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welfare improvements. 
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Chapter 1  

General introduction 

 

 

 

 

 

 

 

 

 

Animal farmers are faced with a myriad of challenges while operating their farms. 

One of these challenges is the optimisation of animal health within their animal 

husbandry system. This is because poor animal health affects production in a variety 

of ways. Some examples include reduced milk production in dairy cattle (Bonestroo 

et al., 2022; Dolecheck & Bewley, 2018), sheep (Alba et al., 2019) and goats (Rinaldi 

et al., 2007), lowered carcass weights in cattle (Gifford et al., 2012), chickens 

(Landman & van Eck, 2015), and pigs (Cornelison et al., 2018) and decreased egg 

production in layer chickens (Landman & van Eck, 2015). Reductions in production 

outputs will consequentially manifest into economic costs because the value of the 

associated production outputs cannot be realised. These costs have been widely 

documented (e.g., Dolecheck & Bewley, 2018; Halasa et al., 2007; Nathues et al., 

2017; Skinner et al., 2010). For a farm afflicted with poor animal health to obtain 

the same level of production as a healthy farm additional resources could be required 

(Hogeveen & van der Voort, 2017). Therefore, depending on the dynamics of the 

health disorder at play, poor animal health reduces the efficient allocation of 

resources and ultimately has a negative effect on farm profitability. 
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Aside from the economic implications of poor animal health, animal welfare 

implications also exist. The most obvious implication is the presence of health 

disorders, which are commonly used as indicators of reduced animal welfare in 

assessments (Mellor, 2017; Welfare Quality®, 2009a, 2009b). Furthermore, the effect 

of animal health disorders on animal welfare manifests through a variety of factors. 

Some of these factors include an increased risk of death, either due to health disorder 

induced mortality (e.g., Chanchaidechachai et al., 2022) or health disorder reasoned 

culling (Lacasta et al., 2019; Rilanto et al., 2020; te Beest et al., 2011). Additionally, 

animal health disorders can limit the animals’ ability to interact with their 

environments (Galindo & Broom, 2002), restrict their mobility (Meluzzi & Sirri, 2009; 

Whay & Shearer, 2017), and inflict pain (Dolan et al., 2000; Gentle, 2011; Passos et 

al., 2017). However, while it is common knowledge – at least in animal health research 

– that health disorders have a negative impact on animal welfare, studies quantifying 

these impacts are scarce.  

These economic and animal welfare implications highlight the importance of 

addressing and mitigating animal health disorders to ensure the negative economic 

effects on farm profitability are limited and the overall well-being of animals are 

enhanced. For animal welfare this is paramount given the societal concern for the 

well-being of animals (e.g., EU Monitor, 2022; Eurobarometer, 2016) and the strict 

animal welfare legislations (Simonin & Gavinelli, 2019). To effectively address and 

mitigate animal health disorders and their negative implications, proactive animal 

health management becomes essential. 

1.1 Animal health management 

From an economic viewpoint, animal health is optimally managed when a 

combination of costs associated with the health disorder are minimised. These costs 

are often defined in unit terms that refer to market prices. To study this optimal 

combination of costs McInerney et al. (1992) proposed the expenditure-loss frontier, 

which has been the theoretical foundation of studies on the economics of animal 

health management (e.g., Hogeveen et al., 2011; Yalcin et al., 1999). More recently 

the expenditure-loss frontier was adapted by van Soest et al. (2016) and Hogeveen 

and van der Voort (2017) whereby ex ante health disorder costs constitute 

preventative expenditures and ex post health disorder costs constitute production 

losses, treatment expenditures and additional resources such as additional labour. 

According to van Soest et al. (2016) and Hogeveen and van der Voort (2017) ex post 

health disorder costs are collectively termed failure costs. A theoretical illustration 

of the expenditure-loss frontier depicts a trade-off between preventive and failure 

costs as a downward sloping convex curve. When preventive costs are higher, failure 
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costs are lower, and vice versa. If no preventive measures are implemented, the failure 

costs reach their maximum. Conversely, with maximum prevention, the failure costs 

due to production diseases are minimised. The non-linear relationship between 

preventive and failure costs entails that an optimal level of animal health 

management exists. On the expenditure-loss frontier this optimal level occurs at the 

point where an increase in prevention costs is equivalent to the reduction in failure 

costs. Locating the global economically optimal point of management in practice is 

challenging because endless management scenarios exist. However, by referring to the 

theory laid out by McInerney et al. (1992) and promoted by Hogeveen and van der 

Voort (2017), the local economically optimal management scenario available can be 

determined by focussing on the minimum combination of preventive and failure costs 

of the observable animal health management strategies. Furthermore, the additional 

economic value of one management scenario compared to another can also be 

determined by examining the difference in the combination of preventive and failure 

costs between the management scenarios. 

From an animal welfare viewpoint, animal health management is challenging. This 

is because defining an animal welfare unit representing the effect of a health disorder 

is a subjective process for different animals since it is their own individual well-being 

at stake. Moreover, the communication barrier between animals and humans adds to 

the challenge in determining the animal welfare outcome of animal health 

management. Therefore, an animal welfare unit representing the effect of a health 

disorder is required to facilitate animal health management in the context of animal 

welfare. Assuming such a unit exists, it can be said that animal health is optimally 

managed when the physical and mental well-being of the animals are prioritised 

(Fraser, 2013) by minimising the sum of the units in an attempt to reduce the 

occurrence and duration of health disorders. This can be achieved through animal 

health management factors such as: provision of appropriate nutrition and housing, 

preventive measures, regular monitoring and assessment of animal health status, 

prompt and accurate diagnosis of poor health followed by appropriate treatments of 

health disorders, implementation of effective biosecurity protocols, and promotion of 

a stress-free and enriched environment that meets their species-specific needs (e.g., 

Animal Welfare Council, 2009; Mellor, 2017). By studying how these factors minimise 

the animal welfare units representing the effect of health disorders on animal welfare, 

optimal animal health management can be determined. Furthermore, the additional 

animal welfare value of one management scenario compared to another can also be 

determined by examining the difference in aggregated animal welfare units 

representing the effect of health disorders on animal welfare. 

By framing the factors that promote optimal animal welfare mentioned above into 

an economic animal health management context clearly demonstrates that animal 

welfare can be influenced by economic factors (Balzani & Hanlon, 2020). Despite the 



4 

importance that health disorders have on animal welfare, the management of animal 

health is still mostly studied from an economic perspective. This is partially due to 

the relative ease in quantifying the economic management of health disorders in terms 

of units that refer to market prices opposed to quantifying the animal welfare 

management of health disorders in terms of non-monetary units (McInerney, 2004). 

As a result, this makes it incredibly challenging to support optimal decisions in 

animal health management that aim to avoid the negative effect of poor animal 

health on both farm economics and animal welfare. By adopting a more holistic 

approach that considers both economic and animal welfare perspectives, the complex 

interplay between farm-economics and animal welfare with respect to animal health 

can be better addressed. 

1.2 Digitally supported animal health 

management 

Digital agriculture is a concept that refers to the application and integration of 

advanced information and communication technologies, and digital systems with 

tools such as sensors to enhance the productivity, efficiency, and sustainability of 

various agricultural aspects (De Clercq et al., 2018; Morrone et al., 2022; Neethirajan 

& Kemp, 2021a; Rose et al., 2021). Precision livestock farming (PLF), a key 

component of digital agriculture, enables farmers to effectively manage their livestock 

through objective, continuous, and/or autonomous monitoring. By employing 

advanced technologies – such as sensors and statistical models – PLF technology 

collects and processes data from individual animals to generate animal specific 

information, enabling farmers the potential to monitor animal health more efficiently 

and effectively (Berckmans, 2017; Norton et al., 2019). This is achieved by generating 

early warning signals (i.e., alerts) for the onset of health disorders (Li et al., 2020; 

Vranken & Berckmans, 2017; Wathes, 2009) that would be challenging to achieve 

through traditional labour-intensive visual inspection methods. 

Numerous PLF technologies have been, and continue to be, developed to digitally 

support animal health management (e.g., Alsaaod et al., 2019; Bausewein et al., 2022; 

Gómez et al., 2021; Morrone et al., 2022; Rutten et al., 2013). With their autonomous, 

individual animal-based early warning capabilities for poor animal health, it is 

expected that a PLF-based animal health management approach will add economic 

and animal welfare value to the farm (Banhazi et al., 2012; Berckmans, 2014, 2015; 

Wathes, 2009). This is because health disorders can be detected and treated sooner, 

resulting in an avoidance of consequential production losses in comparison to 

traditional visual labour-based animal health management approaches. Moreover, the 
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sooner health disorders are treated the sooner their negative impact on animal welfare 

can be mitigated, ultimately improving the well-being of animals.  

Considering the potential for additional economic and animal welfare value 

obtainable from a PLF-based animal health management approach, a new 

expenditure-loss frontier that accounts for animal welfare may exist. However, 

research quantifying the added economic and animal welfare value, along with 

corresponding optimal levels of animal health management, is scarce. This inhibits 

the potential farm-level integration of a PLF-based animal health management 

approach because farmers justify their investment decisions concerning PLF 

technology based on their added value (e.g., Steeneveld & Hogeveen, 2015). 

1.3 Problem statement 

Poor animal health in animal husbandry systems has wide-ranging implications. 

Animals suffering from health disorders experience decreased growth rates, 

diminished reproductive performance, and higher mortality rates. From an economic 

perspective it leads to inefficient resource utilisation, reduced productivity, and 

increased costs for farmers. Moreover, the negative impact of poor animal health 

extends to animal welfare, affecting both the well-being of the animals and the 

stakeholders involved. Animals experiencing health disorders may endure pain, 

distress, and a diminished quality of life, which raises ethical concerns. 

Consequentially, farmers face increasing animal health related costs and potential 

reductions in the value of their products as a result of demands for stricter animal 

welfare regulations and standards. These challenges call for i) innovative methods 

and ii) solutions to address the detrimental economic and animal welfare impacts of 

poor animal health.  

First and foremost, tackling these challenges requires the impact of animal health 

disorders on animal welfare to be studied and factored into the animal health decision 

making framework. This is rarely done in animal health research due to a lack of 

available methods. Therefore, it is crucial that appropriate methods are developed to 

study the negative effect of animal health disorders on animal welfare. By integrating 

animal welfare into the animal health decision making framework, the possibility of 

making well-informed decisions that holistically account for both economic and 

animal welfare aspects can be enabled. 

Secondly, digital technologies, particularly sensors found in PLF, offer promising 

solutions that address the detrimental economic and animal welfare impacts of poor 

animal health. However, there is a need for a comprehensive understanding of how 
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these technologies can be leveraged at the farm-level to improve animal health, 

economic outcomes, and animal welfare. A thorough assessment is required to explore 

and determine the effective implementation of these digital technologies whereby 

economic and animal welfare value adding animal health strategies are identified. 

1.4 The case of sub-optimal mobility in dairy 

cows 

To study economic and animal welfare outcomes in the context of digitally supported 

animal health management, sub-optimal mobility (SOM) in dairy cows is used as an 

animal health disorder case. This is because it is a common dairy production health 

issue with significant economic and animal welfare importance. 

As the name suggests, SOM is a health disorder whereby the mobility of a cow is 

affected, often resulting from the occurrence of hoof disorders (Alvergnas et al., 2019; 

Tadich et al., 2010). A recent review on SOM prevalence estimates – mostly in 

Europe and North America – reports a mean herd-level SOM prevalence of ~23 

percent with a between study (53 studies reviewed) range from ~5 to ~45 percent, 

and a between herd range from 0 to ~88 percent (Thomsen et al., 2023). 

SOM is identified by examining cow-level variables – such as gait symmetry, stride 

length, back posture, head bobbing etc. – whereby the severity of SOM is described 

by mobility scores congruent to the assessment of the observed cow-level variables. 

Various mobility scoring methods exist, but a review by Schlageter-Tello et al. (2014) 

showed that the five-point ordinal mobility scoring method developed by Sprecher et 

al. (1997) is most popular. SOM is often referred to as lameness, but the definition 

of lameness in conjunction with mobility scores has shown to vary between studies. 

For example, some studies define a cow as lame with mobility scores ≥2 (Olechnowicz 

& Jaśkowski, 2015), ≥3 (Amory et al., 2006; Randall et al., 2018; Somers et al., 

2019), or ≥4 (Kovács et al., 2015). By avoiding the term lameness, we can specifically 

focus on varying levels of SOM as defined by the mobility scores themselves. More 

recently, other studies have avoided the term lameness and focused on specific 

mobility scores to describe SOM (O’Connor et al., 2019, 2020b). 

