing on the part of the operator (Aggelopoulou et al., 2010).
Compared with these two monitoring methods, ground vehicle platforms are more efficient, and
extensive research on these has been conducted in the domain of orchard management (Colaco et al.,

2018; Escola et al., 2016; Wang et al., 2018a).

19



Orchard management with UAVs: a survey of sensing and analysis approaches

All three methods mentioned above are employed at ground level, and their major advantage is the
quality of datasets collected — i.e., due to the close sensing distance, high-resolution data are easily
accessed. However, it has now been well established in a variety of studies that remote sensing
technology is of great interest within orchard management, especially when it comes to the monitoring
scale and data acquisition efficiency (Salami et al., 2019; Sola-Guirado et al., 2017; Tu et al., 2018).
Conventional remote sensing technology, aerial sensing, and spectral satellite sensing have been applied
in orchard management, with promising performance. However, all are limited by weather conditions
and monitoring costs (Calderon et al., 2013; Panda et al., 2010). In addition, spectral satellite sensing
is also limited by the lack of imagery with optimum spatial and spectral resolutions, and an unfavorable

re-visit time (Berni et al., 2009b).

Table 2.1.

Relevant monitoring methods for fruit orchard management and their attributes*.

MO HD SN GV UAVs AS SSS

Attributes - @S Py
® LR m >S5 &,
Scale +/++ + +/++ A+ A A A
Sensor Payload Size + A+ A < e 4+
Autonomous x v x x x v
Data Post-Processing Level + ++ = A= A= A==E
Platform Accessibility ++ ++ ++ -+ ++ +/++

* - The qualification scale +, ++ and +++ represent “small, medium, and large”, or “light, moderate and
high”, respectively. Symbols “v” and “%x” represent automated and non-automated, respectively.
Methods: manual observation (MO), handheld detection (HD), sensor network (SN), ground vehicle
(GV), unmanned aerial vehicles (UAVs), aerial sensing (AS), spectral satellite sensing (SSS).

Thanks to recent advances in sensor miniaturization, UAVs have become increasingly available to meet
the need for quick and real-time monitoring turnaround times for orchard management at usable spatial,
spectral, and temporal resolutions (Berni et al., 2009a; Caruso et al., 2019; Torres-Sanchez et al., 2018b;
Valente et al., 2019). Thermal sensors, multispectral sensors, and light detection and ranging (LiDAR)
systems are data acquisition resources for the direct monitoring of fruit trees. However, there are various
factors to consider when choosing a UAV to carry these sensors and achieve the required time frequency

and spatial resolution for orchard management. Ground-based platforms are difficult to transport from
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one location to another, and it may not be easy to generate field maps in real time. These limitations
can be overcome by using a suitable UAV to obtain data with the required time frequency and spatial
resolution (Campos et al., 2019; Matese et al., 2019). Compared with satellite-based remote sensing,
using UAVs for monitoring is less dependent on weather conditions. For the monitoring of regions
covered by significant cloud, UAV yielded a data-acquisition probability of 45-70%, while the
probability based on satellite was around 20% (van der Wal et al., 2013). UAVs have been found to
have many other advantages: they can be deployed in high-risk situations, data acquisition is fast, and
images are geo-referenced (Handique et al., 2017; Saldana Ochoa and Guo, 2019). The limitations of
UAVs are the battery life and operational speed. Battery life enables UAVs to operate in relatively small
or medium-sized orchards. Their operational speed is lower than that of manned airborne platforms
(Garcia-Ruiz et al., 2013). In order to collect data of high quality, a good balance between flying speed

and data quality should be maintained during data collection.

Given the increasing need for site-specific and precise management information in orchards, the current
status of UAV-based monitoring activities and research, and the potential opportunities for new
applications and technologies, this chapter aims to: (1) provide a detailed overview of the state of art,
including UAV types, sensor types, and the analysis methodologies that have been applied, (2) identify
the research gaps for fruit orchard management applications by evaluating and comparing relevant
research, and (3) examine the potential technologies of UAVs for achieving precision orchard
management. The hypothesis of this study is that the use of UAV's in orchard management is in its early
stage and not widely investigated yet. Recent publications can provide insights in common methods
and future points for development. The study is divided into three main sections. The section ‘Selection
and analysis of the reviewed papers’ describes the review and analysis approach which was adopted.
Next, the results section provides a detailed description of the selected literature sources using the
application of UAV based monitoring approaches for orchard management as starting point, and
comparing aspects related to UAV systems, camera types, analysis approaches and management
indicators among literature sources. The last section, summarizes latest developments, discusses main
research gaps and provides recommendations for further investigation on UAV-based acquisition

approaches and orchard management oriented analysis methods.

2.2. Selection and analysis of the reviewed papers

For this review, 84 related papers from the Web of Science (WoS) database either published or available
online before 1st January 2020 were found and evaluated using keyword combinations (Fig. 2.2). The
reproducible review approach in this study is comparable to previous approaches (Leroux and Tisseyre,
2019; Pathak et al., 2019) but does not follow the strict criteria (e.g., meta-analysis) of other systematic

review methods (Methley et al., 2014). Although for a selection of papers a quantitative comparison
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was made in this study, a complete meta-analysis could not be made because the adopted experimental
designs in the studies differed too much to allow pooling of results. In order to make a sharp analysis
and to avoid non reviewed references (or inaccurate information), the analysis of literature only
considered scientific studies that received external review as are covered within the WoS database. This
motivation is in light that the WoS core collection has been used officially by organizations as a quality
standard for longer time and provides weekly updates (Falagas et al., 2008). The database of Web of
Science Core Collection, which is composed of four citation indexes (Science Citation Index Expanded
(SCI-EXPANDED), Social Sciences Citation Index (SSCI), Arts & Humanities Citation Index
(A&HCI), and Emerging Sources Citation Index (ESCI)), was selected. The internal WoS search
function was adopted to cover the following searching fields: the title, abstract, author keywords and
Keywords Plus of each record. Timespan, language, and searching model were set for 1945-2019,
English and basic search, respectively. The search string consists of two components, “monitoring

platforms” and “monitored objects”, which were combined with AND:

(1) Monitoring platforms (UAV OR unmanned aerial vehicle OR UAS OR unmanned aerial system
OR remotely piloted aircraft systems OR drone)

AND

(2) Monitored objects (orchard* OR fruit trees OR fruit crops OR pome fruits OR stone fruits OR
apple OR citrus OR orange OR mandarin OR lemon OR olive OR pear OR almond OR peach
OR banana OR mango OR apricot OR chestnut OR nectarine OR lychee OR coconut OR
persimmon OR kiwi fruit OR avocado OR apricot)

As noted in component (2), specific fruit species were explicitly included to ensure that the survey
would not miss any related research. This search function totally generated 155 articles, which were
further examined. The survey focused on the orchards planted with fruit trees such as apple, citrus, or
olive. As orchards can be broadly defined as the cultivation for commercial food production of fruit
crops growing as shrubs of a size between herbaceous plants and trees, or as trees, the search also
yielded a considerable amount of literature on UAV-based investigation in vineyard crops (de Castro et
al., 2018; Di Gennaro et al., 2019; Jimenez-Brenes et al., 2019; Matese et al., 2019; Pichon et al., 2019).
But grapes fall into the category of climbing shrubs, which differ significantly biologically and
geometrically from the fruit trees which form the focus of this study, so they were discarded. Similarly,
articles focus on watermelon, blueberry, tomatoes, macadamia and coffee were also discarded. After
removing other irrelevant ones, 80 articles remained. Among the 80 articles, one article is a meeting
abstract and was discard as well (Garza et al. 2018), because not all information can be extracted.
Besides these 79 articles, 4 relevant articles cited by the ones among this 79 articles were found and

added to the survey (Berni et al., 2009b; Ishida et al., 2018; Torres-Sanchez et al., 2015; Zarco-Tejada
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et al., 2013). One article was actually published in 2019 but its publication year in WoS system was
2020 (Martinez-Guanter et al., 2019). It was also included.

::%;ﬁj:azﬁg VT Key words: Orchard, fruit trees,
g 3 ! fruit crops, apple trees, citrus
remotely piloted aircraft s

systems, drone, UAS...

Orchard management UAVs
84 papers

Application l
Resource Efficiency Geometrlc Traits Productlwty Disease Other Applications :
: 18 papers 22 papers 17 papers 8 papers 19 papers :

| Aspects to be identified

(Objectives) ( Fruit Species ] ( UAV Types) ( Sensors ) (Methodology) [ Results ] ’

| 1 l

( 1. State of the art ) ( 2. Potential of evolving technologies j [ 3. Opportunities and gaps ]

Fig. 2.2. Overview of the criteria and categories investigated for the papers (84 in total) selected from

the Web of Science for the survey.

For every paper, specifications of the study (e.g., sensors applied, study regions) were derived and
compared (Fig. 2. 2). First, the selected papers were classified into five categories on the basis of their
main focus: resource efficiency, geometric traits, productivity, disease, and other applications. In each
category, relevant papers were analyzed in relation to the following aspects: research objectives, UAV
type(s), sensors uploaded, analysis methods applied, and results in relation to orchard management. To
identify factors that affect the research performance, comparisons among fruit species were also made.
As a result, this chapter is concluded by summarizing the state of art, potential of new technology,

research gaps, and opportunities for UAVs in orchard management.

2.3. Results

2.3.1. General status

The trend in UAV-based orchard management publications and citations of these articles is illustrated
in Fig. 2.3. Publications on UAV-based orchard management show a steady increase over the period
from 2009 to 2019, in spite of a small drop around 2015. As can be seen from the citation statistics (3.b),
UAV-based orchard management has attracted significant interest, hence the need for comprehensive

analysis and summary at this stage. The publications originate from and report fieldwork in a large
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variety of countries throughout the world (Fig. 2.4), and they deal with different fruit species, mainly

depending on climatic and geographic conditions.
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Fig. 2.3. (a) Number of publications per year for the period 2009-2019 and (b) Annual cumulative

citation frequency. The search was conducted on January 01, 2020 (Source: Web of Science).
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Fig. 2.4. Distribution of fruit species involved in the 84 research conducted in different countries. Citrus

includes the fruit species of orange, mandarin and lemon.

The articles reviewed were classified into five classes on the basis of the orchard management

application of the UAV and the objective of the application (Fig. 2.5):
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e Resource efficiency: To optimize the efficiency of the inputs: e.g., water, site-specific status,
or even status of individual trees is monitored and subsequently used to devise an irrigation
strategy.

e Fruit-crop geometric traits: To monitor the dynamics of fruit tree growth and potential yield,
geometric traits such as tree height, canopy volume, and area are evaluated. The measured data
can further be used for pruning effect assessment or pruning planning.

e Fruit-crop productivity: In order to maximize economic benefits, the spatial yield estimation
and prediction of final yield at final harvest are investigated.

e Fruit-crop disease: In regular monitoring of the health status of fruit crops, disease classification
and assessment should be timely, in order to provide basic protection.

e Other applications: A few studies focused on UAV-based pesticide spraying, others reported

research on agricultural resource management and food quality tracking.

23% 21%

Orchard

D management
10%

P 26%

20%

Fig. 2.5. Distribution of the five application categories in the selected 84 papers. RE: resource efficiency;

GT: geometric traits; P: productivity; D: disease; OA: other applications.

Aspects for the entire fruit-crop growing cycle (Fig. 2.1) were covered, but there were significant
differences in the focus: the three main categories — resource efficiency, geometric traits and
productivity — account for 67% of the research conducted in orchard management. Below, all five
application fields will be used as a starting point for further comparison and synthesis of the selected

papers.

2.3.2. UAV platforms

An aircraft flying in a set direction and at a set speed and controlled remotely is referred to as an
unmanned aerial vehicle (UAV) or drone. In recent years, the availability of UAVs has rapidly increased,

and there are now many types, from multi-rotor to fixed-wing. According to the literature reviewed in
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this chapter, three types of UAVs are currently used for orchard management: fixed-wing, rotary-wing,

and multi-rotors (Table 2.2).
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Table 2.2. Typical types of UAVs used for orchard management in five of the 84 papers.

Multi-rotors

Fixed-wing Rotary-wing Quadcopter =~ Hexacopter ~ Octocopter

(4-rotor) (6-rotor) (8-rotor)
Picture —— ‘ _ 3
4 L
Model Classic Benzin Acrobatic MD4-1000 Matrice 600 ARF OktoXL 6512
Manufacturer SenseFly, Vario, Microdrones,GmbH, SZ DI, HiSystems GmbH,
Switzerland Germany Germany China Germany
Capacity/mAh 2 6000 - 5700 4500
Weight/kg"' Approx. 0.69 6.57 5.82 Approx. 9.4 <5
Cruise speed/m s 11-25 31.29 15 <18 -
Endurance/min 50 35 30-45 17 .
Wind resistance/m s™! 12 - - 8 -
Ref. (Vanbrabant et (Berni et al., (Mesas- (Ishida et al., (Jarolmasjed
al., 2019) 2009b) Carrascosa et 2018) etal., 2019)
al., 2018)

* — Gross weight includes the supplied sensor and battery

The specific UAV type chosen for orchard management depends on the requirements and limitations of
the application. The most widely used UAV types in orchards are multi-rotors. A multi-rotor is a
helicopter that can fly at different altitudes; it can be driven by four to eight rotors. This platform has
several advantages. It can hover over a given location, use global positioning system (GPS) - based
navigation, fly horizontally and vertically, and only requires a small take-off and landing space. The
ease of control and high maneuverability are also the benefit of it. In addition, a flight altitude of 70 m
can enable the optical sensor to achieve a 3D resolution of centimeter level already (Caruso et al., 2019).
Yet, the main limitations of rotor craft compared to fixed-wing craft are the lower speed and shorter

flight time.

Compared to multi-rotor UAVs, fixed-wing UAVs have longer flight times and faster travel speeds. A
major advantage of fixed wing UAVs is the capability of high payload though the cost of this UAV is
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relatively higher than multi-rotor UAVs. However, they are not able to hover. The speed of this type of
UAV can cause image blurring, which can be solved by using an imaging sensor with improved features,
including fast shutter speeds. Moreover, recent developments in the field of UAV have led to an interest
in the adoption of UAVs with vertical take off and landing (VTOL) system in orchard management
(Mesas-Carrascosa et al., 2018; Torres-Sanchez et al., 2018b). VTOL UAVs are easy to maneuver and
have the freedom from bad weather and even site condition restrictions. In addition to the UAVs
mentioned above, customized UAVs have also emerged in order to meet particular requirements in some
case studies (Stefas et al., 2019). These UAVs are regarded as imaging and remote sensing platforms in
orchard management. Still, UAVs also play an active role, such as the UAVs applied for spraying, which

provide a new solution for the safety of conventionally manual pesticide spraying (Gao et al., 2019).

2.3.3. Sensors

UAVs have been equipped with various sensors and have been able to collect data on the color, spectral,
temperature, and geometric traits of fruits or fruit trees. So far, the main sensors used for UAV-based
orchard management (UAV-OM) are RGB and multispectral. Hyperspectral and thermal sensors are
used in a relatively small range of applications in UAV-OM (Fig. 2.6). In the literature reviewed,
research using LiDAR only was described in one paper, which focused on the geometric traits
measurement of apple trees (Hadas et al., 2019). The application of LIDAR is limited by cost and power
consumption, especially in the case of lightweight UAVs (Stefas et al., 2019). Depending on the
application scenario, the five main sensor types play different roles in different orchard management

activities (Fig. 2. 6).
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Fig. 2.6. Sensors for UAV-based orchard management as mentioned in the 84 papers selected for this
survey.*

*- The areas of the brightly colored circles in the figure represent the proportion used in similar
applications; specific number of relevant articles are also marked; rounded rectangles represent zero.
The abbreviations are the initials of the application category: “R” stands for Resource efficiency in
orchards (dark blue), “G” for Geometric and biophysical traits (light blue), “P” for the applications in
Productivity (yellow), “D” for Disease detection (orange), and “O” for Other applications (green).

Because LiDAR was employed only once in the literature reviewed, it is not included in the figure.

UAVs equipped with RGB imaging sensors have the widest range of applications in visible
characterization, such as fruit-tree geometric trait assessment using grayscale or color images (Ok and
Ozdarici-Ok, 2018a; Xue et al., 2019). RGB sensors, also referred to as “point-and-shoot cameras™ and
“consumer-grade cameras”, are the most commonly used sensors in orchard research. Their advantages
are low cost and simple operation. The high-resolution RGB sensor in particular is capable of providing
detailed information for a wide range of orchard management applications (Gao et al., 2019). For
example, the sensor provides sufficient detail for analyzing the physiological characteristics of peach

trees when ground resolution of RGB images fell into the range of 0 ~ 1 cm/pixel. The correlation
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between orthogonal crown widths derived from UAV imagery and measured in the field yielded an R?
value of 0.91 (Mu et al., 2018). Normally, users can obtain high-quality images by adjusting the
exposure parameters of the sensor according to weather conditions. In the domain of UAV-OM,
orthophotos or digital surface models (DSMs) / digital elevation models (DEMs) indirectly obtained
from RGB are of most interest to researchers (Jimenez-Brenes et al., 2017; Ok and Ozdarici-Ok, 2018b).
First, in order to obtain high-quality orthophotos, to minimize the influence of camera distortion RGB
images need to undergo deformation processing based on the specific model of sensor used. Then,
algorithms are used for image matching and optimization processing. Finally, automatic processing
software such as Agisoft Photoscan software (Uribeetxebarria et al., 2019) is used to stitch the acquired

images into a complete ortho-mosaic.

Depending on the spectral resolution, multispectral and hyperspectral sensors have been used in a
variety of UAV-OM applications, from water status assessment to disease detection (Calderon et al.,
2013; Ishida et al., 2018; Romero-Trigueros et al., 2017). The primary imaging principle of these
sensors is based on differences in spectral absorption and reflection characteristics of different objects
or different parts of the same object. The image processing for the spectral sensor mainly includes
radiometric and geometric pre-processing with subsequent statistical analysis. Compared with RGB
sensors, datasets generated from hyperspectral and multispectral sensors have increased processing
effort, and standardized processing chains are still being developed. Processing the hyperspectral data
is a complex task, and the hybrid spectral decomposition model has certain limitations in practical
research (Guillen-Climent et al., 2012). In terms of the cost, multispectral sensors are relatively
affordable for the growers in orchard but, it acquires spectral information in lower bands than do
hyperspectral sensors — and hyperspectral sensors have an advantage in terms of spectral detail: they
can record continuous spectra, covering a large part of the optical range. This feature enables
hyperspectral sensors to perceive the spectral characteristics and spectral differences of fruit trees,

making them ideal for applications where specific traits need to be derived (Abdulridha et al., 2019).

With their combination of an infrared detector and an optical lens, thermal sensors can receive infrared
radiation energy in the emissive part of the spectrum. The temperature differences that can be derived
from these thermal radiance observations are especially useful for the assessment of water status
(Gomez-Candon et al., 2016; Park et al., 2017). The primary sensor for assessments of water status is
the thermal sensor, as there is a close relationship between transpiration rate and canopy temperature
due to photosynthesis (Zarco-Tejada et al., 2012). In the measurement of crop canopy temperature, the
selection of the region of interest varies and influences the estimation accuracy (Stagakis et al., 2012).
UAVs equipped with thermal sensors are capable of recording fruit-tree canopy temperatures which
reveal the temperature differences in canopies under different conditions. However, during this process,

solar radiation, air temperature, and wind speed around the canopy also have an impact on data
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collection, making the final assessment results uncertain. In addition, in order to simulate the overall
energy balance of the working environment, it is also important to create models which are relevant,
such as the tree canopy conductance model proposed in previous research, which incorporates
simulations of net radiation and aerodynamic resistance (Berni et al., 2009a). Meanwhile, sensor
correction and processing of mixed pixels are still a problem that cannot be ignored (Gomez-Candon et
al., 2016). Fortunately, data fusion, such as the fusion of thermal and RGB images, shows potential for

providing a solution.

2.3.4. Advances in UAV-based remote sensing in orchard management

To enable the comparison among studies with the same or similar objective, a UAV-based orchard
management framework was proposed (Fig. 2. 7). The selected literature fell into the proposed five
categories according to their research objectives in terms of the management activities introduced in
Fig. 2.1. Various data sources were acquired for different management scenario showing notable
difference. LIDAR sensor was applied for geometric traits estimation only. Next, decision indicators
were extracted or calculated from the collected datasets utilizing advanced methodologies. Each
“orchard management” sub-category contains important aspects of the management activities, such as
thermal drift correction which aims to improve the accuracy of assessment of water stress. In each

application scenario, different studies share the same main focus.

Orchard management

Canopy temperature
Chiorophyll fluorescence

Volume
Crown width, perimeter
Annual growth

Physiological indices (¢.g.,
chiorophyll content)
Fruit amount.

Physiological indices

Management case scenario | Resource Efficiency (RE) ) ( ceometric Traits @1 ) ( Productivity (7)) ((pisease @) | (" other Appiications (0a) |
Hyperspectral
Multispectral RGB/ Multispectral Multispectral
UAV acauired data sources | Thermal LIDAR RGB/ Photogrammetric Thermal RGB / Photogrammetric
RGB/ Photogrammetric RGB/ Photogrammetric
Modeling 3D image modeling (e.g., DSM) Spectral analysis ANN Despieaming
Image processing i ge Ippe machine Support-vector machine
Methods uppor
Statistical analysis Machine learning 20 knage/modeling Spectral analysis Spectral analysis
Object-based image analysis
Simulation Deep learning Diep leardig Random forest classifier 3D image modeling
oBIA Machine learning
[ I [
Vegetation indices (e.g., NDVI) Height Ethylene Vegetation indices Vegetation indices (e.g., NDRE)
Decision indicators | CFOP Water stress index Canopy area ion indices (NDVI) Canopy temperature Features

Droplet density and coverage rate
Tree shape (e.g., hedgerow-

shaped)
[

Water stress estimation
‘Thermal drift correction

Water stress quantification
Irrigation methods assessment
Water stress vs fruit quality

Geometric estimation

Usefulness of spectral data Ilrn'-dgla produ:::: v'::.ﬂ::“

Image overlap influence ices vs yield and quality

o Yield estimation and prediction
ne: Health status

Detection and segmentation Platform development

Pruning effects assessment

Breedina trials

Disease severity evaluation
Early detection and identification
Fire blight diseases

Citrus canker disease
Huanglongbing

Olive Verticillium wilt

Spraying economics assessment
Spraying system development
Spraying operation effects.
Droplet distribution vs tree shape
Resources management
Classification and discrimination

Fig. 2.7. Data-decision framework in orchard management using UAV technology, based on the selected

84 papers.
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2.3.4.1. Fruit-tree geometric traits

Geometric characteristics such as the shape and size of trees have emerged as important indices for a
wide range of activities for managing the growth process of fruit trees. In breeding trials, information
on olive tree crown dimensions provides a benchmark for developing suitable cultivars in a given
training system, e.g., open vase configuration or hedgerow (Ben Sadok et al., 2012; De la Rosa et al.,
2007). Here, a training system means the management model for growing the fruit trees to a desired
size and form, which is accomplished by pruning. Furthermore, traits like canopy area and crown
volume are decisive when assessing pruning impact. By mapping these traits, optimal pruning type and
intensity can be selected and applied (Castillo-Ruiz et al., 2015; Miranda-Fuentes et al., 2015). In
general, structural properties monitoring is capable of elucidating tree crop growth status. Further, these
geometric traits are useful for developing site-specific treatments involving water, and for ameliorating
the management problems caused by soil heterogeneity. Acquiring conventional measurements
manually requires intensive effort and is associated with much uncertainty due to the irregularity of tree
crowns. First, the primary dimensions (e.g., the tree height) are measured and empirical models or
equations that represent the trees as regular polygons are applied for the characterization of the trees
(e.g., the canopy area or crown volume) (West, 2009). In-situ measurements of large orchard plots are
more inefficient and costly. The estimation from terrestrial platforms show promising performance; they
include active RS technology and LiDAR laser scanners, which have been found to be able to achieve
an R? value of 0.97 for the tree height estimation (Moorthy et al., 2011). Though UAVs equipped with
LiDAR have not been properly explored for geometric measurement in the domain of orchard
management, UAVs installed with other sensors, e.g., RGB and multispectral, have been shown to be

reliable alternatives for fruit-tree geometric measurements (Anifantis et al., 2019; Hadas et al., 2019).

Recent studies have described UAV-based quantification of geometric features in fruit trees, focusing
on automated 3D reconstruction technique. 3D reconstruction of trees is the one of challenges in the
domain of remote sensing, whereas 2D delineation quality affects the estimation based on the 3D digital
models (Ok and Ozdarici-Ok, 2018a). Without the use of height thresholds, a delineation method for
citrus-tree canopies that employs orientation-based radial symmetry transform (OBRS) resulted in an
overall F1-score of 91.2% (Ok and Ozdarici-Ok, 2018a). OBRS transform locates the circular objects
directly and improves the accuracy of the subsequent extraction of regions of interest. Circular Hough
transform algorithms are also suitable for the extraction of fruit trees. Research has indicated that an
approach combining this algorithm with sequential thresholding and canny edge detection resulted a
delineation accuracy exceeding 80% (Koc-San et al., 2018). Neural network based methods are also
capable of classifying fruit trees (Ampatzidis et al., 2019). For instance, (Kestur et al., 2018) compared
the K-means method with an extreme learning machine (ELM) approach that uses a single hidden layer

feed forward neural network (SLFN) for the classification of different fruit-tree crowns (banana, mango,
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and coconut). In this case study, ELM performed better than the unsupervised K-means method: the

classification accuracies were 96.0% and 85.5%, respectively.

In general, the combination of geographic object-based image analysis (GEOBIA) and DSMs derived
from the structure from motion (SfM) method is a well-established approach for fruit-tree classification
and geometric index calculation in which the indices consist of tree height, and crown width and
perimeter (Jimenez-Brenes et al., 2017; Johansen et al., 2018; Ok and Ozdarici-Ok, 2018b; Torres-
Sanchez et al., 2015). In a case study of height estimation, a GEOBIA method treating points between
1 and 1.5 m as the crown center was first applied in photogrammetric point cloud analysis, yielding an
R?value of 0.94 (Torres-Sanchez et al., 2018a). This indicates that dense 3D point clouds are sufficiently
representative to be used for geometric measurements. With the use of similar method, the differences
in the quality of tree crown 3D reconstruction derived from two training system, intensive and hedgerow
system, was observed (de Castro et al., 2019). Furthermore, when a random forest classifier was trained
on the basis of GEOBIA, the estimation of crown height and plant projective cover (PPC) yielded a R?
value of 0.65 and 0.62, respectively (Tu et al., 2019). In the case of peach trees, (Mu et al., 2018)
reported that a combination of adaptive threshold and watershed segmentation methods was suitable
for measurements of crown width and crown projection area (CPA, m?) (Eq.1). Based on this, the spatial
and temporal data on growth rate based on CPA was observed. An adaptive threshold is also appropriate
for filtering non-fruit trees, particularly the threshold related to tree height (Xue et al., 2019).
CPA = 0.65 X W; xW, @)

Where the equation is based on local experience, and Wy, W, represent the crown widths parallel and

perpendicular to the tree rows.

Additionally, the UAV data collection design has a significant impact on the estimation results for
different application scenarios. (Torres-Sanchez et al., 2018b) indicated that the best configuration for
olive-tree volume estimation is the combination of 95% forward overlap and 60% side overlap while
the flight altitude, the ground sampling distance (GSD) and image footprint was 100m, 0.038 m/pixel
and 124x94 m, respectively, which could achieve an estimation accuracy of 95% and save 85%
computing time compared to applying maximum overlap (97%). The effects of flight height on the tree
height estimation was also validated. It showed that the R? value changed from 0.79 to 0.86 when the
GSD decreased from 16 cm to 3 cm (Marques et al., 2019). GSD value affects the point cloud density
directly. Research indicated that the row detection accuracy could reach 100% when the GSD ranged
from 2.13 to 6.69 cm/px (Sun et al., 2019). A approach in order to enable automatic estimation of
geometric parameters has been to develop valuable processing tools in QGIS software. One new plugin
was capable of achieving automatic detection of trees by integrating several external algorithms and
had a classification accuracy of 92.84% (Duarte et al., 2018). Different spatial resolutions produced

DSMs of inconsistent quality. For one study, a stable relationship between spatial resolution and DSMs
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quality was found when resolution fell in the range of 5 to 30 cm/pixel (Zarco-Tejada et al., 2014). To
date, limited attention has been paid to the feasibility of upscaling methods, and several methods have
only been evaluated for a given training situation (Torres-Sanchez et al., 2018a). The methods should
be tested in other circumstances, e.g., related fruit species, other data collection strategies. Focusing on
the isolation of error sources in the full process of estimating the geometric traits of fruit trees can likely
identify the critical steps in workflow. For instance, methods based solely on morphological traits such
as shape are ineffective if the background contains objects of no interest that have the same

morphological traits.

2.3.4.2. Fruit-tree productivity traits

Productivity estimation is frequently prescribed for orchard management practices as it provides key
information for growers and other stakeholders in market supply and exports. Detailed spatial explicit
information in particular is key for growers to facilitate efficient utilization of resources and to optimize
and streamline their harvest process (Suo et al., 2019; Woodward and Clearwater, 2012). In addition,
estimation of essential elements such as the nitrogen status and chlorophyll content and of the fraction
of intercepted photosynthetically active radiation (fIPAR) during the growing season also benefits the
estimation of potential final yield and fruit-crop performance (Guillen-Climent et al., 2012; Perry et al.,
2018; Vanbrabant et al., 2019). Traditional in-situ estimation of productivity variables is time-
demanding and uncertain. It entails visual inspection of number, color, shape, size, and other
information on fruits or fruit trees according to the grower’s own experience (Srivastava and Sadistap,
2017). This results in limited samples and repetitions, which are insufficient to account for the spatial
and temporal variability within and between orchards (Aggelopoulou et al., 2009; Perry et al., 2009).
Most studies, however, have been conducted under special conditions (e.g., using light-shielding cover
to collect data), or at ground-scale level, which also shows the limitations for operational management
(Nguyen et al., 2016). A recent study has examined yield estimation based on satellite imagery, but the
method was shown to have low feasibility for different orchards (Rahman et al., 2018a). Despite the
timeliness and low monitoring cost of satellite-based methods, they do not satisfy all the requirements

of yield-related management in orchards.

It is now well established from a variety of studies that UAV-based imaging has potential to support
data-driven yield estimation algorithms. In general, counting flowers/fruits on trees is the direct and
precise solution using UAV imagery technology (Horton et al., 2017). Yet, the occlusion of
flowers/fruits by branches, leaves and/or other fruits, variable outdoor lighting conditions, and color
similarity seriously affect the direct estimation. Fruit trees need to be accurately thinned during
flowering stage in order to gain better yield and fruits with good quality. Thus the basis is the precise

estimation of the flowering status in orchards. In this context, an enhanced bloom index (EBI) (Eq. 2)
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was proposed for quantifying floral phenology in an almond orchard. The EBI is capable to enhance
flower signals and reduce the noise produced by soil and green vegetation. Robust information on floral
phenology was provided by the EBI, showing an agreement with the bloom coverage (with a R 0f0.72)
(Chen et al., 2019a). Flower numbers is difficult to accurately count with aerial images due to the high
density and occlusion of flowers. To deal with this, flowering density calculated from 3D point clouds
was proved to monitor the flowering dynamics at field scale using SfM and OBIA approaches (Lopez-
Granados et al., 2019b). To further improve the feasibility of UAV in yield mapping, a vision-based
UAV system was suggested (Stefas et al., 2019). Its capability of avoiding obstacle in high density

orchards enable increasing spatial resolution navigating autonomously among apple rows and trees.

Brightness _ R+G+B )
Greenness - Soil - Signature % “(R—B+ ¢

EBI =

Where the € is an adjusting constant to make the denominator non-negative, and R, G, B are the

reflectance of red, green and blue bands, respectively.

In addition to direct measurements, alternative parameters (such as geometric traits and vegetation
indices) for indirect productivity estimation or prediction are of interest. Canopy projected area (CPA)
and canopy perimeter have been proved to be correlated with the fruit load of peach trees
(Uribeetxebarria et al., 2019). CPA yielded a higher correlation, with an R value of 0.85. Olive yield
can be forecast from individual crown area estimated from UAV images (Sola-Guirado et al., 2017),
and a high agreement between the crown volume and yield was also observed in some almond varieties
(Lopez-Granados et al., 2019b). In the case of banana productivity, normalized difference vegetation
index (NDVI) was positively correlated with several metrics regarding the yield and fruit quality (e.g.,
bunch weight, length of the longest finger), and negatively correlated with fruit loss (Machovina et al.,
2016). Further, an attempt to demonstrate the influence of soil heterogeneity on fruit productivity found
no relationship between NDVI and physical soil quality. In addition, predictive models for mango yield
based on geometric parameters have provided an R? value greater than 0.77 using GEOBIA, without
counting numbers (Sarron et al., 2018a). Meanwhile, research exploring whether the methods proposed
have universal application is interesting. One source of weakness in estimation using structure indices
is that vegetation dynamics related to short-term physiological processes cannot be captured. To deal
with this, chlorophyll content related index - TCARI/OSAVI, light use efficiency related index - PRI570,
and canopy chlorophyll fluorescence can be alternatives. Research suggests that these three indices
yielded values of R? in the range between 0.75-0.84 when estimating the gross primary production (GPP)
(Zarco-Tejada et al., 2013). Productivity estimation related to physiological is largely based on data

derived from multispectral or hyperspectral sensors. In this context, there are still operational challenges
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in employing fixed-wing UAVs (two hours’ preparation time: set up, camera calibration, safety check,

and launch) and in application scale (Machovina et al., 2016).

In order to optimize fruit productivity and harvest activities, it has been advised to focus on harvesting
time optimization, fruit tree vitality and health status monitoring (Vanbrabant et al., 2019). Fruit
ripeness is the key element to determine the harvest time; it affects fruit quality directly during transport
to markets. Preliminary efforts on ethylene detection via ethylene-sensitive sensors attached to UAVs
have shown the effects of flying height and sensing wind speed when assessing apple maturity (Valente
et al., 2019). This demonstration provides a novel method for harvest time optimization, though the
modeling and simulation results indicated a short detection margin for the ethylene. In one study in the
domain of radiation interception estimation, vegetation indices mostly related to tree crop structure were
regarded as a proxy for fraction of absorbed photosynthetically active radiation (fAPAR) (Zarco-Tejada
etal., 2013). On the other hand, fIPAR at crop canopy scale also proved mappable via airborne imagery,
especially in peach and citrus orchards (Guillen-Climent et al., 2012). Similar fIPAR estimation results
were found when methods employing the combination of 3D radiative transfer model and scaling-up
were compared with a model inversion method: RMSE values were 0.09 and 0.10, respectively. It was
shown that row orientation affected the relationship between NDVI and fIPAR. Further, fIPAR
quantification was also validated via Mahalanobis distance distance supervised classification method,
which resulted in a RMSE of 0.06 (Guillen-Climent et al., 2014). In order to achieve higher productivity,
regular nutritional status monitoring is the main requirement for fruit species like citrus (Osco et al.,
2019a). Evidence was found that nitrogen contents prediction accuracy for citrus depends on the sub-
tree areas where the spectral data extracted from. Nitrogen prediction accuracy based on the spectral
data from the whole canopy and the young leaves was found lower than that from the mature leaves,
while the effects of sub-tree areas on the prediction accuracy of soluble sugar and starch in the leaves
were not clear (Liu et al., 2016). Instead of using conventional indices for nitrogen status assessment,
(Perry et al., 2018) applied a new index, the modified canopy chlorophyll content index (M3CI) (Eq.3),
for the assessment at canopy level, resulting in an R? value of 0.67. Machine learning algorithms
currently performed well in the monitoring of fruit tree conditions such as chlorophyll content
(Vanbrabant et al., 2019), nitrogen content . Compared with SVM, ANN and decision tree (DT) machine
learning algorithms, random forests (RF) was the optimal one for the prediction in canopy nitrogen
content of orange trees. R? value reached 0.9 while the mean squared error (MSE) was 0.307 g/kg (Osco
et al., 2019b).

R +R —R
M3cl = MR Rred ~ Ree 3)
Rnir — RRred + Rre

Where the Ryjgr was measured in the band of 810-nm, the measured reflectance of Rgeqand Rrgwere

in the 660-nm and 710-nm band, respectively.
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The aforementioned papers still reveal limitations in the data-processing time (Sarron et al., 2018a), the
robustness of methods proposed, and experimental design in terms of sample size (Perry et al., 2018).
Finally, nearly all of the research was conducted at a certain period of time and few comparative studies

report results of estimations at different fruit-growing stages throughout the entire growth cycle.

2.3.4.3. Resource efficiency in orchards

The water used for irrigation in agriculture accounts for 85% of the total water managed at a global
scale. Because of the water shortage worldwide, precise water management in orchards is a crucial
practice, particularly in semi-arid areas where water inputs require higher economic investment.
Climate change is also becoming a problem for the fruit industry, as some geographic areas are
experiencing long periods of drought (Gomez-Candon et al., 2016). An efficient irrigation strategy is
key to minimizing this negative impact on orchard managers’ profit. Sufficient water input is closely
related to fruit production and quality. Even some drought-tolerant species like olive (Olea europaea L.)
can benefit from irrigation, i.e., the promotion of growth, yield and fruit quality (olive oil), especially
when grown in high-density training systems (Caruso et al., 2019; Egea et al., 2017). Within the
definition of deficit irrigation, water inputs should meet the realistic requirement of the trees. Site-
specific water management is thus of great importance to track the variability of water needs in orchards.
More specifically, it solves the variability problem caused by soil heterogeneity and canopy-cover
differences (Couvreur et al., 2016). The use of remote sensing technology for fast assessment of the
water status in orchards aims to improve productivity and water use efficiency in irrigation. For instance,
the normalized difference red-edge (NDRE), derived from UAV imagery is capable for monitoring the

irrigation inhomogeneities and may further identify the growth inhomogeneities (Jorge et al., 2019).

When water supply from the soil cannot meet the demand for transpiration of plants, water deficits
occur. These short-term deficits may hamper the growth of fruit trees and will affect the productivity.
As most fruit trees are sensitive to water deficits, information related to optimizing irrigation is critical.
Water stress monitoring benefits the application of deficit irrigation, allowing water resources to be

saved and fruit yield and quality to be maintained (Girona, 2002; Zarco-Tejada et al., 2012).

In the late 1970s, canopy temperature was identified as a proxy for water status monitoring, with the
concept of crop water stress index (CWSI) (Idso et al., 1978; Jackson et al., 1981). The CWSI
normalizes the difference between air (T,) and canopy temperature (T¢), and lower (LL) and upper limit
(UL) (transpiration of a leaf at potential rate and no transpiration, respectively), demonstrating the
evaporative demand (Eq.4).

(Tc—Ta) = (Te— Ta)LL

WSI =
C S (Te—Ta)yL = (Te— Ta)LL

4)
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UAV imagery has shown to be potentially more efficient for canopy temperature assessment than
traditional field measurement (Gonzalez-Dugo et al., 2014). When it comes to the exploration of canopy
temperature, stomatal aperture is key to understanding the fluctuations, i.e., stomatal closure can lead
to a decrease of evaporative cooling and rise in leaf temperature. The impacts of environmental
conditions on stomatal response vary for different fruit species, which should be borne in mind,
especially when the temperature of the fruit-tree canopy is taken as an indicator (Ballester et al., 2013).
CWSI applications are mainly restricted by two aspects: necessary spatial resolution and the site-
dependent equation of non-water-stressed baseline (NWSB). Without the use of reference surfaces, a
high-resolution CWSI map was achieved by combining energy balance equations based on physical
models with thermal imagery (Berni et al., 2009a). This reveals the capability of CWSI for quantifying
the spatial variability too. However, if the targeted orchard contains different species or the same fruit
species with different training systems, the thermal response is affected and a single set of reference
values may lead to errors. In a study investigating this case (Park et al., 2017), an adaptive CWSI yielded
an agreement with stem water potential (Js) and stomatal conductance (gs) with determination
coefficients (R?) of 0.72 and 0.82, respectively, employing temperature thresholds. This was in contrast
to the conventional CWSI, which yielded R* values of 0.27 and 0.34, respectively. The orchard had
been divided into four sub-areas according to the fruit species and training systems and the adaptive
thresholds of the lower and upper reference were estimated for the adaptive CWSI calculation. The
CWSI algorithm applied is shown in Eq. (5). Here, the canopy temperature derived from aerial imagery

was applied instead of the difference between canopy and air temperature (Jones, 2013).