SOM has detrimental effects on production. These effects include reduced milk 

production (Bicalho et al., 2008; O’Connor et al., 2020a; Reader et al., 2011), negative 

impacts on reproductive traits (Morris et al., 2011; Walker et al., 2010, 2008) that 

potentially contribute to reduced reproductive performance (Charfeddine & Pérez-

Cabal, 2017; O’Connor et al., 2020a), and can increase the risk of culling (Booth et 



7 

al., 2004; O’Connor et al., 2020a). Ultimately, these negative production effects 

manifest into negative economic effects, which have been widely studied (Ettema & 

Østergaard, 2006; Ettema et al., 2010; Kossaibati & Esslemont, 1997; Liang et al., 

2017; Robcis et al., 2023). Most often the largest negative economic effects are due 

to milk production losses and culling (Dolecheck & Bewley, 2018). Mitigating the 

costly production losses in turn results in preventive and treatment expenditures 

(Dolecheck & Bewley, 2018). 

SOM also negatively affects animal welfare (Broom & Corke, 2002; Nielsen et al., 

2023; Whay & Shearer, 2017). It is associated with pain (O’Callaghan et al., 2003; 

Shearer et al., 2013) and reduced body condition (O’Connor et al., 2019), increases 

the risk of a reduced lifespan (Booth et al., 2004; O’Connor et al., 2020a), impairs 

feed intake (Galindo & Broom, 2002; Norring et al., 2014) and can influence social 

behaviour (Galindo & Broom, 2002; Walker et al., 2008). Moreover, SOM is an 

important animal welfare indicator in the animal welfare quality assessment protocol 

for cattle (Welfare Quality®, 2009a). Notably, a significant proportion of the 

scientific literature on SOM, approximately 30 percent of 830 articles published 

between 2010 and 2022, highlight the issue of SOM as an animal welfare concern1. 

Only two scientific studies have quantified the animal welfare impact of hoof 

disorders. Although the results of these studies can be easily associated to SOM, 

there are no studies that quantify the animal welfare impact of SOM. 

Current SOM management practices constitute various components. They can 

include on farm labour-based detection and treatment. However, farmers generally 

underestimate the prevalence of SOM (Bran et al., 2018; Cutler et al., 2017; Richert 

et al., 2013), which can contribute to a prolonged detection and treatment (Alawneh 

et al., 2012a). It also includes routine hoof trimming at different intervals by external 

personnel as a preventive and curative measure (Frankena et al., 2009; Sadiq et al., 

2019; Stoddard & Cramer, 2017; Van Hertem et al., 2014a). Despite the existing 

management approaches, the average SOM prevalence across dairy farms has not 

changed much in the last two decades (Thomsen et al., 2023). 

PLF offers a promising solution to enhance the management of SOM while addressing 

the negative economic and animal welfare consequences associated with it. This is 

primarily due to the autonomous and continuous monitoring capabilities of PLF, 

which can provide real-time information on cows with SOM, enabling timely 

interventions and treatment as needed. While significant efforts have been invested 

by the PLF research community in the development of technology supporting SOM 

 

1 Unpublished data from a Web of Science literature review. Manuscript in compilation by: 

Steeneveld, W., van den Borne, B.H.P., Kok, A., Rodenburg, B., Hogeveen, H.. 
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management (Alsaaod et al., 2019; Schlageter-Tello et al., 2014), there remains a 

need for research to quantify the effectiveness of these technologies to improve SOM 

management and to assess whether implementing them with their current capabilities 

contributes positively to both economic and animal welfare aspects of SOM 

management. It could also be worth investigating whether alternative PLF 

technological capabilities can add economic and animal welfare value to the farming 

operation. 

In light of the economic and animal welfare significance of SOM and recent PLF 

developments, SOM is an interesting health disorder to investigate. It provides the 

opportunity to develop and explore methods and solutions to support decision making 

related to both economic and animal welfare factors in the context of digitally 

supported (PLF) animal health management. Consequently, utilising SOM as a case 

study in this thesis aligns well with the research objectives of this thesis. 

1.5 Objectives and research questions 

The general objective of this thesis is to provide economic and animal welfare decision 

support in the utilisation of digital technologies found in PLF, to enhance animal 

health management by adding economic and animal welfare value to the farming 

operation. The research is centred around SOM and focuses on sensor-based SOM 

management in Dutch dairy farms. This context serves as an example of digitally 

supported animal health management. This example provides valuable insights into 

the practical development and implementation of sensor technologies to support and 

enhance economic and animal welfare decisions and outcomes.  

To achieve the general objective, the research aims to address two sub-objectives: i) 

to comprehensively identify the economic and animal welfare impacts of SOM by 

focusing on different constitutions of SOM, and ii) to identify how sensor-based 

management, taking into account the current capabilities of sensors and its potential 

future advancements, can further enhance economic and animal welfare outcomes. 

This investigation will explore the potential benefits and limitations of utilising 

sensors in managing SOM and propose approaches for enhancing the economic and 

animal welfare outcomes of sensor-based SOM management. To achieve the general 

objective, the following four research questions are addressed. 
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1. 

 

What do the different dynamics of SOM contribute to the total 

economic cost of SOM? 
 

Research question one aims to investigate the contribution of different constitutions 

of SOM, characterised by mobility scores and prevalence rates, to the total economic 

cost of SOM under the current management strategy, i.e., management without 

sensors. To answer this question a dynamic, time-discrete, and stochastic bio-

economic simulation model simulating the dynamics of SOM is developed to provide 

consequent economic impact insights at cow- and herd-level. Answering this question 

will provide comprehensive insights on how to effectively manage SOM with sensors 

from an economic perspective. 

2. 

 

What do the different dynamics of SOM contribute to the total 

animal welfare impact of SOM? 
 

In a similar line to research question one, research question two aims to investigate 

the contribution of different constitutions of SOM, characterised by mobility scores 

and respective dynamics, to the total animal welfare impact of SOM in a SOM 

management strategy without sensors. To answer this question, first, animal welfare 

impediment weights are derived from experts using adaptive conjoint analysis to 

elicit the conjoint trade-offs in animal welfare impairments associated to welfare 

indicators affected by SOM. Second, these animal welfare impairment weights 

associated to mobility scores are used as input to quantify the welfare impact of SOM 

using the bio-economic simulation model developed in research question one. 

Answering this question will provide comprehensive insights on how to effectively 

manage SOM with sensors from an animal welfare perspective. 

3. 

 

What changes in SOM management are required to obtain 

additional economic value from a sensor-based SOM management 

approach? 

 

The third research question aims to investigate the potential additional economic 

value that can be obtained through various sensor-based SOM management 

approaches. Simulation scenarios are designed to explore the full potential of different 
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sensor-based management approaches, encompassing a range of changes in SOM 

management compared to a typical Dutch SOM management strategy without 

sensors. The scenarios will focus on aspects such as sensor performance, alert 

prioritisation, generation of immediate versus prolonged information for different 

SOM constitutions, and treatment providers. This simulation-based exploratory 

research aims to provide insights on the above-mentioned aspects that can support 

the development and implementation of economically effective sensor-based SOM 

management scenarios. The findings will address key aspects relevant to sensor 

developers, farmers, and external animal health service providers. 

4. 

 

How do changes in the underlying settings of sensors influence the 

economic and animal welfare outcomes apropos sensor-based SOM 

management? 

 

The fourth research question focuses on examining the effects of different settings 

governing sensor performance on the economic and animal welfare outcomes of 

sensor-based SOM management. Specifically, these settings pertain to the probability 

of correctly classifying cows into their respective SOM classes. This question builds 

upon the methods developed and employed in the preceding three research questions. 

By answering this question, valuable insights will be gained for sensor developers on 

how to customize sensors to align with the economic and animal welfare requirements 

of farmers. 

In this thesis the four research questions, in the same order they were asked, are 

addressed in Chapters 2 – 5. The thesis is concluded with Chapter 6 whereby a 

general discussion of the research is presented. 
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Chapter 2  

Simulating the mechanics behind 

sub-optimal mobility and the 

associated economic losses in 

dairy production 
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M. and Hogeveen, H. (2022). Simulating the mechanics behind sub-optimal mobility 

and the associated economic losses in dairy production. Preventive Veterinary 

Medicine, 199, p.105551. DOI: https://doi.org/10.1016/j.prevetmed.2021.105551 
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Abstract 
Hoof disorders and sub-optimal mobility (SOM) are economically important health 

issues in dairy farming. Although the dynamics of hoof disorders have an important 

effect on cow mobility, they have not been considered in previous simulation models 

that estimate the economic loss of SOM. Furthermore, these models do not consider 

the varying severities of SOM. The objective of this study was to develop a novel 

bio-economic simulation model to simulate the dynamics of 8 hoof disorders: digital 

dermatitis (DD), interdigital hyperplasia (HYP), interdigital dermatitis/heel-horn 

erosion (IDHE), interdigital phlegmon (IP), overgrown hoof (OH), sole haemorrhage 

(SH), sole ulcer (SU) and white-line disease (WLD), their role in SOM, and estimate 

the economic loss of SOM in a herd of 125 dairy cows. A Reed-Frost model was used 

for DD and a Greenwood model for the other 7 hoof disorders. Economic analysis 

was conducted per mobility score according to a 5-point mobility scoring method (1 

= perfect mobility; 5 = severely impaired mobility) by comparing a scenario with 

SOM and one without SOM. Parameters used in the model were based on literature 

and expert opinion and deemed credible during model validation rounds. Results 

showed that the mean cumulative incidence for maximum mobility scores 2–5 SOM 

cases were respectively 34, 16, 7 and <1 cases per 100 cows per pasture period and 

39, 19, 8, <1 cases per 100 cows per housing period. The mean total annual economic 

loss due to SOM resulting from the hoof disorders under study was €15,342: €122 

per cow per year. The economic analysis uncovered direct economic losses that could 

be directly linked to SOM cases and indirect economic losses that could not be 

directly linked to SOM cases but arose due to the presence of SOM. The mean total 

annual direct economic loss for maximum mobility score 2 – 5 SOM cases was €1129, 

€3098, €4354, and €480, respectively. The mean total annual indirect economic loss 

varied considerably between the 5th and 95th percentiles: €−6,174 and €19,499, 

with a mean of €6,281. This loss was composed of additional indirect culling due to 

SOM (∼65 percent) and changes in the overall herd milk production (∼35 percent) 

because of additional younger replacement heifers entering the herd due to increased 

culling rates. The bio-economic model presented novel results with respect to indirect 

economic losses arising due to SOM. The results can be used to stimulate farmer 

awareness and promote better SOM management.  
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2.1 Introduction 

Hoof disorders are a costly health issue in dairy production (Dolecheck & Bewley, 

2018). These costs vary within and between hoof disorders depending on their 

respective severity, duration, and recurrence. For example, the cost of a digital 

dermatitis case varied between €45 and €342 and for a sole ulcer case between €152 

and €817 (Cha et al., 2010; Charfeddine & Pérez-Cabal, 2017; Dolecheck et al., 2019; 

Willshire & Bell, 2009). These costs can result in high economic losses for dairy 

producers, especially when the overall prevalence of hoof disorders can be as high as 

81 percent (Somers et al., 2003). For example, Bruijnis et al. (2010) found that hoof 

disorders are responsible for an annual economic loss of €76 per average cow for a 

dairy farm with a hoof disorder prevalence similar to Somers et al. (2003). Many of 

these costs arise potentially unbeknownst to the farmer because farmers tend to 

underestimate the prevalence of hoof disorders (Bruijnis et al., 2013). 

Farmers may underestimate the prevalence of hoof disorders because they primarily 

detect hoof disorders first by adverse changes in the mobility of a cow (Bruijnis et 

al., 2013). Moreover, hoof disorders are largely associated with mild sub-optimal 

mobility (SOM; O’Connor et al., 2019; Tadich et al., 2010), which farmers are less 

sensitive in detecting (Alawneh et al., 2012a). 

Due to the association between SOM and hoof disorders, it is expected that SOM, as 

an effect of underlying hoof disorders, will result in economic losses. This is confirmed 

with cases of SOM reported to cost between €159 and €457 (Ettema & Østergaard, 

2006; Guard, 2008; Liang et al., 2017). However, these studies focus on severe forms 

of SOM, omitting the potential economic losses associated with milder forms of SOM. 

Mild SOM has not often been included in studies estimating the economic losses 

associated with SOM. Studies that include mild forms of SOM do so by usually 

employing a mobility scoring method. A mobility scoring method helps define a cow 

with SOM according to varying levels in severity of SOM based on the number of 

scores in the method (Schlageter-Tello et al., 2014). However, in doing so, the 

definition of a cow with SOM is generalised whereby a cow with a mobility score 

above a predefined mobility score threshold is defined as SOM. This generalisation 

reduces the ability of the method to help better identify which forms of SOM are of 

greater economic importance. For instance, Ettema et al. (2010) show the economic 

impact for SOM as defined by cows with mobility score ≥3 according to a 5-point 

mobility scoring method, but the economic impact for SOM respective of mobility 

scores 3 – 5 are not reported. In addition, omitting lower mobility scores (i.e., 2) from 

the definition of SOM may also lead to an underestimation of costs. 
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There are several studies concerning the economic losses associated with hoof 

disorders and SOM (Dolecheck & Bewley, 2018). Most of the studies reporting the 

economic loss of hoof disorders and SOM are conducted by simulation modelling. 