Tc - (Tc_ Ta)LL
I =
WS (Te—Ta)yL = (Te— Ta)LL ®)

Where T, is the aerial canopy temperature measured, T,is the air temperature, LL represents the

temperature of a leaf at full transpiration and UL is non-transpiring temperature.

It is widely accepted that Y is a reliable parameter which is closely related to plant response to water
stress. Pg not only reveals the water status in the plant—soil-atmosphere continuum but integrates the
effects from soil moisture and evapotranspiration. However, obtaining Yg values with a field
measurement method is a labor-intensive and inefficient process (Zhao et al., 2017); alternative indices
derived from aerial imagery are therefore needed. Thus, in addition to CWSI, research on comparing
vegetation indices derived from the UAVs with ground-collected data, such as Y and g, is currently

of interest (Gonzalez-Dugo et al., 2013; Stagakis et al., 2012; Zarco-Tejada et al., 2012).

To explore suitable indicators for the assessment of water stress, a variety of reflectance indices derived
from UAVs have been calculated, analyzed, and compared with water-stress-related measurement
methods conducted on the ground, e.g., g5 (Table 2.3). Indices integrating data from different spectral

ranges such as the NDVI have shown potential for inferring water status in several types of orchards
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(Caruso et al., 2019). Indices such as chlorophyll and fluorescence indices (leaf-level), green ratio (GR),
enhanced normalized difference vegetation index (ENDVI), normalized difference green near infrared
index (NDGNI), and saturation (S) have also proved to be sensitive to water status (Bulanon et al., 2016;
Zarco-Tejada et al., 2012). Intensity (I) did not provide reliable results in the case of apple orchards.
Additionally, two formulations of photochemical reflectance index (PRI), PRIs; and PRIs;s, were
correlated with water stress and showed promise for fruit quality assessment in an orange orchard
(Stagakis et al., 2012). NDVI calculated at canopy level in almond trees decreased within areas with
high water stress when the blue band was employed (Eq.6), which indicates that the canopy NDVI
could be a water stress indicator for some fruit crops (Zhao et al., 2017).

NDVIg = PNIR — PB ©)

PNIR T PB
On the other hand, as a canopy structure parameter, the leaf area index (LAI) is sensitive to water stress.
Studies of LAI indirect measurement showed that the NDVI calculated from UAV images also
correlated with the LAI measured on the ground (R? value ranged from 0.78 to 0.88) (Berni et al., 2009b;
Caruso et al., 2019).

Table 2.3.
List of spectral vegetation indices used in the assessment of water stress and its associated equations

and applied for UAV-acquired datasets in fruit orchards.

Aerial Reflectance Indices Equation Ref.

Enhanced Normalized ENDVI = NIR +G—2(B) (Bulanon et al., 2016)

Difference Vegetation Index NIR + G+ 2(B)

(ENDVI)

Intensity (I) I=NIR+G+B (Bulanon et al., 2016)

Normalized Difference NDGNI = NIR - G (Bulanon et al., 2016)

Green Near Infrared Index NIR + G

(NDGNI)

Saturation (S) = I-3(B) (Bulanon et al., 2016)

I

Normalized Difference NDVI = NIR — RED (Ballester et al., 2018; Berni et al.,

Vegetation Index (NDVI) NIR + RED 2009b; Caruso et al., 2019; Delalieux
et al., 2014; Romero-Trigueros et al.,
2017; Stagakis et al., 2012; Zarco-
Tejada et al., 2012; Zhao et al., 2017)

Renormalized Difference RDVI = Rgoo — Ré70 (Delalieux et al., 2014; Stagakis et

Vegetation Index (RDVI) v Reoo + Re7o al., 2012; Zarco-Tejada et al., 2012)
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OSAVI Index

Simple Ratio (SR)

Modified Simple Ratio
(MSR)
Triangular Vegetation Index

(TVI)

Modified TVI (MTVI)

Xanthophyll Indices
Photochemical Reflectance

Index (PR1570)

Modified Photochemical
Reflectance Index (PRIsis)

Chlorophyll a b Indices
M

Vogelmann (VOG1)

Transform Chlorophyll
Absorption in Reflectance

Index (TCARI)

TCARI/OSAVI
Blues/Green/Red Ratio
Indices

GR

BGI1

(1+0.16)

% RSOO B R670
Rgoo + R670 +0.16

SR = Rggo /Re70

MSR

_ Rsoo/Rem -1
(Rsoo/Rsm)o's +1

TVI = 0.5 % [120
(R750 — Rss50) — 200 =
(Re70 — Rss0)]

MTVI = 1.2 % [1.2 =
(Rgoo — Rss0) — 2.5 *
(Re70 — Rss0)]

Rs70 — Rsag

PRI = —
7% ™ Rsy0 + Rs31
PRL.. = Rsy5 — Rz
157 Rsys + Reag

IM = R750/R710
VOG1 = R740/R720
TCARI = 3 * [(R700 -

Rg70) — 0.2 x (R7g0 —

Rss0) * (R700/Re70)]
TCARI / OSAVI

GR = Rss0/Re70

BGI1 = Ryg0/Rss0

(Delalieux et al., 2014; Zarco-Tejada
etal., 2012)

(Delalieux et al., 2014; Zarco-Tejada
etal., 2012)
(Delalieux et al., 2014; Zarco-Tejada
etal., 2012)

(Stagakis et al., 2012; Zarco-Tejada
etal., 2012)

(Zarco-Tejada et al., 2012)

(Ballester et al., 2018; Delalieux et
al.,, 2014; Stagakis et al.,, 2012;
Zarco-Tejada et al., 2012)
(Ballester et al., 2018; Delalieux et
al., 2014; Stagakis et al., 2012;
Zarco-Tejada et al., 2012)

(Delalieux et al., 2014; Stagakis et
al., 2012; Zarco-Tejada et al., 2012)
(Delalieux et al., 2014; Zarco-Tejada
etal., 2012)

(Ballester et al., 2018; Delalieux et
al., 2014; Zarco-Tejada et al., 2012)

(Ballester et al., 2018; Zarco-Tejada

etal., 2012)

(Bulanon et al., 2016; Gonzalez-
Dugo et al., 2013; Zarco-Tejada et al.,
2012)
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BGI2

Blue/Red Indices
BRI1
BRI2

Lichtenthaler Index
LIC3

Carotenoid Indices

Fluorescence Indices

BGI2 = R4s0/Rss0

BRI1 = Rug0/Rge0
BRIZ = Ry50/Re90

LIC3 = R440/R740

Rs20/Rs00

Rs15/Rs70

Rs15/Re70

L747 — L762

L7so — L7s2

L7a7/ Laez
Lo / Lrez

((L747 + L7go) / 2) — L1z

FLD2 (747; 762)
FLD2 (780; 762)
FLD3 (747; 762 780)

f [747,780]

(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)

(Zarco-Tejada et al., 2012)
(Delalieux et al., 2014; Zarco-Tejada
etal., 2012)

(Zarco-Tejada et al., 2012)

(Delalieux et al., 2014; Zarco-Tejada
etal., 2012)
(Delalieux et al., 2014; Zarco-Tejada
et al., 2012)
(Delalieux et al., 2014; Zarco-Tejada
etal., 2012)

(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)
(Zarco-Tejada et al., 2012)

(Zarco-Tejada et al., 2012)

However, not all the pixels within the canopy area yield the water status: these are non-leaves or shaded

areas. Besides the multispectral indices mentioned in Table 2.3, monthly canopy volume increment

correlated well with daily water stress integral (WSI), with an R? of 0.99 (Caruso et al., 2019). WSI

reduces the impact of the fluctuations in water status. The slope of (T. - T,) over time was found to be

another novel indicator (Gonzalez-Dugo et al., 2013). Generally, research focused more on the indices
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related to canopy structural changes than on diurnal physiology changes (Romero-Trigueros et al.,
2017). In the case of orchards with several fruit species, using one single index could dramatically
simplify management. Because different species vary in their canopy architectures and nutrient status,
diverse water status indicators are needed (Ballester et al., 2018). Suitable indices should not be
determined by numerous specific conditions, such as fruit species, irrigation methods, and geographic
conditions (Bulanon et al., 2016; Caruso et al., 2019). For particular applications, varying experimental
comparisons are required, and a general case study per application may provide insight into the
bottlenecks. For example, in order to explore the universal vegetable index for water status assessment,

the performance of methods proposed for different fruit species should be tested.

Generally, two thermal sensor systems are available for temperature imaging: cooled systems, which
are loaded on satellite and aerial platforms, and uncooled systems, which are used on UAV payloads
with less power consumption. However, the temperature drift that occurs in uncooled systems affects
the rate of error, causing offset non-uniformity of the acquired data (Gomez-Candon et al., 2016). Some
drift correction strategies for thermal sensors need additional flying time, which means higher
requirements for on-board batteries, though the accuracy is greater than 1 °C. Maintaining the same
correction accuracy and using the methods based on redundant information, the cubic drift model
enables more efficient drift correction (Mesas-Carrascosa et al., 2018). Even during data collection prior
to this operation, the final estimation of water status can be adversely affected by factors such as: the
effects of solar motion when aiming at calculating canopy NDVI; the data collection interval, which
may reduce the influence of fluctuation; and the flight altitude, which affects subjective interference.
Fruit orchard properties (e.g., cultivars and training systems) should be taken into account in order to
achieve a comprehensive analysis of the images. Conducting edge extraction prior to modeling
enhanced the mapping accuracy of stem water potential (Park et al., 2017). Yet approaches on increasing
the efficiency of image extraction and radiometric correction should also be considered for use in the
statistical analysis or image processing (Gomez-Candon et al., 2016). In addition, it is not uncommon
for pixels to be mixed together in image areas, e.g., areas contain canopy and non-interested pixels, the
soil pixels, and methodologies need to be further developed to reduce the associated error. Though in
most cases the fine-resolution imagery necessary for pure crown extraction or intra-canopy variability
investigation is available, more quantification studies are needed for precise water management in

orchards.

2.3.4.4. Detection of diseased fruit trees

Different types of diseases may occur throughout the fruit-growing season — from flowering to harvest,
and even in the dormant tree period during winter. In terms of their cause, diseases in orchards fall into

two categories: biotic and abiotic. Biotic diseases are caused by living pathogens, which could be
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bacteria, fungi, viruses, or insects. A well-known apple bacterial disease is fire blight, which leads to
significant losses in fruit production by infecting the fruits and rootstock of fruit trees (Jarolmasjed et
al., 2019). Apple scab and pear black necrotic leaf spot belong to fungal and viral diseases, respectively
(Belfanti et al., 2004; Shim et al., 2004). Abiotic stress is caused by the interaction of fruit trees and
other factors in the planting environment, such as water pollution, overwatering, and extremes of light
and nutrients. Treating abiotic stress as abiotic disorders may predispose fruit trees to infectious diseases,
and abiotic and biotic diseases can also occur in the same trees. Diseases significantly affect the fruit
quality and final yield by infecting fruits, trees, and other areas, such as twigs and leaves. Many diseases
show mild effects, resulting in limited to no harm at some point. But some diseases even cause tree
mortality. Huanglongbing (HLB), or citrus greening, and phytophthora root rot disease can be lethal to
fruit trees worldwide and attract growers’ attention because of their significant economic impacts
(Salgadoe et al., 2018; Sankaran et al., 2011). The most effective management to deal with fruit trees
diseases is to detect the infected trees as early as possible. In addition, specific treatment can be taken,
i.e., removing diseased trees, applying dedicated pest protection measures, and planting resistant species.
Some diseases are hard to diagnose from visual symptoms at the early infected stage, with the result
that no effective action can be taken to deal with the disease when the serious symptoms are recognized
at a late stage. Traditional methods for diagnosing fruit-tree diseases are visual observations in the field
combined with laboratory analysis and have limitations relating to reliable evaluation and time—cost
efficiency (Khan et al., 2018; Pan et al., 2014; Srivastava and Sadistap, 2017). UAV-based fruit-crop
disease monitoring has been employed for a few types of disease, but it is still critical to investigate its
applicability for monitoring severe diseases like Panama disease in banana (O'Neill et al., 2016).
Additionally, disease detection based on aerial images from UAVs can provide orchard scouting over a

larger area and is low-cost in terms of both time and equipment.

Disease identification is the first step for practical control. The complexity of disease diagnosis and
diversity of fruit species hampers the transfer of research findings to other methods of fruit-tree disease
detection. Different symptoms of diseases have been classified with different sensors, deriving valuable
indicators from aerial images. The capability of UAVs equipped with hyperspectral and multispectral
sensors to classify citrus trees infected by two types of biotic diseases, bacterial canker and HLB,
respectively, has been described (Abdulridha et al., 2019; Garcia-Ruiz et al., 2013). Machine learning
has shown promise for exploring the complex sensitivity of an indicator for a specific disease diagnosis
issue. Citrus bacterial canker (symptoms are yellow halos on fruit and twigs) is a disease with serious
implications (Duan et al., 2018). (Abdulridha et al., 2019) explored detection techniques for this disease
under laboratory conditions and in an orchard, utilizing hyperspectral imaging and machine learning.
In total, 31 vegetation indices were evaluated for the disease detection; also studied was the
classification of disease development stages — asymptomatic (infected but with no symptoms), early

(tiny lesions), and late symptoms (brown lesions). Two machine learning methods were compared for
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the indoor detection: neural network radial basis function (RBF), which is regarded as a powerful
classifier for spectral reflectance data, and K-nearest neighbor (KNN). Overall, RBF performed better
than KNN in different stages of the disease. The water index (WI) (Eq.7) and anthocyanin reflectance
index (ARI) (Eq.8) and TCARI (Table 2.3) were the optimal indices for laboratory conditions and UAV-
based diagnosis of infected trees, respectively. Identification accuracy of healthy and non-healthy trees
from UAV-based detection was good, and the classification accuracy achieved for the late stage
detection under laboratory conditions was 92%. But the authors also noted that immature fruit could

not be used for early detection.
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Detection on the deadly disease HLB, for which the only treatment option is to cut down and remove
the infected trees, has long been a research topic of great interest. A comparison between a UAV-based
and an aircraft-based system for identifying HLB was conducted using multispectral imagery (Garcia-
Ruiz et al., 2013). Compared to earlier case studies, the opportunities for using platforms with different
spatial resolutions for disease classification were demonstrated. Resolutions of 0.5m and 5.45cm per
pixel were employed for the aircraft and UAV, respectively. More indices were analyzed: 6 spectral
bands and 7 vegetation indices. For the classification methods, support vector machine (SVM) with
kernel performed better than linear SVM, linear discriminant analysis (LDA), and quadratic
discriminant analysis (QDA). Results showed that the identification accuracy from the UAV was 67-
85%, while aircraft-based yielded 61-74%. The authors suggested that future studies should focus on
algorithm development, image acquisition, and the temporal effect of aerial identification of HLB.
Similarly, a HLB detection accuracy of 81.75% was achieved when 16 vegetation indices were extracted
for the classification based on SVM method (DadrasJavan et al., 2019). The study also found that the
registration errors between bands of multispectral sensors could lead to a lower classification accuracy
when the errors were larger than one pixel, especially for the application of UAV technology. In general,
radiometric calibration complicates the process of HLB detection. However, the study showed
insignificant effects of radiometric calibration on the discrimination of HLB-infected and healthy trees
when the data were collected consistently with similar illumination and atmospheric condition
(Pourazar et al., 2019). Disease scouting contributes to the control of disease. With the help of UAV-
based platforms, the scouting efficiency was improved. However, UAV-based scouting is influenced by

flying time, due to the limitation resulting from the payload.
In addition to disease identification, the main concerns investigated by researchers are early disease

detection and severity evaluation, especially in the application of fruit breeding programs. A type of

fungal disease, verticillium wilt (VW) in olive, greatly impacts the final yield and even leads to tree
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mortality. By analyzing thermal, multispectral, and hyperspectral datasets derived from UAV, (Calderon
etal., 2013) aimed at the early detection of VW and discrimination among different VW severity levels.
They analyzed different indices, e.g., physiological indices, and other indicators. Based on the finding
that VW can cause water stress changes in olive trees, the investigation demonstrated that the reduction
in g5 was associated with an increase in PRIs7p and a decrease in fluorescence. Based on this, not only
the early detection of VW was achieved, but also the discrimination of severity levels. Olive orchards
with different agronomic characteristics were compared, which enhances the flexibility of the detection
method proposed. The carotenoid reflectance index 2 (CRI2) and NDVI were also validated for
detecting the early and advanced VW-infected trees (latrou et al., 2016). Apart from this, changes in the
NDVI rate was found sensitive for monitoring the effects of plant growth enhancer formulation (PGEF)

on the recovery of the trees, which can further enhance the management of VM in olive orchard.

Apple scab significantly affects the yield and quality of apple fruit and has become a major problem in
apple orchard. It is caused by the Ascomycete fungus, Venturia Inaequalis. Research has shown the
potential of making a risk evaluation model on the monitoring of apple scab in orchard using UAV
technology (Stella et al., 2017). Apple scab can be indirectly monitored by acquiring leaf wetness data.
On the basis of this, data extracted from UAV provided precise inputs to the evaluation model for the
risk prediction based on the output of the model, the leaf wetness data. Detection methods based on
thermal or spectral sensors make up for the shortcomings of classical detection methods that rely on
visual observation by orchard experts. RGB sensors might also be used to detect diseases with apparent
visual traits. Fire blight of apple is caused by the pathogen Erwinia amylovora infecting apple flowers,
fruits, and the rootstock. Typical visual symptoms are the blackened shoots. This disease particularly
threatens the production of commercial orchards (Salm and Geider, 2004). A recent study employed
multispectral, hyperspectral, and RGB sensors to evaluate fire blight severity and found that detection
from features derived from RGB and multispectral images was inferior to detection derived from
hyperspectral images (Jarolmasjed et al., 2019). The index of normalized difference spectral indices,
computed from hyperspectral datasets, showed moderate to high classification accuracy, ranging from

71 to 93%. Spectral bands between 710-2340 nm proved relevant for the classification.

2.3.4.5. Other applications

Pesticides can be used to support protection from pests, especially in the case of economic products,
such as fruit trees. The usual management measure to deal with infestation with citrus leafminer (CLM)
which threatens the production of citrus is chemical control (Qureshi et al., 2017). However, the
uncontrolled and inappropriate use of pesticides affects biological systems, polluting preserved areas
and damaging ecosystems. In addition, manual spraying exposes workers to a high-risk setting full of

harmful chemicals. In the precision agriculture literature focusing on pesticide spraying systems in
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orchards, solutions based on UAVs are proposed to be safer, more precise, and more affordable than
manual spraying or manned agricultural aircraft (Martinez-Guanter et al., 2019; Zhang et al., 2017).
Nonetheless, aerial spraying can be inefficient in practice without a reasonable spraying strategy and
detailed and precise information support, e.g., the identification of tree crown areas that are regarded as
target spraying areas. Compared with other UAV-based management activities, there are more restricted
operational parameters for sprayer UAVs, such as spray nozzle control, flying height, and speed. A
deviation from the flight route or a change in wind direction will significantly impact on the droplet
deposition distribution uniformity. Tree shape should also be taken into account even under the same
spraying system (Zhang et al., 2016). For example, in the case of inverted triangle-shaped citrus trees,
the lower layer was found to be the part with the most uniform distribution (CV = 32.44%), and they
received higher droplet density than triangle-shaped trees (Tang et al., 2018). Other plant shapes, i.e.,
hedgerow and open-center-shaped, show different performance and optimal operation parameters.
While the optimal control parameters of droplet density for the inverted triangle-shaped citrus tree was
determined using Taguchi method, the spraying height was 1.4 m and the flight speed was 1.0 m/s (Hou
et al., 2019). In terms of control effect against pests like CLM, a case study showed that a UAV-based
system could achieve 65-75% of the control effect of manual spraying. But high efficiency and low cost

of UAV-based spraying was observed at the same time (Zhang et al., 2017).

A limited number of earlier studies focus on intelligent and real-time application of sprayer UAV's which,
with the help of machine learning and powerful computation support, have high potential for precision
work. Using the mutual subspace method, an intelligent spraying UAV system could achieve an average
recognition accuracy of 70% for spray or non-spray areas (Gao et al., 2019). This result falls within the
requirements of precision agriculture, efficiently utilizing chemical inputs while reducing the
environmental damage. However, the bottlenecks include limited battery capacity, the large volumes of
liquid that must be carried, and the difficulty of reconciling high spraying speed and computation speed
with promising recognition accuracy. For further study, deep learning methods should be tested against
the machine learning-based recognition (Saldana Ochoa and Guo, 2019), in order to deal with the noise
in the datasets and the negative impacts from the changing lighting conditions. Additionally, a pesticide
spraying system based on multi-sensor data fusion algorithms may help bring about a high-efficiency
revolution in the use of pesticides by accurately identifying and locating target trees and controlling

pesticides.

Apart from research on sprayer UAV, several studies have used longitudinal UAV data for agro-
environmental monitoring in orchards, such as the analysis of landslide evolution affecting the olive
orchard (Fernandez et al., 2016) and the delineation of management zones for pest control (Mendez-
Vazquez et al., 2019). Vegetation ground cover (VGC), the vegetation cover spontaneously grows on

the surface of the ground, is an important component in the ecological system. A vegetation index
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derived from UAYV, inverse ratio vegetation index (IRVI), was suggested to be the most sensitive index
for the quantification of the density of VGC, and IRVI and ratio vegetation index (RVI) (Table 2.4)
could most accurately distinguish the VGC densities > 80 in a cover interval range of 10% (p<0.001)
and VGC densities <30% in a cover interval range of 15% (p<0.01), respectively (Lima-Cueto et al.,
2019). Monitoring tasks in orchards are different from other agricultural activities. Cost-effective
monitoring approaches are always the classic problem not only for the growers in the orchard but also
the researchers. On the basis of this, a study focus on the development of customized sensor capable to
be mounted on the UAV show several advantages (Barrows and Bulanon, 2017). The customized low-
cost multispectral sensor, for which the original internal infrared filter was replaced with a special dual-
band filter, was proved to be comparable with the commercial grade sensor in the estimation of NDVI

in orchards.

Table 2.4. Vegetation indices applied in the quantification of VGC.

Index Formula®
Inverse ratio vegetation index (IRVI) IRVI = RED/NIR
Ratio vegetation index (RVI) RVI = NIR/RED

# Wavelength band values RED (660nm centre, 40nm bandwidth), NIR (790nm centre, 40nm band
width).

Fruit tree detection or classification is fundamental to the majority of UAV-based site-specific
management in orchards. In general, machine learning and OBIA methods are currently the most
popular methods for the detection and classification (Neupane et al., 2019). For instance, in a case study
of agricultural resource management (Saldana Ochoa and Guo, 2019), a deep convolutional neural
network (CNN) was employed. The processing chain proposed needs long-time and large datasets for
training, which reveals the important need to strengthen the input requirements of CNN, although a
significant classification accuracy was observed, with an F1 score of 0.89. Semantic segmentation may
be a vital dimension in extracting crop classification from complex information. SVM performed well
in the classification of both RGB and hyperspectral datasets. To segment citrus trees from the
background in RGB images, an SVM model established by the calculation of 14 color features and 5
statistical texture features could result in a accuracy of 85.27 + 9.43% (Chen et al., 2019c¢). For the later
case, misclassification of sunlit and shaded areas could be overcome with the help of SVM, achieving
a classification accuracy of 94.5% of mango trees (Ishida et al., 2018). This classification capability can
be further improved if the effects of wind on the data collection can be reduced, as wind deforms the
flexible fruit-tree structure, thereby affecting image overlapping. Within the classification chain of a

OBIA-based olive mapping study, dividing the original UAV image capturing a large plantation into
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subsets was suggested to speed up and facilitate the calibration (Karydas et al., 2017). Apart from these
two popular methods, vegetation indices like NDRE, and the DSM could also be applied in fruit-crop
discrimination (Handique et al., 2017). Most studies focus on the classification between fruit trees and
other plantation while a combination of univariate and multivariate statistical approaches was applied
for olive cultivar recognition. Results suggested that the classification accuracy between scions was

90.9%, however, 68.2% of the discrimination cases between rootstocks failed (Avola et al., 2019).

In addition to the standard applications discussed above, UAV-based management in the domains of
regular crop monitoring and food quality tracking also have considerable impact on the development of
UAVs in orchard management. In some cases, studies on these aspects have focused on fruit trees at a
smaller scale than the standard orchard, or on fragmented land holdings. (Handique et al., 2017)
reported on the collection of crop statistics in hilly terrain or terrace cultivation systems, such as in the
northeast of India, where UAVs were used for crop discrimination for farming systems in hilly
landscapes. The possibility of discriminating banana, orange, plum and bamboo with vegetation indices
such as NDVI, NDRE and GNDVI was validated. Among countries located in the Pacific region,
bananas, coconut and sweet potato are major food crops (Halavatau and Halavatau, 2001). However,
high-risk disasters such as cyclones and storm surge occur here frequently and threaten food security.
In this context, UAVs enable robust food assessments and the localizing of security and classification
of diverse crops, especially of targeted fruits like mango, papaya, and coconut (Saldana Ochoa and Guo,

2019).

2.4. Discussion

In this survey, the research on UAV-assisted orchard management literature has been discussed in terms
of five categories: fruit-crop resource efficiency, geometric traits, productivity, disease, and other
applications. The first three categories account for 67% of the publications reviewed (Fig. 2. 5), while
the other two categories merit highlighting. Gaps and potential of evolving technologies in the domain
of UAV-OM have been explored, ranging from application scenarios and UAV platform development
to aerial data processing methodologies. In summary, UAV-based monitoring has very broad application
prospects in orchard management because of its advantages related to flexibility, high efficiency, and
low monitoring costs. In the following subsections, research gaps and opportunities in the near future

are discussed.

2.4.1. Geometric traits of fruit trees

Different geometric traits of fruit trees have been measured using UAV imagery technology. To
determine the state of art of the outputs, general geometric measurement performance was analyzed per

year of article publication for four validation parameters: coefficient of determination (R?),
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classification accuracy, root mean square error (RMSE), and Fl-score (Fig. 2. 8). The general
performance of the selected geometric traits assessment from UAV imagery improved significantly in
the last two years surveyed: 2018 and 2019. The reasons could be the advancements in sensor precision
and data processing methodologies. Nevertheless, algorithm development needs further improvement
in case studies on, e.g., the estimation of crown diameter, which shows a low R?. Within the analysis of
estimation accuracy (Fig. 2. 8), the latest accuracy achieved for fruit-tree detection and counting is
99.9%, thanks to the employment of machine learning and deep learning (Ampatzidis et al., 2019). The
overall trend in development is positive, but the compatibility of models needs further testing against

different fruit species.
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Fig. 2.8. Comparison of performance for geometric trait estimation in the 22 articles on the application
of fruit-tree geometric traits. CPA: crown projection area, PPC: plant projective cover. Note: If an article

described the results with two validation dimensions, both were included in this figure.

Studies over the past five years demonstrated the positive role of UAVs in fruit tree geometric
measurement. To further enhance the adoption of UAVS for this application, the following developments
can be identified:

e 3D representation: A realistic 3D representation of fruit trees is fundamental to the monitoring
of geometric traits (Fig. 2.8). To deal with the problem of improving 3D reconstruction accuracy,
investigation on the effect of flying speed, data capture view, GSD value and image overlapping
parameter should be conducted, as demonstrated in earlier studies (Torres-Sanchez et al., 2018b;

Xue et al., 2019).
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e Model generalization: As found in the literature on geometric measurements the validation of
the algorithm was based on one fruit species only (Johansen et al., 2018; Mu et al., 2018), more
universal models should be developed and tested. Fruit varieties, orchard areas, irregular or other
planting patterns and various climatic conditions (Fig. 2.4) should be extended to validate the
robustness of the algorithms proposed.

e Data processing efficiency: Time-consuming issue is intimately tied to ortho-mosaic image
processing and DSM generation as shown in previous studies (Sun et al., 2019). Thus there is an
urgent need to further develop SfM method and faster algorithm for DSM generation and ortho-
mosaic processing.

e Automation: Current measurements are semi-automated (Marques et al., 2019), and manual
interference even leads to subjective errors. Further experimentation into automatic fruit tree
identification and geo-referencing is strongly recommended. More sampled trees and the
employment of artificial intelligence, e.g., machine learning, would provide more definitive
evidence in automated and simultaneous identification.

e LiDAR sensor: Most of the research used passive sensors, ¢.g., RGB and multispectral sensors
(Fig. 2.6). Only one article used a laser scanner (Hadas et al., 2019), which significantly yielded
an apple-trees identification accuracy of 99% (shown as the second case scatter point in 2019 in
Fig. 2.8). The potential of LIDAR application in estimating fruit-tree geometry deserves special
attention due to its advantages in point cloud analysis. In addition, comparison between RGB

and LiDAR-based aerial geometric measurement would also be a fruitful topic.

2.4.2. Resource efficiency

Stem water potential (J5), stomatal conductance (gs), and crop water stress index (CWSI) have been
regarded as useful indicators for water status monitoring and irrigation strategy support in orchards
(Ballester et al., 2018; Shackel et al., 1997). CWSI and alternative indices derived from UAV
observations show promising results for water status assessment in orchards (Bulanon et al., 2016; Zhao
etal., 2017). To date, a variety of indices have been compared against the commonly accepted indicators,

Y5 and g, and the reliable indicator CWSI (Table 2.3).

The correlation between remote sensing indices derived from UAV imagery and the three indicators
mentioned above was analyzed (Fig. 2. 9) based on the validation results for the coefficient of
determination (R?). In total, five fruit species, almond, citrus, apricot, peach and olive, were included.
To clearly visualize the distribution of performance of each index, samples used for validation were
divided into two categories, fruit species mixture and individual species. Because some research
validated the performance of the method developed on an orchard with several fruit species instead of

on a mono-species orchard (Park et al., 2017), mixed species was added to the analysis. On the other
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hand, the 11 studies on which Fig. 2. 9 is based indicated that in UAV-based orchard management the
tendency is to develop monitoring models or algorithms applicable for diverse fruit species. If an article
compared indices against different species under different irrigation treatments, the best performance
of each index toward a specific fruit species was selected for inclusion in Fig. 2. 9. In addition, as some
indices belong to the same spectral family and are of less interest, or rarely selected by researchers, the
one in the same family with relatively high correlation was included in Fig. 2.9. Several data in the

figure were obtained from the same experiment.
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Fig. 2.9. Performance of diverse remote sensing indices for water status assessment in 11 articles: (a)
Correlation with stem water potential ({5) (b) Correlation with stomatal conductance (gs) NOTE: The

vegetation indices presented are described in Table 2.3.

When it comes to the correlation with Y5 it was found that CWSI and the difference between Tc and Ta
were generally relatively highly correlated with Yrg (Fig. 2. 9). Some indices show high correlation with
Y for specific fruit species, e.g., PRIs70.515) and TCARI/OSAVI, while some indices level out at a low

correlation, e.g., MTVII and Xanthophyll indices. An optimal estimation index for specific fruit species
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can be determined, e.g., the difference between Tc and Ta is the best for peach tree water status
assessment. Similar to the analysis of i, the correlation between the indices derived from UAVs
against g showed that the most investigated indices were canopy NDVI, TCARI/OSAVI, and PRI, and
that these indices performed differently for different species. TCARI/OSAVI and canopy NDVI showed
relatively high correlation with g4 for several fruit species, so have potential as a universal index to be
employed in diverse orchards. The plant-based indicator CWSI is regarded as a reliable tool for
irrigation strategy support (Gonzalez-Dugo et al., 2014). The correlation between remote sensing
indices and CWSI was explored among five fruit species in relation to water status assessment. Canopy
NDVI showed high correlation with CWSI in three fruit species, almond, apricot, and peach, while PRI
generally showed a relatively low correlation in most fruit species. In orange species, all the indices
showed low correlation with CWSI. It is very important to compare variable indices with CWSI in order
to determine alternatives for water stress assessment. More fruit species and indices should be tested in

the near future, to enable optimal indicators to be determined for specific fruits.

The majority of research focus on the resource efficiency in orchard, especially on the estimation of
water status, has yield promising results. Further research should focus on the following scope:

e Model generalization: Most research were conducted under specific conditions, which makes
the methods proposed low-range applications (Caruso et al., 2019; Park et al., 2017). To establish
an accurate and reproducible model, methods (Fig. 2.9) should be established and validated in
various conditions, e.g., different weather, crop phenological stages, crop fields and management
conditions.

e Data calibration: Assessment of fruit tree water status mainly relies on temperature information
derived from thermal images (Fig. 2.6). Yet, the reduction of effects from solar motion,
atmospheric thermal path radiation and transmittance on the indices calculation is a problem
(Berni et al., 2009b; Zhao et al., 2017). Ensuring consistent relationship analysis performance
and high assessment accuracy, the optimization of calibration strategy and the management of
thermal drift effect to thermal sensors are necessary.

e Intra-canopy variability of water stress: Current research focused on the estimation of water
stress at tree scale (Ballester et al., 2018). Investigation of the variability at intra-canopy level is
needed, especially for the analysis of fruit tree genotypic response to the water constraints.

e Periodic mapping: Previous studies developed their methods by doing UAYV flight one time only
(Jorge et al., 2019). By contrast, periodic mapping of water status in orchards can not only test
and enhance the robustness of methods proposed but also facilitate the adoption of UAVs in

irrigation management for growers.
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2.4.3. Productivity and disease monitoring

Although most of the research focused on resource efficiency monitoring and geometric traits
estimation, other aspects of orchard management were also covered, such as nutritional status and yield
monitoring. For these aspects, crop physiological changes need to be understood and reliably modeled.
Interdisciplinary investigation is a challenge for researchers in the domain of UAV-OM. UAVs are still
generally underused and more comprehensive and in-depth exploration are needed. The research on the
nutritional status monitoring of fruit trees shows an increasing trend, which is important not only for
improving the output of fruit industry, but also for guiding the use of chemical fertilizers and pesticides.
Yield estimation and prediction is then key for decision-making, especially for harvest strategy. As the
costs of RGB sensors fall, the use of sensors to determine the optimal harvesting period for orchard
production will increase. Yield estimation entails estimating flowering, which benefits the thinning
activities. The complex structural traits of fruit crops may force UAVs to fly between tree rows in order
to achieve an optimal inspection angle and a fine spatial resolution. Further investigation and
experimentation are strongly recommended in the following aspects:

e Yield estimation at the tree or fruit level: A study applied ANN and yield an apple segmentation
accuracy of 99.12% showed the great potential of UAV in fruit yield estimation, though the data
was manually collected by emulating UAV capture conditions (Sabzi et al., 2018). Unfortunately,
no research focused on yield estimation at fruit level was conducted (Fig. 2.7). Thus real-time
direct estimation of fruits is encouraged.

e Method generalization: Current achievements in indirect yield estimation and health status
monitoring are positive, as introduced in fruit-tree productivity traits section. However, there is
abundant room for further progress in enhancing the robustness of the methods proposed (Fig.
2.7). Periodic mapping, as demonstrated by the study (Perry et al., 2018), is encouraged. Yet
performance for different crops and growing stages remain unanswered at present.

e Machine learning: Methods and models proposed in some research (Fig. 2.7) need to be adjusted
when apply them into a new case (Horton et al., 2017). Advanced machine learning algorithm
can solve this problem, but also issues from the complexity of lighting intensity and conditions

need to be taken into account.

In regular management, an outbreak of fruit-tree disease cannot be ignored. So far, the research on early
warning monitoring of fruit-tree diseases has not shown an increasing trend, though a few studies have
suggested the feasibility of UAVs in detecting biotic diseases in orchards. One reason may be that most
fruit-tree diseases are not lethal, while HLB disease has attracted more attention because of its globally
lethal effect on citrus crops (Arredondo Valdés et al., 2016). The complexity of pathological analysis
for disease detection is also an important factor restricting related research. In other words, the

development of UAV-OM for disease diagnosis is limited by laboratory detection or pathological
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research in particular cases. Future efforts could focus on the changes caused by disease, ranging from
apparent external traits, such as color and texture, to fruit-tree photosynthesis. In addition, the
substantially reduced spatial resolution of UAV is another issue can not be addressed and affect the
disease monitoring. For example, wheat yellow rust can be detected in inoculation stage by analyzing
the spectral reflectance differences, but it is difficult to monitor with the UAV though advanced sensor
and low flight altitude, 16m, were designed (Su et al., 2018). Further studies should focus as follows:
e Timely and localized diagnose models: Differing from other UAV applications in orchards (Fig.
2.7), disease monitoring is regional (Stella et al., 2017). Thus statistical study is encouraged to
build timely, robust and localized disease detection models.
e Machine learning: Current studies extracted too many features for the disease monitoring
(DadrasJavan et al., 2019), which makes the reduction of the features used the tendency. Though
SVM, random forest classifier and ANN have been deployed (Fig. 2.7) and yielded promising
results, advanced machine learning algorithms needed to be explored for improving disease

detection efficiency and even monitoring the diseases undetectable currently.

2.4.4. Other applications

Inspection in orchards leads to the implementation of management operations such as pesticide or
nutrient spraying using UAV sprayers (Tang et al., 2018). Currently, research is mainly exploring the
selection of the spraying parameters, e.g., operation height, and the whole process is remotely controlled.
Intelligent spraying requires the spraying system to automatically identify objects to be sprayed and to
have automatic variable-spraying ability. On the basis of precise information sensed by sensor-equipped
UAVs (Gao et al., 2019), operational systems could achieve precision spraying in orchards. The
combination of remote sensing and automation deserves to be highlighted. Apart from this, fruit-tree
classification and identification has been the subject of current research. Promising results become the
basis for further investigation of fruit-tree at individual level. The UAVs developed for orchard
management could be applied to related agricultural domains, e.g., the food supply chain (Saldana
Ochoa and Guo, 2019). And the monitoring technology in orchards could also be used to improve the
performance of agricultural monitoring on a large scale. Further research topics identified are the
following:

e Spraying automation: Optimization of UAV control parameters for ideal pesticide spraying has
been the subject of many research (Hou et al., 2019; Tang et al., 2018). However there is a still
unanswered question about the effects of deviated flight routes caused by manual control. Thus
validation with automatic spraying process is recommended, especially for facilitating real-time
precision spraying.

o Statistical study: To develop robust fruit-tree classification methods, statistical studies will be

needed for the isolation of error sources, thus determine the limitations of the proposed solutions
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(Ishida et al., 2018). On the other hand, optimal parameters for the implement of proposed
methods can be highlighted, such as the optimal flying height during data acquisition.

e Deep learning: Machine learning and OBIA has been widely deployed in tree detection and
classification (Karydas et al., 2017; Saldana Ochoa and Guo, 2019). Despite the promising
results, further progress in improving the performance of proposed methods in various
environmental and agronomic conditions with advanced deep learning algorithm need to be
undertaken. And the first issue is the availability of larger training datasets with multiple fruit
tree species.

e Automation: Automatic classification and identification of trees is still challenging. The
complexity of orchard environment, e.g., the changing solar illumination, seasonal vegetation in
high density modern orchard, makes semi-automated methods (Chen et al., 2019¢) the optimal
solution for current orchard management tasks. Studies with more focus on the automated and
simultaneous classification are therefore recommended.

e UAV versus ground vehicles: The differences of imagery capture angle and spatial resolution
between UAV and ground vehicle significantly effects their performance in orchard
management (Zhang et al., 2019b). Combining UAV and ground vehicle, or even other platforms
(Table 2.1), could be an advantage, in different applications.

e UAV customization: Current commercial UAVs can not meet all the requirements in orchard
management. Customization of sensor deployed or UAV system provides new insights in the
adoptability of UAVs, as demonstrated in one case study (Barrows and Bulanon, 2017). For
example, a UAV system with the capability of upward image acquisition or acquiring datasets
at specific fruit-tree organs scale will make unique spatial resolution or details of fruit-tree

structure available for many research.

2.4.5. UAV platforms

Almost all the research in UAV-OM employed commercial UAVs due to the cost-effectiveness
compared to handcrafted or industrial UAVs. Multi-rotor UAVs is the most widely used. While the
complicated operation of fixed-wing UAVs make it less popular, such as the requirement of minimum
flight speed before they stall. UAVs with VTOL system have emerged as new powerful platform. Its
freedom from site condition restrictions make it capable work even on steep orchards (Torres-Sanchez
et al., 2018b). RTK GNSS is becoming standard resulting in increased geometrical quality in SfM
processing (Xue et al., 2019) and derived products like ortho-mosaic and 3D point clouds (Marques et
al., 2019) of fruit trees in orchard. This would allow comparison of changes in geometrical properties
of trees within growing season and over years as indicator for productivity. The fundamental constraint
to developing technology applications is the hardware system. The current limitations to the adoption

of UAV platforms to orchards are the payload and endurance (Garcia-Ruiz et al., 2013), especially for
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UAV-based pesticide sprayers and LIDAR UAVs. Increasing the battery capacities increases the payload,
yet the payload of UAVs significantly affects the endurance performance. With the improvement of
capacity of batteries, all types of UAVs flight duration will be extended, and VTOL will be more suitable
for the mapping task in large surface fruit orchards and plantations. Powerful UAVs capable of carrying
multiple sensing systems are generally more costly and not affordable for applications, especially in
developing countries. Data collection opportunities and timing in orchards are limited and restricted.
To ensure resistant flight in various weather and environmental conditions, the design of UAVs with
weather-proofing capability is needed. In addition, platform vibration affects the accuracy of aerial
indices and image quality. This could be resolved by improving UAV design and the post data-
processing procedure. When deployed optimally in orchard management, UAVs are currently operated
by persons with the skills of professional pilots. In the near future, the human-UAV interaction and ease

of operation are excepted to be further improved.

The articles reviewed revealed a shortage of customized UAV platforms. Various outdoor agricultural
operations are very complex. For investigations on UAV-OM, requirements related to aspects such as
image capture parameters and sensor automatic adjustment differ from each other. To set up datasets of
optimal quality, researchers should clearly understand the theory underlying the data collection systems.
The first basic step is to assess the suitability of the platform employed and whether it can be customized
to meet the unique demands for the specific problem to be addressed. Although platform customization
has drawn attention in studies on water status assessment and spraying (Ortega-Farias et al., 2016), it

should also be considered in other scenarios.

Despite UAVs have been proved effective in assisting growers for orchard management, current
development of UAVs is still far from meeting the requirements of precision agriculture in orchards.
Futuristic development of UAVs should cover the following heads:

e LiDAR UAVs: UAVs with RGB, thermal, multispectral, and hyperspectral sensors have been
explored in orchard management (Fig. 2.6), yet UAVs with LiDAR are undervalued. The weight
of LIDAR sensors and their high power consumption pose a challenge for LIDAR UAVs, though
significant advantages of it in geometric traits measurement has been demonstrated (Hadas et
al., 2019).

e Onboard processing: By reducing the requirements of network bandwidth, commercial UAVs
with onboard processing capabilities may benefit its controllability. On the other hand, with the
advent of the 5G era, it would also enable the efficient communication among UAVs and other
platforms which are used to execute management operations. In this way, so-called swarm
intelligence (SI) can be achieved in orchards where detection and actuation is divided among

different platforms (Zhang et al., 2019b).
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e Active management platform: Current function of UAVs are mainly imaging and sensing (Fig.
2.6). However, more active involvement in orchards is required. Besides the UAVs with
recognition capability for automatic and precise spraying (Gao et al., 2019), development in
active visual scouting in orchards, e.g., searching for the trees with low nutritional status and
even pests, will also be of interest.

e Obstacle avoidance: The complexity of horticultural environment limits the application of UAVs
in orchard. Compared with conventional remote sensing, UAV automatic scouting between rows
of fruit trees has potential of collecting data with higher resolution and yielding better
performance (Das et al., 2015). To deal with this, UAVs with accurate obstacle avoidance system
are needed to lessen the threat from trees and even birds to the flight safety.

e Night vision: Previously published studies have shown the feasibility of UAVs for monitoring
various fruit tree traits that are directly related to the aerial imagery or spectral information and
achieved promising results. Yet, for the complex traits that are indirectly related, e.g., the aerial
indicator of Fusarium wilt of banana, few achievements were reported. UAVs with night
working model may provide new insights to UAV-OM. Additionally, experiments from ground
vehicles also indicated the potential of UAVs with night vision in improving the yield estimation

accuracy (Chen et al., 2017; Wang et al., 2018a).

2.4.6. Sensor payload

Promising performance for various applications has been shown for five types of sensors that can be
used on UAVs, namely RGB, thermal, multispectral, and hyperspectral sensors, and LiDAR. Based on
the analysis of the sensors deployed, further analysis of the development of various sensors in different
management applications was conducted (Table 2.5). Besides further explorations within orchard
management, the blank area indicates potential for a “new” sensor more capable in a specific domain,
such as utilizing LiDAR in yield estimation. All five sensors need to be corrected or calibrated within
the process of aerial data processing in order to improve the monitoring accuracy. However, current
RGB sensors lack the function of camera calibration and radiometric calibration, which can affect the
sensor performance, especially for geometric estimation. Meanwhile the impacts of filters, optical
defects, and sensor lenses, and even the selection of radiometric correction approaches for calculating
the accuracy of remote sensing indices should also be kept in mind (Tu et al., 2018). Hyperspectral
sensors gained the attention of the scholars in UAV-OM. Besides the reason of its size and less
affordable characteristic, the geometric calibration accuracy also seriously affect the popularity. Though
the sensor is capable to provide centimeter level spatial resolution, the geometric calibration accuracy
is difficult to reach the same level. The application of LiDAR for fruit orchard management is relatively
unexplored (Diaz-Varela et al., 2015); upcoming research areas may demonstrate the potential of

LiDAR in orchard management, especially for geometric traits measurement. Regarding the pros and
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cons of each sensor type, the tendency is for imagery or information fusion (Delalieux et al., 2014;
Kestur et al., 2018). The basic principle of this multi-modal sensing approaches is combing different
sensos on the same UAV platform. Datasets collected from different sensors contain unique fruit-tree
traits, and imagery fusion can achieve the goals of getting these traits to complement each other and
improving the detection accuracy. The development of UAV platforms is the basis of information fusion

technology.

Table 2.5. Potential of UAV-based monitoring sensors for diverse orchard management activities.*

Resource Geometric
Productivity Disease Others

efficiency traits
RGB %’W m H p ! {
Thermal ” ————— \2 «
e {101 ey < -
Hyperspectral || 2 |||| m J
LiDAR %W Jtm ““m + 4 4

*- Cell patterns indicates application potential: Horizontal patterns: unknown potential; No patterns:
suitable; and Vertical patterns: optimal selection. Arrow direction indicates current use: Up arrow: well

exploited; Horizontal arrow: reasonably exploited; and, down arrow: unexploited.

As the basis of the adoptability of UAVs in orchard management, current limitations and perspectives
of sensors deployed are as follows:

e Development in size and weight: The selection and cost of UAVs are limited by the size and the
weight of sensors to be deployed e.g., the LIDAR sensor has more weight, which makes the
UAV-derived LiDAR data largely unexplored (Hadas et al., 2019). What is now needed is the
further miniaturization of sensors, especially for hyperspectral sensors. On the other hand, it is
also intimately tied to the application of multi-modal sensing approaches.

e Development in imaging capability: The existing sensors limits the quantitative investigations
due to the difficulty of extracting quantitative information from the data collected. Advanced
sensors capable to obtain quantitative information in complex orchard environments are needed.

e Integration of sensor and UAV control systems: The vibration of UAVs during data acquisition
process affect the performance of sensors payload, e.g., the geometric distortion occurs in
hyperspectral data (Vanbrabant et al., 2019). The integration of the two control systems enable

the dynamical control of the imaging sensors and further improve the data quality.
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2.4.7. Data collection strategy

There are potential research areas in the design of fieldwork strategy. In some areas, continuous cloud
cover greatly restricts the use of satellites for most of the year, making the potential of alternative
sensing platforms like UAVs attractive. However, the aerial surveys should be postponed in windy
conditions or light rain. Next, the trade-off between flying altitude and required image resolution
deserves attention. A higher flying altitude produces lower spatial resolution. The differences of spatial
resolution may affect the validation of the method developed. As a satellite maintains a constant altitude,
effects of this are rarely observed. Many investigations produced a suitable solution for a specific
problem by employing a strict set of operational parameters, e.g., flying height and angle of capture.
Next, the effects of these parameters on the estimation accuracy should be studied, in order to expand
the practical scope of approaches developed and to determine the optimal setting for the operational

parameters.

Most research focused on specific fruit species at a certain growing stage under certain conditions. In
other words, the achievements were attained under specific circumstances. The ideal situation is to
develop approaches capable of monitoring various species or different growing stages of the same fruit
species. Comparison between different species or certain growing stages provides a better algorithms

validation strategy. Subsequently, various training systems or planting patterns could also be tested.

2.4.8. Development of methodology

Compared with conventional direct measurements, UAV-OM requires empirical statistics, reverse
modeling, and image-processing technologies for effective, automatic, and precise management in
orchards (Ballester et al., 2018; Saldana Ochoa and Guo, 2019). In the general workflow for UAV data
processing, key steps are geometric correction and radiometric calibration. To deal with effects like
solar motion, further calibration study is needed. Many monitoring methods have been proposed as
being usable for similar case studies (Chen et al., 2017). However, the outdoor environment is far more
complex than the indoor environment. Thus, problems in outdoor practice demand more sophisticated
solutions. It is not surprising that existing algorithms are being applied to deal with certain problems,
but researchers tend to overlook the need to refine the algorithms. This also explains why the developed
algorithms prove unsuitable when tested under irregular conditions and why the classification
performance is easily affected by background objects with characteristics similar to those of the target
objects. Moreover, techniques like machine learning and deep learning have not been properly
employed in UAV-OM. Focusing on the theory underlying the tools applied can overcome the
limitations resulting from established techniques, especially in the case of application in a real

agricultural environment. Finally, using large UAV datasets, efforts should be made to improve the
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efficiency of image processing (Saldana Ochoa and Guo, 2019). And statistical studies aimed at

verifying the robustness of methods developed deserve more attention.
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2.5. Conclusion

This review has provided an overview of different applications employing UAVs with multiple sensors
for fruit orchard management. The majority of the research was conducted in the past 4 years. UAVs
generally yield a fine monitoring efficiency and accuracy, which indicates their potential as novel
remote sensing platforms. Yet, UAVs currently are mainly used by experts and there is still a need to
make this technology directly benefit the crop producers providing them with precise information on

the operational application of UAV technology in day-to-day operations.

UAV-OM investigation is yet in its infancy. The applications for resource efficiency and geometric traits
are relatively mature, while yield estimation, especially the estimation at fruit level, disease monitoring
and UAV-based sprayer will becoming increasingly important area. Results have demonstrated high
correlations between various UAV-derived indices and target physiological traits measured manually.
Yet new indices correlated to the complex traits which are difficult to directly assess remain
undiscovered at present. Model generalization, data processing efficiency and automation are still
challenging. Further studies, which take these three issues into account, will need to be undertaken. As
a next step, the combination of artificial intelligence and remote sensing sciences will be able to close
the gap between current research and precision orchard management. UAVs have promising application
prospects in precision orchard management because of their fast and efficient monitoring. Real-time
monitoring is the key trait of UAV-based remote sensing that makes up for the long periodic intervals
of satellite monitoring. Timely fruit-crop-growing information like this will enable healthy crop growth
to be assured and economic loss to be avoided. Further, growers may obtain real-time growth
information from web or mobile applications using cloud computing and wireless transmission

technology (Salami et al., 2019).

In recent years, multi-rotor UAV is the most widely used UAV in orchard management and the majority
is the commercial UAV. In the trend of continuous miniaturization of sensors, the limitation to UAV-
OM is mainly the flying time due to current state-of-the-art in battery capacity. Different types of UAV
sensors have their own place for specific monitoring activities but share the pros and cons. Thus, multi-
sensor data fusion could be promising although was not yet investigated. In the case of LIDAR, despite
its notable advantages for measuring geometric parameters, it is not commonly exploited due to its
significant operational costs and the limited UAV flight time (Friedli et al., 2016; Garcia-Ruiz et al.,
2013). Additionally, pre-flight flying parameter settings, such as UAV speed and field of view, affect
the monitoring performance. Thus, statistical study to determine the optimal data acquisition parameters

and understand the effects for specific research is encouraged.
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Global orchard production is especially significant at regional scale. This diversity is attributed to the
local climate and soil, geographic and topographic conditions, and high number of fruit species. The
lack of publicly available datasets requires researchers to develop their own datasets although it could
be more efficient to reuse images already acquired. At some point, growers will be encouraged to share

the data gathered with their own UAVs and in situ observations to boost the advances in UAV-OM.
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ABSTRACT

Chemical and mechanical thinning processes have long been used in the practice of stone and pome
fruit production. During the thinning process of apple flowers, growers use chemicals to regulate the
tree load. Moreover, hand thinning is applied after June drop to trim trees with excess crop load. The
process of thinning can be an unpredictable process especially in biennial bearing cultivars. Incentives
to optimize chemical usage and to lower expensive manual labour is ever increasing. Ground based
machine vision systems have grown in popularity in orchard management due to the level of detail as
well as plant coverage they can inspect with. Additionally, Unmanned Aerial Vehicles (UAV) based
remote sensing is an increasingly popular non-invasive quality inspection tool. This chapter proposes a
framework for combining UAV and ground based RGB image data to detect flowering intensity in a
Dutch Elstar apple orchard. The framework, based on point cloud reconstruction, presents automatic
point cloud handling techniques as well as automated unsupervised flowering intensity estimation
methods. Two linear regression models based on unsupervised machine learning methods were trained
and validated from the framework that estimate flowering intensity in the orchard with both models
having R? > 0.65, RRMSE < 20% and p-stat < 0.005 for the correlation between the image derived
flower index and the flower cluster number counted in field. The proposed methods provide a novel
strategy for guiding flower thinning using simple RGB images and location data only. Moreover, the

proposed methods also reveal the flexibility of intra-tree inspection by checking its sub-volumes.
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Nomenclature

UAV  Unmanned aerial vehicles

RGB Red, green, blue

SVM  Support vector machines

CNN  Convolutional neural
networks

SDbio2 Biological standard deviation

SD,,s> Observed variance

SE Standard error

WT West-top observation volume
of a tree

WM West-middle observation
volume of a tree

WB West-bottom observation
volume of a tree

ET East-top observation volume
of a tree

EM East-middle observation
volume of a tree

EB East-bottom observation
volume of a tree

RTK Real time kinematic
positioning

GPS Global positioning system

PC Point cloud

Ig Images taken from Eastern
side using a ground vehicle
(.tiff)

Iy Images taken from Western

side using a ground vehicle

(tiff)

Iy
GV
PCe
PCw

PCu

SOM

PCA

MSAC

RANSAC

FDM

PCHyb

LOOCV

Ul

Model-T

Model-MB

R2
RMSE

RRMSE

Images taken from a UAV (.jpg)
Ground vehicle sensing platform
Point cloud constructed from Ig only
Point cloud constructed from Iw
only

Point cloud constructed with Iy only
Spatial orientation model

Principle component analysis

M-estimator sample consensus

Random sample consensus

Flower detection model

Hybrid point cloud constructed by
merging PCg and PCw
Leave-one-out cross validation
method

User interface

Flower cluster prediction model for
the top volume of a tree

Flower cluster prediction model for
the sum of the middle and bottom
volumes of a tree

Coefficient of determination

Root mean square error

RMSE relative to mean

Automatic flower cluster estimation using aerial and ground-based point clouds
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3.1. Introduction

During the process of growing apple trees, the trees undergo an annual flowering phase in spring.
During this phase, the quantity of flowers can be an indicator to the fruit set (the number of flowers
successfully pollinated and becoming fruits) and ultimately the resulting yield. At this stage of the cycle
the grower would like to perform tree load management to guarantee desired fruit set, which is the
management of, in this case, the number of flowers per tree (Zhang et al., 2021). This is where the
process of thinning, mechanical and chemical thinning, is performed - to control the number of flowers
per tree and ultimately the fruit set. Thinning is usually carried out over a rather large period including
bloom and post bloom (Greene & Costa, 2013). It is an established method used to control the tree load
in order to ensure fruits of a marketable size on a regular basis. A higher than optimal tree load results
in higher quantity of fruit, but fruits of a smaller size - which is unfavourable for the grower as it leads
to less sellable product. Excessive fruit load in apple trees may also result in suboptimal sugar levels,
fruit colour and even storage life (Forshey, 1986). Thinning is implemented usually up to the point
where fruits are at 18mm diameter in size. According to Greene & Costa (2013), manual and chemical
thinning techniques are used nowadays for stone and pome fruits, but in the case of pome-fruits,
specifically apples, the method of choice is mostly chemical thinning to lower labour costs for manual

thinning.

Flower and fruit thinning remains an unpredictable process, especially in biennial bearing apple species
that alternate irregularly between high and low bearing seasons (Greene & Costa, 2013). Add to the
irregular annual flowering the fact that individual trees in the orchard vary in flowering intensity, and
the unpredictability is understandable. Since this variation in flowering intensity occurs often, hand
thinning (in addition to mechanical spraying machines) is still necessary to ensure the correct dosage
per tree. It is the unpredictability, manual estimation errors and manual labour that holds great potential
for improvement. It is therefore beneficial to the grower to know exactly how the intensity of tree
flowering or, if possible, how many flower clusters are present per tree. The grower could with this
information for instance optimise the fruit set per tree, optimise the amount of chemicals used and
reduce significantly the manual labour involved in estimating the clusters during flowering and thinning
labour. If flower intensity information of individual trees can accurately be accumulated, flowering in
terms of spatial variability could also be mapped (allocating for instance each tree with a flower
intensity score) and used to make better thinning decisions for individual trees (Farjon et al., 2020).
These tree load maps could for instance be used in conjunction with a variable rate sprayer for the

thinning process (Krikeb et al., 2017).

Rapid technological advancements have made it more accessible to gather flowering and other plant

information in orchards, such as water stress, nutritional status and tree height, in a non-destructive way
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with the use of machine vision systems on a range of platforms, such as handheld devices, ground
vehicles and Unmanned Aerial Vehicles (UAV) (Aggelopoulou et al., 2011; Bargoti & Underwood,
2017; Lopez-Granados et al., 2019; Zhang et al., 2021). With regard to the sensors equipped to the
platform within the research focusing on flowers in orchard, only RGB and multispectral sensors have
been employed, due to the distinct colour feature of flowers against the background (Liakos et al., 2017;
Tubau Comas et al., 2019). Theses platforms have their own pros and cons depending on specific
application scenario. Though the monitoring conducted with handheld devices is inferior to others when
it comes to the data collection efficiency, the data quality, especially the image resolution, enable more
features available (Wu et al., 2020). Ground vehicle platforms are often used in orchard management
because of convenience and data collection efficiency (Dias et al., 2018a, 2018b). For a particular
research purpose, ground vehicle platforms can also provide a unique circumstance that benefits the
data collection. For instance, with the help of the artificial lights equipped on the ground vehicle, image
collection at night is available which reduces the effects of sunlight significantly (Wang et al., 2021).
Current achievements in sensor miniaturization enable successful use of UAVs for orchard management,
however, only a few researchers have conducted systematic research into flowering intensity estimation
(Zhang et al., 2021). UAVs can not only provide efficient and reliable monitoring for orchards but also
a detailed spatial and temporal solution. Research has demonstrated the use of UAVs in flowering
intensity estimation and the ground vehicle in flower detection (Horton et al., 2017; Sun et al., 2021).
Yet the comparison of these two platforms has been subject to considerable discussion. For example,
when the spatial information of fruit trees is retrieved, such as the flower cluster number per tree, with
3D point clouds derived from UAV and ground vehicles, the two platforms often show different spatial
scales and occlusions because of the different data acquisition locations. Thus there remains a paucity

of evidence on which platform is more suitable for flowering intensity estimation in orchards.

Extensive research has been carried out on flower detection, classification and estimation in orchards
with machine vision technology. Flower estimation studies have been mostly restricted to estimation at
picture level rather than at tree level (Dias et al., 2018a, 2018b; Wu et al., 2020). In recent studies, the
detection of flowers has been investigated in two ways, pixel-based and object-based detection methods
(Vanbrabant et al., 2020). For pixel-based methods, the first step is the extraction of the pixels of interest.
Once these pixels are extracted, flower detection is conducted by the calculation of flower pixel amount
or a different fraction. Thresholding techniques are most commonly used within pixel-based methods,
where the targeted objects are segmented by transforming a grayscale images into a binary one
(Aggelopoulou et al., 2011). This is effective for images with high levels of contrast, and significant
outcomes have been observed from previous studies (Horton et al., 2017). Krikeb et al. (2017) reported
a R? of 0.97 for the correlation between the threshold derived flower areas to the flowering intensity
scored given by an expert. A R? of 0.86 was observed between the flower intensity and the apple yield
for both RGB and multispectral image based detection (Liakos et al., 2017). One disadvantage of
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thresholding is that the threshold adjustment is needed for a new environment or dataset. By contract,
more advanced machine learning techniques are more robust and have attracted interest in the flower
detection community. More specific, the machine learning derived pixel-based methods consist of
support vector machines (SVM) (Dias et al., 2018b; Xiao et al., 2014), K-means (Tubau Comas et al.,
2019), convolutional neural networks (CNN) (Dias et al., 2018b). For example, a model based on the
combination of CNN and SVM proved to be successful with precision and recall rates of 90% (Dias et
al., 2018b). Object-based detection is generally conducted with two steps, image segmentation and
object classification. Image segmentation algorithms first aggregate pixels into spectrally homogenous
objects, and then each of the objects is classified to accomplish the detection (Dias et al., 2018a;
Vanbrabant et al., 2020). For the object-based CNN, an image patch is evaluated directly to detect if
there is a flower (Chen et al.,, 2019; Yuan & Choi, 2021). Since object-based methods do the
classification at object level, different classes of targeted objects can be determined and labelled during
image annotation process. Based on this approach, not only flowers can be detected, but also the specific

flowering stage can also be classified (Koirala et al., 2020; Yuan & Choi, 2021).

Earlier studies have demonstrated the capability of using machine vision technology for flower
detection at picture level. To assist the growers to decide how many flowers needed to be removed for
each individual tree, flower quantification at tree level is required to support flower management within
the orchard. To our knowledge, there are only five studies focussing on the correlation between the
flower estimation derived from image and the exact flower number counted in situ. Three studies were
conducted with ground vehicles (Hocevar et al., 2014; Koirala et al., 2020; Wang et al., 2021) and two
with UAVs (Tubau Comas et al., 2019; Vanbrabant et al., 2020). Two reported R? values of the
correlation between the image based flower index and the exact cluster number counted in situ were
0.56 and 0.59 because of the camera capture view, using only top-view and one-side view of the trees,
respectively (HoCevar et al., 2014; Tubau Comas et al., 2019). Simple capture view limits the estimation
ability of machine vision, especially for the complex-structured fruit trees with more flower occlusion.
Fruit trees are larger and have a more complex architecture compared to common agricultural crops,
such as cotton, i.e., plant height and flower numbers for fruit trees and cotton, respectively, are 3-4m
versus <lm and 350-2100 flowers versus 15-20 flowers (Vanbrabant et al., 2020). By contrast, Koirala
et al. (2020) employed a dual-view imaging approach for mango panicle estimation at tree level
capturing two images from each side of the trees to represent the total number of flowers per tree.
Although the highest R? of the correlation between the panicle count on images and in-field human
counts per tree yielded from the rotational region CNN was 0.86, a high bias was also observed. In
addition, the proposed method could not be applied to the flower estimation of apple or pear trees since
apple flower estimation suffers from higher flower occlusion and it is much more difficult to label each
apple flower cluster in the picture. Wang et al. (2021) reported a CNN-based apple flower estimation,

but the ground truth used was part of the tree where a coloured square section marker was used to
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delineate and limit one counting area from a tree. RGB dense point cloud datasets derived from multi-
view images have potential to retrieve tree spatial information, such as the geometric traits, as shown
in several studies (Lopez-Granados et al., 2019; G. Sun et al., 2019; Torres-Sanchez et al., 2018).
Vanbrabant et al. (2020) has demonstrated its performance of addressing the pear flower occlusion

problems, but the errors in their study could not be explained because of the limitation in ground truth.

This chapter aims to develop and evaluate an approach for automated apple flower cluster estimation
at tree level. The presented research contributes to the following:
1. Comparison of the capability of four conventional classification algorithms, manual threshold,
Otsu segmentation, K-means and Hierarchical clustering, for flower cluster segmentation;
2. Comparison of the accuracy of UAV and ground vehicle derived point clouds for flowering
intensity estimation;
3. Examine the effects of point cloud density on the flowering intensity estimation accuracy;
4. Evaluate the possibility of combining UAV and ground vehicle derived point clouds for

flowering intensity estimation.

3.2. Materials and methods

3.2.1. Study area and field data

The study area for this project is an apple orchard in Randwijk, Netherlands (51.938, 5.7068 in WGS84
UTM 31U) (Fig. 3. 1). Apple trees in this orchard were planted in 2007 with four-years trees. In total
14 rows were designed, while for each row 101 trees were planted. The average tree height was around
2.3m in 2018. Row 5 (100 trees) of the orchard is unique from the rest of the orchard with the aim being
to intensely monitor the phenotypical change in the row. Hand thinning is needed each year, but the
amount of mechanical thinning is very variable. Detailed information about the orchard can be found
in Table 3.1. Ground truth data, flower cluster and floridity, for Row 5 was established by an expert in
the orchard. Flower cluster number was counted and recorded manually for 31 random trees in row5.
More specific, for each individual tree, the exact flower cluster number was counted in the top, middle
and bottom parts of the tree and documented accordingly. Floridity was determined by giving each tree
a flowering intensity rating between 1 and 9 where 1 being no flowers and 9 being extreme flowering
intensity. Floridity refers to the intensity at which the tree is flowering while flower clusters are the

clustered arrangement of inflorescence.
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Fig. 3.1. The study area and the subject row of this study (row 5). The orchard is delineated with red

line and the row 5 is marked with a blue rectangle.

Table 3.1. Orchard information and management activities for 2018

Size

Variety

Rootstock

Row spacing

Tree spacing

Flower thinning chemical
Fruit hand thinning threshold
Rows

0.47 ha

Elstar

M9

3.0m

1.1 m

ATS (ammonium thiosulphate)
110 fruits/tree

14

High within-sample variability can be observed in an orchard with high natural or biological variability

(Anderson et al., 2021). To illustrate the within-sample variability in this study, the biological or

intrinsic variability, biological standard deviation (SDpio2), was calculated by decomposing the

estimator variance:

Var = SDgps” = SDpio” + SE? 1)

Where SDp,s* represents the observed variance within the collected samples, and SE represents the

standard error.
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The ground truth, cluster number and floridity, was acquired on the 24th of May 2018 when trees were
fully blooming. And the trees generally scored floridity between 5 and 8.5. Afterwards, an inventory of
the collected ground truth was created (Table 3.2), based on Eq.1. As mentioned before, floridity is a
manually assessed score and was given by the expert in the orchard. The variability within the samples
can not reflect the natural variability. Thus no biological variability, SDp;, >, Was calculated for floridity,

but the standard deviation and the standard error were provided.

Table 3.2. Calculated floridity and cluster variance within trees.

N Average SDobs SDypio SE

(#trees)" (# or #cluster/tree)  (# or # cluster/tree) (#cluster/tree) (#cluster/tree)
Floridity 100 6.8 0.7 - 0.1
Total cluster 32 194 64 63 11

I3}

" “4” represents number; “-” represents no value.

100 trees in row 5 of the Randwijk orchard were equipped with observation tape (Fig. 3.), which was
used by the expert as a frame of reference to compartmentalize trees and ground truth flower count. The
observation tape runs throughout the entire row and serves the purpose of maintaining consistency in
the counting of flower clusters and floridity of the tree. The tape divides trees into a Top, Middle and
Bottom observation window. The tape was placed through the middle of the tree as to additionally
divide the trees into East and West halves. Each tree in the row therefore has six observation volumes
namely west-top, west-middle, west-bottom, east-top, east-middle and east-bottom (Fig. 3. 2, C). The
expert used these observation volumes as a guide for assigning floridity and flower clusters scores to
the trees and to be able to compare results of different instances and the changes that occur. Only cluster
number was counted in detail for these observation volumes. Floridity was assessed from East and West
sides and the average was marked as the flowering intensity for each tree. The inventory of the cluster

variability within sub-observation volumes was calculated in Table 3.3.
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Fig. 3.2. Yellow observation tape used for counting purposes. A. Front view; B. Top view; C.
Observation volumes. WT: West-top volume of a tree, WM: West-middle volume, WB: West-bottom
volume, ET: East-top volume, EM: East-middle volume, EB: East-bottom volume. Note: Directional

indicator is valid for B only.

Table 3.3. Calculated cluster variance within different sub-observation volumes.

N Average SDobs SDpio SE
(#volumes)” (#eluster/volume) (Hcluster/volume)  (Heluster/volume)  (icluster/volume)
Top 32 56 30 29 5
Middle 32 75 23 22 4
Bottom 32 62 21 21 4
Total 96 65 26 26 3

" 4 represents number.

3.2.2. Platforms and image acquisition

Images of row 5 were acquired using two platforms with onboard cameras. A ground vehicle equipped
with three RGB cameras as well as a real time kinematic positioning (RTK) system, drove through row
5 taking pictures (1m from the trees) at three different heights (0.75m, 1.30m and 1.85m from the ground
respectively). These three cameras were equally spaced vertically to capture, in combination, the full
height variation of the trees. The images were taken at a rate of 11 frames per second. The ground
vehicle drove through the orchard on the East and West side of row 5. This platform path allowed
pictures to be taken from the Eastern and Western side of the trees. The second camera platform was a
UAV equipped with a camera and a global positioning system (GPS), taking images of the orchard at a

height of approximately 10 meters above the orchard canopy. This camera setup offered multiple
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vantage points of any given tree in the row. Refer to Table 3.4 for more details regarding the platforms
and Fig. 3. 3 for a summary of the data collected. At the time of data acquisition (24 April 2018), weather

conditions were cloudy.

Table 3.4. Camera platform specifications and data size

Aerial vehicle Ground vehicle
Vehicle type DJI™ Phantom 3 PRO, Shenzhen, Tractor (generic)
China (quad-rotor)
Camera type FC300X, Shenzhen, China Intel® RealSense™ Depth Camera
(RGB) D435 (RGB-Depth)
Sensor resolution 4000x3000 1920 x 1080
Frequency Variable 11fps
Positioning system GPS (geotag per image) RTK (10Hz)
Acquired images 362 10,355

Fig. 3. 3. Example image data. A: UAV imagery. B: Ground vehicle imagery, camera position: 0.75m.
C: Ground vehicle imagery, camera position: 1.30m. D: Ground vehicle imagery, camera position:
1.85m.

3.2.3. Methods

The approach proposed follows the methodology presented in Fig. 3. 4. To utilise both data sources and
merge them, it was decided to assess the trees through the use of photogrammetric point clouds (PCs).
It was decided that a PC of row 5 could offer great insight into the spatial variability of the flowering
intensity of the trees by allowing not only inter-tree analysis but also intra-tree analysis. This approach
proposes to create three separate PCs from three vantage points, handle and analyse them separately
and ultimately combine their results at the statistical analysis stage of the framework. Two software,
Agisoft Metashape Professional (Agisoft LLC, St. Petersburg, Russia) version 1.6.2 build 10247 and
MATLAB R2019b (MathWorks Inc., Natick, MA, USA), were used for the manual and automatic

analysis indicated in the framework. This approach allows all three PCs to undergo the same empirical
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operations without any spatial or colour-space differences influencing their results. It also allowed for

the trees in the three PCs to be subdivided and therefore inspected in a more flexible way.
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Fig. 3.4. Schematic of the proposed framework. I and I;: ground vehicle derived mages taken from

Eastern and Western side of a tree, respectively; I;: images taken from the UAV

3.2.3.1. Image pre-processing

During the pre-processing phase, raw images and positioning data from the respective camera platforms
were manually processed. The altitude of the images was determined by the altitude of the study area
and adjusted according to the known height the image was taken. The location data (RTK & GPS) along
with the images were loaded into Agisoft Metashape software. Using Agisoft Metashape, location data
and image data were used to create point clouds of the row of trees. Two main stages were involved in
this process: aligning the images and building the dense cloud. Aligning the photos automatically
identifies image features, creates image pairs and reconstructs camera locations. Moreover the 3D
structure of the scene is initialized. Based on the tie points, the images were loaded again and the
geometry between the tie points was calculated during the second stage. Detailed processing parameters
applied during these two stages were summarized in Table 3.5. From Fig. 3. 5 it can be seen that the
output of the pre-processing phase consists of three versions of point clouds of the same row of trees.
Then these point clouds were transferred to .ply format, which is compatible with MATLAB, for the
automatic processing in the following two models, spatial orientation model and flower detection model.
Density information per point cloud can be found in Table 3.5. Density difference between the GV and

UAV point clouds can be described as considerable.
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Fig. 3.5. Schematic of pre-processing phase with three point clouds as output. I and Iy, : ground vehicle
derived mages taken from Eastern and Western side of a tree, respectively; I;;: images taken from the
UAYV; PCg: point cloud constructed from I only; PCw: point cloud constructed from I, only; PCuy:

point cloud constructed from [;; only.

Table 3.5. Parameters of the point cloud generation in Agisoft Metashape and the yielded point cloud

density.
PC:’ PCyw PCy
Align photos
Accuracy High
Generic preselection Disabled
Key point limit 40,000
Tie point limit 4,000
Build dense cloud
Quality High
Depth filtering Mild
Calculate point colours Enabled
Coordinate system WGS 84 / UTM zone 31N (EPSG: 32631)
Data points per tree 3.90 =105 3.30 = 10° 0.30 *10°
Tie points per image 158 141 71

* PCk and PCw: point cloud constructed from the ground vehicle derived Eastern and Western side

images of the trees, respectively; PCu: point cloud constructed from the UAV imagery.

3.2.3.2. Spatial orientation model
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The input to the spatial orientation model (SOM) (Fig. 3. 6), three point clouds, undergo a process
whereby the main goal was to divide each tree in the point clouds into six observation volumes. These
volumes and their properties can then be used to detect the floridity and flower cluster counts. As
previously mentioned, the aim was to empirically handle the PCs and fuse the results of the flower
detection model. The spatial orientation model therefore prepared the observation volumes to be used

in the detection phase later in the process.
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Fig. 3.6. Schematic of the spatial orientation model (SOM). PCg and PCw: point cloud constructed from
the ground vehicle derived Eastern and Western side images of the trees, respectively; PCu: point cloud

constructed from the UAV imagery.

The first function in the SOM was to downsample the PCs in order to limit computational time and
allow for the PCs to be handled more computationally efficient by the succeeding algorithms. The PCs
were downsampled randomly from their original count as to not influence the spatial distribution of the
input data. To further smooth the point cloud from outliers and reduce the amount of measurement
errors and density variations a statistical outlier removal filter was applied (Rodriguez et al., 2018;
Sultani & Ghani, 2015). More specific, all points inconsistent with all neighbours were trimmed out by
calculating and comparing the mean distances with the interval defined by mean and standard deviation.
The global orientation of the PC entering the SOM might be distorted. In a similar fashion to Dong et
al. (2020), the global alignment function made use of principle component analysis (PCA) to align the
component of highest spatial variance (in this case the length of the PC) to the X-axis. An important
function of the SOM was removing the ground beneath the trees (Fig. 3. 7). The ground data points that

fall within a specified distance from the ground plane were removed from the PC to leave only the trees

77



Automatic flower cluster estimation using aerial and ground-based point clouds

remaining. This improves the accuracy of succeeding operations by eliminating the possibility of taking

irrelevant data, ground data points, into account.

\,
Y [m]

4
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Zm 3 [m]

Fig. 3.7. Illustration of the ground plane removal function. The red plane represents the ground plane.

With ground data points being removed and only trees left the PC now served as input to the PCA
alignment function. During this function the PC was aligned in all three spatial dimensions for the
second time to offset the result of the first PCA alignment due to ground points. Using PCA, the
component with the highest spatial variance (length) was re-aligned to the X-axis. The component with
the second highest variance (height) was aligned to the Y-axis. Finally, the component with the least
spatial variance (depth) was aligned to the Z-axis (Fig. 3. 8). At this stage of the model, all three input
PCs were aligned in the same coordinate system and orientation. Equally important is the distribution

of spatial data start from the origin (0) after this function was applied.
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Fig. 3.8. Trees fully aligned by PCA alignment function. The red lines indicate the direction of each

principle component.

The segmentation function automatically isolated all trees based on the vertical observation tape in
between trees using a MSAC (Fischler & Bolles, 1981) algorithm, a variant of the random sample
consensus (RANSAC). The MSAC was used to fit rectangular planes to the observation tape
horizontally and vertically (Fig. 3. 9). Four planes isolated a tree from the rest of the row as well as
divide the tree into a bottom, middle and top volume based on the observation tape. The size of these
volumes vary from tree to tree depending on how the observation tape was installed in the orchard. The
resulting individually segmented trees then passed through to the final function of the SOM. The subject
tree enters the final function of the SOM where the tree was divided into six observation volumes (Fig.
3. 10). Every tree in the three input PCs, PCg, PCw and PCy, was processed. The height layers were
defined for every tree and the data points that fall within those height layers were divided in an East
and West part of the tree. Therefore, at this stage of the framework, for any given tree in row 5, there

were three versions with each six subsections.

Segmented tree

Top

Middle

Y [m]

Y [m]

Bottom

0 3 '
Z[m] X [m] Z [m] X [m]

Fig. 3.9. Individual tree segmented from row 5. The height layers, defined by observation tape, of the

tree in the yellow window is shown on the right.
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Fig. 3.10. Outcome of the SOM model. For each tree, tree points in the six observation volumes are
highlighted in different colour. WT: West-top volume of a tree, WM: West-middle volume, WB: West-

bottom volume, ET: East-top volume, EM: East-middle volume, EB: East-bottom volume.

3.2.3.3. Flower detection model

The aim of the flower detection model (FDM) (Fig. 3.11) was to extract data points, based on their
colour properties, that belong to flower clusters. These data points can then be used to find a correlation
between the amount of white data points and the ground truth flower clusters in the various subsections

of the trees.
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Fig. 3.11. Schematic of the flower detection model.