However, studies simulating the economic loss of hoof disorders do not simulate the 

effect of hoof disorders on cow mobility (Bruijnis et al., 2010; Dolecheck et al., 2019). 

Conversely, studies simulating the economic impact of SOM do not simulate hoof 

disorders as responsible mechanisms for SOM and the definitions of SOM relate to 

severe forms (Ettema & Østergaard, 2006; Liang et al., 2017). An exception to the 

aforementioned studies simulating the economic loss of SOM is the study of Ettema 

et al. (2010) whereby hoof disorders are simulated as responsible mechanisms of SOM 

and milder forms of SOM are considered. However, Ettema et al. (2010) specify SOM 

in more general terms. More information is needed on the dynamics of SOM with 

hoof disorders acting as the responsible and the underlying mechanisms of SOM. 

Moreover, more precise information is needed on the economic losses due to different 

severities of SOM, including mild SOM. 

We developed a novel stochastic bio-economic simulation model that creates a 

stronger link between SOM and hoof disorders whereby the hoof disorders act as the 

responsible mechanisms behind the dynamics of SOM. Adding to the literature 

concerning the economic losses due to SOM, we present the direct economic losses 

due to SOM, for mild and severe forms, as well as the indirect economic losses due 

to SOM. 

2.2 Methodology 

2.2.1 Model overview 

A dynamic, stochastic, and mechanistic discrete time-step bio-economic model was 

developed in R version 3.6.1 – “Action of the toes” (R Core Team, 2019) to simulate 

the spread and occurrence of hoof disorders as responsible mechanisms of SOM in 

dairy cows as well as the management of SOM. A typical Dutch dairy production 

system of 125 milking cows was simulated. It was assumed that cows were housed in 

cubicles with slatted concrete floors during the Autumn and Winter months (housing 

period) and had access to pastures for >6 h a day in the Spring and Summer months 

(pasture period). The model simulated events in daily time-steps either at the hoof- 

or cow-level. Simulations at the hoof-level include hoof specific events (i.e., infection 

and treatment) whereas (re)production events (i.e., milking, calving, and culling) and 

mobility scoring are at the cow-level. A 5-point ordinal scale mobility scoring method 
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was used to describe cow mobility (Sprecher et al., 1997). Per cow, per time-step and 

per mobility score the economic in-and outflows associated with SOM were 

computed. Based on these in-and outflows, the net partial economic results per year 

of the simulated farm were calculated. By comparing the net partial economic results 

of farms with and without hoof disorders, the total (direct and indirect) annual 

economic effect of SOM due to the hoof disorders under study could be estimated. 

The costs directly associated with SOM were also calculated per SOM per year. 

2.2.2 Production dynamics 

Cows were either lactating or dried-off and spent a number of days in either period. 

The dry period length (DPL) was a fixed length, and the lactation length depends 

on a fixed minimum voluntary waiting period (VWP) before first service, stochastic 

estimates of oestrus detection and conception, and possible removal by culling 

decisions. A cow was prescribed a maximum number of days to conceive. If the cow 

did not conceive by this day, she was culled for fertility reasons once her actual daily 

milk yield dropped below a fixed daily yield threshold. The decision to cull for fertility 

reasons was based on a cow’s production level relative to the herd. The decision to 

cull for general reasons depended on the removal of cows due to health disorders 

other than SOM2 and mortality and was calibrated so that the overall culling rate 

coincided with the ∼30 percent for Dutch dairy farms (Nor et al., 2014). It was 

assumed that culling took place on the premise that a replacement heifer entered the 

milking herd on the following day a cow was culled. If a cow died, a replacement 

heifer entered the milking herd on a random day within a month after the cow died 

because those replacement events cannot be planned.  

Expected daily milk yield for lactating cows depend on cow specific parameters and 

was modelled by fitting a lactation curve to each cow with the following equation; 

 
𝑀𝑖,𝑝,𝑡
(𝑒𝑚𝑦)

= 𝑎𝑖,𝑝 + 𝑏𝑖,𝑝 ×𝑀𝑖,𝑡
(𝑑𝑖𝑚) + 𝑐 × exp(−𝑘 × 𝑀𝑖,𝑡

(𝑑𝑖𝑚))

+ 𝑀𝑖
(𝑟𝑝𝑙)

×𝑀𝑖,𝑝,𝑡
(𝑎𝑑𝑦)

  
(2.1) 

Where 𝑀𝑖,𝑝,𝑡
(𝑒𝑚𝑦)

 is the expected daily milk yield for cow 𝑖 in parity 𝑝 in time time-step 

𝑡, 𝑀𝑖,𝑡
(𝑑𝑖𝑚) is the day in milk, 𝑀𝑖,𝑝,𝑡

(𝑎𝑑𝑦)
 is the average daily yield, and 𝑎𝑖,𝑝, 𝑏𝑖,𝑝, 𝑐, and 𝑘 

are factors responsible for the shape of the curve (Wilmink, 1987). Variation in cow 

 

2 Comorbidity was not directly included in the simulation model. However, it was indirectly 

accounted for in the general culling decisions so that an overall culling rate was attainable. 



20 

lactations was achieved by assigning a cow specific production level relative to the 

mean herd production to each cow. This relative production level (RPL) is denoted 

by 𝑀𝑖
(𝑟𝑝𝑙)

 and was drawn from a normal distribution with a mean of 0 and a standard 

deviation of 0.1 (Kok et al., 2017).  

Feed requirements, expressed in VEM (where 1 VEM = 1.65 kcal of NEL), for each 

cow was modelled as a function of daily FPCM milk produced (kg) for lactating cows 

(Van Es, 1978). Parity 1, 2 and ≥3 cows respectively have a fat content (percent) of 

4.48, 4.5 and 4.51, and a protein content (percent) of 3.55, 3.59 and 3.51 (Kok et al., 

2017). Higher feed requirements for parity 1 and 2 cows, and four pregnancy stages 

were included to account for different feed requirements during pregnancy 

(Remmelink et al., 2015).  

Body weights were assigned to parity 1 cows on their first milking day by a normal 

distribution with a mean of 540 kg and a standard deviation of 6 kg. Thereafter, 

cows gained 0.13 kg per day until the end of their second lactation (based on Kok et 

al., 2017). 

2.2.3 Hoof disorders 

Eight hoof disorders were modelled: five non-infectious and three infectious. The non-

infectious hoof disorders include interdigital hyperplasia (HYP), overgrown hoof 

(OH), sole haemorrhage (SH), sole ulcer (SU) and white line disease (WLD). The 

infectious disorders include digital dermatitis (DD), interdigital dermatitis and heel 

horn erosion (IDHE), and interdigital phlegmon (IP). Infections and the dynamics of 

these disorders were modelled at hoof-level. However, cow-level infection risk factors 

were accounted for allowing individual variation in susceptibility. Non-infectious hoof 

disorders were modelled as environmental infections with the Greenwood model 

(Becker, 1989). Infectious hoof disorders, IDHE and IP, were also modelled as 

environmental infections, because, to our knowledge, there is no information on the 

transmission dynamics of IDHE and IP. Only DD was modelled as a contagious hoof 

disorder with the Reed-Frost model (Becker, 1989). 

It was assumed that a hoof can hold only one disorder at a time since the dynamics 

between multiple disorders on the same hoof is not clearly understood. Therefore, a 

cow could have a maximum of four hoof disorders (one for each hoof) at a time. Once 

a cow received a hoof disorder, a mobility score was assigned at hoof-level. A hoof 

will remain with a disorder until it has fully cured, either spontaneously or following 

a successful treatment. 
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In our model, the hooves of cow 𝑖 were defined by a set of properties and are 

represented by the hoof matrix Ω with 𝑗 ×  𝑘 elements, 

 
Ω𝑖 =

(

 
 
 
 
 
 

𝑗 = 1, 𝑘 = 1 𝑗 = 1, 𝑘 = 2 𝑗 = 1, 𝑘 = 3 𝑗 = 1, 𝑘 = 4
𝑗 = 2, 𝑘 = 1 𝑗 = 2, 𝑘 = 2 𝑗 = 2, 𝑘 = 3 𝑗 = 2, 𝑘 = 4
𝑗 = 3, 𝑘 = 1 𝑗 = 3, 𝑘 = 2 𝑗 = 3, 𝑘 = 3 𝑗 = 3, 𝑘 = 4
𝑗 = 4, 𝑘 = 1 𝑗 = 4, 𝑘 = 2 𝑗 = 4, 𝑘 = 3 𝑗 = 4, 𝑘 = 4
𝑗 = 5, 𝑘 = 1 𝑗 = 5, 𝑘 = 2 𝑗 = 5, 𝑘 = 3 𝑗 = 5, 𝑘 = 4
𝑗 = 6, 𝑘 = 1 𝑗 = 6, 𝑘 = 2 𝑗 = 6, 𝑘 = 3 𝑗 = 6, 𝑘 = 4
𝑗 = 7, 𝑘 = 1 𝑗 = 7, 𝑘 = 2 𝑗 = 7, 𝑘 = 3 𝑗 = 7, 𝑘 = 4
𝑗 = 8, 𝑘 = 1 𝑗 = 8, 𝑘 = 2 𝑗 = 8, 𝑘 = 3 𝑗 = 8, 𝑘 = 4)

 
 
 
 
 
 

 

 

(2.2) 

where 𝑗 is the property of hoof 𝑘 for cow 𝑖. Front and hind hooves are 𝑘 = (1, 2) and 

𝑘 = (3, 4), respectively. Property 𝑗 = 1 represents the state of the hoof (susceptible 

= 0, infected = 1); property 𝑗 = 2 represents the hoof disorder (DD, HYP, IDHE, 

IP, OH, SH, SU and WLD); 𝑗 = 3 represents the mobility score (score 1, 2, 3, 4, and 

5); 𝑗 = 4 is the day of mobility score progression (respective of hoof disorder; uniform 

distribution); 𝑗 = 5 is the treatment day (uniform distribution) after successful 

detection, and 𝑗 = 6 is the day of mobility score regression after successful treatment 

(respective of hoof disorder; uniform distribution). The remaining two properties are 

DD specific. Property 𝑗 = 7 represents the DD infectious lesion class (0, 1, 2, 3, 4) 

and 𝑗 = 8 is the sojourn time of the DD lesion (uniform distribution). 

Infection dynamics 

Environmental infections. Infections of all hoof disorders, except for DD, were 

modelled as environmental infections with the Greenwood model. This model is 

suitable for the infection processes of hoof disorders when little is known about their 

spread dynamics and occurrence. It assumes that the probability of a susceptible hoof 

becoming infected with a disorder is independent of the number of already infected 

hooves with the same disorder once the infectious agent is present in a population, 

due to its sufficient abundance in the environment. In the Greenwood model, the 

prevalence or the incidence rate represent the probability of a cow receiving a hoof 

disorder per time unit (Becker, 1989). Parameters estimated and used in the 

Greenwood model are denoted by the subscript 𝜀. 

The infection process began with first identifying the total number of susceptible 

cows in the previous time step 𝑡. Susceptible cows (𝑆𝜀,𝑡−1) were defined as the number 

of cows with at least one susceptible hoof: ∑ ⟦∑ Ω𝑖,𝑗=1,𝑘,𝑡−1
4
𝑘=1 < 4⟧Θ

𝑖=1  in a herd of Θ 
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cows. Second, the probability (𝑃𝜀,𝑡
(𝑡𝑜𝑡𝑎𝑙)) of susceptible cows becoming infected was 

estimated: ∑ γ𝑑,𝑙,𝑡
7
𝑑=1  where a daily infection risk γ𝑑,𝑙,𝑡  for each hoof disorder 𝑑 

occurring in period 𝑙 = (1 = pasturing, 2 = housing) was stochastically drawn from 

a PERT distribution. With parameters 𝑆ε,𝑡−1 and 𝑃𝜀,𝑡
(𝑡𝑜𝑡𝑎𝑙) the number of cows that 

will become infected (𝐼ε,𝑡) was estimated by the binomial process 

 𝐼𝜀,𝑡  =  𝐵(𝑆𝜀,𝑡−1 , 𝑃𝜀,𝑡
(𝑡𝑜𝑡𝑎𝑙)). (2.3) 

Next, a bootstrap sample of length 𝐼ε,𝑡 was drawn from the vector of hoof disorders 

𝐷 = (HYP, IDHE, IP, OH, SH, SU, WLD) according to their relative risks of γ𝑑,𝑙,𝑡. 