To segment the data points that belong to white flower clusters in the flower segmentation function,

four different methods were used:

1. Manual thresholding

2 K-Means clustering

3. Otsu segmentation

4 Hierarchical clustering

Manual threshold segmentation was achieved by manually inspecting a collection of images (45 from
GV and 40 from UAV) from random trees in the orchard. By segmenting all the images manually,
average lower and upper thresholds were determined for red, green and blue colour bands that explain
the flower cluster pixels. These thresholds were used to segment data points in the point clouds that
belong to flower clusters by extracting data points that have the colour properties which match the

criteria.

The blue colour band was used for the three automatic methods to prevent the influence of the yellow
observation tape on the segmentation result. The flower clusters could not be segmented without
including the observation tape when using the red colour band. The blue and green colour band showed
some collinearity in segmentation and therefor only blue was used. Using only one colour band also
reduces the computation time for more computationally intense algorithms such as Hierarchical

clustering.

K-Means clustering is an unsupervised machine learning algorithm that finds clusters in data by

maximizing inter-class variance while minimizing intra-class variance. It is also a popular point cloud
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clustering technique that uses features or attributes from the point clouds (Grilli et al., 2017). The
algorithm finds k number of clusters, where k is predetermined. K-means clustering was implemented
on the colour properties of the data points from the various subsections to cluster the data points into
classes based on the blue colour band. By manual inspecting a collection of images, flower colour
feature were found distinguishable in the blue channel. Moreover, flower points in the point cloud
showed highest brightness compared with the background, in UAV coloured point clouds. For ground-
based point clouds, four components showed significantly different sensitivity to the changes of
threshold in blue channel, they are the sky, the flowers, the ground with no vegetation and the green
objects(leaves and the grass). Therefore, k=2 was set for PCy, and k=4 was determined for ground-

based point clouds.

Otsu segmentation is an algorithm that automatically segments data into two parts by automatically
defining a threshold between two classes. It has also been proven successful in segmenting point clouds
based on RGB information (Jia et al., 2019). Otsu segmentation method divides the data by maximizing

the inter-class variance.

Hierarchical clustering is a machine learning algorithm that finds a predefined number of clusters in the
data set. It is an unsupervised clustering method that iteratively splits the data set into smaller subsets
until every subset contains only one object (Ng & Han, 1994). The Hierarchical clustering algorithm
iteratively splits the blue colour band data of the subject point cloud to find distinct classes in the data.
With the same approach to the determination of k for K-means method, Hierarchical cluster number

was predefined as 4 and 2 for ground vehicle and UAV data respectively.
The outcome of flower segmentation consists of only data points belonging to flower blossoms (Fig. 3.

12). The count of data points in the resultant subsections is known as the white index and will be used

in the analysis function.
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Fig. 3.12. Left: colored point cloud of tree 14. Middle: bottom section of tree 14 with clear flower
blossoms present. Right: flower clusters detected from the middle volume using the Otsu segmentation

method.

The sub volumes of the trees created in the SOM allow any combination of sub volumes to be used as
“puzzle pieces” to build a tree comprising of different point cloud origins. The conclusion can also be
made that the Eastern side of PCg was of higher quality than the Western side since the exposure to the
camera was greater and occluding branches and leaves prevent the camera from potentially capturing
flower blossoms on the Western side. The same can be said for PCw. The tree creation function
combined the best sides of PCg and PCw to create a hybrid combination tree. Therefore, the three eastern
segmented subsections from PCg (East-top, East-middle and East-bottom) and the three western
segmented subsections from PCw (West-top, West-middle and West-bottom) were combined for every
tree. Each sub volumes had flower data points only. The output of the tree creation function is explained

in a tabulated form (Table 3.6).

Table 3.6. Composition of a tree resulting from the tree creation function.

&

PCuy PCyb
Top volume ETpc, + WTpc, ETpc, + WThc,,
Middle volume EMpc, + WMy, EMpc, + WMpc,,
Bottom volume EBp¢, + WBpc, EBpc, + WBpg,,

"WT = West-top volume of a tree, WM = West-middle, WB = West bottom, ET = East-top, EM = East-
middle, EB = East-bottom, PCg = East side of ground vehicle point cloud, PCw = West side of ground
vehicle point cloud, PCy = UAV point cloud, PCyy, = the hybrid point cloud constructed from PCg and
PCw.

The analysis function used the PCy and PChyy trees as well as ground truth data as inputs to compare

the count of the trees to the floridity and the flower cluster ground truth. The aim was to find which

segmentation algorithm results in the highest correlation between the white index and ground truth data.
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Evaluating if the white index of the trees should have a linear relation to the floridity and amount of
flower clusters, linear regression was used as the statistical model to find correlation. The combination
of data source, flower segmentation method and section of the tree with the highest correlation was
used to train and validate a linear regression model for predicting flowering intensity. Due to the limited
size of the model, a leave-one-out cross validation (LOOCV) method was used to validate the models.
LOOCYV is a special case of the resampling procedure K-fold cross validation. It is used to evaluate the
performance of machine learning models with small data sets. LOOCV is the case where the fold

number equals to the number of observations.

3.3. Results

Two main outcomes of the SOM are the point clouds of individual trees and their subdivided
observation volumes. The performance of the individual trees and their subdivided observation volumes
segmentation was validated for 107 trees (Fig. 3. 13) and 186 observation volumes (Fig. 3. 14),
respectively, by comparing the segmented data points to manually annotated ground truth counts.
Outliers are determined for both results. These are trees and observation volumes that could not be
spatially segmented properly. Only trees with spatial segmentation accuracy higher than the 25th
percentile were used for correlation analysis. A simple user interface (UI) enables the user to select a
single tree or its six observation volumes in the row to inspect visually. With this UI, performance of
the proposed method on a series of adjacent trees stretching from 17 to 21 was also demonstrated (Fig.
3. 13). In the case of treel7, inconsistent segmentation results are observed, where the segmentation of
East-side is better than that of the West-side. For the result of tree subdivided observation volume
segmentation (Fig. 3. 14), it is clear that trees created from GV data can be divided more accurately.
This can be attributed to the poor visibility, in the PCy, of the horizontal yellow observation tape running
through the trees. As this is the feature used to segment the observation volumes, it makes sense that

the performance for PCy is inferior.
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Fig. 3.13. Accuracy of the tree segmentation. Left: validation for 107 trees. Right: accuracy of the

segmentation to trees ranging from treel7 to tree21. PCg = East side of ground vehicle derived point

cloud; PCw = West side of ground vehicle derived point cloud; PCy = UAV derived point cloud.
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Fig. 3.14. Accuracy of the observation volume segmentation. PCg = East side of ground vehicle derived

point cloud; PCw = West side of ground vehicle derived point cloud; PCy = UAV derived point cloud.

Correlations between white index derived from different segmentation methods and ground truth,

flower cluster number and floridity, for PCuyp and PC, trees are shown in Table 3.7. It suggests clearly

that for trees in PChyp the most effective way to segment flower blossoms from the trees is with

Hierarchical Clustering, with the only exception being in the top part of the tree where manual

thresholding (R? = 0.67) supersedes the automatic methods (R*> = 0.24). For PCy, as hypothesised,

optimal method proved to be Otsu segmentation in the blue colour band. However, when the

segmentation of the top-middle combination is evaluated, Hierarchical method has a significant

performance, with R? of 0.78 (Table 3.7). Floridity is a subjective score given by the expert in the
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orchards, which is used to describe how intensive the flowering situation is. In general, there is less
room for the improvement of the floridity estimation based on PCy, where no positive correlation is
found. And the segmentation performance at tree level is also poor, with a mean R? of 0.4. But the PCy
evaluation at upper sub-volumes is significantly good, for example, R* for the top and top-middle sub-

volume is 0.7 and 0.78, respectively (Table 3.7).

Table 3.7. The correlation results for different segmentation algorithms on both PCy and PClyp.

R? Manual threshold ~ Otsu segmentation K-means clustering  Hierarchical clustering

(White index VS) (Blue band) (Blue band) (Blue band)
PCy PCup PCy  PCup PCu  PCup PCu  PCup

Floridity - 0.60 - 0.23 - 0.61 0.21 0.65
Total cluster 041 0.50 0.43 0.28 0.20 0.52 0.46 0.61
Top 0.67 0.41 0.70 - 0.33 0.31 0.35 0.24
Middle - 0.40 - 0.20 0.30 0.15 - 0.66
Bottom - 0.51 - 0.36 - - - 0.50
Top + Middle 0.67 0.46 0.67 0.19 0.22 0.44 0.78 0.53
Middle + Bottom - 0.51 - 0.27 - 0.47 - 0.70

Note: Only the first row shows the correlation between white index and floridity, the rest is the
correlation with flower cluster number. Cells highlighted with shading represent the highest correlation
yielded in this study, while cells with no data indicate no positive correlation (R? <0.1). PCy = UAV
point cloud. PChy, = Ground-based hybrid point clouds.

Results indicate that using Otsu segmentation in the top of the trees with UAV data gives a higher
correlation while using Hierarchical clustering with ground vehicle data gives the highest correlation
for the middle and bottom of the tree combined. The high correlation can also be checked in details
with plots (Fig. 3. 15). For both figures, data points evenly distributed on both sides of the regression

line.
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Fig. 3.15. Correlation between white index and flower cluster number. Left: white index calculated
from bottom + middle volumes of PCyyp, using Hierarchical clustering (R?=0.70, RMSE=17.4). Right:
white index calculated from top volume of PCy using Otsu segmentation (R?=0.70, RMSE=10.3). Blue
crosses indicate tree numbers, dotted red lines indicate 95% confidence bounds and solid red line
indicates line of best fit. PCy = UAV point cloud. PChyp, = hybrid point clouds constructed from ground

vehicle derived point clouds.

To filter out the optimal segmentation methods for flowering intensity estimation, the methods yield the
highest correlation with the flowering data, such as the flower estimation at the top volume of the trees,
were summarized (Table 3.8). Additional metrics were calculated for further analysis, such as RMSE
and bias. In order to make a comprehensive comparison between PCy and PChy, the Hierarchical based
method was also included. According to the definition of floridity, RMSE 0.4 meet the requirement of
practical application when PChys-based Hierarchical method was applied. As the correlation between
White index and flower cluster, Otsu and Hierarchical method generally yielded a promising results,
though a poor correlation was demonstrated for the cluster estimation at tree level. In addition, small
bias was achieved for each units to be estimated. PCy based estimation provided better performance for

the flowers from upper sub-volumes, such as top and top-middle, than that of the PCryp based.
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Table 3.8. Correlation between white index and in-situ flowering data, floridity and flower cluster

number.

Methods PCy/PChiyp R? RMSE bias
Floridity Hierarchical =~ PCuyp 0.65 0.4 0.004
Total cluster Hierarchical =~ PCuyp 0.61 353 -1.082

Hierarchical PCy 0.46 29.5 -0.039
Top Otsu PCy 0.70 10.3 -0.026
Middle Hierarchical =~ PCpyp 0.66 9.2 0.769
Bottom Hierarchical =~ PCpyp 0.50 13.9 0.063
Top + Middle Hierarchical PCy 0.78 12.0 0.003
Middle + Bottom Hierarchical =~ PChyp 0.70 17.4 1.653

Note: Only the first row shows the correlation between white index and floridity, the rest is the
correlation with flower cluster number. PCy = UAV point cloud. PCuy = hybrid point clouds

constructed from ground vehicle derived point clouds.

The flower cluster prediction model was developed using linear regression as the statistical model.
Analysing the results above, two prediction models were developed: one model for the middle+bottom
of the tree (Model-MB) and one model for the top of the tree (Model-T). The best performing method
for flower cluster detection in the combined middle and bottom part of trees proved to be Hierarchical
clustering segmentation in combination with the GV data (PCrys). Thus, a linear regression model using
Hierarchical clustering was trained and validated (Model-MB). Similarly, a linear regression model
using Otsu segmentation was trained and validated for the top of the tree with UAV data (Model-T).

The validation results of both models are shown in Table 3.9.
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Table 3.9. Validation of linear regression models for flower cluster predictions.

Model — middle + bottom (Model-MB)

Y=a*X+b Estimate Standard t-statistic  p-statistic RMSE 21.7
error
b 87.907 19.72 4.458 0.003 RRMSE 14.03 (%)
a 0.002 5.27e-04 3.649 0.008 R? 0.66
R? 0.61
adjusted
P-statistic 0.0082

Model — top (Model-T)

Y=a*X+b Estimate Standard t-statistic  p-statistic RMSE 13.1
error
b 35.032 11.621 3.015 0.029 RRMSE 19.12 (%)
a 0.0392 12.3e-03 3.185 0.024 R? 0.67
R? 0.60
adjusted
P-statistic 0.024

Although the data sets for both models in Table 3.9 are limited, the validation suggests that they are
statistically significant with P-statistic for both models, lower than 0.05. In terms of relative root mean
squared error (RRMSE) both models perform good with values between 10% and 20%. Therefore, an
important statistical data fusion was made. Model-MB and Model-T was developed to be used in
combination to predict flowering intensity by using each model in a different section of the tree. The
validation correlation graph of the two models can be seen in Fig. 3. 16. Within the validation result,
three prediction cases yielded a significantly high accuracy, one from the prediction for the
middle+bottom volume and two from the top volume. In general, a promising performance was

observed for the combination of Model-T and Model-MB.
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Fig. 3.16. Validation of the two flower cluster prediction models. Model-T: flower cluster prediction
model for the top volume of a tree; Model-MB: prediction model for the middle + bottom volumes. The

grey trendline is a reference line for ideal situation (prediction accuracy = 100%).

3.4. Discussion

In terms of flowering intensity estimation at tree level, this study compared the performance of coloured
point clouds derived from two platforms, ground vehicle and UAV. We applied different flower
segmentation methods and demonstrated the feasibility of combining UAV and GV imagery to estimate
the apple flower clusters. By comparing the flower estimation performance at sub-volume level, the
pros and cons of the two point clouds were explored (Table 3.7). The potential of improving the
estimation performance with advanced segmentation methods and larger datasets was also

demonstrated.

The major bottleneck for the use of PChyy in the pre-processing phase was attributed to the noise in the
middle and top part of the trees respectively. The ambiguity that exists in distinguishing similarly
coloured flower blossoms from clouds in the sky proved challenging. This is also revealed in Table 3.7,
in which the results concerning the top volume of PCryp, (R*: 0.24-0.41) are relatively lower than that
of the bottom volume (R*: 0.36-0.51). Because of the camera view, white data points of white clouds in
the sky exist in the PCuyp , by which the white flower data points could not be extracted precisely.
Advanced algorithms need to be tested in follow-up research to deal with this problem (Xu et al., 2018).
In addition, a potential solution could be segmenting images firstly rather than a point cloud and using
the location of the segmented pixels to determine the location of the data points in the point cloud.
These data points can then be labelled as flower points. For the method proposed, however, detailed

documentation of camera parameters and setup is required.

In PCuy, on average 71 tie points are present per image compared to 141-158 for the GV images (Table

3.5). This resulted in a lower quality or less dense point cloud from the UAV data. This explains the
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inferior performance of the various segmentation models on the UAV data compared to GV data in
Table 3.7. The results of the top of the tree (R*: 0.33-0.70) compared to the middle (R?=0.30) and bottom
(no positive correlation, R*<0.1) respectively can be attributed to the same reasons. Tie points in the top

of the trees generated with UAV data are far more dense than in the middle and bottom.

This study has shown the potential of flower intensity estimation at tree level with a combination of
PCy and PChyys (Fig. 3. 16). Yet, merging point clouds from multiple views required semantic features
to be visible and accurately created in 3D space for both point clouds. Using semantic features such as
tree trunks is limited in this study since tree trunks are hard to recognize or even not visible in UAV
images. Manually inserting reference features in the orchard, visible to both UAV and GV cameras
could be useful in spatially merging the two point clouds. An alternative approach to fuse the data
between UAV and GV is to use images from both data sources to build a 3D model by feeding image
data along with location data from both sources into Agisoft. Yet, tic points should be found between
pairs of images of both sources. And the feature matching algorithms should be able to detect enough
features to create tie points between image pairs. In this study, the SURF algorithm could not positively
identify matching features between the UAV image and the GV image of the same tree, but has shown
good performance for GV images only (Fig. 3. 17). This visually explains the limitation of using both

datasets, UAV and ground vehicles datasets, in combination for creating a 3D model in this chapter.

O Matched points 1
+ Matched points 2
T, P -7 I‘ »

&;._‘»,a'_*'—

z
O Matched points 1
Matched points 2

Fig. 3.17. SURF algorithm for feature matching in treel. Left: Feature matching in ground-based

images. Right: Feature matching between UAV and ground-based images.

Flowering intensity estimation in orchards is still in its infancy. The majority of pre-existing study focus
on the estimation at picture level, which lack the information of the real flowers in tree and make it
difficult to compare the achievement in this study with. Despite this fact, this study first collected a
unique ground truth with not only the total cluster number per tree but also the cluster number in sub-

volumes of a tree, overcoming the problems raised by Wang et al. (2021), and further demonstrated the
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flower estimation at tree level. Compared with the relevant research as mentioned before, the approach
proposed is more comparable to Vanbrabant et al. (2020), though the image data used in this study is
more complex against them by comparing the average cluster number per tree (198 vs 150). As they
mentioned, heavy flowering provides more flower occlusion problems and thus affects the estimation
accuracy. The point clouds derived from UAV showed a decrease in the density from the top to the
bottom . Whereas the method proposed in this study enable the inspection of the influence of PCs
density to the estimation accuracy by comparing the performance from different sub-volumes (Table
3.7), which further enhance the use of point clouds for fruit tree monitoring. A relative improvement
was achieved in this study, while the highest R? of the correlation between the image based flower index
and the in-field counts of the cluster number achieved by Tubau Comas et al. (2019) and Hocevar et al.

(2014) was 0.56 and 0.50 respectively, compared to 0.7 in this study.

The investigated four flower segmentation methods, manual threshold, Otsu, K-means and Hierarchical
clustering, have been applied in a variety of flower detection studies (Bhattarai et al., 2020; Dias et al.,
2018b; Liakos et al., 2017; Tubau Comas et al., 2019). A comparison of these methods was made and
the segmentation results reported from this study were also proved to be reasonably capable of
segmenting the flower blossoms (Table 3.7). In general, the results also returned low bias (Table 3.8).
Otsu segmentation and Hierarchical clustering reported a better performance compared to the other two
methods. Because of the camera view, top volume of PCy is more representative for the flower number
in top section of the tree (Table 3.7). Thus the significant correlation returned from Otsu segmentation,
with a R? of 0.7, indicates the capability of it for flower point segmentation. Hierarchical clustering
shows a stable performance, even for the detection from the bottom volume of PCyyb, with a R*of 0.5.
However, unsupervised clustering methods enable the model to be robust against lighting and
illumination changes. Different image acquisition locations enable PCy and PChy, show different spatial
scales and occlusions. This explain the difference between the floridity and flower cluster estimation
performance based on the two type PCs (Table 3.7). Since floridity was scored by the expert whose
view is more close to the camera equipped on the ground vehicle, the floridity estimation from PChys is
much better than that of PCy, with a highest R? of 0.65 (Table 3.7). While a comparable performance

of these two PCs was observed for the estimation of flower cluster.

The approach followed in this chapter provides a novel solution to estimate the flowering intensity at
tree level and yielded a relatively good results (Table 3.8). It relies on high-quality multi-view imaging,
combining UAV and ground based RGB images, and point cloud reconstruction to facilitate the
estimation. By constructing point clouds and having GPS/location information available, spatial and
even temporal information is readily available. The final products, 3D point cloud representations,
provide an understanding of the flowering variability of the whole orchard from not only tree level but

also a height based level (Fig. 3. 9 and Table 3.7). Creating point clouds from two data sources allows
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flexibility in selecting the best 3D represented regions of trees and analyse them with different
segmentation methods based on the height of the tree (Fig. 3. 10). To further validate the approach
proposed in this study, higher image resolution will be tested when it comes to the experiment design.
Higher resolution RGB cameras could perhaps result in more tie points per image, which contributes to
solving the point cloud merging issue discussed above, and therefore point clouds with higher quality
will become available. Though aerial images from this study yield a 40003000 resolution, it is far
from the advanced RGB camera capable for UAVs. In addition, data size would also be expanded to
test the robustness of the method proposed. As shown in Table 3.2 and 3, the cluster variance within the
orchard is relatively high which limits the robustness of flowering intensity estimation based on small
data size. With larger data size, more advanced machine learning technique would also be suitable to
test for further improvement of flower estimation, such as the CNN worked on dense point cloud has

been reported for cotton bloom detection (Xu et al., 2018).
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3.5. Conclusions

In our work, a novel framework based on point clouds derived from UAV and GV images was designed
to automatically estimate flowering intensity in an apple orchard during the full blooming phase of the
growth season. The possibility of combing UAV and GV to precisely assess flowering intensity among
apple trees, including the spatial variability of flowering intensity in the orchard and even within an
individual tree, was demonstrated. Multiple camera angles can in this way be used to complement each
other in terms of coverage of certain parts of a tree. Automatic flower cluster estimation at the tree level
yielded a R? of 0.7, and RMSE lower than 20 for the correlation between the image derived flower

index, the white index, and the in-field counts of the cluster number.

The automatic SOM performed well, and high accuracy was achieved in handling the point clouds and
spatially segmenting trees and observation volumes. Four flower extraction methods, manual
thresholding, Otsu segmentation, K-means and Hierarchical clustering, were explored. Otsu
Segmentation and Hierarchical clustering method performed the best for the segmentation in GV and
UAV point clouds, respectively. Both models can however be improved with a larger data set. Higher
diversity in Floridity scores would also make the linear regression approach for floridity detection more

significant.

UAV imagery can be applied for studying less detailed features of the fruit trees. But to analyse detailed
features, such as flowering intensity, strict requirements are needed to guarantee the point cloud quality.
Depth information can be helpful in improving the accuracy of surface reconstructions in the point
cloud, as proven in the study by Dong et al. (2020). For future studies, flying lower and closer to the
tree canopy could result in higher quality images for the same resolution and more tie points per point
cloud. We expect that this could also benefit in matching features between the GV images and UAV
images and perhaps enable spatial merging of point clouds, if a proper parametrical setup is made for
the respective cameras. Grey reference strategies could be implemented to make the model even more

robust against illumination differences between UAV and GV data.
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Chapter 4

Abstract

A timely and accurate spatial inventory of flowering characteristics benefits both the floral phenology
monitoring in ecology and various crop management activities in agricultural systems. Recent
advancement has proven the superiority of computer vision in flower classification at image level. Yet
progress in the flowering intensity estimation at tree level is much less and still far from satisfactory.

To tackle this problem, a novel approach was designed for the use of single raw aerial images to quantify
flower intensity. With pre-prepared dataset, flower-associated pixels were extracted for individual trees
using a pixel-based classification method, the color thresholding. Next, three flowering indices retrieved
from unmanned aerial vehicle (UAV) were evaluated, the index percentage (IPG), index pixel (IP), and

index area (IA). Finally, linear correlation of the flowering indices to flower cluster number and expert-

assessed floridity recorded in the field were calculated. Results indicated that IPG yielded the highest
correlation to flower cluster (R* = 0.93, RMSE = 8) and floridity estimation (R? = 0.78, RMSE = 0.9).

A UAV-based floridity scoring method was also designed for automatic estimation tasks in practice, and
a comparable and even better performance to the expert-based approach was demonstrated. Furthermore,
effects of vertical (nadir) and horizontal (angular) overlapping of flower clusters within the canopy were

evaluated, showing excellent potential to improve the estimation accuracy.
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4.1. Introduction

Floral phenology is highly sensitive to climate change. Evidence from the ecological community
suggests that changes in floral phenology, such as flowering time and duration, may alter processes at
species and community level (Hovenden et al., 2008), and reshape regional ecological communities
(CaraDonna et al., 2014). In agricultural systems, floral phenology also plays a crucial role in various
crop management activities during the entire growing cycle, especially for fruit and nut trees. Floral
phenology of fruit trees covers a short life cycle starting from small green buds to falling flower petals.
The complete cycle of apple flower development has a duration of 2-3 weeks (Wang et al., 2021a).
Within this period, the following flowering stages are identified: tight cluster, balloon blossom, king
bloom, and full bloom. Quantification of flowering intensity contributes directly to decision-making in
orchards, such as pollination management (Chen et al., 2019a), flower thinning (Wang et al., 2021a)
and determination of heating requirements (Yuan and Choi, 2021). In the community of plant breeding,
this information also contributes to breeding line identification and cultivar selection (Lopez-Granados
et al., 2019a). Additionally, regional observation-based investigations have shown that flowering
distribution in apple orchards may provide a final yield prediction at an early stage (Aggelopoulou et
al., 2011; Liakos et al., 2017). Yet, in the context of precision agriculture, a timely and accurate temporal

inventory of flowering characteristics at the tree level is highly required.

Research on flowering characteristics in orchards has experienced a two-stage evolution in the past ten
years. First, the capability of flower detection and classification with computer vision, and as a follow-
up, the adoption of computer vision-derived tree-level flowering inventory. Within this first stage, both
classification-based and spectral index-based methods have been applied, which mainly rely on high-
resolution imagery and multispectral observations, respectively. Earlier studies have shown evidence
that classification-based methods are able to detect flowers and classify flowering stages (Dias et al.,
2018a; Tian et al., 2020; Wang et al., 2021a). Flower color features are distinct from the background in
the orchard scene. Thus several studies employing these methods were conducted by thresholding at
pixel level (Hocevar et al., 2014; Liakos et al., 2017; Sun et al., 2021; Wouters et al., 2015).
Thresholding methods are prone to over-fitting and are sensitive to varying backgrounds and
illumination. In specific environments, the thresholding method followed by support vector machine
(SVM) can improve performance (Wang et al., 2018b). Additionally, thresholding methods can be
regarded as a baseline approach for understanding and improving more complex detection algorithms,
e.g., deep learning-based object detection (Farjon et al., 2020). Conventional classification methods at
pixel level, such as SVM (Lin et al., 2020), K-means and other clustering methods (Lu et al., 2021;
Tubau Comas et al., 2019; Vanbrabant et al., 2020a), and convolutional neural networks (CNN) (Cibuk
et al., 2019; Wang et al., 2020) have also been adopted, and proved to be more robust. These methods
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usually are hybrid, combining the pixel-based flower classification with further flower pixel analysis

for flower number or flower cluster number counting purposes.

Another group of classification-based methods has been conducted at object level. These algorithms
evaluate the small object pattern directly to classify if the object is a flower or not. Deep neural networks
with various feature extraction modules have been demonstrated for this aspect, such as VGG16 (Wang
et al., 2021a), DeepLab-ResNet (Sun et al., 2021; Tian et al., 2020), YOLOv4 (Koirala et al., 2020b;
Wu et al., 2020a). One advantage of neural networks is the ability to classify flowers at different stages,
which is superior to the classification at pixel level (Tian et al., 2020; Wang et al., 2021a; Yuan and
Choi, 2021). The ResNeSt50 network achieved an identification accuracy of 92.4% within a two-classes
testing set: apple bud and leave bud (Xia et al., 2021). Apart from the classification-based methods, also
spectral index-based methods are able to track the flowering characteristics, especially for the flowering
time and flowering spatial variation (Chen et al., 2019a). This method contributes to the reduction of
the noise from the soil and green vegetation and is more suitable for efficient floral phenology

monitoring at the regional scale.

The first stage evolution of flowering characteristic studies already provides sufficient support for the
adoption of advanced techniques in practice. Quantification of flower cluster and flowering intensity at
tree level is the basis of floral phenology monitoring, and of subsequent site-specific management. Yet
this area of research is still challenging and current flower quantification methods are still far from
satisfactory. One challenge is related to the complex agricultural environment, such as the outdoor
illumination variation, flower occlusion, and the large internal variance of the flowers (Farjon et al.,
2020). Another aspect is related to uncertainties in flower cluster reference data collection (Wang et al.,
2021a), especially for the stone fruits like apples and pears. Normally stone fruit trees bloom 50-300
flower clusters with a total of 350-2100 flowers per tree in comparison with 15-20 flowers per plant for
cotton (Vanbrabant et al., 2020a). Thus far, nine flower quantification studies were conducted in
orchards, with a practical focus on the estimation at the tree level. Six studies describe ground vehicle-
based investigations (Hocevar et al., 2014; Koirala et al., 2020b; Lee et al., 2022; Scalisi et al., 2021;
Wang et al., 2021a; Wang et al., 2018b) and three are based on unmanned aerial vehicles (UAV) (Tubau
Comas et al., 2019; Vanbrabant et al., 2020a; Zhang et al., 2022b). Mainly RGB sensors were employed
within the six studies, and three fruit types were covered: apple, pear, and mango. (Koirala et al., 2020b)
and (Wang et al., 2018b) indicated the highest flower cluster estimation accuracy for mango panicles,
giving an R? of 0.86 and 0.84, respectively. Both of them utilized a ground-based dual-view imaging
approach at night-time in order to achieve a more accurate and high-contrast flower cluster
representation in two-dimensional (2D) RGB images. By contrast, the remaining research which
focused on the stone fruit cluster estimation generally achieved lower accuracy. This could be attributed

to the fact that apple or pear trees suffer a significantly higher cluster occlusion problem, and their
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flower sizes are much smaller than that of mango panicles complicating the detection task. The highest
flower cluster estimation accuracy achieved for stone fruits was an R? of 0.61 which was obtained from

a regression-based estimation (Zhang et al., 2022b).

Camera view is an important factor in flower cluster estimation with 2D imagery. One-perspective
scanning estimates tree-level flower clusters based on the detected flowers in images captured from one
side of the trees. It provided a minimum percentage error of 13.49% for apple flower cluster estimation
(Lee et al., 2022). When a regression-based method was applied, the accuracy reached 0.56 (R?)
(Hocevar et al., 2014). Dual view has been proven to improve the proximal sensing system (Koirala et
al., 2020b). The resulting error (RMSE) was 5 clusters per image (Scalisi et al., 2021). Earlier studies
adopting a top-view approach from aerial imagery achieved accuracies of apple flower cluster
estimation at the tree level of 0.44 (R?) (Vanbrabant et al., 2020a) and 0.53 (R?) (Tubau Comas et al.,
2019). (Vanbrabant et al., 2020a) showed that only 50%-76% of the in-situ flowering variability can be
represented within a top-view image. Vertical (nadir) and horizontal (angular) overlapping of flower
clusters within the canopy exist in original RGB images captured from the aerial sensing system. This
makes it more challenging to estimate the flowering intensity at tree level. 3D point clouds-based
estimation at tree level can be a potential solution (Lopez-Granados et al., 2019a), accuracies of 0.46
(R?) (Vanbrabant et al., 2020a) and 0.61 (R?) (Zhang et al., 2022b) were observed. Apart from this focus,
improved results were demonstrated for the flower cluster estimation at plot level (Vanbrabant et al.,
2020a) or partial-tree level (Wang et al., 2021a). However, it does not meet the requirement of precise

horticulture management, where accurate flower characteristics at tree level are in high demand.

With increasing concern for practical adoption of advanced UAV imagery technology in orchard
management, a novel approach was designed adopting aerial geotagged RGB images to quantify flower
intensity. In the case study of apple flowering intensity estimation, flower-associated pixels were
extracted from individual-tree datasets using a pixel-based classification method, i.e. color thresholding
method. Next, three well-established flowering intensity indices were evaluated, e.g., the index
percentage (IPG), index pixel (IP), and index area (IA). Finally, the possibility of flowering intensity
estimation using UAV imagery was validated by calculating the linear correlation of the flowering
indices to the flower cluster number and floridity score recorded in the field. In addition, a UAV-based
floridity scoring method was also designed for automatic flowering intensity estimation tasks in practice.
To further evaluate this approach, the effects of vertical and horizontal overlapping were demonstrated
which provides potential to improve the flowering intensity estimation accuracy. The given approach
provides a new image analysis strategy for UAVs and the derived flower cluster estimation method
shows the potential to promote the advancement of precision orchard management during the flowering

period.
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Faced with gaps demonstrated above, this study takes an apple orchard as case study to estimate the
flowering intensity at tree level based on a three-consecutive-year bloom dataset. The following points
will be elaborated:
e Evaluate the feasibility of tree-level flower cluster and floridity estimation with single raw
UAYV images;
e Compare the performance of visual field observations and UAV-derived flowering floridity
estimations;
e Examine the effects of structural overlapping, i.e. vertical (nadir) and horizontal (angular)

overlapping, on flowering intensity estimation accuracy in aerial imagery.

4.2. Study area and datasets

4.2.1. Study area

The research was conducted within an apple orchard located in Randwijk, Overbetuwe, The
Netherlands (51.938, 5.7068 in WGS84 UTM 31U) (Fig. 4.1). The orchard of 0.47 ha, contains 14 rows
of the apple variety Elstar, Malus pumila ‘Elstar’, with tree and row spacing of 1.Im and 3.0m,
respectively. The orchard was planted in 2007 with 4-years old trees, and the rootstock is M9. For every
row in the orchard, trees are numbered from 1, starting from South to North. Per row, after each 10th
tree, a pollinator tree is planted in between two Elstar trees (mostly Granny Smith). There were about
101 trees in each row before 2019. In 2020, nearly half of the trees were removed for other orchard
management purposes. More specific, tree numbers ranging from 1 to 45 were removed for each row.
Afterward, there are 56 trees in each of the 14 rows, and the orchard surface area changed to 0.26 ha.
Among the regular orchard management, ammonium thiosulphate (ATS) is used for chemical thinning
during the blooming stage. In case of high pollination and a high number of fruits, Brevis® is used for
chemical thinning of fruits with a size between 8 and 16 mm. Brevis® is a thinning agent which contains
metamitron and calcium. After June drop, trees are hand thinned until each tree has a maximum of 100

fruits.
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Fig. 4.1. The location of the apple orchard located in Randwijk, Overbetuwe, Gelderland in the
Netherlands in 2020. The province of Gelderland is filled with green; the red rectangle delineates the
present orchard; the yellow rectangle marks the removal area; the study tree row (row5) is highlighted

in purple.

Within the orchard, the fifth row from the West, Row5, was given specific environmental settings for a
trial of flower thinning optimization (Fig. 4.2). Easily identifiable yellow poles were set vertically
between every two trees in this row, which delineates each individual tree. Meanwhile, yellow tapes
were set horizontally for the whole row, which divide each tree into three parts: bottom, middle and top.
Based on this construction, space between every two adjacent yellow poles forms a unique observation
window (Fig. 4.2a) (Fig. 4.3). Because of the high-density planting system, vertical yellow poles are
not able to segment one individual tree completely. Thus in an observation window, not only flowers
from the tree inside the window can be observed, but often also flowers from the adjacent trees. In
addition, since the tree shape is spindle-tree, the plane from the yellow poles and tapes divides each

individual tree into two sections, the West section and the East section (Fig. 4.2b).

102




Chapter 4

Fig. 4.2. Yellow tapes and poles applied in row5: (a) demonstration of the observation window with

three parts: bottom, middle and top; (b) West side and the East side from the same tree.

Fig. 4.3. West view of trees and the yellow tapes in row5, cropped from original UAV imagery acquired
in 2018, 2019, and 2020.
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4.2.2. Aerial imagery from UAVs

In a continuous period of three years (2018, 2019 and 2020), three UAV platforms equipped with
different RGB sensors were used for the collection of the flowering intensity dataset (Table 4.1). Three
commercial UAVs provided compact and accurate low-altitude data collection. To correct for common
geo-location errors in the systems of Phantom3 and Phantom4 the location of ground control points
(GCP) was measured. A Topcon HiperHR receiver was used as an aid and the real-time kinematic (RTK)
signal from 06-GPS/MoveRTK via VRS has a dynamic accuracy of 2 cm. Since a more advanced UAV
platform, Phantom4 RTK, was used in 2020, no GCPs were employed. Regarding the cameras, two
camera resolutions were used: 4000%3000 and 5472x3648 pixels. Camera settings were set to automatic
mode to keep the image quality consistent with the illumination changes during the flights. As shown
in Fig. 4.3, RGB sensors with different resolutions provide heterogenous data for the same orchard,

which allows evaluation of robustness and generalization capability of the method under investigation.

During full blooming periods of apple trees, multiple flights were conducted with different flying
altitudes: 15m, 20m, and 25m (Table 4.1). Oblique mission was applied to obtain the complete feature
of each individual tree from the side-view. And the mapping mission was set to autonomous model.
Specific data collection date is not completely the same due to changes in weather conditions over these

three years. This also produced datasets with various illumination conditions (Fig. 4.3).
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Table 4.1. Description of flight parameters for the UAV campaigns over the study area for the period
2018-2020.

Data 2018 Data 2019 Data 2020
UAV platform DJI Phantom 3 PRO, DJI Phantom 4 PRO, DJI Phantom 4 RTK,
Shenzhen, China Shenzhen, China Shenzhen, China
Sensor FC300X FC6310S FC6310R
Type CMOS CMOS CMOS
Resolution  4000x3000 5472%x3648 5472x3648
Focal length (mm) 3.61 8.8 8.8
F number £/2.8 /4.5 /2.8
Exposure time 1/100 1/200 1/500
Overlap ratio 85% 85% 85%
Flying velocity (m/s) 2 1.9 2
Flying altitude (m) 15 20 25
Ground sample
distance (GSD) 0.64 0.55 0.69
(cm/pixel)
GCP amount 4 6 0
Data size 61 418 252

Collection date &

24" April, 11:30 am

23" April, 10:53 am

18" April, 11:33 am

time

Weather Overcast Sunny Sunny
Temperature (°) 11 17 13
Wind (km/h) 20 SW 20E 15NE

4.2.3. In situ flowering intensity measurement

In this study, two types of ground truth data were recorded for the trees in row5: flower cluster number
and floridity. In apple orchards, one flower cluster consists of mostly five flowers that are developed
from the same bud. In general, flower number within one cluster ranges from three to six. For flower
cluster counting, 32, 101, and 19 trees in row5 were selected for the manual measurement in 2018, 2019,
and 2020, respectively. The flower cluster number on both West side and East side of a tree were counted
separately, and the sum of these two counts represent the total cluster number of a tree. In addition,
flower cluster number values at observation window level was also recorded, including flower clusters
from adjacent trees (Fig. 4.3). Apple species like ‘Elstar’ are sensitive to biennial bearing. So in case of

a heavy fruit load in one year, the tree will form fewer flowers in the next year (Fig. 4.4). As shown in
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Fig. 4.4, a comparable blooming level was observed in 2018 and 2019, however some trees in 2018
bear a heavy blooming. In 2020, the blooming level decreased significantly (Fig. 4.3). In addition, in
2019, the production on the West side was quite high and in the East part relatively low. As a result,

relatively more flowers were observed on the East side in 2020.
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Fig. 4.4. Flower blooming level of a selection of trees in the apple orchard of Randwijk based on cluster
number for the three study years. The cluster number presented here is the field-based flower cluster

number counted at the observation window level.

The second ground truth measured in this study is floridity value. Flower floridity is an index used for
representing the flowering level of apple trees. The field inspector gives each tree a floridity value based
on observations on the overall flowering situation in the orchard. The index ranges from 1 to 9, where
value 1 represents no flowers and 9 represents heavy blooming. The optimal floridity is intermediate
bloom with a value of 5. More specific, the inspector evaluates every tree from West and East side
separately, and the mean value of these two sides is the floridity value of the observed trees. All trees
in row 5 were marked with floridity by an experienced expert over three years. Goodness of fit of the
regression between floridity and flower clusters was evaluated, resulting in R? values from 0.64 to 0.94
(Fig. 4. 5). A discontinuous performance of visual floridity judgement was observed, indicating the
disadvantage of subjective assessment. Between years a difference in the relation can be observed as
shown by varying slopes of the regression lines. In 2018 with high flower cluster counts, the regression
line is steeper. While for 2019 and 2020 with a comparable cluster range the steepness of slopes of the
regression lines is comparable. This shows that visual observation of floridity is dependent on the range

of flower clusters present within a year.
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Fig. 4.5. Relationship between two ground truth datasets, the floridity and flower cluster number, for

three years of field observations for a selection of trees within row 5 of the apple orchard in Randwijk.

4.3. Methods
4.3.1. Flowering intensity estimation

The proposed tree-level flowering intensity estimation approach consists of four stages as shown in Fig.
4.6. First, UAV images are grouped in two datasets with the orchard trees East-view and the West-view
using a new image selection procedure. Second, individual trees were labeled and cropped from these
two datasets. Third, a segmentation method was applied to extract the flower pixels from each
individual tree. Fourth, characteristics of the region of interest (ROI) and the segmented flower pixels
were used for calculation of flowering indices. Finally, correlation of the examined aerial flowering
indices to the observed flower cluster number and floridity assessed in field (ground truth) was

evaluated.

107



Feasibility assessment of tree-level flower intensity quantification from UAVs

Oblique mission 1,
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(4) Flowering index calculation
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in blue ban

(Individual tree image
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Fig. 4.6. Overview of the tree-level flowering intensity estimation method based on proposed UAV
image analysis strategy: (1) select the images containing rowS5 in the orchard, (2) extract individual
trees in row5 from the selected images, (3) perform color thresholding method to extract flower
associated pixels, (4) calculate flowering indices by using the extracted features, the flower associated

pixels and the ROI. GT: ground truth; ROI: region of interest.

4.3.1.1. Image selection

To make the proposed approach reproducible, an image selection procedure was designed. The
procedure is carried out with support of Agisoft Metashape Pro (Agisoft LLC, St. Petersburg, Russia).
First, raw UAV images were imported in Agisoft to ensure UAV image coordinates are visualized in the
Ortho window within Agisoft. Each black hollow circle represents the coordinate of a single image
acquired by the UAV (Fig. 4.7a). Based on this layout and associated image metadata, detailed
information about the flying trajectory is retrieved. The first image captured is used to determine the
starting point of the flight, indicated with the red mark in Fig. 4.7a. Successive image numbers indicate
the flying trajectory of the drone, as the red arrows illustrate in Fig. 4.7a. Each tree row in the apple
orchard is planted from South to North. Based on this orientation and the selected flight path, it was

derived that uneven numbered image rows capture the East view of the (Fig. 4.7a). Images in the even
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numbered image row capture the West view of the trees. Thus the whole dataset is divided into two

groups: East-view and West-view images.

The next step is to divide the acquired UAV images into new East-view and West-view groups which
are prepared for individual tree extraction. This division procedure follows the workflow as presented
in Fig. 4.7b. For sake of providing an example, both the workflow content and follow-up introduction
stick to image selection of the trees in row 5 indicated in Fig. 4.7a. As it shows, the first image taken in
each IR is located at the largest distance to a tree or tree row in the orchard. Based on this, raw images
with row$5 are grouped in categories far, intermediate, close and vertical groups and are shown as blue,
orange, grey, and black solid circles in Fig. 4.7a. For a fixed flying altitude, a higher side overlap
produces more images in an IR, and as a result more image groups. Nadir-view images include heavy
flower occlusion problems and lack the side-view feature of the trees. Thus vertical image groups were
discarded in this study. Theoretically, the selected images within the same distance group should
distribute on the same straight line perpendicular to the flying direction, as the image group of West-

view group_far highlighted in green in Fig. 4.7a.
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Fig. 4.7. Image selection strategy for aerial images captured at different distances to the trees in row 5,
where ground truth is recorded in the field: (a) illustration based on the screenshot of Ortho window in
Metashape, dataset 2019 was imported and processed. Black hollow circles represent UAV images; a

blue rectangle delineates row 5 in the orthophoto. (b) Flow chart of the image selection. IR: image row.

Ideally, dual-view imaging conducted at same distance to targeted trees enables the flowering intensity
estimation at tree level. Yet, effects of the distance between camera position and target row on the
flowering intensity estimation accuracy introduce uncertainty. To examine this, the exact imaging
distance of different image groups was measured in QGIS open source software, version 3.12). The
vertical distance between every image and location of the trees in row5 was measured by the function
measure line. The average distance calculated from the images within the same group represents the
distance of the group. This measurement was conducted for three complete image groups derived from
datasets 2019 and 2020 (Table 4.2), while only one image group from dataset 2018 was derived because

of its limited data size.
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Table 4.2. Seven groups of images selected for the three investigated years. The distance represents the

distance between position of the image groups and the trees in rowS5.

Distance West(m)  Distance East(m) )
Average Difference

Year Image group Average SD* Average SD
m w ™
2018  Far 11.8 1.6 16.1 2.3 13.9 43
2019  Far 10.8 0.2 11.2 0.1 11.0 0.4
Intermediate 7.2 0.1 7.6 0.3 7.4 0.4
Close 3.5 0.4 3.7 0.4 3.6 0.2
2020  Far 20.8 0.5 23.2 0.5 22.0 24
Intermediate 14.0 0.6 16.0 0.5 15.0 2.0
Close 7.9 0.5 10.1 0.4 9.0 2.2

2 SD is short for standard deviation.

4.3.1.2. Individual tree cropping

For every image in the selected groups (Fig. 4. 7a), the individual trees located in row 5 are manually
segmented in observation window scenario. Faced with irregularity of the observation window size and
shape (Fig. 4.3), an image crop procedure was developed. Four points are defined around a single tree
in the image, then a quadrilateral area covering a complete tree is extracted and stored (Fig. 4. 8a, b).
The yellow sticks located between trees were regarded as reference to assist the operator to determine
four points for each tree to be segmented. More specific, top and bottom parts of each yellow stick
provide two points for delineating the area to extract (Fig. 4.8a). As shown in Fig. 4.8a, the majority of
the yellow sticks are lower than the trees. As a result the top part of the trees cannot be covered by the
quadrilateral area determined by the four points derived from the sticks. Therefore two of the four points
needed to be moved along the extension line where the yellow stick is until a complete tree is covered.
To shape the extracted individual tree area into a normal rectangle shaped image format, the remaining
area was filled with black pixels automatically (Fig. 4.8b). The segmented area is regarded as Region
of Interest (ROI). In addition, to identify the cropped individual tree ID, the orange hat-shape ground
markers were used as reference (Fig. 4.8a). This cropping operation and the follow-up analysis were

programmed in Matlab_2019b (MathWorks Inc., Natick, MA, USA).
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Fig. 4.8. Crop individual trees from the selected UAV images. (a) Define four points to determine the
area to crop and store. Purple and orange digits are used for labeling the tree ID, and the red digits label
the ground marker (b) Cropped individual tree (c) Original UAV image

4.3.1.3. Color thresholding segmentation

Conventional color thresholding segmentation was applied for the prepared individual tree dataset to
achieve flower pixel extraction. Pixel-based classification method has been evaluated for flower
detection in previous studies (Hocevar et al., 2014; Horton et al., 2017; Zhang et al., 2020b). These
thresholding cases were conducted within different color space channels: HSL (Hocevar et al., 2014),
Lab (Tubau Comas et al., 2019), and RGB (Zhang et al., 2020b). To select the optimal color model,
dataset 2018 was used for a comparison of segmentations derived from different color model (Tubau
Comas et al., 2019). According to the segmentation results, a threshold in the blue channel could
separate the flower pixels from the background. Next, a similar thresholding procedure ((Horton et al.,
2017) was used for the blue channel in RGB color model. Based on a collection of images from the
same year, visual inspection and comparison against original images was made. If a pixel from the input
RGB image does not have a corresponding pixel value specified in blue channel, it is set to 0 in output
binary image, otherwise, it is set to 1 (Fig. 4.9b, f). The color thresholding method is sensitive to changes
in illumination. One fixed threshold (optimized by the sample images from a specific year) is not able
to segment flower pixels from the images collected from a different year. Thus three different thresholds
in the blue (B) channel were determined for the datasets collected over the years of 2018 ( B>100),
2019 (B>227), and 2020 (B>223).

The number of areas consisting of flower pixels in binary image was also calculated, to assist the
calculation of index area. Based on flower pixels extracted, morphological operations were conducted
to reduce noise. Morphological opening and closing operations were applied to the binary image derived

from blue channel. The structuring element used was a disk with a size of 1. Parameters of this
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structuring element were determined by visual inspection of a set of 10 randomly selected images.
Finally, flower areas detected within one image were numbered sequentially from 1 and labeled with

red rectangle bounding boxes (Fig. 4.9¢, g).

RGB images Flower pixels Marked areas Flower pixels overlay

2019

2020

Fig. 4.9. Samples of the flower segmentation approach for two different years. (a and e) individual tree
images, (b and f) perform color thresholding method, (¢ and g) perform morphological operations for

flower area amount counting, (d and h) extracted flower associated pixels.

4.3.1.4. Flowering index calculation

There are four types of flowering indices used to monitor the flowering intensity in orchards. The first
index is the counting of the absolute number of flowers in images, and it is also the only direct estimate.
Majority of research employing this index is based on object-based classification (Wang et al., 2021a;
Wau et al., 2020a). For pixel-based classification methods, three types of flowering index designs are
well-established: (i) the number of the flower-associated pixels (Aggelopoulou et al., 2011); (ii) the
ratio of flower to leaf or tree canopy-associated pixels (Wang et al., 2018b) or total image pixels (Chen
etal., 2019a; Underwood et al., 2016); (iii) the number of flower associated areas in the image (Hocevar
et al., 2014). These three indices and the direct counting of flower number have been applied in flower
blooming variation monitoring (Hocevar et al., 2014), variable rate spray assistance (Wang et al., 2020),
yield prediction (Aggelopoulou et al., 2011), and flowering peak time determination (Underwood et al.,
2016). The number of white pixels in the image, flower pixels, should be able to describe the flowering

intensity level of a specific tree. Thus, these three pixel-based indices were evaluated in this study.
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The first examined index is based on the total number of flower-associated pixels within each of two
images per tree (dual-view from aerial imaging). It is defined in Eq.1. As shown in Fig. 4.9b, f, the sum
of the flower pixel number from each side of a specific tree is expected to be representative to the

absolute cluster number counted on a whole tree.

Index pixel (IP) = Flower pixel numberg,s; + Flower pixel numberyqs, (1)

Based on the flowering index used in (Hocevar et al., 2014), the second index is the number of flower-
associated areas in an image corresponding to a specific tree. As the flower areas marked and counted
in Fig. 4.9c, g, flower areas with different area sizes could represent the uncertainty that one apple
flower cluster consists of three to six flowers. Similar to the interpretation from (Hocevar et al., 2014),
a group of the neighboring pixels classified as independent objects should correspond to the flower
cluster number. In addition, the filter of large objects was not applied in this study when the total flower-
associated area number was calculated. Only the objects with too small sizes were filtered out as
mentioned in section 3.4. Because they are the noise from the ground and yellow poles. The index area,
is defined in Eq.2, which is the total number of white areas derived from each of the two images per

tree, used to estimate the flower clusters directly.

Index area (IA) = Flower areas numberg,s: + Flower areas numberyy s, 2)

The third flowering index which is a ratio of flower-associated pixels to leaf or canopy or total imaging
scene pixels was also examined. Due to occlusion problem of flowers, the quantity of flowers from
imagery is only a fraction of the absolute count on a whole tree, especially for quantitative methods
based on IP and IA (Underwood et al., 2016). One advantage of this ratio-related index is that it can
normalize the measurement with respect to the variation in image scales and overcomes issues related
to different image capture distances (Wang et al., 2018b). The ratio-related index also mimics the
context of the expert assessment of floridity, as introduced in section 2.3. While its potential merit in
flower cluster estimation at tree level can also be proven by Fig. 4.5. In case of this study, the ratio of
flower-associated pixels to the observation window pixels was designed (Eq.3). The observation
window area was the ROI in pre-prepared dataset of individual trees (Fig. 4.6). Thus this index is

defined by the ratio of flower pixels to ROI pixels.

Flower pixel numbers 3)

Index percentage(IPG) = ROT pixel mumbers

As can be seen in Eq.1 and Eq.2 index calculation consists of two steps: (1) the calculation on each side

of a tree, which means the West-side and East-side; (2) the sum of the results from each side. Therefore,
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there is only one way to do the calculation of IP and IA. For instance, the total IP equals the sum of IP
calculated from the East side and that from the West side (Eq.1). But the calculation of IPG should be
considered within two cases, as shown in Eq.4 and Eq.5. These two formulations share the same
principle in theory. But the mathematical difference that exists in the formulation can provide different
index values and further influence the estimation results. Thus both the two equations were calculated

for analysis.

1PG = (Flower pixel number) g, + (Flower pixel number)y s )
B pixel number)g,se + pixel number)y et
ROI l b ROI l b
(Flower pixel number)g,s: , (Flower pixel number)y o5 (5)
1PG2 = (ROI pixel number) gyt (ROI pixel number)yos: /
- 2

4.3.2. Accuracy assessment

To evaluate the accuracy of flower intensity estimation methods, relation between the flowering indices
calculated from UAV images and field observation of flower cluster and floridity was evaluated. This
relation was evaluated based on the coefficient of determination, R? (Eq.6), the root mean square error

(RMSE) (Eq.7), and the mean absolute error (MAE) (Eq.8).

TR (i — ¥1)? (6)
RE=1- 211 -~
L= 902
e (7)
RMSE = EZ(yi - 907
Y 19— il )

MAE =
k

Where k is the sample size, y; represents the ground truth value, the mean of ground truth value is y;

and J; is the estimated flowering-related values derived from UAV imagery.

4.3.3. Comparison between expert- and UAV-based floridity estimations

Expert-based floridity estimation takes the overall flowering situation in an orchard as a reference and
marks the trees bearing the lightest and most heavy blooming as 1 and 9, respectively. The flowering

intensity of all the trees in the orchard thence is divided into 9 classes. To automate this visual expert-
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based approach, a statistical UAV-derived method was developed where the same floridity scale scored
by the expert was adopted. The nine floridity intervals or classes defined by the statistical method were
the nine equal parts of the difference between the maximum and minimum flowering index values
(Eq.9). These index values are derived from one complete dataset, e.g., group Far 2018 (Table 4.2).
This ensures that the flowering intensity distribution derived from the index is stable and precise. When
floridity interval is identified for a flowering index, index value of each tree is classified as a certain

floridity class.

Maxgiowering index = MiNFlowering index (9)
9

Floridity interval =

Where the flowering index is one of the two earlier described indices, IA and IPG. Max is the maximum

of the flowering index value, Min is the minimum.

This UAV-derived floridity scoring method is applied to flowering indices IPG, IPG2 and IA directly.
However, formulations of A (Eq.2) and IPG2 (Eq.5) indicate that both indices were calculated from
the two sides of one individual tree first. Only the sum or mean of the values determined from the two
sides are used to represent the flowering intensity of a tree. Thus, an important concern is applying the
scoring method to the intermediate values directly. For example, the Flower area numberwes; and Flower
area numberg.s in Eq.2 are the intermediate values for 1A calculation. Afterward, the mean of West and
East-side floridity values is regarded as the final floridity of a tree. Since this process will produce
different floridity values for a tree, it is important to examine its potential for floridity determination as
well. Consequently, new UAV-derived floridity is produced from either 1A or IPG2. They are named
floridity IA2 and IPG3, respectively.

4.3.4. Magnitude of structural overlapping of flower cluster within the canopy on the

flowering intensity estimation accuracy

To build up a benchmark framework for the use of single and raw UAV images in monitoring fruit tree
3D-phenotype traits, influential factors have been determined and validated in this study. The flower
cluster number was manually counted which indicates that the ground truth data was collected in 3D
circumstances. While the image data used in this study was single raw image. Thus the challenge
becomes the flower occlusion in the images, though the data collected with crossing flight provides a
dual side-view for the trees. The flower occlusion problem caused by the 3D structure of the tree is
defined as structural overlapping in this study. There are two types of structural overlapping, vertical

(nadir) and horizontal (angular) overlapping, based on the occlusion direction (Fig. 4.10b, ¢).

Vertical overlapping is noticeable in UAV imagery when a constant flying altitude is kept. As the

example in Figl0.a shows, the variable vertical overlapping level can be observed for the same trees in
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the images taken at position 1 (P1), position 2 (P2), and position 3 (P3). The samples of different vertical
overlapping levels for one tree are displayed in Fig. 4.10b. From the image sample taken at P3, an
approximate top-view of the tree is observed where the aerial camera stays at the closest position to a
specific tree row or tree. In the UAV position closer to a tree, there is a larger chance of vertical overlap
leading to occlusion of flower clusters from this view direction because fewer flowers from middle and
bottom parts can be captured when a drone flies closer. Based on this, the distance from the image
capture position to the target trees is regarded as the metric to describe the magnitude of vertical
overlapping. To explore the effect of vertical overlapping on the flowering intensity estimation accuracy,

six image groups with different image capture distance as presented in Table 4.2 are compared.

For orchard datasets collected with an oblique mission, horizontal overlapping also exists in each image.
Assuming that trees in the same row, for example in row 5, are able to be captured at both P1 and P4
(Fig. 4.10a), but the surface feature of the same tree captured at these two positions can be quite different,
as the sample images show in Fig. 4.10c. It shows that fewer flowers were recorded for tree65 in the
image taken at P1 than that at P4. This shows the potential influence of horizontal overlapping on the
flowering intensity estimation. One potential regular pattern of the horizontal overlapping is that, for
the trees in the same row, the longer the distance between the tree and the capture position, the increased
horizontal overlapping is taking place. This can also be observed in Fig. 4. 3 where trees with heavy
horizontal overlapping have a big tilt in the image. In the prepared individual tree datasets, images with
heavy horizontal overlapping were automatically filled with more black pixels (Fig. 4.9a, ), according
to the developed tree extraction procedure introduced in section 3.1.2. Therefore, the metric used to

describe the horizontal overlapping level is defined as follows:

Pixel numberg;,. (10)

Horizontal lapping level =
orizontal overlapping leve Pixel mimberyoa;

where the total pixel number is the total pixel number of the image and the black pixel number is the

pixel number of the black area.
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(a)

P1

P2

Fig. 4.10. Structural overlapping of flower clusters within the canopy: (a) demonstration of the
structural overlapping. P1: position 1; P2: position 2; numbers in blue boxes: the numbered trees in
row5 (b) samples of the vertical overlapping effects to the trees in images collected in 2019, and (c) the

visual effects of horizontal overlapping. The purple numbers mark the tree number.
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4.4. Results

4.4.1. Flower cluster estimation

To analyze the ability of UAV-derived flowering indices for flower cluster estimation at tree level, the
selected flowering indices (IPG, IP, IA) were related to the in-situ counted flower cluster number (Fig.
4.11). These results are based on the selected images of group far from the three investigated years
(Table 4.2). The individual tree images cropped during dataset preparation did not only include the tree
but also background in the observation window. Therefore the ground truth used here was cluster

number recorded at observation window level.

IPG and IA show a consistent relation over the three years (Fig. 4.11a, ¢). The data points for IPG center
around the trendline (Fig. 4.11a) while the points for IP are more dispersed (Fig. 4.11b). The IPG index
performs better than the other two regarding estimation generalization (Fig. 4.11). To understand the
transferability of relation derived from the three indices between different years, performance of the
indices was also calculated for each year (Table 4.3). In general, accuracy of two indices, IPG (R?=0.62,
RMSE=24) and IP (R?=0.48, RMSE=28), derived from 2019 is higher than that of 2018 (with the lowest
RMSE of 47). For these two years, IA shows the best performance. IP shows a less strong correlation
to flower cluster number compared to the other two indices (Table 4.3). The relationship calculated
from 2020 indicates higher results than those from 2018 and 2019, and the highest accuracy of R* =
0.93 (RMSE=8) was calculated from index IPG.
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Fig. 4.11. Comparison of three indices, index percentage (IPG), index pixel (IP), and index area (1A),
and their relation with the field observed cluster number for the datasets over three years. Linear
correlation was calculated for the combination of the observations from 2018 (N=7), 2019 (N=18) and
2020 (N=18).
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Table 4.3. Results of the relation of the three indices and the field observed cluster number per tree for

the individual dataset per year.

Vear Index percentage (IPG) Index pixel (IP) Index area (IA)
R? RMSE MAE R? RMSE MAE R? RMSE MAE
2018 0.43 50 38.6  0.50 47 36.1 0.74 33 314
2019 0.62 24 16.8  0.48 28 19.5 0.68 22 159
2020 093 8 6.5 0.88 10 7.8 0.81 12 8.9

4.4.2. Flower floridity estimation

The relationship of three indices, IPG, IPG2, and IA, and the field observed floridity score was
compared (Fig. 4.12). The images from the image groups group_far from three different years (Table
4.2) were included. Results show that IA (R?>=0.65, RMSE=1.0) performs worse compared to the other
two indices (Fig. 4. 12¢). Though the mathematical difference between formulations of IPG and IPG2
was considered, results showed a high similarity for floridity estimation (Fig. 4.12a, b). In addition, it

is noticeable that the three indices yielded a comparable RMSE value (Fig. 4.12).
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Fig. 4.12. The comparison of relationships between observed floridity and the three flowering indices,
index percentage group (IPG, IPG2) and index area (IA), over three years. Linear correlation was

calculated for the combination of the observations from 2018 (N=23), 2019 (N=40) and 2020 (N=40).

Results on transferability of the relation derived from the three indices among years (Table 4.4) indicate
that no correlation was found between IA and floridity in 2018. But IA showed the highest estimation
accuracy for the years 2019 (R?=0.67) and 2020 (R?=0.62)(Table 4.4). The other two indices, IPG and
IPG2, showed similarity for the estimation in 2018 and 2019, while results from 2020 showed relatively
higher accuracy, R? ranges from 0.61 to 0.63 and RMSE was 1 for both indices. In general, these three
indices yielded RMSE at a similar level and relatively lower correlation to floridity, compared to their

performance in flower cluster number estimation.
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Table 4.4. Results of the relation of the three indices and the field floridity per tree for the individual

dataset per year.
Vear Index percentage (IPG) Index percentage2 (IPG2) Index area (IA)
R? RMSE MAE R? RMSE MAE R? RMSE MAE
2018 042 04 0.4 0.41 0.4 0.4 0.00 0.6 0.5
2019 0.52 0.7 0.6 0.46 0.8 0.7 0.67 0.6 0.5
2020 0.63 1 0.8 0.61 1 0.8 0.62 1 0.8

4.4.3. Comparison between expert-based and UAV-based floridity estimations

Comparison between the expert-based and UAV-derived floridity estimations was demonstrated by
calculating the relationship between the scored floridity and the cluster number counted in-situ (Fig.
4.13). Visual floridity assessment was conducted at tree level by the expert while the UAV-derived
estimate was at observation window level. Therefore the comparison was made at both tree level (Fig.

4.13a-c) and observation window level (Fig. 4.13d-f).

Performance of all the UAV-derived floridity at tree level (Fig. 4.13a-c) generally showed comparable
accuracy to that at observation window level (Fig. 4.13d-f) over the three years. The maximum R?
difference is 0.07, which happened in 2018, and the maximum RMSE difference is 2 (Table 4.5 and 6).
Expert-based floridity shows a similar pattern when its performance at tree level (Fig. 4.13a-c) was
compared with that at observation window level (Fig. 4.13d-f). Generally, there is a slight increase in
estimation error when expert-based floridity estimation was demonstrated at observation window level
(Table 4.5 and 4.6). This agrees with the fact that expert-based floridity was scored at tree level, where
the expert scored the trees by visual inspection of individual trees rather than the observation windows.
Expert floridity yielded the highest accuracy in 2018 but also the lowest accuracy in 2020. The six
floridity estimation methods at tree level performed significantly different in 2018 (Table 4.5) where
expert-based provided the highest accuracy. While the highest UAV-derived accuracy was produced by
IA2 (R?=0.79, RMSE=28). However, the six indices performed comparably for the other two years,
2019 and 2020 (Table 4.5). Indices belonging to the same group, e.g., IA and A2, yielded comparable
accuracy for flowering intensity estimation although mathematical difference exists in their
formulations. For instance, the tree-level results derived from IPG group in 2019 are comparable (Table
4.5). Transferability of the relation from indices crossing the three years showed a pattern that the

average estimation accuracy of 2020 was higher than that of 2018 and 2019.
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Fig. 4.13. Comparison between field-observed and UAV-based (IPG, IPG2, A, IPG3, and 1A2) floridity
estimations for the three years by comparing these two types of estimations against the cluster number
counted at tree level (a till ¢) and observation window level (d till ), respectively. IPG, IPG2 and IPG3:

index percentage group; IA and [A2: index area group.

Table 4.5. Comparison of expert- and UAV-based floridity estimation at tree level. Index percentage
group: IPG, IPG2 and IPG3; index area group: IA and [1A2.

Year 2018 Year 2019 Year 2020
R’ RMSE R’ RMSE R’ RMSE

Expert 0.88 21 0.65 22 0.79 13
IPG 0.42 47 0.60 24 0.91 8

IPG2 0.43 46 0.58 24 0.90 9

IPG3 0.40 48 0.64 22 0.87 10
IA 0.72 33 0.67 22 0.82 12
1A2 0.79 28 0.70 21 0.79 13
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Table 4.6. Comparison of expert- and UAV-based floridity estimation at observation window level.

Index percentage group: IPG, IPG2 and IPG3; index area group: IA and IA2.

Year 2018 Year 2019 Year 2020
R? RMSE R? RMSE R? RMSE

Expert 0.89 22 0.61 24 0.78 13
IPG 0.49 47 0.57 25 0.90 9

IPG2 0.50 47 0.54 26 0.89 9

IPG3 0.47 48 0.61 24 0.86 11
1A 0.72 35 0.65 23 0.81 12
1A2 0.79 30 0.68 22 0.78 13

4.4.4. Effect of structural overlapping on flower cluster estimation

Due to limited observations in 2018, evaluation of vertical overlapping effects on the flower cluster
estimation could only be conducted for 2019 (Fig. 4.14a-c) and 2020 (Fig. 4.14d-f). In 2019, the three
indices, IPG, IP, and 1A, show different response patterns as the vertical overlapping parameter changed
from 3.6m to 11m (Fig. 4.14a-c). There was less estimation accuracy difference observed when
estimations at 7.4m and 11m were compared for the three indices. When the camera position changed
to 3.6m, the vertical overlapping significantly affects the estimation accuracy for IPG (Fig. 4.14a) and
IA (Fig. 4.14c). For instance, the maximum R? difference observed within the changes from 7.4m to
3.6m for IPG was 0.23, while for IA this was 0.45 (Table 4.7). Only [1A-derived estimation accuracy
showed deterioration when the overlapping parameter changed to 3.6m (Fig. 4.14c) (Table 4.7).
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Fig. 4.14. Effects of vertical overlapping on cluster estimation accuracy in 2019 and 2020. It is evaluated
for index percentage (IPG) (a and d); index pixel (IP) (b and e); index area (IA) (c and f). The distance

from the image capture position to the target trees is regard as the metric to describe vertical overlapping

magnitude, e.g., 3.6m.

Table 4.7. Results of cluster estimation derived from different vertical overlapping extent in 2019.

Overlapping extent IPG IP 1A
RMSE MAE RMSE MAE RMSE MAE
Heavy (3.6m) 16 10.6 25 16.8 27 21.3
Moderate (7.4m) 27 20.0 27 20.3 21 17.6
Light (11m) 24 16.8 28 19.5 22 159

Concerning the contribution of vertical overlapping to the estimation conducted in 2020, a different
pattern was seen (Fig. 4.14d-f). Insignificant effects of vertical overlapping were observed for all three
estimations based on IPG, IP, and IA. The maximum R? difference was 0.08 for the estimation based
on IP (Fig. 4.14e) (Table 4.8). Compared with IP and IA, IPG yielded the minimum R? difference of
0.04, which indicates a low sensitivity towards vertical overlapping (Fig. 4.14d) (Table 4.8). In addition,
the error increased as the camera position changed from 9m to 22m, in the case of both IP and IA-

derived estimation (Fig. 4.14e, f).
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Table 4.8. Results of cluster estimation derived from different vertical overlapping extent in 2020.

Overlapping extent IPG IP 1A
RMSE MAE RMSE MAE RMSE MAE
Heavy (9m) 9 6.5 6 5.1 9 6.7
Moderate (15m) 7 5.8 9 7.2 10 7.5
Light (22m) 8 6.5 10 7.8 12 8.9

Horizontal overlapping effect for flower cluster estimation was evaluated for the index IA. The
evaluation was demonstrated on the datasets 2019 and 2020 separately (Fig. 4.15). Absolute error was
calculated by the difference between cluster number observed in the field and cluster number predicted
from IA. In 2019, a slightly increasing trend was observed along with the increasing horizontal level
(Fig. 4.15a). Several outliers were also seen in the plot. Yet majority of the data points in 2020 were

located at a comparable level (Fig. 4.15b), and no significant trend could be observed.
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Fig. 4.15. Effects of the horizontal overlapping on the IA-derived cluster estimation accuracy for the
years 2019 and 2020. Note: horizontal level is the ratio of the black pixel number to the total pixel
number of the image (Eq.10). Cluster prediction absolute error = Observed cluster number — predicted

cluster number.

4.5. Discussion
4.5.1. Flower cluster estimation

This study has demonstrated that single, raw UAV imagery can be adopted to estimate tree-level flower
clusters in an apple orchard using two flowering indices: IPG and IA (Fig. 4.11). Three indices derived
from UAV imagery, IPG, IP, and 1A, were examined for flower cluster estimation. IPG proved to be the
best index in relation to accuracy (R? = 0.71, RMSE = 39.7) (Fig. 4.11a) and robustness for flower
cluster estimation over three years. Though a comparable performance for IA was also observed,

performance for 2019 and 2020 was less promising (Fig. 4.11c) and over- and under-estimation was
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observed, respectively. IPG was also applied in a previous study (Tubau Comas et al., 2019), where the
IPG index was applied for the estimation based on UAV orthophoto. It yielded a maximum R? of 0.54,
which is comparable to our results in 2018 and 2019, but lower than 2020 (Table 4.3). Transferability
of the relation among three years indicated that IA was the best index for the estimation of individual

years (R%: 0.68-0.81) (Table 4.3).

The validation result of IPG in apple flower cluster estimation was lower than that of mango panicles
estimation demonstrated by a previous study, achieving an R* of 0.81 (Wang et al., 2018b). One reason
is the difference in IPG formulations. In the same fashion as using color thresholding method for flower
pixel segmentation, Wang at al. (2018) use the ratio of flower pixels to canopy pixels while the IPG in
this study was the ratio to the observation window. The background in the ROI (Fig. 4.3), such as the
grass, soil, and even flower clusters and branches from adjacent trees, results in additional estimation
errors. Because these objects do not belong to the target tree. This point can be solved by applying an
apple tree segmentation method during the individual tree cropping stage (Lee et al., 2022). Such a tree
segmentation method could also automate the manual tree cropping method. Another reason is the fact
that small apple flower cluster occludes more heavily than that of big mango panicles. This makes the
tree-level estimation based on single and raw images more challenging. Because more flower clusters
are not visible in the images. On the other hand, the mango images taken at night time suffer less from
uneven illumination. It also benefits the adoption of color thresholding method for flower-associated
pixels segmentation. However, compared with an image-level estimation study of apple flower cluster
(Bhattarai and Karkee, 2022), even a slight improvement was achieved in this study (Table 4.3). They
demonstrated a weakly-supervised approach with a result of 18.4 (RMSE) using a dataset that covers

only 69 flower clusters per image.

A significant improvement was demonstrated in comparison with three previous studies focusing on
UAV-derived apple flower cluster tree-level estimation, where an R? of 0.53 (Tubau Comas et al., 2019),
an R? of 0.44 (Vanbrabant et al., 2020a) and an R? of 0.61 (Zhang et al., 2022b) were achieved. In the
second study, the tree-level estimation based on 3D point clouds yielded the best model. Yet their plot-
level estimation was comparable to the tree-level estimation in this study. UAV derived colored dense
point cloud includes less features of the lower parts of trees in an orchard, while ground vehicle derived
has lower density in the upper parts. This leads to low flower cluster estimation accuracy. A combination
of these two point clouds is potential to improve the estimation accuracy (Zhang et al., 2022b). But
estimation based on colored point clouds requires high computational resources. Apart from these
methods, tree geometry parameters, such as cross-sectional leaf area (CSLA) also have the potential to

estimate apple flowering intensity in an indirect way (Scalisi et al., 2021).
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Weather conditions, flying altitudes of UAYV, spatial resolution and blooming level of the orchard affect
flowering intensity estimation accuracy. Direct sunlight in datasets of 2019 and 2020 decreased image
contrast making part of the background more bright (Fig. 4.3). Thus leaves, chunks and soil clods were
misclassified as apple flowers for some images. Yet images with homogeneous illumination in 2018
dataset suffer this problem less. A systematic experiment design is advised to further explore the effect
of weather conditions. Image resolution for the dataset of 2019 was higher than that of 2018 (Table 4.1).
This can explain the overall estimation accuracy improvement for all three indices in 2019 (Table 4.3),
with the fact that flowering intensity in 2018 was higher than that of 2019 (Fig. 4.4). Spatial resolution
refers to the feature richness of an individual object in aerial imagery. For the same drone, higher flying
altitude produces images with larger ground sample distance (GSD)(Table 4.1). Lower flying altitude
is recommended for apple flower detection. With the improved resolution, advanced flower detection
techniques could be applied, such as faster R-CNN (Wang et al., 2018b), mask R-CNN (Mu et al., 2023)
and YOLO (Chen et al., 2022c¢; Koirala et al., 2020b; Wang et al., 2022). For these approaches, larger
datasets covering a larger range of environmental conditions are also needed and labeling individual
flower cluster is difficult (Lee et al., 2022). However, utilizing aerial imagery to estimate flower number
of the fruit crop with small flower size would be much more difficult (Lin et al., 2022). Trees with light
blooming suffer less from flower occlusion. The blooming level of 2019 was significantly higher
compared to 2020 (Fig. 4.4). This contributes to the significant accuracy improvement in 2020 and
indicates that flower occlusion influences UAV-based flower cluster estimation accuracy (Table 4.3). In
apple orchards, when blooming intensity was around 70 clusters per tree, estimation accuracy (RMSE)

reached 5 clusters per image (Scalisi et al., 2021).

UAVs covering larger areas in one flight can be efficient platforms for flower cluster estimation in
orchards. Inter-row views of fruit trees captured from proximal sensing platforms, such as handheld
cameras, tripods, and ground vehicles like tractors, not always capture the entire tree (Chen et al., 2022c;
Hocevar et al., 2014). Though GPS position can be recorded for tripod and ground vehicle-derived
images, precise registration of individual trees is uncertain as tree branches prevent the RTK device
from measuring exact positions. Yet, ground platform-derived images will experience less flower
occlusion problems because of sensing view. Comparison of flower estimations from proximal sensing
and UAV is encouraged in the near future. Apart from the selection of different monitoring platforms,
the collection of ground truth is critical. The reference data was recorded by only one expert in this
study. It does not provide insights into the uncertainty of manual counting. To quantify uncertainty
within the ground truth of flowering intensity, flower cluster number, and floridity, two or three ground

truth recordings from different persons are highly recommended (Farjon et al., 2020).
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4.5.2. Flower floridity estimation

Floridity estimation results indicated that IPG group (IPG, IPG2) had best performance for the
estimation crossing three years (Fig. 4.12a, b). Though these two indices were defined with different
formulations, a comparable performance of them towards floridity estimation was demonstrated. A
similar pattern with the IA-based flower cluster estimation was observed within the IA-based floridity
estimation, where the index underestimated the floridity of 2018 and overestimated that of 2019 (Fig.
4.12c). The reason can be the usage of the camera with low resolution in 2018. This is demonstrated in
Table 4.4, where no correlation between IA and floridity was observed in the case study of 2018.
Moreover, IA yielded a comparable performance for the estimation in both 2019 (R?=0.67) and 2020
(R*=0.62) where the same image resolution was applied (Table 4.4). Related to the floridity estimation
in individual years, the results from 2019 and 2020 proved that IA even had a comparable performance
with the IPG indices when image resolution was the same (Table 4.4). In comparison to 1A, the index
percentage group, IPG and IPG2, was not sensitive to image resolution when comparing its accuracy in
2018 and 2019. But they were not superior to IA in the case that the trees were heavily blooming (in
the years 2018 and 2019). For instance, the best performance yielded from the index percentage group

in 2019 was from IPG (R?=0.52), while IA showed a stable accuracy (R*=0.67).

Flower floridity scored by experts contributes to the flower thinning strategy through spatial and
temporal flowering intensity monitoring. For the first purpose, floridity is adopted to make decisions
on whether a specific tree needs flower thinning. But in the context of precision agriculture, floridity
can provide only an approximate flower number in assisting the growers to decide how many excess
flower clusters to remove from a tree. Yet it has an advantage in the dynamic monitoring of flowering
intensity, which benefits the breeding trials, fruit tree health status, and nutrition management (Chen et
al., 2019a; Zhang et al., 2021). Currently, only two floridity estimation studies were conducted (Farjon
et al., 2020; Zhang et al., 2022b). The flowering index IA tested in this study shows a similar
performance to the point cloud-based method, where an R? of 0.65 was reported (Zhang et al., 2022b).
But data processing efficiency of the IA-based method proposed in this study is higher. Since no
complex and time-consuming pre-processing steps such as structure-from-motion were required. A high
correlation between the image-derived and manually scored floridity was recorded in the other study,
with an R? of 0.93 (Farjon et al., 2020). However, their floridity was judged by visual inspection of the
images rather than scoring in the field. This can potentially result in a high agreement with the
computer-vision derived estimation. In our study, the floridity was visually recorded independently in
the field by an expert. Because of this difference, the accuracies of the two studies cannot directly be

compared.
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4.5.3. UAV-based and expert-based floridity estimations

As expected, results show that the manual assessment was year-variant (Fig. 4.13). By contrast, UAV-
based ones were more robust on flowering intensity estimation. They were comparable and even better
than the manual assessment. Both showed quite similar performance towards the flowering intensity
estimation at tree and observation window level. This can be explained by the orchard training system
in the study site. Because apple trees in the same row have a proper tree distance preventing highly

branches overlapping from affecting flower thinning.

The index area group, IA and IA2, proved to be the optimal index for floridity estimation with minimum
accuracy difference between IA and 1A2 (Table 4.5, 6). The floridity assessment derived from the index
percentage group (IPG) showed sensitivity to the flowering intensity, which agrees with its performance
in floridity estimation. For example, its performance was significantly improved in 2020 and even
slightly better than that of the index area group (Fig. 4.13). Low flowering intensity in 2020 corresponds
to the fact that fewer flower clusters bloomed (Fig. 4.4). This entails light flower occlusion problems
for flower cluster detection with RGB images. IA proved to have an advantage in this respect. A
previous study only examined the agreement between the computer version derived and expert-based
floridity estimation (Farjon et al., 2020). The question about which estimator is more representative of
the real truth, the cluster number counted in the field, was not answered. Though results from this study
provide insights into this comparison, advanced floridity estimation models, such as the linear

regression model, are required to improve the UAV-based floridity estimation accuracy.