We denote the bootstrap sample of disorders as 𝐷𝑡̅̅ ̅ such that 𝑑𝑡̅̅̅ ∈ 𝐷𝑡̅̅ ̅ . With 𝐷𝑡̅̅ ̅ 

disorders that infect 𝐼ε,𝑡  cows, the susceptibility of each cow is adjusted by the 

product of cow-level risk factors (i.e., parity, lactation stage, RPL and the number 

of susceptible hooves) corresponding to each 𝑑𝑡̅̅̅. To calculate the cow-level risk 

factors, first parity cows in the first 30 days of lactation with a RPL between 41 and 

60 percent were taken as the reference risk category. We included four parity risk 

factor classes (1, 2, 3, ≥4), four lactation stage, expressed as days in milk, risk factors 

classes (≤30, 31 – 60, ≥61 and dry) and five RPL classes (≤20 percent, 21 – 40 

percent, 41 – 60 percent, 61 – 80 percent and >80 percent). A risk factor regarding 

the number of susceptible hooves was included to ensure that cows with one 

susceptible hind hoof were at less risk than cows with two susceptible hind hooves so 

that the proportional ratio of front to hind hooves infected with a disorder would 

approximately be 10:90 percent, respectively (Alvergnas et al., 2019). The risk factor 

concerning the number of susceptible hooves for cow 𝑖 was derived by summing the 

risk factors associated with each susceptible hoof 𝑘. The probability of a susceptible 

cow becoming infected with each 𝑑𝑡̅̅̅ is then 

 𝑃𝜀,𝑑̅,𝑖,𝑙,𝑡
(𝑖𝑛𝑓𝑒𝑐𝑡)

= 𝛾𝑑,𝑙,𝑡 ×∏𝜆𝑑,𝑖,𝑟 

4

𝑟=1

 (2.4) 

where 𝑃𝜀,𝑑̅,𝑖,𝑙,𝑡
(𝑖𝑛𝑓𝑒𝑐𝑡)

 is the probability of susceptible cow 𝑖 becoming infected with disorder 

𝑑̅  in time-step 𝑡  of period 𝑙 , γ𝑑,𝑙,𝑡  is the daily risk of infection for disorder 𝑑 

corresponding to 𝑑̅, λ is the risk factor associated with susceptible cow 𝑖 and disorder 

𝑑 corresponding to 𝑑̅ and 𝑟 is one of the four risk factors. Finally, a cow was then 

randomly selected according to the probability of infection in Eq. 2.4 by a sample 

distribution to be infected with 𝑑𝑡̅̅̅ ∈ 𝐷𝑡̅̅ ̅. Once cow-level processes are completed and 

a susceptible cow for 𝑑𝑡̅̅̅ ∈ 𝐷𝑡̅̅ ̅ was selected, a susceptible hoof 𝑘 for each selected cow 

𝑖 was drawn from a sample of susceptible hooves according to their relative risks and 
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the corresponding first three properties in Ω are updated such that the state of hoof 

𝑘 was infected with disorder 𝑑̅: 

 Ω𝑖,𝑗=1,𝑘 = 1 (2.5) 

 

 Ω𝑖,𝑗=2,𝑘 = 𝑑̅. (2.6) 

Contagious infections. Hooves that escaped an environmental infection in the 

current time-step were then subjected to the probability of becoming infected with 

DD. The Reed-Frost model was used to simulate this process where the probability 

of a susceptible hoof becoming infected with DD was dependent on the number of 

already infected hooves in the herd and the spread dynamics of the disease is 

explained by β (Becker, 1989). Throughout this subsection the parameters estimated 

and used in the Reed-Frost model are denoted by the subscript φ. 

Unlike in the Greenwood model, the infection process of hooves occurred directly at 

the hoof-level since only one disorder was of concern. Consequently, more than one 

susceptible hoof per cow had the probability of becoming infected with DD in time-

step 𝑡. The probability of a hoof becoming infected with DD was then calculated as 

follows 

 𝑃𝜑,𝑖,𝑘,𝑡
(𝑖𝑛𝑓𝑒𝑐𝑡)

= 1 − exp (
−(∑ 𝛽𝑚 × 𝜂 × 𝐼𝜑,𝑚,𝑡−1

4
𝑚=1 ) × ∏ 𝜆𝑖,𝑟 

4
𝑟=1

𝑁𝜑,𝑡−1
) (2.7) 

where 𝑃𝜑,𝑖,𝑘,𝑡
(𝑖𝑛𝑓𝑒𝑐𝑡)

 is the probability of infection for cow 𝑖 with susceptible hoof 𝑘 in time 

step 𝑡. Hooves infected with DD can go through multiple infectious lesion classes 

resulting in more than one β denoted by 𝑚 = (1, 2, 3, 4) (Biemans et al., 2018). The 

parameter 𝐼φ,𝑚,𝑡−1 is the number of infected hooves with infectious lesion class 𝑚 

from the previous time-step: ∑ ∑ ⟦𝛺𝑖,𝑗=7,𝑘,𝑡−1 = 𝑚⟧
4
𝑘=1

𝛩
𝑖=1 . Variation in the 

susceptibility for each susceptible hoof 𝑘 of cow 𝑖 was adjusted by the product of risk 

factors λ as described in the infection process of the Greenwood model except that 

the risk factors associated with front and hind hooves are no longer summed. By 

including risk factors, variation in the susceptibility of individual cows was accounted 

for but scaled the β's to the extent that the probability of infection and resulting 

trends of DD became unrealistic. Therefore, we included a calibration factor η that 

allowed the scaling of each β maintaining the relative ratio between the respective 

β's such that realistic infection rates and disorder trends would hold while still 

allowing for the effect of varied susceptibility between individuals. Lastly, the 

denominator 𝑁φ,𝑡−1 is the total number of hooves in the previous time-step. With 
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𝑃𝜑,𝑖,𝑘,𝑡
(𝑖𝑛𝑓𝑒𝑐𝑡)

 each susceptible hoof was then subject to this probability of becoming 

infected by a binomial process 

 Ω𝑖,𝑗=1,𝑘,𝑡 = 𝐵 (1, 𝑃𝜑,𝑖,𝑘,𝑡
(𝑖𝑛𝑓𝑒𝑐𝑡)

). (2.8) 

For each hoof that succumbed to a DD infection, the following properties 𝑗 = (2, 7) 

of infected hoof 𝑘 were updated accordingly 

 Ω𝑖,𝑗=2,𝑘 = DD (2.9) 

 

 Ω𝑖,𝑗=7,𝑘 = 1. (2.10) 

2.2.4 Mobility scores 

The effect of hoof disorders on cow mobility were described by mobility scores. We 

used the 5-point ordinal scale mobility scoring method developed by Sprecher et al. 

(1997) where cows were scored 1 (optimal mobility) to 5 (severe SOM). A cow with 

a mobility score ≥2 is defined as sub-optimally mobile: a cow with SOM. Ultimately, 

mobility scores were expressed at the cow level, albeit certain processes were first 

modelled at hoof-level allowing the dynamics of hoof disorders and the consequential 

effects on cow mobility to be established. Each hoof of a cow will have its own 

mobility score where the maximum score between each of a cow's four hooves defines 

the cow-level mobility score. Modelling the dynamics of mobility scores is described 

in the following subsections. 

Mobility score progression 

Following an infection with any of the eight hoof disorders, a hoof was immediately 

assigned a mobility score 2 (Eq. 2.11). The hoof will hold a mobility score 2 until a 

random day scheduled by a stochastic draw from a uniform distribution (Eq. 2.12) 

 

 Ω𝑖,𝑗=3,𝑘 = 2 (2.11) 

 

 Ω𝑖,𝑗=4,𝑘 = 𝑈(𝑇𝑚𝑖𝑛,𝑠,𝑑
↑ , 𝑇𝑚𝑎𝑥,𝑠,𝑑

↑ ) + 𝑡 (2.12) 
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where 𝑇𝑚𝑖𝑛,𝑠,𝑑
↑  and  𝑇𝑚𝑎𝑥,𝑠,𝑑

↑  are the minimum and maximum transition intervals of 𝑇 

days from time-step 𝑡 for mobility score 𝑠 and disorder 𝑑 , and the superscript ↑ 

denotes mobility score progression. For DD, Ω𝑖,𝑗=8,𝑘 = Ω𝑖,𝑗=4,𝑘 will hold. 

We assume that after infection the progression of mobility scores occurred in an 

ordered manner as illustrated by Figure 2.1(a). A hoof will hold a mobility score for 

a minimum number of days until 𝑡 = Ω𝑖,𝑗=4,𝑘 , thereafter the probability of 

transitioning to a succeeding score was estimated with following equation 

 𝑃𝑖,𝑘,𝑡
(𝑡𝑟𝑎𝑛𝑠) = Λ𝑖,𝑘,𝑠,𝑡−1

(𝑚𝑠) ×∏𝜆𝑖,𝑘,𝑟

7

𝑟=5

 (2.13) 

where 𝑃𝑖,𝑘,𝑡
(𝑡𝑟𝑎𝑛𝑠) is the probability of hoof 𝑘 for cow 𝑖 to transition into a succeeding 

mobility score in time-step 𝑡, Λ𝑖,𝑘,𝑠,𝑡−1
(𝑚𝑠)  is the base risk of transitioning to a succeeding 

mobility score for cow 𝑖 with hoof 𝑘 and mobility score 𝑠 in the previous time-step 

𝑡, λ𝑖,𝑘,𝑟 is a risk factor and 𝑟 one of the risk factors. With 𝑃𝑖,𝑘,𝑡
(𝑡𝑟𝑎𝑛𝑠) the probability of  

 

(a) Mobility score progression dynamics after infection. 

 

(b) Mobility score regression dynamics after infection. 

Figure 2.1 Diagram of the mobility score (MS) dynamics. In (a), the duration 

of each mobility score and the probability of transitioning to a succeeding score 

will continue until a mobility score 5 is reached unless a mobility score 

transition does not occur to which the hoof will no longer be subject to mobility 

score progression processes. In (b), mobility scores will regress until a mobility 

score 1 is reached after successful intervention. If intervention is unsuccessful 

the mobility score will remain. 
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a hoof transitioning into a succeeding mobility score was then predicted by a binomial 

process 

 

Ω𝑖,𝑗=3,𝑘,𝑡 = 𝐵(1, 𝑃𝑖,𝑘,𝑡
(𝑡𝑟𝑎𝑛𝑠)) + Ω𝑖,𝑗=3,𝑘,𝑡−1 . 

 

(2.14) 

If hoof 𝑘 progressed to a succeeding mobility score, Eq. 2.12 was re-run. 

Figure 2.2 illustrates the dynamics associated with an infectious lesion class for a 

hoof infected with DD. As the mobility score of a hoof was updated (solid lined nodes 

in Figure 2.2) the corresponding infectious lesion class (dashed lined nodes in Figure 

2.2; property 𝑗 = 7) was updated accordingly. The process of mobility score 

progression continued until the maximum mobility score for hoof disorder 𝑑 was 

 
Figure 2.2 Diagram of the mobility score (MS; solid lined nodes) dynamics with 

respect to the modelled digital dermatitis infectious lesion classes (m; dashed 

lined nodes). 
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reached. The hoof would then remain with this score until treated or cured 

spontaneously. 

Intervention 

Intervention of SOM occurred either by routine hoof trimming or by additional 

treatments. Routine hoof trimming was performed by a professional hoof trimmer 

who visited the farm at the start of each pasture and housing period. Hind hooves of 

every cow were trimmed by the hoof trimmer and exceptions were made for front 

hooves with a mobility score ≥3. Additional treatments occurred beyond hoof 

trimmer visits and followed SOM detection by the farmer during daily farm activities. 

Farmers are generally better at detecting cows with severe SOM compared to cows 

with mild SOM (Alawneh et al., 2012a); thus, the probability of SOM detection was 

modelled as an exponential function to mimic an increased probability of detection 

with each day a cow was SOM as 

 𝑃𝑖,𝑠,𝑡
(𝑑𝑒𝑡𝑒𝑐𝑡) = 𝜙𝑠 × exp(𝜙𝑠 × 𝑡𝑖,𝑡

(𝑠𝑜𝑚)) (2.15) 

where 𝑃𝑖,𝑠,𝑡
(𝑑𝑒𝑡𝑒𝑐𝑡) is the probability of SOM detection for cow 𝑖 with mobility score 𝑠 as 

a function of the constant daily detection rate ϕ𝑠 respective of mobility score 𝑠 and 

𝑡𝑖,𝑡
(𝑠𝑜𝑚) is the duration in days that cow 𝑖 is SOM from the onset of a mobility score 

3. Modelling the probability of detection as an exponential function for each cow 

with SOM also ensures that it would not surpass a threshold duration of an 

undetected SOM period. The detection probability for a cow with SOM and a 

mobility score ≥3 was updated in each time-step 𝑡. A cow with SOM was then 

subject to the detection probability by a binomial process 

 π𝑖,𝑠,𝑡  =  𝐵(1, 𝑃𝑖,𝑠,𝑡
(𝑑𝑒𝑡𝑒𝑐𝑡)) (2.16) 

where π𝑖,𝑠,𝑡 is the success outcome of detection for cow 𝑖 experiencing SOM with 

mobility score 𝑠 in time-step 𝑡. 