4.5.4. The effect of structural overlapping on flower cluster estimation

Results showed that vertical overlapping significantly influences cluster estimation accuracy (Fig.
4.14a-f). Different flowering indices examined in this study showed varying degrees of sensitivity to
this, especially in 2019 (Fig. 4.14a-c). IPG and 1A were the most sensitive, and the largest R? and RMSE
differences were 0.45 and 11, respectively (Table 4.7). IPG and IA showed contrary responses with the
distance increasing. As the distance between the camera position and trees increase, the IPG-derived
cluster estimation accuracy decreased (Fig. 4.14a), but IA derived increased (Fig. 4.14c¢). No significant
effect of vertical overlapping was demonstrated in 2020 (Fig. 4.14d-f). This can be explained by light
flower occlusion. Because fewer flower clusters bloomed in that year. In addition, as shown in Table
4.2, the difference in the distance between the East and West side can also have an impact on the
tendency observed in Fig. 4.14, though the distance difference in 2019 was smaller than 0.4m. It has
been reported that visual countable pear flower clusters in the image captured with a top-view
(orthomosaic) of the trees represent 50%-76% of the exact cluster number counted in field (Vanbrabant
et al., 2020a). This calculation links to the overlapping magnitude directly. However, it is unrealistic to

count the visible apple flower clusters in the aerial images collected in this study, especially for datasets
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2018 and 2019, because of the heavy blooming and tree architecture. Even though, the proposed
evaluation metric for overlapping magnitude, the distance between camera and trees, showed success

in quantifying the effects of vertical overlapping on the flower cluster estimation accuracy.

The horizontal overlapping magnitude was evinced by the percentage of black pixels to whole image
in this study (Eq.10). The ideal situation is when this metric value equals zero. Then the targeted tree is
right in front of the camera, such as the tree3 to the drone position P1, or P2, or P3 (Fig. 4.10a). In other
situations, the cropped individual trees can include flowers from adjacent neighboring trees which leads
to inaccurate estimation at tree level. Such as the tree65 illustrated in Fig. 4.10c. Results in 2019
demonstrated that higher horizontal overlapping leads to an increased absolute error (Fig. 4.15a), which
agrees with the initial hypothesis. No significant trend was observed in 2020 (Fig. 4.15b). But majority
of the data dispersed in the range of 0 to 0.5, and the absolute error of the cluster number prediction
was lower. This did not contradict the expectation in this study. On the hand, the results shown in Fig.
4.15 indicate that the higher the UAV flying altitude is, the fewer errors derived from horizontal
overlapping can be achieved. In 2020, a relatively higher flying altitude was set (Table 4.1). Thus
another case study conducted at 25m for the orchard with flowering intensity similar to 2019 is advised

for future studies.
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4.6. Conclusions

Flower characteristic monitoring in orchards is still in its infancy. In the case study of apple flowering
intensity estimation, a novel framework that skips the conventional time-consuming photogrammetric
approach such as structure-from-motion was designed, and the potential use of single and raw UAV
images was evaluated. Tree-level flower cluster estimation derived from this approach shows an
important potential. A well-established flowering index IPG yielded the highest accuracy for apple
flower cluster estimation over three years, and a consistent relation was observed. For the estimation of
flower clusters present within an individual year, a reliable index IA was demonstrated and yielded
higher accuracy than the state-of-art methods. The IPG index group, IPG and IPG2, also proved to be
capable of estimating flower floridity, while IA is the best flowering index for individual year floridity

estimation.

Expert and UAV-derived floridity estimations showed comparable results. Among UAV-derived
estimations, index group IA was the best one to automate the expert-based floridity estimation. This
indicates that UAV-derived floridity estimation is capable to replace manual efforts with a robust
performance. In addition, the three flowering indices, IPG, IP, and IA, evaluated for flower cluster
estimation showed different sensitive patterns towards the effects of structural overlapping. It reveals
that vertical and horizontal overlapping affects the accuracy of the flowering intensity estimation

derived from single and raw UAV images.
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Chapter 5

Abstract

Harvesting period in orchards accounts for the majority of total cost. Yet current development of fruit
yield estimation still hinders management efficiency. Limited studies applied conventional UAV
photogrammetry techniques that are based on structure from motion (SfM) in crop load estimation.
They are generally resource-consuming and their performance is unsatisfactory. Faced with this, taking
tree-level apple yield estimation as a case study, the present work proposed a novel approach using
single raw UAV RGB images. First, apples were detected and localized with YOLOvSs. Next a fruit
tree localization method was designed: (1) GPS positions of all the trees in the orchard were first
predicted; (2) GPS positions of image-projected area corners were calculated by a great-circle-based
method, and therefore, trees within the projected area were identified; (3) pixels in aerial images were
registered in the real-world coordinate using a proposed convert method. Thus representative pixels of
covered trees are recognized; (4) Finally, detected apples were assigned to predicted individual tree
areas. Apple detection results showed that YOLOVS5s is proficient in extreme small object detection in
aerial images. mAPS50 for datasets collected over three consecutive years ranging from 0.69 to 0.78.
Model generalization tests across three years revealed that two temporal UAV RGB datasets are
adequate for apple detection. Fruit tree identification achieved high accuracy in tree counting, with a
maximum error of 1 tree per row. A good localization performance was observed as well. Additionally,
a spatial pattern of predicted tree positions was summarized and indicated the optimal areas for tree-
level yield estimation. Evidence showed great potential of proposed tree localization methods in

supporting orchard management.
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5.1. Introduction

Faced with the increasing nutrition and health needs of the growing world population, global apple
production increased yearly from 2017 to 2021, while apple area harvested and production increased
by 1.04 and 1.12 times respectively in 2021 (FAO, 2021). Efficient orchard management is fast

becoming a key focus in agriculture.

The harvesting period accounts for the majority of total management cost, in citrus production, it takes
up 35-45% of total cost (Sanders, 2005). Thus, the optimization of harvest process is fundamental.
Broad apple yield estimation refers to the weight per tree. This estimation at a more advanced
maturation stage directly benefits logistics optimization, such as labor force, harvest containers and
gathering path (Osman et al., 2021; Xia et al., 2022). Growers utilize estimated yield to contract the
receipt of fruits while other stakeholders within the fruit supply chain, such as storage and packing
stations and processing companies also require a yield estimation (Janowski et al., 2021). A more
narrow concept of apple yield estimation denotes fruit counting. This estimation at early stage proved
a critical indicator in assisting precise irrigation, fertilization, crop growth monitoring and variable

spraying strategy (Bargoti and Underwood, 2016; Wang and He, 2021).

Apple yield correlates to the exact fruit number and size (Mitchell, 1986; Stajnko et al., 2009a). Hence,
fruit counting will also be key to broad yield estimation. Yet current practice of apple counting still
relies on the traditional approach - labor-intensive manual counting, prone to errors and limits the
application in large orchards. Manual counting systematically samples a certain percentage (e.g. 5%)
of trees first, the total yield of an orchard is extrapolated from the samples afterward (Wulfsohn et al.,
2012). Given the fact of labor shortage and high labor costs, automatic and precise apple yield mapping

is of utmost importance.

Varying from the prediction scale, yield mapping comprises tree-level (Crtomir et al., 2012), row-level
(Apolo-Apolo et al., 2020b) and plot-level estimation (Bai et al., 2021). Different application scenarios
have their own requirement for this scale. For example, plot-level yield mapping is more adequate for
a national yield inventory of fruits (Rahman et al., 2018b; Sarron et al., 2018b). Tree-level yield
mapping facilitates the monitoring of individual trees aiming at maximizing orchard uniformity (Perry
et al., 2010). It also benefits the analysis of individual trees in plant breeding. Tree-level yield mapping
encompasses two tasks, fruit identification and fruit assignment. The identification of fruits links
directly to fruit counting and correlates to the estimation of weights (Mitchell, 1986). While fruit
assignment implies localizing the identified fruits, to recognize which tree the fruits belong to. Although
extensive research has been carried out on the first task, fruit detection (Fu et al., 2020; Linker et al.,

2012; Nguyen et al., 2016), a few published studies focus on the follow-up task, the fruit assignment.
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Traditional fruit identification approaches use predefined hand-crafted features to extract fruit in the
images. The features can be color (Zhou et al., 2012) and shape (Qian et al., 2018). Such approaches
generally embrace color thresholding (Cheng et al., 2017) and Hough transform-based feature extractor
(Kanwal et al., 2019). These approaches hold strict requirements on image acquisition conditions. In
view of the fact that orchard images and complex illumination conditions and variation in fruit shape
are always symbiotic (Zhang et al., 2022a), traditional approaches show great limitations in practice.
Later, machine learning techniques such as support vector machines (SVM) (Peng et al., 2018), random
forest and clustering (Nguyen et al., 2016) have also been adopted for facilitating fruit detection. They
are more robust in fruit detection at pixel level. Yet they also hold constraints for fruit detection in 2
dimensional (2D) images. But both traditional and machine learning techniques can be widely used in

3D point cloud analysis of fruit trees aiming at fruit identification (Zine-El-Abidine et al., 2021).

Despite that the utilization of deep learning in agriculture, especially in horticulture, is nascent
(Kamilaris and Prenafeta-Boldu, 2018), it has become commonplace in fruit detection and shows
promising performance in comparison with conventional approaches. Early convolution neural network
(CNN) applied a sliding window for fruit classification where the classifier is designed to scan spaced
locations of an image first and detect fruits next. Thus, it renders this model slow. One typical model is
the OverFeat network (Koirala et al., 2019). Though region-based CNN (R-CNN) replaces the sliding
window with a heuristic selective search algorithm and improves the speed, it is still not efficient. In
comparison with early methods, two-stage detectors, such as fast R-CNN and faster R-CNN (Fu et al.,
2020), and mask R-CNN (Jia et al., 2022) are more efficient in terms of detection time and also more
accurate. Considering the compromise between accuracy and efficiency, one-stage detectors show great
advantages. Especially in practical scenarios of orchard management, the requirements for data
processing efficiency are more important. In most recent studies, the lightweight one-stage detectors
that draw more researcher attention embrace single shot multibox detectors (SSD), YOLO (Osman et
al., 2021; Wang and He, 2021), and RetinaNet. Among these detectors, YOLO model family is more
powerful. For instance, YOLOV3 can be 3.0 and 3.8 times faster than SSD and RetinaNet, respectively,
with the same accuracy. Attention mechanism emerged in natural language processing (NLP) first, and
great improvement was demonstrated over the neural machine translation system. Later, attention
mechanisms and their variations were also introduced to computer vision community. The improvement
it brings was also shown in fruit detection tasks (Jia et al., 2022; Liu et al., 2021). For example, a
coordinate attention module can increase the mean average precision (mAP) of apple detection by 2.21%
(Zhang et al., 2022a). However, current studies were based upon small datasets and small variations are
observed within the dataset (Apolo-Apolo et al., 2020b; Ji et al., 2021). The universality of using the
established deep learning models for fruit detection of another variety or weather conditions is still

poorly understood (Liu et al., 2021; Xia et al., 2022).
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As a follow-up task, fruit assignment is generally referred to as separating individual trees first and
assigning detected fruits derived from the fruit identification stage to their bearing trees. Individual tree
identification commonly comprises the detection of tree trunks and canopy areas (Zine-El-Abidine et
al., 2021). Yet, the delineation of those is still technically challenging in dense orchards and forests
where tree branches are occluded (Zhen et al., 2016). Tree trunks hold the most distinguishable structure
in comparison with branches and leaves due to geometric size (Ho et al., 2022). This makes tree trunks
a good reference for the identification of tree center position. Based on trunk position, detected fruits
can be properly assigned to which trees they belong. In addition, tree trunks can also be used for fruit
tracking in videos (Gao et al., 2022). It is feasible for the application based on ground vehicles. But tree
trunk detection in aerial images is challenging because of the camera view and interlacing and touching
tree structure, especially for modern high-density orchards. On the contrary, UAV imagery is
advantageous in canopy delineation (Dong et al., 2020). Preferably, precise tree-level yield estimation
requires the delineation of branches of individual trees to ensure accurate fruit assignment. However,
heavy occlusion of leaves and branches in the harvesting period makes the delineation impracticable

(Wu et al., 2020D).

There are also indirect approaches for the delineation of fruit trees which require more manual
processing steps. This supervised approach normally sets a theoretical threshold for the tree shape,
based on properly known tree positions in the images or the measured tree GPS coordinates in advance
(Apolo-Apolo et al., 2020b). The supposed shape can be a circle (Apolo-Apolo et al., 2020b) or a
rectangle (Apolo-Apolo et al., 2020a). It assumes that all the trees share the same size of canopy or tree
area (Osco et al., 2020a). The fixed size can be determined by inspecting a set of tree samples in the
target dataset. One way to generate the approximate tree positions is to make use of the GPS coordinates
stored in geotagged images. While orthomosaics and point clouds derived from aerial images always
have an advantage in localizing the tree positions based on a defined coordinate system (Dong et al.,
2020; Raman et al., 2022). Compared with the direct tree delineation method, this supervised method
inevitably produces errors. Because high variation exists among fruit trees in terms of canopy size. But
it can be a relatively accurate solution for application in high-density modern orchards where trees in
the same row are interlacing and touching each other making computer vision impossible to detect

individual trees.

Besides the direct yield estimation approaches introduced above, spectral and geometric characteristics-
based estimation are alternatives (Chen et al., 2022b; Sun et al., 2020). Earlier studies have shown that
some vegetation indices (VI) are correlated with fruit tree photosynthetic activity and health status (Bai
et al., 2019; Somers et al., 2010), such as normalized difference vegetation index (NDVI), normalized

difference water index (NDWI) and photochemical reflectance index (PRI) (Van Beek et al., 2015). The
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potential of using vegetation indices as indicators for fruit yield has also been demonstrated (Machovina
et al., 2016). Yet, the correlation of these indices to the fruit amount is poorly understood (Rahman et
al., 2018b). VI-based yield estimation requires more data from spectral bands than direct estimation.
Generally, it encompasses data from visible, red-edge and infrared bands. Similar to the adoption of
vegetation indices, existing research recognizes the correlation of another fruit tree characteristic,
geometric features, to potential yield. Investigated geometric characteristics comprise canopy projected
area (CPA) (Sola-Guirado et al., 2017), tree height (Sarron et al., 2018b) and canopy perimeter
(Uribeetxebarria et al., 2019). 3D morphological characteristics such as crown volume are also good
yield predictors (Lopez-Granados et al., 2019b). The correlation of estimated crown volume from aerial
imagery to actual yield can be higher than 0.7 (R?) for some almond varieties. UAVs equipped with
RGB cameras are increasingly being used for the calculation of geometric features of fruit trees
(Marques et al., 2019; Zhang et al., 2021). Advantages are the imaging view and promising estimation
results derived from orthomosaics or point clouds. While the generation of point clouds is based on
structure-from-motion (SfM) which requires high computational resources (Jimenez-Brenes et al.,
2017).

Faced with the gaps above, the research presented in this chapter proposes a novel approach for tree-
level yield mapping in an apple orchard from single raw UAV RGB images. Specifically, the following
contributions will be elaborated:
e Evaluate the feasibility of using single raw and geotagged UAV images for tree-level apple
yield estimation;
e Examine the generalization of deep learning models for apple detection in datasets across three
years;
e Assess the accuracy of registering individual trees from single raw and geotagged aerial images;
e Investigate the effects of side-view and nadir-view of trees toward apple yield estimation

accuracy.

5.2. Study area and datasets

5.2.1. Study area

The field survey area in this study is an apple orchard situated in Randwijk, Overbetuwe, Gelderland,
The Netherlands (51.938, 5.7068 in WGS84 UTM 31U) (Fig. 5.1a). The planted apple variety is Elstar,
Malus pumila ‘Elstar’, and the rootstock is M9. Totally, 1414 trees were planted in 2007, with a layout
of 14 rows located from South to North. The tree and row spacing is 1.1m and 3.0m, respectively. To
provide good pollinator habitat for Elstar apple trees, another apple variety, Granny Smith, was planted

evenly over the whole orchard. In 2020, half of the apple trees were removed. As it is shown in Fig.
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5.1a, the red-dotted line delineates the whole orchard and the removed part is the bottom area. As a

result, the orchard area decreased from 0.47 ha to 0.26 ha.

4.000°E

The Netherlands

52.000°N.

Fig. 5. 1. The experimental apple orchard in Randwijk, Overbetuwe, Gelderland in the Netherlands (a).
The red dotted line delineates the apple orchard: trees in the lower area were removed in 2020. Pink
line indicates the tree row with ground truth data. Province Gelderland is highlighted in red on the
national map in the inset. (b) UAV flights over three consecutive years. Circles with different colors
indicate the central location of geotagged UAV images. Red circle: 2018; blue circle: 2019; white circle:
2020.

5.2.2. Aerial images from UAVs

Starting in 2018, UAV-based field campaigns were conducted in the next two consecutive years, 2019
and 2020 (Table 5.1). Data collection dates were generally two weeks earlier than the final harvesting
date while specific dates were different every year. Three UAV platforms were used for data collection,
DJI Phantom 3 (2018) and DJI Phantom 4 (2019) and DJI Matrice 210 (2020). Only RGB cameras were
adopted while associated sensor models were slightly different. During the three flights, a fixed gimbal
pitch value was set to capture the nadir view of apple trees. Flights in 2018 and 2019 shared the same
flying altitude, 15m, while flight 2020 adopted a higher altitude of 25m. Fig. 5.1b demonstrates these
three flight paths in detail. The flight in 2018 covers the bottom area of the orchard (footprint with red
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points) and flight 2020 covers the other part (white points). A complete orchard was mapped by flight
2019 (footprint with blue points). The three flights provided datasets covering various illumination

conditions (Table 5.1).

Table 5.1
Description of UAV campaigns for the apple orchard during period 2018-2020.

Data 2018 Data 2019 Data 2020

UAV platform DJI Phantom 3 PRO, DJI Phantom 4 PRO, DIJI Matrice 210,
Shenzhen, China Shenzhen, China Shenzhen, China

Sensor FC300X FC6310S FC6540

Type CMOS CMOS CMOS

Sensor width (mm) 6.17 13.2 23.5

Resolution (inches) 40003000 5472x3648 6016 x4008

Focal length (mm) 3.6 8.8 16

Shutter speed 1/100 1/200 1/640

Field of view (deg) 84 73.7 73.7

Gimbeal pitch (deg) -90 -90 -90

Flying velocity (m/s) 0.6 2.2 1.9

Flying altitude (m) 15 15 25

Ground sample

distance (GSD) 0.64 0.41 0.61

(cm/pixel)

Data size 277 353 103

Collection date & 28" August, 10:04am 28 August, 12:12 28" August, 13:19 pm
time pm

Weather Overcast Sunny Overcast

5.2.3. Ground truth data

To explore the correlation between apple amount visible in the aerial images and the exact apple yield
(apple counting) recorded in the field, ground truth data were collected while the flight campaigns were
conducted. For the three years, surveyed samples were the same apple trees in row 5, as it shows in Fig.
5.1a. An experienced agronomist counted the apple amount per tree and saved the records for later
analysis. In 2020, the fruit load on-tree of 56 apple trees was collected due to the orchard management
of tree removal. For the other two years, the number of trees was 101 (Fig. 5.2). Malus pumila ‘Elstar’

is a variety of biennial bearing which means that much less yield is harvestable every two years. This
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coincides with the significant decrease in yield as it was observed in 2020 (Fig. 5.2). In addition, GPS

positions of the trees located at the rectangle orchard corners were also measured.

300

225 . es® e

150 |e

Apple counting
| 2
| 3
| 4

75 . - .

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101
Tree ID
A 2018 ® 2019 + 2020

Fig. 5. 2. Ground truth data ( apple amount per tree ) collected over three years: 2018, 2019 and 2020.

5.3. Methodology

The proposed apple yield estimation mechanism mainly consists of two modules: apple detection and
apple yield assignment model (Fig. 5.3). As a whole, it requires two inputs: 1) aerial images and
metadata, 2) orchard boundary GPS coordinates. While ground truth data, was utilized to study
efficiency of the models proposed. The apple detection and assignment model are presented in section

3.1 and section 3.2, respectively.

Input
- - Output ==+

UAV Apple Apple Individual trees
[Images] - [ Detection model ]*[ Assignment model J_’[ Yield estimation

Four trees in the orchard comers I
GPS positions
Arow of trees.
Ground truth

=== Output ==

Input ==

Fig. 5. 3. Overview of the tree-level fruit load estimation method proposed in this study consisting of

two models: apple detection (red-borderline box) and apple assignment model (green-borderline box).

142



Chapter 5

5.3.1. Apple detection model

The use of UAVSs in supporting orchard management or other agricultural scenarios encompass higher
requirement in data processing speed compared to ground vehicles-based monitoring. As discussed in
the introduction section, out of several available deep learning-derived detectors, one-stage detectors
have proven to be the optimal option for this study (Zhang et al., 2022d). YOLOVS is one of the recent
powerful one-stage detectors and both its detection accuracy and efficiency in fruit detection have also
been validated (Li et al., 2023b; Liang et al., 2023). Thus YOLOVS5 was selected as the apple detection
model and used for a fair comparison with previous studies. In addition, in computer vision community,
YOLO series were tested in the detection tasks of small objects derived from aerial images (K.R et al.,
2023; Shen et al., 2022; Tian et al., 2022). Yet, its performance in extreme small object recognition such

as the apple detection task in this study was not examined.

Of the YOLOVS variations, the version YOLOVS5s held similar performance as other variations such as
YOLOvS5m for detecting small fruits (Liang et al., 2023). Yet its architecture is lighter and faster to train.
The YOLOVSs utilized in this study comprises the backbone of CSP-darknet53 and the neck consists
of spatial pyramid pooling fast layer (SPPF) and cross stage partial connections-pyramid attention
network (CSP-PAN). While it sustains the YOLOv3 head where bounding box loss function and non-
maximum suppression (NMS) are integrated. The GIoU loss function was applied, which stands for
Generalized Intersection over Union. And stochastic gradient descent (SGD) was used for optimizing

objective functions.

5.3.1.1. Pre-processing

To ensure image variety for training YOLOVSs is representative for real-world orchard environment,
selected UAV images should be spatio-temporal independent. Thus, for each dataset, five images were
chosen from a whole dataset (Fig. 5.4). Ideally, they comprise the characteristics of apples growing at
different locations across the orchard, such as apples from the upper left and center areas. To reduce
false positives (FP), two to three images holding certain grass areas were designed to be added to the
five images, as photos 117 and 132 shown in Fig. 5.4. The grass areas were regarded as background
areas where no apples and labels were required. This is consistent with the design of COCO (Lin et al.,

2014) from which 1% of the total images are background.
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O UAV images
@ Sselected images

Photo_117
Fig. 5. 4. Image selection approach applied in this study. White circle represents UAV geotagged images
collected in one flight; red circle represents the images selected for the development of apple detection
model. Image selection for the dataset 2019 was illustrated in the figure. A comparable approach was

adopted for the other two years.

Annotation was conducted on the original UAV images directly which is more flexible for model
modifications in the late stages. The annotation tool was a free and open-source platform named Label
Studio. It integrated a previously popular tool, Labellmg (Apolo-Apolo et al., 2020b). The main
principle in labeling apples is to ensure the labels, based on bounding boxes, closely enclose each apple.
Since apples are extremely small in the datasets, zoom-in and zoom-out operations were highly required
during the annotation. To enhance the understanding of YOLOVSs in extreme object detection, apples
in the UAV images were divided into four categories: apples, occluded apples, apples on the ground
and difficult to identify apples (Fig. 5.5). Apples are defined as the apples within tree canopy and more
than 50 percentage of its shape feature are visible in the image. By contrast, apples suffering heavy
occlusion from leaves, branches and other apples and only small parts are visible (less than 50 percent)
were regarded as occluded apples. During harvesting period, it is common to see apples falling on the
ground. These apples were labeled as apples on the ground. Including this class is also excepted to
increase the model learning on what is actually an apple under the same operational conditions as the
ones in the canopy. Concerning the class of difficult, it is the potential apples challenging the operator
which could not be confirmed. Usually the leaves in dark areas or bearing strong illumination cause
uncertainties. It is not necessary to classify these four classes for apple yield estimation. Yet examining
how YOLOVS5s functions to these classes assists model optimization and modifications in later stages.
Labelling the extreme small apples in UAV images is challenging. For instance, it took 19.6 and 29.1

mins for finishing the annotation in one row in the datasets 2019 and 2018, respectively. In 2020, one
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row even required 40 to 80 mins. Generally, for the images without background of grass, there are 6

and 8 tree rows in the datasets 2019 (Fig. 5.4) and 2018. While in 2020, it can be 13 to 14 rows per

2018 2019 2020
Samplel Sample2 Samplel Sample2 Samplel Sample2
) . ‘v - - »

image.

Apples

Apples on the ground  Qccluded apples

Difficult

Fig. 5. 5. Image samples of the proposed four classes in the three years, apples, occluded apples, apples

on the ground and difficult.

Original labeled UAV images were split into small tiles to improve the detection accuracy of YOLOv5s
on small objects. Ideal input image resolution for YOLOVSs is 640x640 as suggested by previous
studies (Li et al., 2022; Liang et al., 2023). To achieve this input requirement, different tile sizes were
designed for the three datasets. Because they retained different resolutions over the years (Table 5.1).
Stretching small images obscure YOLOVSs to learn the key features. Thus the produced tiles should
hold a tile resolution slightly larger than 640%640, such as a tile size of 684x729. Next, to resize the
tiles, tile aspect ratio was maintained, and the newly generated padding is a reflection of the tiles. To
keep image display the same way as they are stored on disk, auto-orient was applied. Ratios of training,
validation and test sets were set to 80%, 10% and 10%, respectively, for all the datasets. The inventory

of prepared datasets is summarized in Table 5.2. Since classification of the four predefined apple classes
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is not necessary in this study, these classes were modified to one class, apples, during the training and
validation. The four classes were kept in the ground truth of manual labeling and used for visual
inspection of the test performance. Generally, in the prepared datasets, the classes of occluded apples

and apples on the ground hold the majority in the three datasets (Fig. 5.6).

Table 5.2

Description of the dataset composition.

Tile resolution  Training set Validation set Test set Null Labels
2018 666x750 58 7 7 4 6,337
2019 684x729 160 20 20 11 5,515
2020 668%x668 216 27 27 35 18,754

APPLE

58
a7
35
2

DIFFICULT o APPLE ON THE GROUND

OCCLUDED

2018 2019 2020

Unit: %

Fig. 5. 6. Distribution of the four annotation classes (%) over the three years, 2018, 2019 and 2020. The

four classes are: apple, occluded apples, apples on the ground and difficult.

In addition, the feasibility of YOLOvVSs in model generalization was tested across the three years.
YOLOVSs was trained on mixed training sets in this section. The mixed sets are dataset 2018&19,
2018&20, 2019&20 and all the three years. The resulting models were tested on the three test sets
separately to identify the problems hindering YOLOvVSs generalization and find the optimal model

generalization strategy.

5.3.2. Apple assignment model

As a follow-up step, to assign detected apples from the apple detection model to a specific bearing tree
they belong to, core task is the apple tree identification and localization. In aerial remote sensing, each
image samples a specific area namely the projection area. There are two routes for allocating trees on

the field to each image collected by UAVs. One is directly detecting objects in the image by applying
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segmentation and detection approaches. While the other is derived from geographic calculation using
multi-source data. Yet trees in modern high-density orchards are interlacing and touching each other
which induce serious canopy overlapping issue in 2D images, especially during the harvesting period.
Therefore, geographic calculation is potential to be a better solution to geo-reference fruit trees in UAV

images.

The apple assignment model proposed consists of five steps (Fig. 5.7). Firstly, to create a real-world
reference, GPS coordinates of all the trees in the orchard were predicted based on the measured
positions of trees located at the four corners of the orchard. Next, GPS coordinates of image-projected
area corners are calculated using the raw image and metadata. With these first two steps, the trees within
the projected area are identified. Third, all the pixels in the image were registered in the real-world
coordinate using a coordinate conversion method proposed in this study. Based on the output of Step 3
and coordinates of the trees that are covered by the image (in the projected area), image pixels that can
represent these covered trees are recognized. Thus coordinates of these pixels in the original image
denote tree positions estimated in the image (Step 4). Finally, detected apples were assigned to

individual trees employing the predicted tree positions.

1
|
i 1
T (2) Delineate projected area (3) Register pixels to real-world coordinate
! .
uAv . ( Metadata Image . Four comers of projected area . All the pixels in an image
Image | GPS, yaw, altitude... —_ GSD GPS coordinates GPS coordinates
1
I
! (4) Locate trees in the image
' (1) Calculate tree GPS position .
Four trees in the orchard corners . ‘ All the trees __, | Trees covered by image ‘ . ‘ Trees covered by image 15
GPS positions GPS coordinates D ) Photo coordinates =3
3
v
I

| |

Apples 5) assi les to individual t Individual trees
Photo coordinates (5) assign apples to Apple counting

- - Input - -
= = Output -

Fig. 5.7. Framework of the proposed apple assignment model. Color of the box borderline is consistent
with Fig. 5.3. Box with red borderline: output from apple detection model; boxes with green borderline:

data used and produced in the apple assignment model.

5.3.2.1. Calculate tree GPS coordinates

Calculation of tree GPS positions across the whole orchard is a pre-processing step. This inventory is

built on the basis of four pre-measured tree positions, as the red points shown in Fig. 5.8. Given GPS

positions of two points on the earth, the position of an intermediate point in between at any fraction can
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be calculated. These points are along the great circle path where the distance between two points along
this path is the shortest over the earth surface. Topographic changes between the two given points are

ignored. Since the survey site in this study is a small orchard, only 0.47ha, this theory is applicable.

51°56'20"N
51°56'19.5"N
51°56'19'N
© 51°56'18.5'N
hel
2
5
51°56'18"N
51°56'17.5"N
51°56'17"N

51°56'16.5"N

5°42'22"E 5°42'24"E 5°42'26"E 5°42'28"E
Longitude

Fig. 5. 8. Illustration for the calculation of intermediate tree positions. A, B, C and D are the trees locate
at upper left, upper right, bottom right and bottom left of the orchard, respectively, based on the ground
truth data. M and N represent the last tree and the first tree (count from bottom to top) in row 2 (count

from West to East), respectively. The satellite basemap is a tiled data set created using Natural Earth.

Given two points m and n (Fig. 5.8), formulations to calculate an intermediate point GPS position were

the following:

a=sin((1—f)* §)/siné

b =sin (f * §)/sind

X = a * coSQq * c0SA, + b * cos@, * cosA,

Y = a*cos@q * Sindy + b * cos@, * sind, (1)
z = a*sing; + b * sing,

@; = atan2( z, m)

A; = atan2(y,x)

Where ¢, and 4, is the latitude and longitude of point m; ¢, and 1, is the latitude and longitude of
point n; ¢; and 4; is the latitude and longitude of an intermediate point n; § is the angular distance d/R
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(earth mean radius: 6371 km), f'is the fraction ( when f= 0, it is point m; when f= 1, it is point n). It is

based on a spherical earth model where ellipsoidal effects are ignored.

As introduced in section 2.1, 1414 apple trees were planted evenly in 14 rows where each row grows
101 trees. A fixed tree and row spacing was adopted. Based on the intermediate point calculation (Eq.1),
GPS positions of the first and last trees (count from South to North) in the 14 rows (the bule points in
Fig. 5.8) were determined first. The fraction was set to 13 for the calculation of both the first-tree and
last-tree positions. For example, positions of the first trees were calculated based on pre-measured
positions of tree C and D (Fig. 5.8). Next, intermediate tree positions (the yellow points in Fig. 5.8) in
a row were estimated based on the pre-calculated tree positions of the first and last tree in the
corresponding row. Here the fraction value was 100. Finally an inventory of GPS positions of all the

apple trees in the orchard was created for further analysis.

5.3.2.2. Delineate image-projected area

To estimate GPS positions of each single pixel in an aerial image, the first step is to delineate the
corresponding projection area. In particular, identification of the four corner points of the projection
area is the key. A diagram describing the projection of an aerial image is shown in Fig. 5.9. where both
the photo corners and image center pixel corresponding to projection area corners and center point on
the plane of the ground, respectively. The GPS position stored in the raw image metadata is assumed to
be the position of the center pixel, O1. According to GSD of the image, the length and width of the
projection area are obtained. The distance of any projection area corners that travel from center O can

also be calculated using geometric mathematics.
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x

:|Flying altitude

SR

Fig. 5. 9. Illustration of calculating GPS coordinates of the four image-corners (Aj, By, Ci and Dy). O,

represents the center of the UAV image. Blue area is the projection area of the image. Four corners of
the projection area are marked as A, B, C and D. O is the center. Line OE is perpendicular to line AB.

Wy, Wy and W, indicate the world (GPS) coordinates.

Abearing is the horizontal direction from or to a specific point which is usually measured by a clockwise
angle from magnetic North (true North). For example, angle NOB is the bearing of point B that travels
from point O (Fig. 5.9). Given the drone yaw that indicates angle EFON, any bearing of the projection
area corners can be calculated. Further, with a bearing and distance that a point travels from the center
O along great-circle route on the ground plane, GPS positions of the projection area corners can be

calculated by formulas as follows:

@, = asin( singq * cosé + cos@, * sind * cos@) @

Ay = A + atan2(sin * sind * cos@q,cosd — sing, * sing,)

Where ¢ is latitude, A is longitude, 6 is the bearing (clockwise from the North), § is the angular

distance.

5.3.2.3. Register image pixels to the real-world coordinate

Each pixel in an aerial image corresponds to a specific area cell in the projection area. Size of the area
cell depends on GSD of the image. High GSD produces large area-cells for each image pixel. Derived
from this, each single image pixel can be associated with a specific point in the real-world coordinate
(Wy, Wy and W,). This strict one-to-one relationship is demonstrated in Fig. 5.10, where the white points

are image pixels and purple points are the corresponding points on the ground plane. When the

150




Chapter 5

projection area is arranged in a 2-dimensional grid (WxH units) with the same resolution as the image
(W1xHI units), GPS position of any points on the projection area grid is representative of a specific
image pixel. Thus the photo-coordinate of a pixel M1 (Ix, Iy) can be converted to a real-world

coordinate M (Wx, Wy), and vice versa.

Pixel M1 (1, Iy
: [M1(0,H1)] -

Fig. 5. 10. Illustration of converting pixel coordinates to GPS coordinates. Blue area ABCD is the
projection area of a UAV image, with a width of W units and with a height of H units. O is the center.
Grey points are image pixels. Purple points are the corresponding points of image pixels. Red cross
represents trees within the projection area. M is the first point (count from bottom to top) in row 1(count
from West to East). Wy, Wy and W, are the world coordinates. O, is the center of image A;BCiD;.

Image width is W units and height is H; units. M; is a pixel in the photo coordinates of I, and I.

GPS coordinates of the four projection area corners are pre-calculated in section 3.2.2. Thus GPS
coordinates of other points on the projection area grid can be calculated using the same method
introduced in section 3.2.1. Positions of the intermediate points lying on the side AB and DC were
calculated first (Eq.1). The fraction value was set to W-1 for both sides (Fig. 5.10). Similarly, the
positions of other points in the projection area were calculated based on positions of points on the sides

AB and DC. The fraction was H-1.

5.3.2.4. Locate trees in the image

Given that GPS coordinate of any intersection points on the projection area grid can be converted to
photo-coordinate position, as introduced in section 3.2.3, apple trees that are covered by the projection

area (captured in the image) can be identified and localized in the corresponding image by comparing

the known tree GPS positions with the grid intersection point positions. Positions of all the trees in the
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orchard were recorded from section 3.2.1. Some trees can locate exactly on the intersection points of
the projection area grid, then the photo-coordinate positions of the trees can be identified directly using
the strict one-to-one relationship shown in Fig. 5.10. However the probability is small. Normally, pre-
estimated positions of the trees in the orchard are among intersection points of the projection area grid,
as points T1 and T2 shown in Fig. 5.10. For this reason, representatives of these trees need to be selected
from the grid intersection points to present the real tree positions. To search representatives for trees
that are covered by an image, the nearest points to these trees were queried from the intersection points.
These nearest or closest points were measured in Euclidean distance. Then corresponding tree positions

in the photo-coordinate were determined in an indirect way when the tree representatives are recognized.

5.3.2.5. Assign apples to individual trees

Apple assignment was conducted in the photo-coordinate space (Ix, Iy). A diagram of this process is
shown in Fig. 5.11. It is assumed that apple trees in the image share the same canopy size and that a
complete canopy area can be covered by a rectangle. Thus, with the help of the identified tree positions,
the main task of apple assignment is delineation of the canopy areas. Specifically, it is to calculate the
width (W) and height (H) of the small rectangle. Given that there are M trees in a row, the H of the
small rectangle can be measured (Fig. 5.11). The first and last trees among the M trees were discarded
first. Since it is hard to ensure that complete canopy areas of these two trees are captured by the image.
Assuming the tree positions lie on a line through the center of the rectangle and perpendicular to the

height line, the H of the small rectangle can be calculated by the following formula:

H= (y2— y1)/(M—3) ©)

Where H is height of the small rectangle, y, and y; are the ordinates of the first and last tree positions

(Ix, ly), respectively (count from bottom to top), M is the total tree number in a row.

To test the feasibility of the apple assignment method proposed in this study, W of the small rectangle
and the segment point P(x3, 0) were measured manually (Fig. 5.11). Further, top-left corner of the last
tree canopy area (rectangle area) was identified, Q(x3, (y1-0.5xH)). And positions of all the tree canopy
areas can be delineated. Finally, detected apples from the apple detection model were assigned to

different small rectangle areas that represent individual trees.
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Row area Individual tree area
Ix P (x3,0)

* Tree positions

* Discarded tree positions

Fig. 5. 11. [llustration of mapping individual tree areas. Ix and I represent the photo coordinates. Each
tree area is delineated with a blue rectangle. The width and height are W and H units, respectively. Tree

area B and A are, respectively, the first and last areas in the same row (count from bottom to top).

5.3.3. Evaluation metrics

5.3.3.1. Apple detection

Three evaluation metrics were used to examine the performance of YOLOVSs in apple detection which

comprise precision, recall and mAP50:

R “)
Precision = TP + FP
TP 5)
Recall = TP+—FN

Where TP, FP, FN are true positive, false positive and false negative respectively. When one prediction
produced from YOLOVS5s holds an IoU that exceeds a defined IoU threshold to its corresponding target
box, it is positive, otherwise negative. If the prediction is correct to manual labeling, it is true, otherwise

false.

1 (6)
AP = f(precision « recall)dr
0

ap = Ti1AR. @

Where AP is the average precision which indicates the area below precision-recall curve when precision

and recall are regarded as vertical and horizontal axis, respectively. mAP is the mean average precision
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indicating the average of AP across various categories, ¢ is a category, and n is the category number.

mAPS50 is the mAP of predictions that hold IoU greater than 0.5.
5.3.3.2. Apple assignment

The metric to evaluate tree GPS coordinate calculation was shown as follows:

n lyi— 3l

i=1 ,
Mean relative error (MRE) = + (8)

Where n is the sample size, y; represents the measured value and J; is the predicted value.

In addition, visual inspection was conducted to judge the quality of tree localization and apple
assignment. In the first case, it is important to recognize how far a predicted tree position is to the
bottom of the corresponding tree trunk. For apple assignment, the criterion is the integrity of the

delineated canopy area.
5.3.3.3. Yield estimation

To verify the performance of proposed yield estimation mechanism, three metrics, R*, RMSE and MAE,
were used. These metrics have been applied in previous studies (Zhang et al., 2021). Coefficient of
determination (R?) indicates how much of the variance of the dependent variable is explained by the
independent variable. RMSE measures the deviation between the observed value and the true value.

While MAE describes the actual situation of errors.

5.4. Results

5.4.1. Apple detection model

YOLOvSs was trained on different training sets and corresponding apple detection models were
evaluated on the testsets of the three years separately. The different training sets comprise single training
sets, i.e., training set 2018 (Table 5.2), and mixed training sets, i.e., the combination of training sets
2018 and 2019. The confidence and IOU thresholds were set to 0.25 and 0.6, respectively. Results
showed that, overall, YOLOvVS5s yielded a similar detection performance for testset 2019 and 2020 while
its performance in 2018 was slightly lower (Fig. 5.12). For each testset, the highest mAP50 proceed
from models trained on datasets including the corresponding training set. For instance, during the
evaluation on testset 2018, models with high accuracy were trained on either the single set of 2018 or
mixed sets that including training set 2018, such as model 2018&19. And these models performed
similarly. Specifics of models trained on the single-year and mixed training sets were reported in section

4.1.1 and 4.1.2, respectively.
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Fig. 5.12. Cross-test performance of YOLOVSs trained on different datasets. M2018 denotes the
YOLOVS5s model trained on dataset 2018. M3years is the model trained with a combination of datasets
from all the three years, 2018, 2019 and 2020. Columns with gradient color indicate models trained

with single datasets; normal columns with filled color are models trained with mixed datasets.

5.4.1.1. Apple detection on individual years

Detailed performance of YOLOvVSs models trained on single-year datasets is given in Table 5.3. In
general, YOLOVSs produced fine apple detection accuracy in aerial images. Its best performance for
dataset 2019 and 2020 were similar. While its achievement in 2018 was relatively low where the highest
mAP50 was 0.69 (Table 5.3). Model 2018 which was trained on training set 2018 provided similar
performance for test set 2018 and 2020. Performance of other two models that were trained on single
training set, i.e., M2019, decreased significantly when they were tested on datasets from a different year

(Fig. 5.12).
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Table 5.3

Cross-test results of the YOLOVSs trained on datasets from a single year.

Testset 2018 Testset 2019 Testset 2020
Precision 0.707 0.454 0.739
Model 2018  Recall 0.634 0.344 0.557
mAP50 0.688 0.375 0.669
Precision 0.612 0.782 0.697
Model 2019 Recall 0.484 0.694 0.561
mAP50 0.530 0.774 0.628
Precision 0.701 0.627 0.839
Model 2020  Recall 0.488 0.448 0.665
mAP50 0.607 0.553 0.777

Qualitative evaluation indicates that multiple predictions, leaves with yellow-green areas and leaves in
dark areas made YOLOVS5s produce false positives (FP) in testset 2019 (Fig. 5.13). YOLOvVS5s
performance in detecting green apples on the ground in the dark area was weak when they were tested
in the same scenario (Fig. 5.A1). While model 2018 outperformed the other two models in detection of
occluded apples in 2019. For dataset 2020, YOLOVSs reported good performance in occluded apple
detection (Fig. 5.13). Yet one green apple in a test image from 2020 was undetected by model 2020.
Model 2019 showed similar performance as other two models in the detection of red apples on the
ground in dark areas (Fig. 5.13). The main FP in data2020 comes from the soil in dark areas. While
model 2018 produced more FP with leaves. In testset 2018, model 2018 did not detect the apples on the
ground with complete shapes but similar color as the ground. While model 2020 reported poor
detections in occluded apples (Fig. 5.13). Leaves are the main FP detections. In addition, predicted

bounding box size of model 2019 was bigger than 2018.
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Model 2019 Model 2018
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Fig. 5. 13. Apple detection performance of three YOLOvVSs against manual annotation in various
complex test set scenarios. Model2018: the YOLOVSs trained on dataset 2018. Red bounding box:
detection results of YOLOVSs; star marker: manual annotation of the four apple classes. Star markers

with blue color: apples; white: occluded apples; cyan: apples on the ground; magenta: difficult class.
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5.4.1.2. Apple detection over three years

Performance of models that were trained on a dataset mixed from two years, i.e., Model 18&19, dropped
to a certain extent when these models were tested on the dataset from a year not included for training
(Table 5.4). As an illustration, model 2018&20 presented a lower accuracy on testset 2019 (mAP50:
0.57) than that on either testset 2018 or 2020. Highest accuracy of model 2018&19 and model 2018&20
was obtained in the evalution on testset 2019 and 2020, respectively. While Model 2019&20 exhibited
a similar achievement for testset 2019 and 2020, with a small mAP50 difference of 0.02. Model 3 years
was one of the models that yielded the highest mAPS50 for all the three testsets (Fig. 5.12). It showed
similar detection performance for testsets 2019 and 2020. But its performance in testset 2018 was

slightly lower where the reported mAP50 was 0.69 (Table 5.4).

Table 5.4
Cross-test results of YOLOVSs trained on datasets mixed from two or three years.

Testset 2018 Testset 2019 Testset 2020

Model 2018 & 2019 Precision 0.733 0.820 0.712
Recall 0.620 0.644 0.574
mAPS50 0.703 0.758 0.647
Model 2018 & 2020 Precision 0.722 0.570 0.828
Recall 0.610 0.493 0.671
mAP50 0.688 0.566 0.776
Model 2019 & 2020 Precision 0.656 0.829 0.818
Recall 0.524 0.641 0.671
mAP50 0.584 0.761 0.778
Model 2018 & 2019 & 2020  Precision 0.753 0.804 0.818
Recall 0.609 0.651 0.679
mAPS50 0.694 0.765 0.785

Qualitative tests reported that the true negatives (TN) in test set 2018 caused by occluded apples
decreased when only dataset 2020 was added for training (Fig. 5.14). Another type of TN, apples on the
ground, also decreased when one additional training set was included. Models trained on datasets
comprising dataset 2020 improved this issue dramatically such as model 2019&20. However, no
improvement on this was observed for model 3 years. As FP in test set 2018 derived by multiple
predictions, only model 2019&20 was favorable (Fig. 5.14). Model 3 year fixed the FP initiated by

yellow-brown leaves. Conversely, model 2018&19 suffered more on this issue. During the test on
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dataset 2019, hybrid models 2018&20 and 3 year produced more TN caused by occluded apples (Fig.
5.14). Generally hybrid models reported similar capability for the detection of apples on the ground.
And these models endured the same FP as model 2019 such as multiple predictions. Regarding the
evaluation on testset 2020, the four hybrid models produced slightly more TN of occluded apples than
model 2020. Only model 2018&19 showed improvement on TN derived by apples on the ground (Fig.
5.14). And only it detected the missed green apple from model 2020 accurately. However, model
2018&19 reported more FP than other hybrid models. The FP mainly consists of the leaves and soil in
dark areas (Fig. 5.14).
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Model 2018&2020 Model 2018 & 2019 Original samples

Model 2019 & 2020

Test sample 2018 Test sample 2019 Test sample 2020
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Model 2018&2019&2020

Fig. 5.14. Apple detection performance comparison of four YOLOvVSs against manual annotation in
various complex testset scenarios. Model 2018&2019: the YOLOVS5s trained on datasets mixed from
2018 and 2019. Red bounding box: detection results of YOLOVS5s; star marker: manual annotation of
the 4 apple classes. Star markers with blue color: apples; white: occluded apples; cyan: apples on the

ground; magenta: difficult class.

5.4.2. Apple assignment model

5.4.2.1. Calculate tree GPS position

With GPS positions of four corner trees in the orchard, all the tree coordinates were calculated using
the method introduced in section 3.2.1. Prediction results were validated with ground truth, tree
positions measured with RTK in the field. 101 trees in row5 were the test samples. High prediction
accuracy was observed. The MRE of latitude and longitude predictions were 0.31x107 and 2.20x107,
respectively. This matches the fact that the measurement of the ground truth was conducted at the
nearest position to the tree root rather than the exact root positions. Thus accuracy of longitude

prediction was not as accurate as that of the latitude.

5.4.2.2. Delineate projected area

GPS position of the four corners of a projection area was calculated based on GSD, image GPS position
and drone yaw of a corresponding UAV image. To examine the delineation accuracy, visual inspection
was conducted by plotting the estimated area data on a satellite base map (Fig. 5.15). Trees that fall into
the projection area were manually counted (Fig. 5.15c). The counting was compared against tree
number that is visible in the corresponding UAV image (Fig. 5.15b). It yielded a maximum tree counting
error of 1 tree per row. Generally speaking, the projection area was delineated precisely for the datasets
2018 and 2019. In the examination of image DJI 0138, only roots of the trees in row6 (count from left
to right) are visible in the UAV image, and the exact tree number in this row is impossible to count (Fig.

5.15b). Yet these trees were still recognized in the projection area where the tree number was determined
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for 7 (Fig. 5.15¢). For the test in dataset 2020, the delineation accuracy was quite low. Produced
projection areas even covered one additional tree row completely. Therefore, dataset 2020 was not used
for further analysis. Both dataset 2018 and 2019 were used for further apple assignment study. In
addition, predicted tree positions locate properly around the center of tree canopy areas (red points in

Fig. 5.15¢).
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Fig. 5.15. Visualization of the estimated projection area of image DJI 0138 in dataset 2019. (a)
estimation results; (b) image DJI_0138; (c) a zoomed-in view of the projection area. Border of the
projection area is highlighted in blue. Red circles are the predicted GPS positions of all the trees in the

orchard while blue circle is the center of both the image (b) and its corresponding projection area.

5.4.2.3. Locate trees in the image

The estimated projection area was further divided into small partitions to register pixels to real-world
coordinates. Firstly, it was divided by using the same resolution of corresponding images. For instance,
in the case of dataset 2019 (Table 5.1), the projection area was transformed to a grid with 5472x3648
resolution. This took 30 mins to produce one grid and it also burdened the upcoming computation. Thus
the grid resolution was decreased to 2736x1824 for dataset 2019. It decreased two times for dataset
2018 as well. The computation time decreased to approximate 1min per image for both 2018 and 2019.
Next, the estimated tree position in image-coordinate was increased two times for tree localization.
Results suggested that, in general, for the images filled with trees, around 95 trees were recognized per

image for dataset 2019. While the amount for dataset 2018 was approximately 135 trees per image.
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Visual inspection was applied to evaluate the tree localization accuracy. Ideally, the estimated tree
positions should be around the center of the canopy area or the root positions in the areas with a nadir
view. However, it is challenging to make the inspection for the apple dataset 2018 and 2019. Because
tree branches closely connect to adjacent trees and the leaves are heavily occluded (Fig. 5.15b). Hence,
an apple flower dataset from a previous study (Zhang et al., 2023) was used to assist the validation. The
dataset was collected by Phantom 4 RTK, in the same orchard as this study. It was during flowering
period, the tree trunk was visible for majority of trees in the image. Tree localization in the flowering
image shows good accuracy (Fig. 5.16). First, the tree number within the image was predicted accurately.
Next, the relative position of the predicted tree position to canopy area or tree root shows spatial
diversity across the whole image. Some predicted positions are slightly upper to the roots but lower
than the center of the canopy area (Fig. 5.16a). Some predictions are located right at the root positions
(Fig. 5.16d). Details of this distribution pattern were summarized (Table 5.5). From bottom to top part
of the image, the distance between predicted tree positions and canopy center decreased first, then
increased till the end. The cases that these two positions overlap happened at the upper part of the image.
Regarding the relative position to the roots, the predictions locate lower in the vertical direction. This
pattern shows across the whole image. On the contrary, these two positions overlap at bottom part. The
ideal situation happened in the middle area of the image where the predictions locate right at the root

and canopy center (area 2 (A2), AS and A8 in Fig. 5.16).

. Tree positions
i O Tree positions uncertain
+ Predicted tree positions

_(e)_

o) [ (@

Fig. 5.16. Predicted tree positions in the image DJI_0038 in flower dataset 2020. Red plus symbols
represent the estimated tree positions. Blue circles are manually identified tree positions (canopy center);

cyan circles are the visual identification not sure. Al: area 1.
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Table 5.5

Summary of the canopy area and root relative positions in the apple flower image taking the predicted
tree positions as a reference. ‘<>’ indicates the same vertical position; ‘7’ and ‘1’ denote upper and lower
vertical positions, respectively. The 9 cells of either canopy area or root distribution correspond to the

9 divisions in Fig. 5.16e one by one.

Canopy area distribution Root distribution
T T, © T, © 1 © 1
!, o !, o !, o !, o o {, o
\) l l , © o i, o

5.4.2.4. Assign apples to individual trees

Assignment of apples to individual trees is the only procedure that involves manual efforts in this study.
Tree areas were identified by drawing rectangles with a fixed size. Detected apples from YOLOvS5s that
fall into a specific tree area are assigned to the corresponding trees. To evaluate the assignment
performance, visual inspection was conducted by checking the integrity of trees in the rectangle areas.
The assignment shows spatial diversity over the images in both 2018 and 2019 (Fig. 5.17). Trees located
at the top (Fig. 5.17a and c) or bottom part (Fig. 5.17 b and d) of a row were segmented poorly. Only
one or two trees close to the center area are recognized properly (Fig. 5.17b). Because of the heavy
occlusion of tree branches and leaves, in some cases, it is impossible to tell the relative position of the
predicted tree positions to the tree root or canopy area. Some trees leaning to the adjacent trees because
of over fruit load (Fig. 5.17¢). This make their canopy area center deviates from the root and further
affect the tree area identification. Moreover, it is observed that some first and last trees (count from
bottom to top) are not covered completely in the images. In general, trees were localized better in dataset
2018 than 2019. In 2019, trees situate at left area of the image (A1, A2 and A3) are not properly localized.
The predictions are far from the potential root positions in the corresponding row (Fig. 5.17¢). While

in 2018, this distance is smaller (Fig. 5.17f).

164




Chapter 5

@ Predicted tree positions
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Fig. 5. 17. Apple assignment for the trees in row 5 in dataset 2018 (f) and 2019 (e). Upper (a and c) and
lower parts (b and d) of the assignment are zoomed in. Black plus symbols are the detected apples
derived from YOLOVSs; blue circles are the predicted tree positions; blue rectangles represent predicted

individual tree areas.

5.4.3. Yield estimation

Ground truth was only recorded for row$5 in the orchard. Therefore, two images encompassing nadir
view of this row were randomly selected for yield estimation. Horizontally, trees in row$5 situate in the
middle area of the selected images (Fig. 5.17). On the basis of proposed manual tree area delineation
derived apple assignment, no correlation was recognized between the visible apple amount in images
and the exact apple yield recorded in the field (Fig. 5.18). Regarding the manual annotation as a
benchmark, its correlation against the ground truth was first tested. No correlations were observed for
both the annotations including and excluding apples on the ground. Apple detection models M2018 and
M2019, which were trained on only dataset 2018 and 2019, respectively, yielded high detection
accuracy (Fig. 5.12). They were selected for yield estimation and the confidence and IOU thresholds
were set to 0.25 and 0.6, respectively. Detected apples from YOLOvSs comprise the apples on the
ground. Results showed no correlation against the ground truth of row5 either. Yet, in the dataset 2018,
YOLOVSs detections yielded an R? of 0.86 against manual annotation excluding apples on the ground
and 0.88 to the annotation including apples on the ground (Fig. 5.18a). In the case study of 2019, its
correlation against manual annotation including and excluding apples on the ground is 0.56 and 0.29
(R), respectively (Fig. 5.18b). In addition, for apple detection of row5 in the two selected images, it

was observed that detection performance in 2018 was better than 2019. Main error emanated from
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image 2019 is the misdetection of leaves. High illumination level existing in image 2019 induces leaves

partly bright, and causes the model to misjudge these bright areas as apples.
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(a) Yield estimation in 2018 (b) Yield estimation in 2019
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Fig. 5.18. Comparison of relationships between YOLOVSs apple counting and manual annotation per
tree against in situ ground truth (GT) in 2018 (a) and 2019 (b). Samples are the trees in row5 that are
covered in image DJI 0482, in the year 2018 (a) (N=13) and image DJI 0117, in the year 2019 (b)
(N=12). Grey points show the correlation of YOLOvVS5s -based; orange and blue points show manual

annotation with apples on the ground and without, respectively.

5.5. Discussion
5.5.1. Apple detection in single years

YOLOvSs was found to be proficient in the detection of small apple objects in aerial images. Its
performance was tested with temporal UAV apple datasets across three consecutive years (Fig. 5.12).
The baseline accuracy ranged from 0.69 to 0.78 (mAP50) which was similar to previous demonstration
of YOLOVSs for litch late-autumn shoots detection (Liang et al., 2023). Highest detection accuracy in
2018 was slightly lower than the best results from other two years (Table 5.3). One reason is the
contribution of apples on the ground. As seen in figure 5, this class of apples maintains a relatively
complete shape feature which is easier to identify. While it only held approximate 10 percent of the
whole dataset of 2018 which is much less than other two datasets (Fig. 5.6). Surprisingly, dataset 2020
comprises three times more labels than other years (Table 5.2) yet, its best test result was similar to
2019 (Fig. 5.12). It indicates that 5,515 original labels with no data enhancement are sufficiently large
for the training of YOLOVSs (Table 5.2). The predefined four classes, apples, apples on the ground,
occluded apples and difficult, were designed to fully understand the performance of YOLOvS5s (Fig.
5.5). Thus the imbalanced distribution of these classes is acceptable. For the prediction of final yield,

there is no need to conduct apple class classification. Yet, to quantify the effects of apples on the ground,
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a test is encouraged where images and instances per class are well prepared. Model 2018 outperformed
other two models in the detection of occluded apples (Fig. 5.13). Because dataset 2018 comprises the
highest percentage of occluded apples (Fig. 5.6). Similarly, less instances of green apples and apples in
relatively dark area within the tree structure made YOLOVS5s produce poor detections in these two cases

(Fig. 5.13). Including more instances for model training can be a solution.

[llumination verified to be the main challenge for YOLOVSs in detecting apples in UAV images.
Generally, dataset 2019 suffers more illumination effects than other two datasets (Fig. 5.13). This
justifies that the model 2018, which was trained on dataset 2018 only, yielded comparable performance
for test sets 2018 and 2020 (Fig. 5.12). Because datasets 2018 and 2020 shared similar illumination
conditions. Cross-test results showed that dataset 2019 suffers more from the issue of multiple
predictions (Fig. 5.13). It highlights the illumination influence once again. Since uneven illumination
produced more predictions with lower confidence. Setting optimal thresholds for confidence and IOU
can mitigate this problem. Yet it affects the development of a generalized model for apple detection.
Additionally, in dataset 2019, sunlight passes through the gaps in the tree leaves and branches and forms
bright areas of various shapes in the shadow areas on the ground. These bright areas were very close to

apples with light green or yellow color and produced more FPs.

Tree leaves in 2018 had abnormal colors ranging from light green to yellow even brown (Fig. 5.13).
These colors are similar to apples that are not fully mature. Once these leaves are captured within dark
areas at the anti-sunshine side or in the deeper internal structure of trees, they can form regular ellipses
at their surfaces and interfere with the detection performance of deep learning algorithms, resulting in
false positive predictions (Fig. 5.13). The unnormal color of leaves can be caused by fireblight disease
or iron deficiency (Zhang et al., 2021). Thus one way to fix this is to utilize regular management. While

the other solution is to apply an advanced modification strategy for YOLOVS5s.

Annotation is one challenge in extreme small object detection owing to its high requirement for image
quality and manual efforts. In the present study, it proceeds from two aspects: judging if an object is an
apple and counting how many apples exactly fit in one apple cluster (Fig. 5.14). It is hard to guarantee
that the space between apples and their bounding boxes is close to zero and that no apples were missing
a label. The latter affects label consistency. Thus overall label accuracy is tough to ensure. Most studies
utilized hand-held or ground vehicle-derived datasets which are beneficial in image resolution (Huang
et al., 2022). Though a few studies used UAV for image acquisition, yet, the generated images are not
real remote sensing images and are not representative. Since the UAVs were manually deployed to
either proximal imaging, which is nearly static imaging (Zhang et al., 2022d), or low-altitude sensing
(less than 9m altitude) (Liang et al., 2023) (Li et al., 2023b). They highly bank on manual interference

and are not suitable for automatic monitoring on the whole orchard scale. Ultimately, in comparison
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with the present study, better results of YOLOVSs baseline model demonstrated from studies employed
these data collection strategies are explained (Huang et al., 2022; Li et al., 2023b).

5.5.2. Apple detection crosses three years

UAV imagery is beneficial in the development of a robust generalized detector in horticulture. Obtained
results indicate that one UAV flight can produce sufficient scale variation for building up the dataset of
apples enduring different degrees of occlusion (Fig. 5.14). As a single image already captures fruits
under various conditions (Fig. 5.4), with the aid of complex tree structures and orchard circumstances
(Li et al., 2023b). This ensures the richness of training sets and further improve the model capability in
detecting new cases. Therefore, it clarifies the similar performance derived from model 2018 on test
sets 2018 and 2020 (Fig. 5.12). It is anticipated that two UAV datasets embracing both cloudy and sunny
illumination conditions are adequate for developing a generalized apple detector (Li et al., 2023b). As
an illustration, model 2018&19 generated a similar performance within the test on dataset 2018 and
2020 (Fig. 5.12), where the difference was only 0.06 (mAP50) (Table 5.4). Since datasets 2018 and
2020 shared similar illumination conditions. Thus, though model 3-years was found to be the most
powerful for apple detections across three years (Fig. 5.12), training YOLOv5s with two-year datasets
is sufficient. Moreover, a generalized model is also affected by various orchard management strategies
(Zhang et al., 2021). For instance, irregular management of the apples on the ground induces the model
a poor performance in the detection of other apple classes, i.e., occluded apples. The poor performance
of model 2019&20 on test set 2018 also proved this, as against its accuracy yielded from test sets 2019
and 2020 (Fig. 5.12). Because the majority of TNs was occluded apple (Fig. 5.14), and the dominant
class in dataset 2020 is apples on the ground (Fig. 5.6).

5.5.3. Apple assignment

5.5.3.1. Calculate tree GPS position

The accuracy of tree GPS position calculation is almost perfect (Fig. 5.15). Since tree branches make
RTK measurement at the exact root position impossible, the GT of tree GPS positions itself includes
errors. The errors are 30 to 40 cm (distance between the real measurement position and root). This
explains the deviation observed in longitude prediction. The tree rows were planted from South to North.
Thus the errors in the GT do not affect the prediction accuracy of latitude. The good results from tree
GPS position calculation provide a reliable reference or tree position inventory for assisting tree
localization in the image coordinate system. It also shows an efficient way to map tree positions in

modern orchards, where a strict and precise layout is designed for tree positions.

5.5.3.2. Delineate projected area
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Regarding the drone yaw value stored in image metadate as the image bearing, the proposed method
shows good performance in the delineation of areas projected by UAV images of 2018 and 2019 (Fig.
5.15). It also proves that assuming image GPS to be the position of the center pixel in the image is
correct. Delineation accuracy in dataset 2020 was very poor, as mentioned in section 4.2.2. One main
reason is the UAV platform difference (Table 5.1). Cameras of Phantom 3 pro and 4 RTK were almost
at the same horizontal position with the drone gravity. This meets the prerequisites of the method
proposed in this study (image GPS can be the position of the image center pixel). However, the camera
equipped on M210 is far from the drone gravity which makes the calculation of projection area corners
inaccurate. To fix this problem, an image GPS converter should be developed to eliminate errors caused
by camera position. Another option is to determine the right pixel in the image which can represent the
camera position in the real-world when the image was captured. Additionally, as seen in Fig. 5.15b,
trees in some areas are closely connected which makes it hard to tell the tree number in original image.

This leads to a less reliable accuracy calculation.

5.5.3.3. Locate trees in the image

The proposed tree identification method yielded notably high accuracy in tree amount prediction for
aerial images (Fig. 5.16). Localization performance varies from different areas across the images and
this regular distribution pattern was demonstrated (Table 5.5). This method benefits various UAV-
derived applications, such as tree detection in complex environments (Osco et al., 2020a; Wu et al.,
2020b). Predictions could be a reliable reference for improving computer vision-based detection

accuracy.

Validation of the proposed tree localization method on an apple flowering dataset is adequate for the
assessment of tree identification performance over ripening period. Apple trees in the same row are
interlacing and touching each other where heavy occlusion of leaves and branches is observed (Fig.
5.17). It makes precise validation via visual inspection difficult. With consistent aerial image collection
parameters and weather conditions, in theory, knowledge from one case study is transferable to another
comparable study. Apart from using datasets from another growing stage, another option can be the
dataset collected from a low-density orchard. It can be an orchard with either large tree spacing or the
trees bear less leaf occlusion. This guarantees that the canopy area center and the tree roots are visible

or evident in the images. Thus the visual inspection is precise.
Weather conditions have much less effect on the proposed tree localization method. Since the proposed

method was based on geographic calculation instead of conventional object detections in images.

Potential tree identification errors in this study could come from four aspects: differences among the
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system design of UAVs (Table 5.1), projection area resolution, GSD and flying altitude. UAV system
design directly affects the identification of a representative pixel of the GPS coordinate stored in the
geotagged image metadata, as discussed in section5.3.2. Thus the accuracy of both projection area
delineation and tree localization was influenced. The second error type for tree localization arises from
the projection area resolution. Present results were derived from the resolution that was half of the aerial
image resolution. It increased the distance between representative points and tree positions in the real
world. Thus tree positions were migrated a short distance in the images. Keeping the same resolution
as the image significantly affects computational cost. Yet building a projection area grid with high
resolution can improve localization accuracy. In the case that accuracy matters, a resolution higher than
that of the image can produce precise projection, thus it is recommended. In this study, the utilized

resolution was sufficient since it provided a proper reference for the delineation of tree areas.

Tree localization performance in dataset 2018 was better than 2019 (Fig. 5.17¢ and f). One potential
reason is that larger GSD leads to higher accuracy. The GSD of 2019 (0.41 cm/pixel) is much smaller
than that of 2018 (0.64 cm/pixel) (Table 5.1). While the GSD of flower dataset 2020 is 0.69 cm/pixel.
This justifies the extremely good localization in flower dataset (Fig. 5.16) though a small GSD
difference was observed between flower dataset 2020 and apple dataset 2018. Yet it is hard to make
precise inspection in dataset 2018 due to heavy tree branch occlusion. To further validate it, a systematic
field campaign design is encouraged for comparison in different GSDs that are derived from different
flying altitudes. The timing should be spring or early summer when trees are not bearing leaves too
much. Another reason can be the flying altitude itself rather than GSD value. Flower dataset 2020
applied a flying altitude of 25m which is much higher than those of apple dataset 2018 and 2019 (Table
5.1). Higher flying altitude can enhance the calculation accuracy of the four projection area corners.
Thus the consequent tree localization accuracy is also improved. In addition, higher flying altitudes
suffer less tree structural overlapping (Zhang et al., 2023) in the image and produce more trees with an
independent view. It has potential to improve the final yield estimation accuracy. However,
disadvantage is the resultant effects on apple detection. To tackle this, advance algorithm that is capable
of detecting smaller objects derived from high-altitude aerial images needs to be developed. For certain
cases, the altitude-derived trade-off between tree localization and fruit detection accuracy requires more

attention.

5.5.4. Yield estimation

No correlation was observed between apple detections from YOLOvSs and the ground truth of row 5
in the orchard (Fig. 5.18). Manual annotation is supposed to be reliable for the estimation of visible

apples in the images. However, it showed no correlation to the ground truth either using the proposed
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apple assignment method. Errors originate in two aspects: apple detection accuracy and apple
assignment performance. Obtained low correlation of YOLOvSs derived apple detections against
manual annotation in 2019 verified the influence of illumination on apple detection one more time (Fig.
5.18b). In yield estimation of 2018, high correlation was received between YOLOVSs derived apple
detections and manual annotation for trees in row 5 (R>>0.86). And fine apple detection performance

was already demonstrated (Fig. 5.12). Therefore the main error arises from the apple assignment.

In principle, the proposed apple assignment method is operable for the delineation of tree canopy area
with a nadir-view (Fig. 5.16b) or the case that the canopy area center locates at the same vertical position
as the roots (Fig. 5.16d). Though UAV images assembled in this study were under a camera setting of -
90 gimbal pitch, the majority of trees in the images are not within nadir-view. For instance, only area
A5 covers trees with a nadir-view (Fig. 5.16). While trees in other areas stand in a side-view. Trees
locate at upper (A1, A4 and A7) and lower (A3, A6 and A9) part of the image are inappropriate for yield
estimation. Because they suffer either vertical (nadir) or horizontal (angular) overlapping in the images
(Zhang et al., 2023). In certain cases, trees also occluded each other making detected apples
unassignable. Thus proposed apple assignment method was proven to be applicable only to a certain
area in an aerial image. But the optimal area position in the image is fixed when flying parameters are
consistent. In relation to yield estimation for an entire row, as expected, low correlation of the visible

apples in the image against ground truth can be procured.

Usage of the summarized spatial distribution of canopy view (Table 5.5) depends on specific research
focus. In this study, the optimal areas for yield estimation are in the middle of images, A2, AS and A8
(Fig. 5.16). Because tree canopy areas situate at the same vertical positions as the predicted tree
positions among these three areas. More importantly, tree canopy areas are relatively independent where
branches occlude each other slightly. It makes the following yield analysis more precise for individual
trees. Yet, it is noticed that areas A2 and A8 provide a side-view of the trees while area A5 is a nadir-
view. The difference leads to dissimilar yield estimation results. RowS5 in image 2018 comprised trees
that fall into area A8 (Fig. 5.17f) while row5 in image 2019 contains area A5 (Fig. 5.17¢). Thus present
yield estimation of 2018 and 2019 is partly based on side-view and nadir-view, respectively. A
comparison of these two situations on yield estimation is encouraged in the near future. Obtained results

did not prove that side-view yield estimation is better than nadir-view.

The proposed apple assignment method is the only section that required manual efforts. It requires pre-
definition of a segment position and the canopy area width. To fully automate the proposed framework,
clustering methods are recommended (Zhang et al., 2022b). Optimal yield estimation areas are the same
as the proposed apple assignment method. In addition, there is one requirement associated with orchard

management to employ the yield estimation framework defined in this study. Crop load of the trees
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needs to be supervised properly. It is noticed that trees with heavy fruit load tilt to adjacent trees (Fig.
5.17c¢). This makes the detected apples originally belong to a tree identified assigned to the adjacent
trees which are closer to them in the image coordinate. It can also happen in the optimal area recognized
in this study, A5 (Fig. 5.16). It is believed that this requirement is in line with the principle of precision

horticulture, especially for the management of modern high-density orchards.
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5.6. Conclusions

Present study proposed a novel automatic apple yield estimation mechanism based on single raw UAV
RGB images. YOLOvSs was proven to be proficient in the detection of small apples in aerial images.
Obtained results revealed that UAV images are beneficial in developing a generalized model due to
their unique camera view. Experiments from YOLOVS5s on apple detection across three years suggested
that two temporal UAV RGB datasets are adequate for a generalized model. Proposed methods for fruit
tree identification achieved great accuracy in tree counting. A good localization performance was
observed as well. Effects of vertical and horizontal overlapping on the tree crown area delineation
accuracy were well discussed. The spatial pattern of predicted tree positions was summarized and
indicated the optimal area for single RGB images-based fruit yield estimation. No correlation between
apples detected from aerial images and ground truth data was found at tree level. The main reason is
the identification of individual tree crown areas. Yet, results showed great potential of proposed tree

localization methods in tree-level apple yield estimation.
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5.A. Appendix

Fig. 5.A.1 describes cross-test results of YOLOVSs trained on single-year datasets, in the test set 2019.

Test sample 2019 Test sample 2019

Model 2018

Model 2019

Model 2020

/. L 5 C’

Fig. 5.A.1. Model2018: the YOLOVSs trained on dataset 2018. Red bounding box: detection results of

YOLOVvSs; star marker: manual annotation of the four apple classes. Star markers with blue color:

apples; white: occluded apples; cyan: apples on the ground; magenta: difficult class.
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6.1. Main findings

In this thesis, the potential of single raw UAV RGB images in orchard management was evaluated. Its
capability in two crop load estimation cases, apple flowering intensity and yield estimation, was tested
against conventional benchmarks (methods derived from ground vehicle- and UAV-based color point
clouds) using datasets crossing three consecutive years. In this chapter, obtained results from each
individual topic are outlined and discussed in parallel with current research (Section 6.1). Next, further
reflections including limitations of the present thesis (Section 6.2), challenges and prospects of UAV

RGB imagery applied to agricultural applications are summarized (Section 6.3).

6.1.1 What are the research gaps and opportunities of UAV-derived monitoring in orchard

management?

UAVs are groundbreaking monitoring platforms that will continue to grow and support orchard
management (Chapter 2). The latest research focus, in the first half of 2023, shows a different pattern
than earlier years (Zhang et al., 2019a). But this trend is consistent with the previous forecast, at the
beginning of 2020, presented in Chapter 2:

e UAUVs for resource efficiency management are currently satisfactory (Section 1.4.2). More
efforts would need to be shifted to other applications such as yield estimation;

e Likewise, in the case of geometric trait calculation, promising results have been demonstrated
by a growing body of literature and the utilized point clouds almost only derived from aerial
RGB imagery (Section 1.4.1). However, it was expected that LIDAR point clouds would be the
tendency (Dian et al., 2023). LiDAR point clouds would better deal with limitations held by
colored point clouds such as the effects of illumination. Moreover, to further improve the
performance of 3D representation, more systematic studies focusing on flying parameter
optimization were encouraged;

e The urgency of tree-level yield estimation (Tang et al., 2023) and the remarkable strength of
deep learning for this observation level (Section 1.4.3). This success has been gained from the
advance of state-of-art algorithms such as YOLOVS and transformers;

e In addition, the fields of disease detection (Choosumrong et al., 2023) (Section 1.4.3), spraying
system development and optimization (Qi et al., 2023) (Section 1.4.4) and UAV customization
(Alligier et al., 2023) (Section 1.4.4) will tend to grow. The harshness of fruit tree-related
disease needs a fast and precise diagnosis. Whilst, innovative UAV-based spraying systems

need to be established and optimized.
UAVs supply an efficient site-specific inventory for orchards. With respect to photogrammetry,

currently, its GPS accuracy meets the requirement of spatial mapping at site level. Yet the way how it

is stored in image metadata should be consistent crossing different models of UAVs, to facilitate tree-
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level monitoring (Chapter 5). For example, the GPS recorded in one image captured by one UAV type
can be regarded as the center pixel coordinate, which is different from another UAV type (Section
5.5.3.2). Moreover, good GPS accuracy still relies on added ground control points (GCP) and
checkpoints which affects UAVs efficiency in terms of operation and data processing. The majority of
existing UAV campaigns are semi-autonomous. From this aspect, customized design or development
of UAVs should be further improved where advanced obstacle avoidance is integrated (Badrloo et al.,
2022). Additionally, though UAV battery capacity enables normal surveys in small or middle-size
orchards, it potentially limits UAV performance in real-time data processing. Since integrated data

processing modules require additional power sources.

Aerial data acquisition, in comparison with ground-based stationary or mobile sensing platforms,
comprises more parameters that affect data quality or final monitoring accuracy. The parameters can be
flying altitudes (Chapter 4), camera angle and camera calibration. In other words, fine results obtained
from existing studies are feasible under certain data collection strategies. From this facet, systematic
fieldwork design involving various flying parameters should be conducted to understand their effects
and develop strategies for optimal results (Raman et al., 2023a). From the aspect of environmental
conditions, aerial data acquisition suffers from more complex illumination problems which are
heterogeneous when covering the whole orchard. On the contrary, ground-based platforms mainly
endure two situations: normal sunlight and shadow view. In addition, the situation of surveyed fruit
trees and fruit cultivars should also be considered. For instance, different flowering intensity levels
affect the UAV-based flower load estimation (Chapter 4). Therefore, to test the uncertainties arising

from these factors, multi-flights are compulsory.

Artificial neural networks reform UAV achievements in orchard management. Benefits from advances
in the computer vision community, object detection and classification become the most widely used
approach in accomplishing orchard monitoring, either in 2D or 3D space (Yu et al., 2022). And the
common data source is RGB images. One justification is that UAVs have an advantage in providing
sufficient large and diverse datasets in an efficient way (Fig.5.12). The performance of state-of-art
algorithms has been demonstrated in the orchard scenario such as YOLOvV8 (Ahmed et al., 2023),
attention mechanisms (Tang et al., 2023) and transformers (Li et al., 2023b). Even so, modifications to
normal-size networks are encouraged rather than focusing on testing the latest deep learning algorithms,
such as vision transformers. Since these algorithms usually need to be trained on extremely large
datasets where a high computational resource is required. Otherwise, deeper networks cannot be trained
properly. For point cloud data, colored or LiDAR-derived point clouds, this intelligent evolution was
also gradually observed in orchard management (Yu et al., 2022). The main challenge comes from data
annotation. Differing from the adoption of point clouds in building information modeling (BIM) (Yang

et al., 2023), fruit trees suffer more complex structures and endure occlusion problems in some cases
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(Chapter 3). Regarding data derived from multispectral or hyperspectral sensors, CNN has also been
tested within images (Tang et al., 2023). Yet, most methods are still based on conventional spectral

analysis.

Considerably more work will need to be done to establish generalized models. As discussed above,
multiple flights can usefully produce sufficient large and diverse datasets in supporting model
generalization. Yet, it is not recommended to start this with different fruit cultivars due to their high
heterogeneity (Chen et al., 2017). By taking the same fruit cultivar, it is believed that datasets with
different flying parameters and various weather conditions are sufficient for a well-established
generalized model (Fig.4.11). In addition, researchers should be encouraged to share and build up
publicly available datasets with a focus on the use of UAVs in orchard management (Zhang et al.,

2022¢).

6.1.2 How can apple flower load be spatially mapped from UAV-based colored point clouds?

Unstructured point cloud data in 3-dimensional (3D) space is believed to be the optimal alternative for
the inspection of crop load on fruit trees. Chapter 3 - addressing flower load estimation at tree level -
establishes a complete benchmark for the adoption of colored point clouds-derived methods where both
aerial and ground-based platforms were employed. The results obtained revealed that point cloud-
derived flower load estimation accuracy was higher than 0.65 (R?) (Table 3.9). Even so, the present
work could be a baseline for assisting ground-based robotics systems applied to automatic apple flower

thinning.

Object classifiers or detectors developed from point cloud data structures, in agricultural domains,
gradually advance towards intelligent understanding of small objects such as apples (Tsoulias et al.,
2023) and wheat heads (Zou et al., 2023). Its accuracy is the main component that dominates the
performance of the proposed flower load estimation method using point clouds (Table 3.7). Though the
unsupervised machine learning method, hierarchical clustering, was proven to be optimal for apple
flower cluster estimation, it was only validated with in-situ ground truth. Given the fact that on-tree
flower load suffers heavy occlusion and that point cloud data is irregular and unordered, to a certain
degree, obtained results are less well explainable. Since both ground reference data recorded in the field
and the manual annotation made within raw point clouds, in agriculture, are indispensable for the
validation and development of a robust model. In comparison with other small objects such as apples
and oranges, apple flower annotation in 3D space proved challenging. This also makes the geometric
features of point cloud data such as the curvature (Tsoulias et al., 2023) unsuitable for point-wise flower
detection. Increasing the density of point clouds can be a solution to enhance the recognizability of

flower-related points (Raman et al., 2023a). Once manual annotations are available, another clustering
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method, DBSCAN (Vanbrabant et al., 2020b), is suggested for tests with presented flower load datasets
aiming at further improving the obtained results. In addition, high-density point clouds benefit flower
load estimation as well. This was already verified by the flower cluster estimation results that ground-
based point clouds outperformed aerial point clouds (Table 3.8). Overall, to generalize the proposed
method (Chapter 3) with another apple or stone fruit orchard, the density of point clouds and the in-situ

flowering intensity level should be kept in mind.

Apple flower load predicted from color point clouds (Chapter 3) underperformed compared to single
RGB images-based methods (Chapter 4). This was proven by the correlation between data-derived
flower clusters and the ground reference data. After the successful implementation of flower load
estimation with 2-dimensional data (Chapter 4), an alternative solution can be tested for Chapter 3. It
is mainly based on a side-view projection of the color point cloud in the X-Y planes, as shown in Fig.
3.10. A dual view of each side of the tree rows should also be applied. It is expected that the detected
flower cluster from this 2D side view endure less occlusion issues than that of single RGB images.
Since this side view is comparable to ground-based sensing where the vertical (nadir) overlapping
magnitude is much lower than aerial side-view imaging (Fig. 4.10b). Its flower load estimation accuracy
also has potential to be higher than the aerial solution (Chapter 4) but lower than ground-based sensing
approach (Zhou et al., 2023). Because the side view is projected from point clouds which are already
digital representatives rather than the surveyed targets in the real world. To further enhance flower
detection capability, CNN-based methods can be adopted (Dias et al., 2018a). The quick-shift method
(Zou et al., 2023) is not suitable, in the case of apple flower detection, as the points of branches, leaves
and flowers are mixed along the Y-axis (Fig. 3.10). Yet, it potentially produces an efficient segmentation

of clusters in the vine row due to the special fruit-tree structure (Torres-Sanchez et al., 2021).