Cows that were successfully detected by the farmer were then scheduled an 

intervention day respective of the mobility score they were detected with. An 

intervention day was stochastically drawn from a uniform distribution 

 Γ𝑖,𝑠 = 𝑈(𝜏𝑚𝑖𝑛,𝑠, 𝜏𝑚𝑎𝑥,𝑠) + 𝑡 (2.17) 
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where Γ𝑖,𝑠 is the intervention day for cow 𝑖 with mobility score 𝑠, and 𝜏𝑚𝑖𝑛,𝑠 and 

 𝜏𝑚𝑎𝑥,𝑠 is the range of days it takes for intervention to occur after a cow with SOM 

and a mobility score 𝑠 was detected. Since farmers are more likely to treat sooner if 

a cow is detected with a greater mobility score (Alawneh et al., 2012a), scheduled 

intervention days were updated accordingly if a cow progressed in a mobility score 

before the original intervention day had occurred. Once Γ𝑖,𝑠 was determined, every 

hoof 𝑘 of cow 𝑖 with a hoof-level mobility score ≥3 was assigned an intervention day 

 Ω𝑖,𝑗=5,𝑘,𝑡 = Γ𝑖,𝑠. (2.18) 

A farmer may detect a cow with SOM and a mobility score 3, but treatment for these 

cows occurred only at the routine hoof-trimming. Cows with SOM and mobility score 

4 that were detected by the farmer are assumed to be subsequently treated by the 

farmer. If the farmer detected cows with SOM and mobility score 5, the veterinarian 

was called to treat these cows. It was assumed that the veterinarian will also treat 

all cows with SOM and detected with a mobility score ≥4. On the treatment day 

where Ω𝑖,𝑗=5,𝑘 = 𝑡, hoof 𝑘 was treated with a treatment type specific to the hoof 

disorder Ω𝑖,𝑗=2,𝑘 . The outcome of treatment then determined the mobility score 

regression dynamics. 

Mobility score regression 

The regression of mobility scores correspond to recovery and will succeed successful 

intervention(𝑃(𝑐𝑢𝑟𝑒) in Figure 2.1(b)), or spontaneous cure (DD only; α𝑐 in Figure 

2.2). After successful intervention, a mobility score regression day (property 𝑗 = 6) 

was scheduled for the successfully treated hoof by a stochastic draw from a uniform 

distribution respective of disorder the hoof was infected with 

 Ω𝑖,𝑗=6,𝑘 = 𝑈(𝑇𝑚𝑖𝑛,𝑠,𝑑
↓ , 𝑇𝑚𝑎𝑥,𝑠,𝑑

↓ ) + 𝑡 (2.19) 

where 𝑇𝑚𝑖𝑛,𝑠,𝑑
↓  and 𝑇𝑚𝑎𝑥,𝑠,𝑑

↓  are the minimum transition intervals of 𝑇 days from time-

step 𝑡 for mobility score 𝑠 and disorder 𝑑, and the superscript ↓ denotes mobility 

score regression. Once a mobility score regression day was scheduled, Ω𝑖,𝑗=3,𝑘,𝑡 =

Ω𝑖,𝑗=3,𝑘,𝑡−1 − 1 will occur when 𝑡 = Ω𝑖,𝑗=6,𝑘, and consequentially a new mobility score 

regression day was set. This process occurred until the mobility score for hoof 𝑘 was 

1. Thereafter, the hoof fully recovered and was in a susceptible state and all properties 

excluding 𝑗 = 3 were reset to zero. In the case that successful intervention did not 

occur, the hoof remained with a mobility score until successful intervention did occur 

(Figure 2.1(b)). 
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2.2.5 Production effects 

Milk yield. The expected daily milk yield for cows was adjusted by a mean 

percentage reduction of their expected daily milk yield per mobility score. This 

realised an actual daily milk yield for each cow respective of mobility score. The 

actual daily milk yield was calculated with the following equation 

 𝑀𝑖,𝑠,𝑡
(𝑎𝑚𝑦)

= 𝑀𝑖,𝑠,𝑡
(𝑒𝑚𝑦)

× (1 −  𝑀𝑠
(𝑚𝑦𝑟)

) (2.20) 

where 𝑀𝑖,𝑠,𝑡
(𝑎𝑚𝑦)

is the actual milk yield produced by cow 𝑖 with mobility score 𝑠 in 

time-step 𝑡, and 𝑀𝑖,𝑠,𝑡
(𝑒𝑚𝑦)

 is the daily percentage milk yield reduction for mobility score 

𝑠. 

Discarded milk. Cows that were treated with antibiotics respective of disorder 𝑑 

had their actual daily milk yield discarded for 5 days: 𝑀𝑖,𝑑,𝑠,𝑡
(𝑑𝑖𝑠𝑐𝑎𝑟𝑑) = 𝑀𝑖,𝑑,𝑠,𝑡

(𝑎𝑚𝑦)
. 

Feed. As previously described in the Production dynamics section, feed requirements 

are modelled as VEM and expressed as a function of daily FPCM yield. The impact 

of mobility scores on VEM was calculated by taking the difference between expected 

VEM, as a function of expected daily FPCM yield, and actual VEM, as a function 

of actual daily FPCM yield. 

Reproduction. Mobility scores affected the reproductive performance of cows in 

two ways. The first effect was associated with oestrus detection by the farmer. Walker 

et al. (2008) reported that cows with higher mobility scores dedicated less time to 

oestrus behaviour when compared to cows with lower mobility scores. Thus, 

decreasing the probability of oestrus detection by the farmer. A reduced probability 

in oestrus detection was accounted for by including a relative risk of oestrus detection 

for each mobility score where a cow with a mobility score 1 was taken as the reference 

category. The outcome of oestrus detection (Ψ𝑖,𝑠,𝑡
(𝑜𝑒𝑠𝑡)) for cow 𝑖 with mobility score 𝑠 

in time-step 𝑡 was estimated by a binomial process 

 Ψ𝑖,𝑠,𝑡
(𝑜𝑒𝑠𝑡) = 𝐵(1, Λ(𝑜𝑒𝑠𝑡) × 𝜆𝑠

(𝑜𝑒𝑠𝑡)) (2.21) 

where Λ(𝑜𝑒𝑠𝑡) is the base risk of oestrus detection and 𝜆𝑠
(𝑜𝑒𝑠𝑡) is the relative risk of 

oestrus detection with respect to mobility score 𝑠. 

The second effect of mobility scores on reproduction dealt with conception. 

Insemination took place after oestrus was successfully detected by the farmer. The 

probability of conception depended on the number of previous inseminations and 
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mobility score. Alawneh et al. (2011) found that cows with mobility scores ≥3 were 

less likely to conceive compared to cows with mobility scores ≤2. Since it is unclear 

how the specific mobility scores ≥3 effect conception, conception was scaled by 

relative risks associated with mobility scores ≥3 that were drawn from a PERT 

distribution. The probability of conception was calculated with 

 𝑃𝑖,𝑠,𝑡
(𝑐𝑜𝑛𝑐) = Λ𝑖,𝑛,𝑡

(𝑐𝑜𝑛𝑐) × PERT(𝜆𝑚𝑖𝑛,𝑠
(𝑐𝑜𝑛𝑐), 𝜆𝑚𝑒𝑑,𝑠

(𝑐𝑜𝑛𝑐), 𝜆𝑚𝑎𝑥,𝑠
(𝑐𝑜𝑛𝑐)) (2.22) 

where 𝑃𝑖,𝑠,𝑡
(𝑐𝑜𝑛𝑐) is the probability of conception for cow 𝑖 with mobility score 𝑠 in time 

step 𝑡, Λ𝑖,𝑛,𝑡
(𝑐𝑜𝑛𝑐) is the base risk of conception respective of the nth insemination, and 

𝜆𝑚𝑖𝑛,𝑠
(𝑐𝑜𝑛𝑐), 𝜆𝑚𝑒𝑑,𝑠

(𝑐𝑜𝑛𝑐), and 𝜆𝑚𝑎𝑥,𝑠
(𝑐𝑜𝑛𝑐) are the minimum, median and maximum relative risks 

used in the PERT distribution. Finally, the outcome of a successful conception is 

then determined by a binomial process 

 Ψ𝑖,𝑠,𝑡
(𝑐𝑜𝑛𝑐) = 𝐵(1, 𝑃𝑖,𝑠,𝑡

(𝑐𝑜𝑛𝑐)) (2.23) 

where Ψ𝑖,𝑠,𝑡
(𝑐𝑜𝑛𝑐) is the conception outcome. 

Culling. The effect of mobility scores on culling occurred indirectly or directly. 

Indirect culling due to mobility scores occurred in the form of fertility related culling 

due to the impact of mobility scores on a cow's reproductive performance. In the case 

that a mobility score impacted the reproductive performance of a cow, the cow's 

conception period was lengthened. A longer conception period resulted in an 

increased risk of culling. Direct culling due to mobility scores occurred when a cow 

was ultimately culled for SOM, respective of SOM severity. The culling of a cow with 

SOM is based on a daily probability where the general culling rate was taken as the 

base risk and scaled by mobility score, parity, and relative production level risk 

factors. Cows that were subject to culling were immediately removed on the day of 

culling. Furthermore, a culling rule based on a maximum number of additional 

treatments per lactation was assumed. A cow needing an additional treatment that 

would result in this maximum additional lactational treatment threshold being 

surpassed would be culled. We assumed a maximum of 3 additional lactational 

treatments. 

2.2.6 Economic calculations 

In order to calculate the net partial economic result for a farm, the economic in- and 

outflows were first calculated for each cow 𝑖 with mobility score 𝑠 in time-step 𝑡. The 

economic inflow is actual milk returns and the economic outflows are the costs 
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concerning milk yield losses, discarded milk, feed, insemination, culling, hoof 

trimming, veterinary services, labour, and additional treatments. The descriptions 

for each economic flow are described in the subsequent subsections. 

Milk returns. Actual milk returns are based on the actual milk yield and was 

calculated with the following equation 

 𝑅𝑖,𝑠,𝑡
(𝑚𝑖𝑙𝑘) = 𝑀𝑖,𝑠,𝑡

(𝑎𝑚𝑦)
×𝑀(𝑝𝑟𝑖𝑐𝑒) (2.24) 

where 𝑅𝑖,𝑠,𝑡
(𝑚𝑖𝑙𝑘) is the actual milk returns for cow 𝑖 with mobility score 𝑠 in time-step 

𝑡 and 𝑀(𝑝𝑟𝑖𝑐𝑒) is the milk price per kilogram of milk. 

Milk yield loss. The cost of milk yield losses is based on the loss in expected milk 

yield due to a mobility score and is calculated with the following equation 

 𝐶𝑖,𝑠,𝑡
(𝑚𝑖𝑙𝑘) = (𝑀𝑖,𝑠,𝑡

(𝑒𝑚𝑦)
− 𝑀𝑖,𝑠,𝑡

(𝑎𝑚𝑦)
) × 𝑀(𝑝𝑟𝑖𝑐𝑒) (2.25) 

where 𝐶𝑖,𝑠,𝑡
(𝑚𝑖𝑙𝑘)is the cost of milk yield losses for cow 𝑖 with mobility score 𝑠 in time-

step 𝑡. 

Discarded milk. The cost of discarded milk was calculated with the following 

equation 

 𝐶𝑖,𝑠,𝑡
(𝑑𝑖𝑠𝑐𝑎𝑟𝑑) = 𝑀𝑖,𝑠,𝑡

(𝑑𝑖𝑠𝑐𝑎𝑟𝑑) ×𝑀(𝑝𝑟𝑖𝑐𝑒) (2.26) 

where 𝐶𝑖,𝑠,𝑡
(𝑑𝑖𝑠𝑐𝑎𝑟𝑑)is the cost of discarded milk for cow 𝑖 with mobility score 𝑠 in time-

step 𝑡. 

Feed. Feed costs (𝐶(𝑓𝑒𝑒𝑑)) for each cow is based on the cost of VEM and a cows 

required VEM. Since VEM is dependent on 𝑀(𝑎𝑚𝑦) feed costs are adjusted when the 

effect of mobility scores on milk production occurs. 

Reproduction. Reproduction costs considered only the cost to inseminate a cow. 

The costs of insemination (𝐶(𝑖𝑛𝑠)) were accounted for on a per cow per insemination 

basis. 