Point cloud data is predominant in calculating geometric characteristics for fruit trees (Teng et al., 2023;
Zhang et al., 2020a). Main adoption in assisting tree-level flower load monitoring is the segmentation
of individual trees: specifically, the completeness of tree segmentation. From this aspect, in 3D space,
individual tree segmentation in orchards is proven to be more complex than that in forests, particularly
in modern high-density orchards (Vinci et al., 2022). Small tree spacing such as 0.45m (pear trees)
(Raman et al., 2023a) and 0.95m (apple trees) (Tsoulias et al., 2023) produces more interlacing branches
between trees which retards tree segmentation accuracy and even makes the segmentation of individual
trees impossible. One solution is drawing support from unique environmental settings such as sticking
poles with distinguishable colors among trees within the same row (Chapter 3). In follow-up, methods
such as MSAC can be used to identify the plane that the poles locate in for individual tree segmentation.
Yet it is still tough to guarantee the segmented-tree completeness and additional manual efforts are
involved for identification of the poles. To automate this method, one alternative is to detect the center

position of the tree trunk first (Feng et al., 2022), instead of using the poles. Point clouds of each tree
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can be assimilated to a regular 3D geometry such as a cylinder (Vinci et al., 2023) taking the trunk

center as the 3D geometry center.

In operational scenarios, colored point clouds reconstrued from UAVs are suitable for peak blooming
stage determination rather than assisting flower thinning in orchards. Supporting flower thinning
requires high flower load estimation accuracy at tree-level while plot-level or row-level estimation
(Vanbrabant et al., 2020b) still lacks quantitative information for the decision of how many flowers
needs to be removed for a specific tree. Conversely, in orchards, identification of the peak blooming
stage or monitoring flowering dynamics does not hold strict necessity towards this quantitative
information (Zhou et al., 2023). Yet, in this case, the utilized point cloud density should be consistent
by employing constant flying parameters such as flying height and overlap settings. Otherwise, the
established flowering index for monitoring flowering dynamics might be weak. In addition, with the
development of flowers, effects of the changes in foliar density on flower detection accuracy should be
investigated to ensure flower index robustness. Though the aerial colored point clouds are affected by
illumination conditions, LiDAR-derived point clouds could be unfeasible for the classification of stone
fruits flowers due to the heavy occlusion of flower clusters. The attribute of reflection intensity in
LiDAR point data is capable for the detection of small objects like oranges (Méndez et al., 2019) but
shows limitations in small objects with complex structures like flowers (Malambo et al., 2019). As for
supporting automatic fruit-picking (Zhao et al., 2020) or flower-thinning robotics, ground-based point
clouds are better than aerial ones because of the camera view (Table 3.5). Even so, the data processing
efficiency limits its application in real-time scenarios. From this aspect, 2D image-based solutions are

expected to be a good solution (Bhattarai et al., 2023).

6.1.3 What is the feasibility of estimating the spatial distribution of flower load in apple

orchards with single raw UAV images?

The spatial mapping of flower load in orchards requires crop load estimation at the tree level. High
processing workflows can be avoided if the flower estimation is done directly on single UAV images.
The spatial distribution of flower load from single RGB images can be estimated at a tree level in two
steps: (1) the detection of flower or flower clusters in images and (2) the identification of which tree
the detected flower or flower clusters developed from (Vanbrabant et al., 2020a). The proposed
framework in Chapter 4 took the second task as the first step and further detected the flower clusters
(Fig.4.6). Obtained results indicated its promising temporal monitoring capability in tree-level apple
flowering intensity (Fig. 4.11) which outperformed the benchmark based on colored point clouds (Table

3.9) with respect to accuracy and efficiency.
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The main motivation was to guarantee that flower cluster estimation could be assessed at a tree level
and to further establish fine datasets for the examination of influential structural overlapping, especially
horizontal (angular) overlapping. During the first stage of the proposed framework, individual trees
were identified manually from the UAV images. To automate this module, advanced deep learning
algorithms for tree trunk detection can be alternatives, such as YOLOvVS (Ahmed et al., 2023). Since
the crop load, during flowering period, endure less occlusion problem than that in harvesting period,
the tree trunk will be visible in aerial images. Yet, it is expected that the trunk detection accuracy for
high-occlusion blooming trees would be low, such as the trees in the 2019 image dataset (Fig. 4.3).
Moreover, detectors that regard an entire tree as one object are not recommended (Zhao et al., 2023a).
Mainly because these detectors still concentrate on the trunk features and it is difficult to properly
identify which tree the branches belong to. Though instance segmentation exhibits advantages in the
detection of these details (Lucena et al., 2022), the existing body of research is limited to the
segmentation of fruits (Li and Chen, 2022) or other objects with simple structures (Mahmud et al., 2023;
Mo et al., 2021). Instance segmentation of trees with complex structures in agricultural environments

such as orchards is yet being researched (Gibril et al., 2022).

Moreover, the effects of structural overlapping on tree-level crop load estimation are of utmost
importance when single aerial RGB images are regarded as the only data source. Preliminary tests show
these challenges in determining the flower load estimation on each individual tree (Section 4.4.4).
Different flowering indices indicated dissimilar responses to structural overlapping while vertical (nadir)
overlapping was proven to have more influence than horizontal overlapping. Later experiments further
verified these findings and concluded a general pattern for structural overlapping exists in aerial images
(Table 5.5). It is essential to conduct flower load estimation following this pattern, to produce precise
estimation of flower clusters. Yet, the optimal image area (Fig.5. 16) for tree-level flower load
estimation needs further systematic analysis. Moreover, it is noticed that aerial images captured under
the nadir-view cameras provide a real nadir-view of trees only in the image center area. Yet, in
comparison with RGB orthomosaics, how well the flower load estimation derived from these center
areas is unclear. It is believed that its performance can be similar to or even better than that based on
orthomosaics (Tubau Comas et al., 2019). And its main benefit would be efficiency as no conventional

time-consuming photogrammetric processing such as SfM is involved.

Color thresholding is sufficient in supporting the extraction of flower features. However its scalability
is poor as great limitations to illumination conditions are shown (Vanbrabant et al., 2020a). Given the
fact that small objects of flowers suffer heavy occlusion during the peak blooming period, it is
impractical to apply advanced deep learning-based object detectors such as Swin Transformer-involved
detectors (Zhou et al., 2023). Still promising detection accuracy has been demonstrated in proximal

sensing such as handheld smartphones and ground vehicles. The first challenge is small object detection
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in aerial imaging where various object sizes, illumination conditions and occlusion levels subsist (Shen
et al., 2022). From this aspect, the detector of disentangle your dense object (DDOD) and Cascade R-
CNN can be alternatives (K.R et al., 2023). Yet, the detection of on-tree fruit flowers or flower clusters
in agricultural environments is believed to be more complicated than the detection of persons and
ground vehicles in aerial images. Another challenge is proceeding from image resolution. Higher flying
altitudes of UAVs reduce spatial resolution for detection of apple flowers. While inadequate resolution
limits data annotation accuracy and further diminishes the performance of deep learning algorithms.
However, in case of mapping a specific area, high flying altitude leads to efficient data collection. Lower
flying altitude (<10m) threatens drone safety and can require more manual control efforts (Zhang et al.,
2022d). In conclusion, a trade-off between flower detection accuracy and data collection efficiency
requires to be taken into account for certain applications. Studies focusing on the identification of
optimal flying altitude for flower detection in aerial images should be repeated utilizing a systematic

experimental design for a specific orchard.

With a fine resolution of aerial RGB images, state-of-the-art algorithms that involve attention
mechanisms are prospective to further improve obtained flower cluster estimation accuracy. Such
attention networks can be a Gaussian non-local mechanism (Jia et al., 2022) and a SE block (Liu et al.,
2021). There are a few ideas that have been proposed to identify the specific flowering periods ranging
from flower buds to end-open flowers (Koirala et al., 2020c; Zhou et al., 2023). Such efforts, yet, point
at peak blooming time determination and the monitoring over a complete blooming season which
benefits breeding program directly and also aids in understanding regional climate dynamics. In this
case, flowering intensity quantification is not necessary, characterizing dynamics of image-derived
flowering indicator can be sufficient. However, ground truth is highly required for validation. In terms
of flowering intensity monitoring, proposed flower floridity calculation can be a more efficient solution.
It is projected that its performance can be similar or even better than simply considering flower numbers
based on its correlation to manual floridity estimation (Fig. 4.13). Yet, how sensitive the proposed

floridity index responds to the seasonal blooming dynamics remains to be elucidated.

6.1.4 How can deep learning-derived spatial apple yield mapping be automated using single

raw UAV images?

Like tree-level flower load estimation as presented in Chapter 3 and 4, the spatial mapping of apple
fruit load also comprises a combined task of fruit detection and localization (Chapter 5). The
localization highlights the task to geolocate detected fruits in real-world coordinates. Though the whole
task can be directly accomplished with colored point clouds (Chapter 3) (Zine-El-Abidine et al., 2021)
and orthophoto derived from aerial RGB images, the accuracy and efficiency are still not satisfactory.

Inspired by the promising results demonstrated in Chapter 4, it was expected that single raw UAV RGB
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images were feasible for apple yield prediction at tree level. Yet, the manual efforts entailed in the

proposed framework (Section 4.3.1) need to be automated to further enhance its usefulness.

YOLOVS was proven to be more accurate and robust to detect on-tree apples (Fig. 5.12) than pixel-
based object detection methods such as color thresholding utilized in Section 4.3.1.3. Though the
segmentation accuracy of flower-related pixels was not provided in Chapter 4, previous studies that
used object-based methods, such as YOLOvV4 (Yuan et al., 2022) and YOLOVS (Chen et al., 2022d), for
apple flower detection can also prove this. Thus it can be concluded that deep learning algorithms are
indispensable to automate the object detection task in single RGB-based crop load estimation, either
for apple flowers or fruits. It potentially mitigates the effects of illumination conditions on fruit

detection accuracy at certain degree (Fig. 5.14).

Object detection in aerial images, in the case of fruit load estimation, mainly embraces issues from three
aspects: various fruit sizes, color and shape (Fig. 5.5). Size variation is attributable to the differences in
nutrient absorption by fruits and in the position where the fruits grow such as the canopy bottom and
top parts. While the color variation is caused by different apple maturity stages and the effects of the
illumination conditions. As the irregularity of apple shape, occlusion derived from leaves, branches and
other apples is the main reason. Even so, YOLOVS showed good performance to take these complexities
into account. The results indicated that the majority of false positive predictions came from the effects
of illumination conditions (Fig. 5.13) which is also the drawback of RGB cameras (Section 2.3.3).
Surprisingly, YOLOvVSs models trained with combinations of datasets from different years showed a
relatively comparable performance (Fig. 5.12). This revealed that aerial images are advantageous in
developing a generalized model. In other words, two UAV datasets can be adequate to cover sufficient
data variability (Fig. 5.14). From this aspect, one potential issue can be multi-scale problems produced
by datasets that include different flying altitudes. To ease this, adding an additional model like a

transformer encoder to the basic YOLOVS can be an alternative (Li et al., 2023b).

Aerial images enable each pixel in the 2D orthophoto and each point in the 3D space of point clouds to
be geolocated. Likewise, it has been tested that each pixel in single raw RGB images can also be
geolocated (Chapter 5). This directly automated the tree-level estimation issue presented in Chapter 4.
Compared to the currently available fine GPS accuracy in UAVs (Chapter 2), the precision of pitch,
yaw and roll values concerning both the gimbal and drone is the dominant factor towards tree
localization accuracy using the proposed method (Section 5.3.2). Another factor can be the flying
altitude which potentially affects the geographic calculation. To further quantify the effects discussed
above and improve tree localization accuracy, a systematic design of the field campaign will be
conducted. In addition, the proposed method provides a novel solution for the tree identification task as

introduced in Chapter 2 and outstanding results were demonstrated (Fig.5.16). Since no computer vision
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technique was included in the proposed tree localization method, it is not limited by weather conditions
and is believed to be an efficient solution for real-time monitoring tasks in modern high-density

orchards.

The occlusion magnitudes of apple flower and fruit load were different. This explains the low
correlation between image-derived apple amount and corresponding ground reference data (Fig.5.18).
In three consecutive years, starting from 2018, apple datasets suffer much more occlusion than flowers
in the raw images. This visibility issue can be explored by applying different leaf-thinning strategies. It
is hard to compare the occlusion issues. One solution is developing an occlusion index to quantify its
effects. It can be the percentage of apple- or flower-related pixels to the whole tree pixels. And the
flying parameters should be fixed, such as flying altitudes and camera angles. Another factor that affects
the yield estimation accuracy can be the apples on the ground. Yet, in operational scenarios, they can
be removed by regular management. But it can also help to understand the correlation between flower
load and fruit load in the same growing season. It is interesting to conduct this investigation for yield
prediction at the early stage, the flowering period. Yet the main factor that challenges the establishment
of this model is the uncertainties proceeding from the June drop where apple fruitlets dropped naturally

(Section 4.2.1).

The necessity of tree-level apple load estimation, in comparison with flower load estimation (Chapter
3), is less. Flower load estimation at the tree level produces a precise number of flower clusters per tree.
With this information, excess flowers can be directly removed by operators, either an experienced
person (Chapter 4) or an intelligent robotic platform (Bhattarai et al., 2023). By contrast, during harvest
period, the key information is how many apples and how much yield (kg) are harvestable for the market.
Thus the apple load estimated at row or plot level is sufficient. Likewise, in operational scenario, the
crucial factor for guiding robotics to accomplish fruit-picking tasks is to localize and further classify
the maturity of apples. Details concerning which tree the localized apples grow on are of less importance.
Therefore, profits from tree-level apple load estimation can be determined as optimizing the placement
of harvest containers (Osman et al., 2021) and monitoring the production capacity of individual trees

which benefits the crop breeding program.
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6.2 Limitations

On the basis of surveyed results on the opportunities of UAVs in orchard management (Chapter 2), tree-
level crop load estimation was determined as the main research objective of the present thesis. A
benchmark of UAV-based flower load estimation, in the case of apple orchards, was established first
using colored point clouds (Chapter 3). And its performance was compared with ground-based colored
point clouds to further understand its advantages and limitations. To improve the flower load estimation
accuracy and efficiency, the feasibility of using single raw UAV RGB images was investigated (Chapter
4). Finally, an automatic geo-localization method of aerial image pixel was developed to enhance the
framework built up in Chapter 4 and was tested for tree-level apple yield estimation (Chapter 5). Overall,
though fine results have been already demonstrated, there are still limitations that can be refined in the

near future.

There are two improvements which can be identified for the review work introduced in Chapter 2. First,
the methodology comparison within the same application like the calculation of geometric features
should be more specific. For example, relevant literature should be further categorized into various fruit
species. Since different fruit trees hold diverse structures and suffer dissimilar leaf or fruit occlusion
which leads to different responses to the sensors equipped on UAVs (Gene-Mola et al., 2021).
Consequently, results derived from the same method or vegetation index are not comparable. On the
other hand, the flying parameters should also be considered. Evidence indicates that parameters like
flying altitudes affect UAV-based monitoring precision (Chapter 4). Lastly, a survey of relevant work
published between 2020 and 2022 should be carried out. This can be a good reference to validate the
predictions of future tendencies made in Chapter 2. It also provides new insights into the use of UAVs

in orchard management.

The main limitation in Chapter 3 is the difference between ground- and UAV-based point cloud density.
Given the fact that the point cloud density of UAVs used in the study was lower than ground-based
(Table 3.5), the demonstrated comparison is not completely fair. Thus, adding more UAV flights or
increasing the overlapping ratio to make the aerial point cloud density more comparable to ground-
based is recommended. In the same case study, flower load estimation, as demonstrated in Chapter 4,
one problem is also derived from data collection. Applied datasets comprise the variance in flying
altitudes and weather conditions (Table 4.1) which potentially affects the analysis of obtained results.
Though it provided a chance to investigate the effects of flying parameters, a more systematic design
of'the field campaigns is encouraged. In addition, no evaluation of the flower-related pixel segmentation
was conducted in Chapter 4. This retards the identification of flower estimation errors. Color

thresholding method is a pixel-level segmentation method. The building up of reference data in images
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is labor-intensive. But this evaluation is still highly required. It can also help to further recognize the

effects of structural overlapping on tree-level flower load estimation.

Annotation work in the apple detection part of Chapter 5 is challenging because of the difficulties
caused by heavy leaf and fruit occlusions and illumination conditions (Fig.5.5). Current annotation was
conducted by two operators and no overlapping was covered for the labeled images. It would be
required to quantify the labeling variance between the annotation operators as the trained YOLOv5s
performance can also be influenced. From this aspect, a fair comparison between manual labeling is
recommended. Present apple detection work in Chapter 5 produced a baseline of YOLOvS5s. Future
work should focus on the modification of YOLOVSs basic model to enhance the detection of apples. A
potential solution can be adding attention mechanisms into YOLOvSs. Regarding the apple assignment
part, the main limitation is determined by the visibility of exact tree positions in the UAV images.
Because of the heavy occlusion of leaves, it is hard to identify the precise tree positions by inspecting
the tree root (Fig.5.11). Thus uncertainties exist during the evaluation of proposed tree localization
method. To solve this, datasets that suffer less leaf occlusion issues are needed. The key is the visibility
of tree roots in the images. Moreover, to explore the effects of flying altitudes on tree localization

accuracy, multiple datasets collected under different flying altitudes are suggested.

187



Synthesis

6.3 Parallel with current research and outlook

Crop load estimation is one of the most important applications in UAV-driven orchard management
(Chapter 2). The main findings derived from two case studies of crop load estimation in an apple orchard,
flower load and apple fruit load estimation at tree level, are described in Section 6.1. Considerations
initiated in the comparison among ground- and UAV-based colored point clouds for flower load
estimation are further extended to multi-source sensing approaches (Section 6.3.1). It aims at filling
gaps between the current practice of orchard management and future developments. Great potential of
single raw UAV RGB images in tree-level crop load estimation has been fully demonstrated in Chapter
4 and 5. The remainder of this section places this finding in a wider context of orchard management. Its
potential in supporting horticultural crop productivity and resource efficiency management, geometric

trait calculation, disease detection and other applications is forecasted.

6.3.1 Multi-platform and multi-modal sensing for orchard management

Fruit trees in orchards struggle to receive individualized monitoring from one single sensing platform.
The complexities arise from two main aspects. The first facet comes from the intensively cultivated
module which makes it hard to precisely analyze the sensed information at tree level. The second aspect
is the complex tree structure. In comparison with other horticultural crops like strawberries (Chen et al.,
2019b) and cauliflower (Gunder et al., 2022), fruit trees hold vast structural characteristics in 3D space
such as tree volume and height (Ganz et al., 2019). Jointly, the interlacing and touching branches of
fruit trees retards the precision of individualized monitoring derived from one sensing platform (Zine-
El-Abidine et al., 2021). On the other hand, it reveals the tendency and importance of a multi-platform

sensing approach (Chapter 3).

The main advantages of multi-platform sensing are mutual cooperation and validation. Towards mutual
cooperation, it refers to the combination of data derived from different platforms. It helps to get more
insights into a specific orchard area by maximizing the amount of information gathered on fruit trees.
Chapter 3, for instance, revealed the value of exploiting complementary properties of different types of
point clouds. Aerial point clouds, in general, held sparser points than ground-derived point clouds, for
the lower part of a tree canopy. This difference distinguishes the reliability of corresponding predictions
such as apple flower load estimation (Zhang et al., 2022b). The key difference between aerial and
ground-based platforms is the camera view. This makes them irreplaceable from each other. UAVs
provide a unique solution for the inspection of the upper canopy area with various camera angles
unreachable by a ground platform. While ground-based platforms hold a fair front-view of trees with
higher spatial resolution. Thus, the combination of these two types of platforms is expected to be the

only solution for a complete inspection of individual fruit trees. On the other hand, for regular orchard
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management activities, ground-based platforms like tractors already regularly move through the orchard.
Spatio-temporal optimization methods could assist in the efficient acquisition, in terms of timing,
frequency, sensor type, of complementary data from sensors onboard UAV platforms. With the
increasing spatial resolution of images from satellite-based platforms (e.g., PlanetScope), space-based
observations are becoming a viable complementary source (Sandonis-Pozo et al., 2022). These are
comprised of mainly optical multi-spectral images which would allow the characterization of the

temporal development of the tree orchard canopies.

The distance to the target object differs among various sensing platforms which cause data to suffer
different resolutions and precision, and further affect corresponding monitoring accuracy. Thus, in the
same application scenario, results derived from these three types of platforms should be used to validate
each other. On the other hand, comparison among conclusions resulting from different platforms
benefits determination of the optimal approach. For example, in the case study of frost management in
orchards, it is interesting to compare NDVI images derived from Sentinel-2 and Landsat-
TM/ETM+/OLI (Zhu et al., 2021) with that produced by UAVs (Yuan and Choi, 2021) to further

understand its effects on the predicted results.

Moreover, UAVs, in contrast with other platforms, are expected to be the key element in developing
digital twin of the orchards (Nasirahmadi and Hensel, 2022). Orchard digital twin refers to a digital
equivalent of the orchard in the real world of which it dynamically mirrors the states of individual trees
over their lifetime (Verdouw et al., 2021). With this rich model, fruit yield and disease outbreaks can be
predicted at an earlier stage. Multi-platform sensing meets its requirement for large volumes of spatial-
temporal data (Chapter 2). Satellite data, in general, suffers limited spatial and spectral resolutions, and
its temporal data is restricted by unfavorable re-visit time (Berni et al., 2009b). It fails to provide hourly
or even daily data for the establishment of orchard digital twins. Concerning ground-based sensing
platforms like ground vehicles, higher labor and time input per acre for data collection, compare with
UAUVs, is still the main bottleneck. Another fact is that ground vehicle-based sensing approach is not
fully non-destructive. Its effects on soil compactness can also influence the growth of fruit trees. In
summary, UAVs are believed to be the dominant tool in both multi-platform derived orchard

management and the development of the orchard digital twin.

In addition, multi-modal sensing approaches are considered to be another trend in optimizing orchard
management. There is a growing body of literature that compares predictions derived from different
optical sensors (Chen et al., 2022a). For example, the comparison between UAV images-derived NDVI
and LiDAR-based cross-sectional area for management zone identification (Martinez-Casasnovas et al.,
2022), and that between LiDAR SLAM and UAV-SfM for peach branch detection (Teng et al., 2023).

Similar to the usefulness of multi-platform approach, this comparison not only helps to determine the
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optimal method but is fundamental for data fusion. Multi-source inputs proceeding from UAVs also
benefit the modeling of complex cases, such as the prediction of fruit number reduction ratio caused by
frost (Zhu et al., 2021). Moreover, the increasing investigations of point clouds derived from UAV-
LiDAR (Dian et al., 2023; Raman et al., 2023b) indicate that the quality of colored point clouds
comprising multispectral features can be improved. The combination of LiDAR-derived high-density
point clouds and multispectral or thermal or hyperspectral point clouds is expected to provide new
solutions for orchard management (Jurado et al., 2022). This inspection potentially produces the fruit-
tree disease detection at intra-tree level. Fruit-tree disease holds the characteristics of heterogeneity
crossing an entire tree (Ali et al., 2023). High-quality LiDAR point clouds, combined with spectral
features, can enable disease detection in 3D space. It advances the follow-up disease control directly by

providing precise 3D locations for operational robotics.

6.3.2 The potential of single raw UAV images in horticulture

Methods developed around single raw UAV RGB images were and will still be dominant solutions in
the management of horticulture where crops are intensively cultivated and grown with intensive and
individualized care. Conventional approaches, based on ground-based platforms, primarily use raw
RGB images to accomplish inspection tasks directly due to the high spatial resolution derived from
proximal sensing (Zhao et al., 2023b). Efficient collection of aerial geotagged images with a unique
camera view like a nadir view enables orthomosaics (Apolo-Apolo et al., 2020b) and colored point
clouds (Yuan et al., 2023) derived from aerial RGB images fast become popular data sources. Yet,
evidence proved that the use of single raw UAV RGB images will reform this pattern and draw more

attention to supporting horticulture management (Chapter 4 and 5).

The feasibility of geolocating each image pixel empowers high-resolution aerial images to predict apple
yield at tree level skipping conventional photogrammetry methods such as SfM (Chapter 5). The
proposed automatic crop load estimation framework is capable to be extended to other horticultural
applications. In the case of monitoring crop load on trees, the summarized spatial pattern of structural
overlapping should be paid attention to (Fig.6.1). It varies in the camera view such as a front view (Fig.
6.1a) and a side view (Fig. 6.1b). But, in general, the structural overlapping shows a gradual change in
vertical and horizontal directions crossing the whole image. The variance produces different visibility
of the whole tree structure. Thus, with consistent vertical or horizontal overlapping magnitude, a crop
load estimation can be established (Chapter 4). The quantification of structural overlapping, from one
perspective, benefits from the well-designed landscapes in orchards where fixed row and tree spacing
are employed. Coupled with tree coordinates in the images, the estimation model can be automated and
made robust. For a random image view in the footprint, besides the front and side view, crop load can

be predicted as well. But the errors produced by structural overlapping are hard to quantify. In addition,
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the proposed framework can be applied to other horticultural crops directly and fewer structural
overlapping problems are involved. Since crops like cauliflower hold less complex structural features
like height. For example, as for strawberry yield estimation, the proposed framework can replace
orthomosaic-based methods (Chen et al., 2019b; de Oliveira et al., 2023) for data processing efficiency

improvement and the detected strawberries are geolocated automatically in the real world.
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Vertical overlapping

Fig. 6.1. Summary of the structural overlapping (vertical and horizontal overlapping) exists in the raw
orchard images captured by a single UAV RGB camera. (a) a front view of the trees; (b) a side view of
the trees. The present image samples were captured under a nadir camera view. Red arrows indicate the
direction in which vertical (nadir) overlapping occurs, and corresponding samples with a zoomed view
are highlighted with red borders. While blue arrows show the direction of horizontal (angular)

overlapping, and corresponding samples are highlighted with blue borders.

Single raw RGB images can be used to directly calculate the geometric features of individual fruit trees.

Current advancements in the calculation of tree geometric features like canopy area rely on RGB image-
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derived orthophotos and colored point clouds (Chapter 2). While the proposed pixel-geolocate method
(PGM) (Chapter 5) enables this calculation to be conducted with simple data sources, the raw RGB
images. Fruit trees in aerial images generally hold two situations, a nadir view of the canopy (like the
center area of Fig. 6.1a and b) and a side view of the whole tree. These two cases potentially lead to
different geometric feature calculations. In the first case, canopy projection area (CPA), canopy
diameter or width and height can be measured with a segmented canopy area (Mu et al., 2018).
Conducting a precise measurement, instance segmentation is recommended (Zheng et al., 2022). To
register the measured values into the real world, center pixel coordinate of the segmented canopy area
can be regarded as the tree positions for spatial mapping using PGM. Since only the center area of aerial
images holds the nadir view of trees (tree crown area), higher front overlapping or multiple flights are
needed for the mapping of the whole orchards. Even so, the data processing efficiency is expected to
be higher than conventional methods since only raw images are processed. As for the second case, trees
display a side view, tree height, canopy volume and canopy width or height can be measured using
PGM (Ganz et al., 2019). And instance segmentation methods of the trees are also suggested. However,
in this case, the structural overlapping issue must be considered. As different overlapping levels affect
the correlation between the pixel-wise and in-situ measurements of the geometrical features (Chapter
4). Regarding the tree registration, center pixel coordinate of the tree canopy or the coordinate of a pixel
of the detected tree root can be used which depends on specific applications. Overall, for both cases,
flying parameters like flying heights and camera angles should be taken as important variables for

developing a geometric feature prediction model.

The PGM proposed in Chapter 5 can promote water stress estimation and disease detection at the intra-
canopy level. Current practice in these two applications highly leans on orthomosaics produced by
multispectral images (Selvaraj et al., 2020). The main restrictions are that the extracted spectral features
come from a limited area of the trees such as the canopy or crown area (Zhao et al., 2017). Though
previous studies already demonstrated the reliability of using vegetation indices such as the
photochemical reflectance index (PRI) and NDVI (Ballester et al., 2018) as water stress indicators, it is
still at tree level which indicates the status of an entire tree. In this context, PGM potentially provides
the variance of water stress crossing the whole tree canopy for high-level inspection. Since spectral
features of pixels can be registered in the real world, and more spectral features of fruit trees can be
extracted from the side-view of the trees. Yet, to validate the PGM-based methods, high requirements
for the collection of ground reference data are needed. Likewise, intra-canopy level inspection is also
needed for disease detection. Fruit diseases like banana stem borer damage and Fusarium wilt in
bananas produce symptoms on the leaves. It is not wise to diagnose the disease from only the canopy
area which missing more spectral features from the side of the trees (Choosumrong et al., 2023). From
this aspect, it is considered that PGM-derived intra-canopy disease detection would yield results with

higher accuracy.
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In addition, the key advantage of PGM-derived methods is believed to be their high-efficiency data
processing which is required for real-time UAV-based orchard monitoring. The main body of existing
methods only uses orthophoto or colored point clouds to geolocate the detection results (Chapter 2).
This produces great demands for data transmission and computational sources. Yet, PGM only
processes data in 2D space (raw RGB or multispectral images) shows great potential for UAV-derived
real-time applications. It is excepted to reform the application of UAV-sprayers (Piljek et al., 2022).
With PGM-based tree detection and localizations, sprayer can make precise spraying for individual
trees which saves pesticides and reduces environmental impacts at the same time. The precision can
research intra-canopy or leaf level. Yet, a high standard for droplet distribution will be needed (Meng

etal., 2022).

[llumination conditions still limit small object detection tasks in single raw aerial RGB images (Chapter
5). Advanced deep learning algorithms, in the computer vision community, showed fine performance
in dealing with detection problems derived from multiscale aerial objects (Li et al., 2023a; Li et al.,
2023b). Yet, it is urgent to develop a filter to mitigate illumination effects, especially for the adoption
of PGM. One indirect solution can be multiple re-visits by UAVs. With one flight, PGM can produce a
spatial map of the orchards where detailed information on individual trees is recorded. Another flight
for the same orchard produces a map that exhibits different illumination conditions from the previous
flight. Comparing these two temporal maps, the dynamics of spatial distribution of the illumination
effects can be monitored and evaluated. Since PGM enables the mapping at leaf level, the illumination
effects can be averaged for a better prediction. For example, in the case of apple yield prediction, one
spatial map makes false positive predictions of leaves because of the effects of illumination. These
predictions will be geolocated by PGM. While another spatial map, assuming it is produced at a
different time, of apple yield might make false negatives for the false positive predictions produced by
the previous map. The final predictions can be optimized by comparing these different predictions,
based on coordinates predicted by PGM. Because of the data-processing efficiency of PGM, it is
believed to be a good solution for reducing illumination effects. Yet, the influence of wind should also

be considered. Accordingly, it is suggested to conduct these flights under less windy conditions.

The Al-driven precise monitoring of orchards and the development of orchard digital twins require large
volumes of data. Its importance has been proven by the promotion derived from public datasets like
MS-COCO, MNIST and ImageNet to the advanced deep learning algorithms. Consequently, algorithms
applied to orchard management benefit from this advancement using transfer learning (Chapter 5).
Though fruits like apples have already been covered by these datasets, the present features are far
different from the practical in-field object features. Therefore, the complicated orchard environments

make it necessary to build up publicly available orchard datasets of UAVs (Zhang et al., 2022c). The
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challenges come from two aspects: the complexity of orchard environments and the variability of UAV
flying parameters. To mitigate the first challenge, the datasets should be organized into proper crop
categories. For example, it can be stone fruits and vineyards (Ariza-Sentis et al., 2023). Bounding box
annotation of fruits or fruit trees is fundamental. If possible, pixel-level instance annotation should also
be involved which is extremely important for modern high-density orchards. Both annotations should
be conducted by the data uploader since they are more familiar with the present orchard environment.
The second challenge is easier to solve. Clear documentation of the flying parameters should be
included. These parameters, for instance, should comprise flying altitudes and camera angles. Overall,
various weather conditions are also recommended. With the availability of the public UAV orchard
datasets, the proposed PGM is believed to deeply reform the whole orchard management ranging from
the geometric calculation, and crop productivity management, to disease detection and resource

efficiency monitoring (Chapter 2).
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Summary

Summary

Orchards oblige site-specific management throughout the entire growing season of fruit crops, from
flowering, fruitlet development, ripening and harvest, to tree dormancy period. This precision
management is essential for agricultural production enhancement and environmental impact mitigation.
Advances in sensor miniaturization are increasing the global popularity of unmanned aerial vehicles
(UAVs) in various agricultural applications. Existing research recognizes the critical role played by
UAVs in orchard management, i.e., water stress monitoring and geometric traits measurement. Yet,
these studies are limited with regard to crop load estimation. Crop load in orchards generally comprises
flowers and mature fruits of fruit trees. Estimation of flowering intensity for individual trees directs
growers to regulate crop load precisely during flower thinning. It aids chemical usage optimization and
manual labor reduction. While yield estimation in orchards directly benefits market strategy making
and logistics optimization, such as labor force, harvest containers and gathering path. Limited studies
applied conventional UAV photogrammetry techniques that are based on structure from motion (SfM)
in crop load estimation. They are generally resource consuming and the performance is unsatisfactory.
Crop load estimation directly derived from 2-dimensional images overall is efficient and accurate.
Recent advancement has proven the superiority of computer vision in flower or fruit detection at image
level. Such approaches, however, only recognize how many flowers or fruits are visible in images. The
link between the fine detections from images and the exact number of flowers or fruits in trees is not
built up. Faced with problems identified above, the main research objectives of present thesis are: (1)
examining the feasibility of crop load estimation in orchards with single raw UAV RGB images (2)
identifying the distinctions of crop load estimation based on single UAV RGB images to the estimation

emanates from SfM-derived methods.

First, current status of UAV-derived practice in orchard management was reviewed, to examine the
potential technologies of UAVs. Chapter 2 provides a comprehensive literature review focused on
achievements to date and shortcomings to be addressed. Sensing system architecture focusing on UAVs
and sensors was summarized. Then up-to-date applications supported by UAVs were described,
focusing on the diversity of data-processing techniques, monitoring efficiency and accuracy. Results
showed that UAV derived orchard management (UAV-OM) is yet in its infancy. One limitation is the
flying time due to current accomplishment in battery capacity. Multi-sensor data fusion could be
promising in practice. However, it was not yet investigated. Statistical study to determine the optimal
data acquisition parameters and understand their effects for specific research is encouraged.
Applications for resource efficiency and geometric traits are relatively mature. High correlations
between various UAV-derived indices and target physiological traits measured manually were observed.

Yet model generalization, data processing efficiency and automation are still challenging. The
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combination of artificial intelligence and remote sensing sciences is expected to close these research
gaps. Crop load estimation, especially the estimation at tree level, will become an increasingly

important area.

As a benchmark, the performance of conventional UAV photogrammetry method based on colored point
clouds in crop load estimation was evaluated (Chapter 3). Apple flowering intensity estimation was
taken as a case study. The potential of UAV-derived point clouds was first examined. Its performance
was compared with ground vehicle-derived point clouds. To improve flowering intensity estimation
accuracy, a framework combining UAV and ground-based RGB image data was proposed. It is based
on SfM, and presents automatic point cloud handling techniques as well as automated unsupervised
flowering intensity estimation methods. Two linear regression models based on unsupervised machine
learning methods were trained and validated from the framework. Predicting flowering intensity in the
orchard with both models having R* > 0.65, RRMSE < 20% and p-stat < 0.005 for the correlation
between the image-derived flower index and the flower cluster number counted in field. It provides a
novel strategy for guiding flower thinning using UAV imagery and location data. Moreover, the

proposed methods also reveal the flexibility of intra-tree inspection by checking its sub-volumes.

Chapter 4 examines the feasibility of crop load estimation with single raw aerial images. It also focused
on flowering intensity estimation aiming at a complete comparison with the benchmark solution that is
based on colored point clouds. In three consecutive years, starting from 2018 to 2020, high-resolution
UAV images of apple flowering trees and in-field ground truth (GT) data were collected. Flower-
associated pixels were first extracted for individual trees using a pixel-based classification method, the
color thresholding. Next, three flowering indices retrieved from UAV were evaluated, the index
percentage (IPG), index pixel (IP), and index area (IA). Finally, linear correlation of the flowering
indices to flower cluster number and expert-assessed floridity recorded in the field were calculated.
Results indicated that IPG yielded the highest correlation to flower cluster (R* = 0.93, RMSE = 8) and
floridity estimation (R* = 0.78, RMSE = 0.9). A UAV-based floridity scoring method was also designed
for automatic estimation tasks in practice, and a comparable and even better performance to the expert-
based approach was demonstrated. Furthermore, effects of vertical (nadir) and horizontal (angular)
overlapping of flower clusters within the canopy were evaluated, showing excellent capacity to improve
the estimation accuracy. Obtained results reveal the potential of single raw UAV RGB images in crop
load estimation. Skipping conventional labor-intensive photogrammetric method, i.e., StM, proposed

framework outperforms the benchmark solution in terms of both accuracy and efficiency.
Chapter 5 further evaluates the performance of single raw UAV RGB images in crop load estimation

for the other scenario, yield estimation at tree level. In three consecutive years (starting from 2018),

UAV images and in-field GT data were collected during the harvest period of apples. First, a lightweight
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YOLOVSs model was trained and validated to detect and count apples in original aerial images.
Detected apples were delineated with bounding boxes and center-pixel positions of the bounding boxes
in the image were treated as apple positions. Next, an automatic resourceless photogrammetric approach
was designed for linking the detected apples with the trees they belong to: (1) GPS positions of all the
trees in the orchard were first predicted basing on pre-measured positions of trees locate at the four
corners of the orchard. (2) GPS positions of image-projected area corners were calculated by a great-
circle-based method where metadata of the image was fed as inputs. With these first two steps, apple
trees within the projected area were identified. (3) all the pixels in the image were registered in the real-
world coordinate using a coordinate convert method proposed in this study. Based on output of Step 3
and positions of the trees that are covered by the image (in the projected area), image pixels that can
represent these covered trees are recognized. (4) Finally, detected apples were assigned to individual
trees employing the predicted tree positions in photo coordinates. Apple detection results showed that
YOLOVSs is capable of small object detection in aerial images. Complex illumination conditions, high
occlusion levels, and small and dense recognition apples prevail in UAV images. It revealed that these
challenging image features enable YOLOVS5s trained with aerial images more generalized when cross-
test was conducted over different datasets. In addition, proposed apple tree localization method yielded
a high accuracy in apple tree counting. The localization performance exhibits spatial variations across
the whole image. It demonstrated the great potential of single raw UAV images in automatic tree-level

apple yield estimation.

Chapter 6 provides a synthesis of the present thesis which reveals that: (1) UAV-derived orchard
management is still in its infancy with certain application scenarios that need to be explored, a robust
generalized model is drawing more attention; (2) It is feasible to estimate apple flowering intensity at
tree level with single UAV RGB images while the effects of vertical (nadir) and horizontal (angular)
overlapping need to be held in mind; (3) It is practicable to geo-locate computer vision-derived object

detections with single UAV RGB images and to further achieve apple yield estimation at tree level.
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