Culling. We calculated the cost of culling with a depreciation method (Steeneveld 

et al., 2019). Using a depreciation method allows for a more accurate assessment of 

the net worth of a farming operation and accrual adjusted income. Dairy cows are 

treated as capital that diminish in value over time. In other words, cows are culled 
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at the end of their production life because they are no longer fit to produce. We used 

expected number of lactations instead of years of production life. For this 

depreciation method to work, the rearing costs, or purchase price of a replacement 

heifer, less the cull value of the cow is depreciated over its expected number of 

lactations. A cow needs to accumulate this depreciation at the end of its expected 

number of lactations so that the cull value is fully realised. If a cow is culled before 

completing the expected number of lactations, the cull value of the cow will not be 

realised and a capital loss is incurred, which is treated as a culling cost. 

Replacement heifer rearing costs were sampled from a PERT distribution and 

averaged by the number of required replacement heifers. The revenue received for a 

culled cow was calculated by multiplying the slaughter weight of the cow with the 

slaughter price per kilogram. The slaughter weight was based on an average 60 

percent carcass dressing of a cow's body weight (Rutten et al., 2014). The body 

weight of the cows that were culled for SOM reasons had their body weight decreased 

by an adjustment factor drawn from a PERT distribution (Alawneh et al., 2012b). 

The slaughter price per kilogram of slaughter weight was estimated by taking the 

mean of first to third grade slaughter cow prices (Wageningen Economic Research, 

2020) sampled on the day of culling with a sample size equal to the number of culled 

cows. The cost of culling was calculated with the following equation 

 𝐶𝑖,𝑠,𝑡
(𝑐𝑢𝑙𝑙) =

𝐶𝑡
(𝑟𝑒𝑎𝑟) − 𝑅𝑖,𝑠,𝑡

(𝑐𝑢𝑙𝑙)

𝐿
× (𝐿 − [(𝑃𝑎𝑟𝑖,𝑡 − 1) +

𝑀𝑖,𝑠,𝑡
(𝑑𝑖𝑚)

𝑀𝑖,𝑠,𝑡
(𝑒𝑛𝑑)

]) (2.27) 

where 𝐶𝑖,𝑠,𝑡
(𝑐𝑢𝑙𝑙) is the cost of culling cow 𝑖 with mobility score 𝑠 in time step 𝑡, 𝐶𝑡

(𝑟𝑒𝑎𝑟) 

is the average of the rearing costs for the replacement heifers, 𝑅𝑖,𝑠,𝑡
(𝑐𝑢𝑙𝑙) is the revenue 

received for the culled cow 𝑖 with mobility score 𝑠 in time step 𝑡, 𝐿 is the expected 

number of lactations, 𝑃𝑎𝑟𝑖,𝑡 is the parity of cull cow 𝑖 in time step 𝑡, 𝑀𝑖,𝑠,𝑡
(𝑑𝑖𝑚) is the 

day in milk for cull cow 𝑖 in time step 𝑡 and 𝑀𝑖,𝑠,𝑡
(𝑒𝑛𝑑) is the end day of milking for cull 

cow 𝑖 in time step 𝑡 of the current lactation. In summary, annual cow depreciation 

is reflected in the fraction on the left of the multiplication sign and the number of 

incomplete lactations is reflected within the round parentheses on the right of the 

multiplication sign. Mortality related culling costs were accounted for with a revenue 

of €0 and disposed of with a €39/cow cost. 

Hoof trimmer. The hoof trimmer trimmed hooves twice a year. All hind hooves 

were trimmed and only front hooves with a mobility score ≥3. Hoof trimming costs 

𝐶(ℎ𝑡)were estimated per trimmed hoof. These costs include treatments costs if hooves 

had a disorder. 
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Veterinary services. Costs for veterinary services (𝐶(𝑣𝑒𝑡)) are estimated per cow 

considering the costs for the call out fee (𝐶(𝑐𝑜𝑓)), the number of cows requiring 

veterinary assistance, hourly rate of the veterinarian (𝐶(𝑣𝑟𝑎𝑡𝑒)) , the time spent 

ushering a cow into the trimming chute (𝑉(𝑢𝑠ℎ𝑒𝑟)) and treatment time. (𝑉(𝑡𝑟𝑒𝑎𝑡)). 

Treatments per disorder and the associated costs are recorded as veterinary related 

treatment costs. 

Labour. Labour costs (𝐶(𝑙𝑎𝑏𝑜𝑢𝑟))  due to treating cows with SOM were only 

accounted for when the farmer was required to treat them. These costs were 

estimated on a per cow basis considering the time it would take to usher a cow with 

SOM into the trimming chute (𝐹(𝑢𝑠ℎ𝑒𝑟)), the time to treat a hoof (𝐹(𝑡𝑟𝑒𝑎𝑡)) and the 

hourly wage rate of the farmer (𝐶(𝑡𝑟𝑒𝑎𝑡)). Treatments per disorder and the associated 

costs were recorded as farmer related treatment costs. 

Additional treatments. The cost of additional treatments (𝐶(𝑡𝑟𝑒𝑎𝑡)) concern all 

treatments applied by either the veterinarian or the farmer respective of hoof 

disorder. An exception for an additional treatment of HYP was made where only the 

veterinarian treated this hoof disorder since a claw-amputation was required. As a 

result, more time than 𝑉(𝑡𝑟𝑒𝑎𝑡) was needed to treat this disorder and the associated 

cost of HYP treatment by the veterinarian was adjusted by a time factor. 

2.2.7 Model parameterisation 

Input parameters are tabulated in Tables 2.1 – 2.4 (and Tables A 2.1 – A 2.10 in the 

Appendix) and were derived from the most recent and available literature. Input 

parameters were chosen in such a way to represent the Dutch situation as much as 

possible. This was done by choosing, where possible, input parameters with respect 

to Dutch research first. The next best alternatives of input parameters considered 

research conducted in countries with similar dairy production systems such as the 

UK and Germany. Lastly, input parameters that were needed but were not associated 

with the aforementioned countries were finally accepted. Expert opinion was relied 

upon for input parameters that were not at all available in the literature. Inputs 

regarding risk factors reported in the literature as odds ratios were converted to 

relative risks depending on the information and methods used to derive the odds 

ratios as described in the respective studies. Inputs associated with mobility scores 

described by scoring methods that were not the method of Sprecher et al. (1997) 

were adapted according to the definition of scores best fitting that of the mobility 

scoring method of Sprecher et al. (1997). 
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Table 2.1 Parameters and values used for the infection dynamics of hoof 

disorders. All parameter values are implemented in daily time-steps. 

Parameter Description Hoof 

disorder 

(𝑑)a 

Value Lower 

bound 

Upper 

bound 

Source 

𝛾 Risk of hoof 

disorder in 

period 𝑙b,c 

HYP 4.63e–4; 

4.12e–4 

3.16e–4; 

2.88e–4 

5.85e–4; 

5.56e–4 

Somers et al. 

(2003), van der 

Spek et al. 

(2013), 

DigiKlauw 

(2020) 

IDHE 1.72e–5; 

7.18e–4 

1.44e–5; 

7.18e–5 

3.59e–4; 

1.22e–3 

IP 3.84e–4; 

3.84e–4 

1.28e–12; 

1.29e–12 

1.66e–3; 

1.66e–3 

OH 5.48e–5; 

5.48e–5 

5.48e–13; 

5.48e–13 

5.48e–5; 

5.50e–5 

SH 3.97e–3; 

3.42e–4 

1.78e–4; 

1.10e–4 

1.16e–3; 

1.16e–3 

SU 4.79e–4; 

3.64e–4 

3.16e–4; 

3.07e–4 

9.59e–4; 

9.59e–4 

WLD 6.58e–4; 

1.13e–3 

3.78e–4; 

1.32e–4 

1.32e–3; 

1.64e–3 

𝛽 Transmission 

rated 

DD 1.14e–3; 

2.77e–3; 

2.91e–3; 

2.29e–2 

  Biemans et al. 

(2018) 

𝛿 Probability 

of 

reinfectione 

DD 0.0167   Döpfer et al. 

(2012) 

𝛼𝑐 Probability 

of 

spontaneous 

cure 

DDf 1.04e–2; 

3.71e–3 

  Biemans et al. 

(2018) 

𝜂 Calibration 

factor 

DD 1.4   Calibrated 

input 
a HYP = interdigital hyperplasia; IDHE = interdigital dermatitis/heel horn erosion; IP = 

interdigital phlegmon; OH = overgrown hoof; SH = sole haemorrhage; SU = sole ulcer; WLD 

= white line disease; DD = digital dermatitis. 
b Ordered as pasturing (𝑙 = 1), housing (𝑙 = 2). 
c Risk of receiving disorder is estimated by a PERT distribution, i.e., PERT (a = lower 

bound, b = mean, c = upper bound). 
d Ordered as infectious class 1; 2; 3; 4. 
e From DD lesion class 4 to 2. 
f From DD lesion class 1 to 0; 4 to 3. 
 

Table 2.1 details the hoof disorder infection inputs. Inputs with respect to the 

modelled non-infectious hoof disorders (i.e., 𝛾 ) were based on the prevalence 
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estimates from the relevant literature and unpublished data from DigiKlauw (2020). 

With respect to DD, Biemans et al. (2018) described five infectious lesion classes 

(M1, M2, M3, M4, M4.1). We collapsed M3 and M4 into one class since they are 

considered as latent infections that are assumed to have a similar effect on mobility 

and because their transmission rates differed by 1.4×10-4. This resulted in four 

infectious lesion classes (𝑚; Biemans et al., 2018). 

To the best of our knowledge, little information exists on the dynamics of mobility 

scores. Therefore, the risk in transitioning from one mobility score to a succeeding 

score (Λ(𝑚𝑠)) was based on the prevalence and incidence of mobility scores reported 

by Frankena et al. (2009) and Tadich et al. (2010) (Table 2.2). O’Connor et al. 

(2020b) reported associations between lactation stage and mobility scores; to account 

for the progression of mobility scores given the lactation stage we shifted these 

relative risks back by one class (Table 2.2). The interval between mobility score 

transitions respective of hoof disorder were derived through expert knowledge 

elicitation (Table A 2.7). 

The constant daily detection rate (𝜙) was estimated by ensuring that a 100 percent 

probability of detection would occur after a reasonable number of days of 

transitioning into a respective score and were based on Alawneh et al. (2012a) and 

Table 2.2 Risk factors associated with mobility score transitions. 

Risk factor 

(𝜆) 

Mobility 

score 

Class Base 

risk 

Relative 

risk 

Source 

Λ(𝑚𝑠)a 2  0.15  Based on Frankena et 

al. (2009)  3  0.083  

 4  0.03  

Parity  1  1 Reader et al. (2011) 

𝑟 =5  2  1.61 

  3  1.91 

  >3  2.03 

DIMb  <60  1.05 O’Connor et al. (2020b) 

𝑟 = 6  60 – 120  1.9 

  >120  1 

  Dry  1 

RPL  <33.3%  1 O’Connor et al. (2020b) 

𝑟 = 7  33.3% – 

66.6% 

 1.22 

  >66.6%  1.4 
a Risk of transition from mobility score. 
b Days in milk. 
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the authors' expertise (Table 2.3). The number of days to treat a cow following 

detection were based on authors’ expertise. 

Cure rates reported in the literature are sparse with regards to specific hoof disorders. 

We adapted cure probabilities reported in the literature (i.e., Bruijnis et al., 2010; 

Holzhauer et al., 2008a), in combination with authors' expertise, to base cure risks 

(Table A 2.8). The base cure risks were scaled by relative risks corresponding to cow 

characteristics and hoof disorder duration (Reader et al., 2011) (Table A 2.9). 

The effect of mobility scores on production are detailed in Table A 2.10. Production 

losses per mobility score were derived by taking the quotient of an average 305-day 

yield production loss per mobility score reported by O’Connor et al. (2020a) and the 

fraction of a median duration of a SOM case of a maximum mobility score output 

by the model. O’Connor et al. (2020a) reported that no production losses were 

associated with a mobility score 1 of the Agriculture and Horticulture Development 

Board (2020) scoring method; congruent to a mobility score 2 of Sprecher et al. 

(1997). To estimate the effect of mobility scores on milk production corrected for 

305-day lactation we excluded the duration of mobility score 2. The effect of mobility 

scores on fertility was estimated by including relative risks of oestrus detection and 

conception, respective of mobility score. Walker et al. (2008) reported that cows with 

SOM dedicated 64 percent less of their time to oestrus behaviour compared with 

cows that were not SOM. Therefore, the relative risk of oestrus detection was 

incremented by –0.09 from 1 to 0.64 for cows with a mobility score 1 to 5 since it 

was assumed that cows with mobility score 1 are more easily detectable when in 

oestrus compared to cows with SOM and a mobility score 5. The relative risk of 

conception after successful oestrus detection, followed by insemination, is based on 

Alawneh et al. (2012a). The probability of culling due to mobility scores is the 

product of the general culling rate per parity and the relative risk of culling per 

Table 2.3 Farmer detection and intervention parameters with respect to mobility 

scores. 

Parameter Description Mobility score Source 

  2 3 4 5  

𝜙 Constant daily detection 

rate 

0 0.014 0.1 0.5 Based on Alawneh et al. 

(2012a) 

𝜏𝑚𝑖𝑛 Minimum days to 

intervene 

—a — 1 1 Authors' expertise 

𝜏𝑚𝑎𝑥 Maximum days to 

intervene 

— — 21 3  

a — implies that a farmer will not intervene nor call a veterinarian for cow with these scores 

and rather wait until the routine hoof trimming carried out by the hoof trimmer. 
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mobility score where the general culling rate is taken as the base risk (Table A 2.3 

and Table A 2.10). 

The economic parameters are found in Table 2.4. Where monthly price data was 

available the average of the monthly price was taken as the default input. 
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Table 2.4 Economic inputs and parameters used for economic variable 

calculations. 

Parameter Default 

value(s) 

Description Source 

𝑀(𝑝𝑟𝑖𝑐𝑒) 0.3502 Average monthly milk price (€/kg) 

for the years 2016–2020 

Wageningen 

Economic 

Research (2020) 

𝐶(𝑘𝑉𝐸𝑀) 0.1766 Average monthly cost of 

supplements (€/kVEM) for the 

years 2019–2020 

Wageningen 

Livestock 

Research (2020) 

𝐶(𝐻𝑇) 3.5 Cost of hoof trimmer adapted to a 

per hoof basis (€/hoof) 

Blanken et al. 

(2017) 

𝐶(𝑖𝑛𝑠) 12.85 Cost per insemination 

(€/insemination) 

Blanken et al. 

(2017) 

Culling    

𝐿 6 Expected minimum number of 

lactations 

Authors’ expertise 

𝐶(𝑟𝑒𝑎𝑟) PERT(919; 1790; 

3307) 

Rearing costs per replacement heifer 

(€/heifer) 

Nor et al. (2015) 

𝑃(𝑑𝑟𝑒𝑠𝑠) 0.6 Carcass dressing; factor of live body 

weight 

Rutten et al. 

(2014) 

𝑅(𝑘𝑔) sample(2.77, 

2.44, 2.06) 

Sample price received (€/kg) for 

first to third grade slaughter cows; 

average monthly prices for the years 

2016–2020 

Wageningen 

Economic 

Research (2020) 

𝑃(𝑏𝑤.𝑎𝑑𝑗) PERT(0.81; 

0.83; 0.88) 

Adjustment factor for the live body 

weight of cows culled for SOM 

Based on Alawneh 

et al. (2012b) 

Labour    

𝐶(𝑓𝑟𝑎𝑡𝑒) 30.7 Farmer hourly wage rate (€/h) Blanken et al. 

(2017) 

𝐹(𝑢𝑠ℎ𝑒𝑟) 10 Time for farmer to usher cow into 

hoof trimming chute (min/cow) 

Authors’ expertise 

𝐹(𝑡𝑟𝑒𝑎𝑡) 10 Time for farmer to treat hoof 

(min/hoof) 

Authors’ expertise 

Veterinarian    

𝐶(𝑐𝑜𝑓) 31.35 Call out fee (€/visit) Expertise 

𝐶(𝑣𝑟𝑎𝑡𝑒) 139.2 Veterinarian hourly rate (€/h) Expertise 

𝑉(𝑢𝑠ℎ𝑒𝑟) 10 Time for veterinarian to usher cow 

into hoof trimming chute (min/cow) 

Authors’ expertise 

𝑉(𝑡𝑟𝑒𝑎𝑡) 10 Time for veterinarian to treat hoof 

(min/hoof) 

Authors’ expertise 

Treatments  Additional treatment costs (€) per 

disorder per hoof applied by either 

veterinarian or farmer 

Expertise 

𝐶(𝑆𝐻) ; 𝐶(𝑆𝑈) ; 

𝐶(𝑊𝐿𝐷) 

8.1  

𝐶(𝐼𝑃) ; 𝐶(𝐼𝐷𝐻𝐸) 0.6  

𝐶(𝐷𝐷) 2.61  

𝐶(𝑂𝐻) 0  
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𝐶(𝐻𝑌𝑃)a 182.02b; 0c  

a Only differences between costs for veterinarian and farmer deal with interdigital hyperplasia 

(HYP) since only a veterinarian will perform a claw-amputation; high costs account for the 

time involved for this procedure and zero additional treatment costs are incurred by the 

farmer.  
b Veterinarian treatment costs.  
c Farmer treatment costs. 

2.2.8 Model calibration and validation 

Model calibration was a necessary step in model development since inputs were drawn 

from various literature sources and expert opinion. Calibrated inputs were validated 

in five rounds of rational validation by the authors. This included outcome testing of 

various scenarios to test output credibility (i.e., setting certain parameters to 0 or 1); 

individual cows were tracked and traced in the output data; logical testing of 

processes through debugging modes allowing for the inspection of computations 

during a live simulation; and face validity were performed internally. External 

validation was performed through discussions with experts and by comparing certain 

model outputs with results reported in the literature and unpublished data. 

2.2.9 Model outputs and simulation 

Epidemiological outputs include prevalence and cumulative incidence of hoof 

disorders and mobility scores as well as the cumulative incidence of hoof disorders 

per mobility score at the cow-level for either daily, periodical, or yearly time horizons. 

Daily prevalence of mobility scores at the cow-level further allows for outputs 

concerning the duration of SOM cases. A SOM case is defined as the period a cow is 

scored a mobility score ≥2 and the mobility score associated with this case is the 

maximum mobility score of the case. Four maximum mobility score SOM case 

categories were defined as MMSC2, MMSC3, MMSC4 and MMSC5 accounting for 

maximum mobility scores 2 - 5, respectively. Mild forms of SOM are represented by 

MMSC2, MMSC3 and severe forms by MMSC4, MMSC4. 

Economic outputs include the economic in- and outflows per cow 𝑖 per mobility score 

𝑠 in each time-step 𝑡. In turn, the difference between the sum of the economic inflows 

and the sum of the economic outflows represents the net partial economic results for 

a farm with a distribution of mobility scores and in turn a combined SOM prevalence. 

The net partial economic results reflect both the direct and indirect economic effects 
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due to SOM for a farm. The economic effects due to SOM were evaluated during the 

economic analysis. 

2.2.10 Economic analysis 

In order to assess the mean total annual economic effect (Δ) due to SOM in a one-

year time horizon, the net partial economic results of two scenarios, each of 500 

simulations, were compared. The first scenario (𝑧 = 0) was one where hoof disorders 

were absent and consequently SOM was also absent: a "without" scenario. The 

second scenario (𝑧 = 1) was one where hoof disorders were present and consequently 

SOM was also present: a "with" scenario. By this approach, the direct as well as the 

indirect economic effects due to SOM could be evaluated (Rushton, 2009). 

Before obtaining Δ, three preceding procedures were conducted. First, for each of the 

500 simulations (𝑦 = 1, ..., 500) in both scenarios, the economic in- and outflows for 

all cows during the one-year time horizon were summed to obtain the annual total 

of each economic flow, respectively in Equations 2.28 and 2.29. With respect to the 

total annual economic outflows calculated with Equation 2.29 we denote 𝑋 = {milk, 

discard, feed, ins, cull, ht, vet, labour, treat} where 𝑥 ∈ 𝑋 for notational convenience. 

 𝑇𝑅𝑦,𝑧
(𝑚𝑖𝑙𝑘) =∑∑𝑅𝑖,𝑡,𝑦,𝑧

(𝑚𝑖𝑙𝑘)

365

𝑡=1

Θ

𝑖=1

 (2.28) 

 

 𝑇𝐶𝑦,𝑧
(𝑥) =∑∑𝐶𝑖,𝑡,𝑦,𝑧

(𝑥)

365

𝑡=1

Θ

𝑖=1

 (2.29) 

where 𝑇𝑅𝑦,𝑧
(𝑚𝑖𝑙𝑘) is the total annual actual milk returns and 𝑇𝐶𝑦,𝑧

(𝑥) is the total annual 

economic outflow 𝑥 in simulation 𝑦 of scenario 𝑧. 

Secondly, the net partial economic result was calculated with 

 Υ𝑦,𝑧 = 𝑇𝑅𝑦,𝑧
(𝑚𝑖𝑙𝑘) − ∑ 𝑇𝐶𝑦,𝑧

(𝑥)

𝑥

𝑥 = 𝑑𝑖𝑠𝑐𝑎𝑟𝑑

 (2.30) 
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where Υ𝑦,𝑧 is the net partial economic result for simulation 𝑦 of scenario 𝑧. To avoid 

double counting of the total costs in milk losses 𝑇𝐶𝑦,𝑧
(𝑚𝑖𝑙𝑘) was excluded from the 

summation of the total annual economic outflows because it had already been 

accounted for in 𝑇𝑅𝑦,𝑧
(𝑚𝑖𝑙𝑘) since 𝑇𝑅𝑦,𝑧

(𝑚𝑖𝑙𝑘) is based on actual milk returns. 

Thirdly, the net partial economic results of the 500 simulations for both scenarios 

were then bootstrapped 1500 times, rendering 𝑦 = 1, ..., 750,000 (i.e., 500 × 1,500), 

before comparing the net partial economic results of both scenarios. Bootstrapping 

the net partial economic results ensured that an adequate comparison of all 

simulations would be achieved. 

Lastly, a comparison of the net partial economic results for both scenarios was 

performed and Δ due to SOM was obtained with the following equation 

 Δ =
∑ Υ𝑦,0 − Υ𝑦,1
750000
𝑦=1

750000
 (2.31) 

where Δ > 0 entails an economic loss and Δ < 0 entails an economic gain. Δ is the 

total annual economic effect due to SOM, which includes both the direct and indirect 

economic effects due to SOM. We evaluated Δ  further to gain insight on the 

distribution of the direct and indirect economic effects due to SOM. 

The direct economic effects include economic outflows that are attributable to a SOM 

case MMSC2 – MMSC5. These are: the cost of direct milk yield losses (𝐶(𝑚𝑖𝑙𝑘)), the 

cost of discarded milk (𝐶(𝑑𝑖𝑠𝑐𝑎𝑟𝑑)), the cost of feed (𝐶(𝑓𝑒𝑒𝑑)), the cost of culling for 

SOM reasons (𝐶(𝑐𝑢𝑙𝑙)), the cost of hoof trimming (𝐶(ℎ𝑡)), the cost of veterinary 

services (𝐶(𝑣𝑒𝑡)), the cost of labour (𝐶(𝑙𝑎𝑏𝑜𝑢𝑟)), and the cost of additional treatments 

(𝐶(𝑡𝑟𝑒𝑎𝑡)). For convenience we introduce 𝑋 = 𝑋 ∖ {𝑖𝑛𝑠} where 𝑥̅ ∈ 𝑋̅ to represent the 

direct economic outflows due to SOM. These direct economic outflows occurred only 

in the scenario when SOM was present (i.e., 𝑧 = 1: the "with" scenario). This meant 

that a summation of these direct economic outflows during the year per SOM case 

MMSC2 – MMSC5 obtained the total annual direct economic effect due to SOM per 

direct economic outflow. We denote 𝐷𝑇𝐶𝑒,𝑦,1
(𝑥̅)  as the total annual direct economic 

outflow 𝑥̅ per SOM case 𝑒 = (MMSC2, MMSC3, MMSC4, MMSC5) for simulation 

𝑦 in scenario 𝑧 = 1. 

The indirect economic effects include herd-level changes in the expected milk returns, 

changes in culling costs for non-SOM reasons and changes in insemination costs 

between scenarios 𝑧 = 0 and 𝑧 = 1. Because these economic flows occurred in both 
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scenarios the annual totals of these economic flows per simulation were compared 

and are respectively described by Equations 2.32 – 2.34 

 𝐼𝑇𝑅𝑦
(𝑚𝑖𝑙𝑘) = −[(𝑇𝑅𝑦,1

(𝑚𝑖𝑙𝑘) + 𝑇𝐶𝑦,1
(𝑚𝑖𝑙𝑘)) − 𝑇𝑅𝑦,0

(𝑚𝑖𝑙𝑘)] (2.32) 

 

 𝐼𝑇𝐶𝑦
(𝑐𝑢𝑙𝑙) = (𝑇𝐶𝑦,1

(𝑐𝑢𝑙𝑙) − ∑ 𝐷𝐶𝑒,𝑦,1
(𝑐𝑢𝑙𝑙)

MMSC5

𝑒=MMSC2

) − 𝑇𝐶𝑦,0
(𝑐𝑢𝑙𝑙) (2.33) 

 

 𝐼𝑇𝐶𝑦
(𝑖𝑛𝑠) = 𝑇𝐶𝑦,1

(𝑖𝑛𝑠) − 𝑇𝐶𝑦,0
(𝑖𝑛𝑠) (2.34) 

where 𝐼𝑇𝑅𝑦
(𝑚𝑖𝑙𝑘)is the total indirect economic effect on total expected milk returns, 

𝐼𝑇𝐶𝑦
(𝑐𝑢𝑙𝑙)is the total indirect economic effect on culling costs for non-SOM reasons 

and 𝐼𝑇𝐶𝑦
(𝑖𝑛𝑠)is the total indirect economic effect on insemination costs, for simulation 

y due to SOM. 

2.2.11 Sensitivity analysis 

A local sensitivity analysis was performed to assess the effect of parameter 

adjustments on the mean total annual economic loss due to SOM for the default 

scenario. This was performed by 206 parameter adjustments of the default parameter 

inputs (Tables 2.1 – 2.4 and A 2.6 – A 2.10). Parameters used for the infection 

dynamics of HYP, IDHE, IP, OH, SH, SU and WLD were independently increased 

and decreased by 25 percent in both periods. The DD transmission rate, probability 

of reinfection, and spontaneous cure were increased and decreased by 10 and 20 

percent, and the calibration factor was adjusted by 5 percent. The transitional risk 

of mobility scores 2, 3, 4 and 5 were independently increased and decreased by 20 

percent. Mobility score progression intervals respective of hoof disorder were doubled 

and halved. Cure rates of hoof disorders respective of mobility score were increased 

and decreased by 20 percent for farmer, hoof trimmer and veterinarian treatments. 

Relative risks were all increased and decreased by 20 percent. In addition, the relative 

risks with respect to the effect of mobility scores on oestrus detection together with 

conception were set to 1 so that they would not have an effect on reproductive 

performance. The detection constant for all scores was increased and decreased by 

20 percent. The maximum number of days for the farmer to treat a cow with a 

mobility score 4 after successful detection was decreased to 11 and 7 days. Maximum 

additional lactational treatments was increased to 4, 5, and 7. The daily milk yield 

percentage loss for mobility scores 2, 3, 4, and 5 were each increased and decreased 
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by 20 percent. For the milk and slaughter price per kg, minimum and maximum 

prices were approximately 20 percent of the respective means (Wageningen Economic 

Research, 2020). Therefore, the milk and slaughter price per kg were increased and 

decreased by 20 percent. For the rearing costs, minimum and maximum prices were 

already included in the PERT distribution for the default situation. Therefore, the 

entire distribution was shifted in either direction by 20 percent. 

2.3 Results 

Convergence was tested by running 1000 simulations for 10 years. Visual inspection 

of variance in total milk produced, totals of all hoof disorder incidence, total mobility 

score 3, 4 and 5 incidence and total number of cows culled showed that results 

stabilised at 500 simulations. Visual inspection of all daily hoof disorder and mobility 

score prevalence showed consistent trends from the beginning of the sixth year. Herd 

demographics with respect to parity distributions matching the initial inputs from 

the beginning of the sixth year implied that culling rates had also stabilised by this 

time. Hence, a 5-year burn-in period was warranted. After model convergence and 

the burn-in period was identified the following results were derived from a stable year 

simulation. 

 
Figure 2.3 Daily cow-level mobility score ≥2 prevalence. The figure depicts the 

mean daily prevalence (dark line) of the 500 iterations (yellow lines) and one 

random iteration (red line). The black vertical lines represent the median day 

of hoof trimmer visits in the pasturing and housing period at day 7 and 190, 

respectively. 
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Figure 2.3 depicts the daily prevalence of cows with SOM showing that the prevalence 

of these cows decreased twice during the year, which happened after routine hoof 

trimming. The mean daily prevalence of cows with SOM increased during the housing 

period from 38 percent at the start of the housing period (after hoof trimming) to 69 

percent at the end of the housing period (before hoof trimming). Overall, the mean 

yearly prevalence of cows with SOM and a mobility score ≥2 was 57 percent (45 

percent; 68 percent)3. Table 2.5 shows the mean prevalence of mobility scores and 

the cumulative incidence of SOM cases per 100 cows per period. Both metrics showed 

that there were more cows with SOM during the housing period compared with the 

pasture period. Most of these cows had mobility scores 2 and 3, and MMSC2 and 

MMSC3 in both the pasture and housing periods. In contrast, there were fewer cows 

with severe SOM in both periods: mobility scores 4 and 5, and MMSC4 and MMSC5. 

Despite the low prevalence of mobility score 5 and MMSC5 cumulative incidence per 

period in both periods, they increased the most when moving from pasture to housing 

compared with the relative increase in mobility scores 2 – 4 prevalence and MMSC2 

– MMSC4 cumulative incidence. 

The median duration of SOM cases in general was 80 (4; 365) days. MMSC3 had the 

longest median duration of 134 (7; 365) days spending a median of 10 (1; 218) days 

with a mobility score 2 during the SOM case. The median duration of MMSC2, 

MMSC4 and MMSC5 were shorter with 60 (4; 322), 53 (10; 365) and 44 (6; 365) 

days, respectively. The median duration of mobility score 4 of MMSC4 lasted a 

median of 17 (2; 46) days and mobility scores 4 and 5 of MMSC5 respectively lasted 

a median duration of 5 (1; 15) and 5 (2; 13) days. 

 

3 5th and 95th percentiles of the 500 simulations are shown in parentheses. 
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The cumulative incidence per 100 cows per period for infectious hoof disorders 

increased during the housing period while it decreased for non-infectious hoof 

disorders, except for WLD (Table 2.6). Small differences were seen in the cumulative 

incidence per 100 cows per period between the pasture and housing period for most 

hoof disorders. The hoof disorders that showed the largest difference in cumulative 

incidence per 100 cows per period between the pasture and housing period were IDHE 

and WLD. Most hoof disorders had a cumulative incidence per 100 cows per period 

below 10 in both periods while WLD and DD were the only two hoof disorders with 

a cumulative incidence per 100 cows per period above 10. The DD cumulative 

incidence per 100 cows per period during both the pasture and housing periods was 

highest of all hoof disorders. Table 2.7 shows that the high DD cumulative incidence 

per 100 cows per period accounted for approximately a third of MMSC2 (30 percent), 

MMSC3 (33 percent) and MMSC4 (29 percent) SOM cases. Although the IP 

cumulative incidence per 100 cows per period in both periods were lower compared 

with DD (Table 2.6), IP accounted for most of the MMSC5 SOM cases (38 percent). 

Wide variations between 0 and 100 percent were seen in the DD, IP and WLD 

prevalence of MMSC5 cumulative incidence per 100 cows per period due to the low 

cumulative incidence per 100 cows per period of MMSC5. 

Table 2.5 Summary of mobility score mean prevalence (%) and SOM case mean 

cumulative incidence per 100 cows per period rounded to 2 decimal points (5th 

and 95th percentiles shown in parentheses). 

 Pasture period Housing period 

Mobility score Prevalence 

1 45.37 (35.03; 57.33)  43.36 (32.94; 55.02) 

2 33.43 (26.24; 40.52)  34.85 (28.14; 41.41) 

3 20.33 (13.12; 27.44)  20.85 (13.91; 27.97) 

4 0.85 (0.36; 1.45)    0.91 (0.39; 1.54)   

5 0.02 (0.00; 0.08)    0.03 (0.00; 0.08)   

SOM case Cumulative incidence 

MMSC2 33.66 (23.20; 46.00) 38.59 (28.80; 50.00) 

MMSC3 16.38 (10.40; 23.00) 19.15 (12.00; 26.00) 

MMSC4 7.07 (3.20; 11.00)  7.72 (4.00; 12.00)  

MMSC5 0.65 (0.00; 2.00)   0.81 (0.00; 2.00) 
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Table 2.7 Mean hoof disorder prevalence per annual SOM case cumulative 

incidence per 100 cows per year (5th and 95th percentiles shown in parentheses). 

Hoof 

disordera 

SOM case 

 MMSC2 MMSC3 MMSC4 MMSC5 

DD   30.68 

(7.47; 46.83) 

33.91 

(9.07; 54.49)  

29.56 

(0.00; 52.66)  

24.98 

(0.00; 100.00) 

HYP  9.12  

(5.49; 13.67) 

8.74 

(3.84; 14.48)  

7.27 

(0.00; 19.05) 

- 

IDHE 10.57 

(6.73; 15.67) 

10.06 

(4.57; 16.67)  

6.90 

(0.00; 17.42) 

5.51 

(0.00; 50.00) 

IP   9.57 

(5.56; 14.03) 

5.08 

(1.23; 9.79) 

22.43 

(6.21; 40.00) 

35.80 

(0.00; 100.00) 

OH   1.22 

(0.00; 2.66) 

- -  - 

SH   11.64 

(7.26; 17.16) 

10.91 

(5.22; 18.45)  

7.88 

(0.00; 20.00) 

4.89 

(0.00; 50.00) 

SU   9.59 

(6.21; 14.20) 

10.67 

(4.80; 17.58)  

9.09 

(0.00; 20.00) 

7.79 

(0.00; 50.00) 

WLD  17.62 

(11.81; 24.81) 

20.63 

(12.67; 30.80) 

16.87 

(4.17; 32.13) 

21.03 

(0.00; 100.00) 
a DD = digital dermatitis; HYP = interdigital hyperplasia; IDHE = interdigital dermatitis/ 

heel horn erosion; IP = interdigital phlegmon; OH = overgrown hoof; SH = sole 

haemorrhage; SU = sole ulcer; WLD = white line disease 

Cows that had SOM during their conception period had on average 6 (−23; 57) 

additional days to their first service compared with cows that were not SOM during 

their conception period. The number of additional days to the first service for cows 

Table 2.6 Summary of mean hoof disorder cumulative incidence per 100 cows 

per period rounded to 2 decimal points (5th and 95th percentiles shown in 

parentheses). 

Hoof disordera Pasture period Housing period 

DD   28.99 (7.20; 49.60)  29.42 (8.00; 51.20)  

HYP  8.21 (4.76; 12.00)  7.34 (3.20; 12)  

IDHE 3.19 (0.80; 5.60)   12.42 (7.96; 17.60)  

IP   9.41 (4.80; 13.60)   9.50 (5.60; 13.60)  

OH   1.31 (0.80; 2.40)   1.31 (0.80; 2.44) 

SH   8.90 (4.76; 13.60)  8.00 (4.00; 12.80) 

SU   9.30 (5.56; 13.60)  8.16 (4.80; 12.00) 

WLD  12.70 (8.00; 17.60)  17.75 (12.00; 24.00)  
a DD = digital dermatitis; HYP = interdigital hyperplasia; IDHE = interdigital dermatitis/ 

heel horn erosion; IP = interdigital phlegmon; OH = overgrown hoof; SH = sole 

haemorrhage; SU = sole ulcer; WLD = white line disease 
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with a maximum mobility score 2 during their conception period was 7 (−23; 57) 

days compared with cows that had a maximum mobility score 1 during their 

conception period. The number of additional days to the first service increased 

linearly with each increase in maximum mobility score during the conception period 

to 25 (−7; 76) days for cows with a maximum mobility score 5 during the conception 

period. Only 2 (0; 5) cows with a mobility score 1 during the conception period were 

culled due to fertility reasons. In contrast, 19 (12; 26) cows with a maximum mobility 

≥2 were culled for fertility reasons: most with mobility scores 2 (42 percent) and 3 

(47 percent). The mean number of cows culled for SOM reasons was 6 (2; 11). The 

total number of cows culled per mobility score for SOM reasons was on average 2 (0; 

4), 1 (0; 3); 3 (0; 6) and 0 (0; 1) for mobility score 2 – 5, respectively. Milk yield 

losses of 270 (0; 704) and 181 (0; 437) kg for MMSC4 and MMSC5 were greatest, 

respectively. Cows experiencing MMSC3 had an average milk yield loss of 86 (0; 270) 

kg and no milk yield losses occurred for cows experiencing MMSC2. 

The mean total annual economic effect (Δ) due to SOM resulted in an annual 

economic loss of €15,342 (€2,562; €28,904): an annual loss of €122 per average cow. 

Total annual production losses4, expenditures5 and labour contributed 96 percent, 2 

percent, and 2 percent to the total annual economic loss, respectively. 

As shown in Table 2.8, the mean direct annual economic loss amounted to 59 percent 

of the mean total annual economic loss and was mostly composed of direct milk yield 

losses (52 percent) and culling (31 percent). A significant amount of the direct milk 

yield losses was due to MMSC3 (54 percent) and MMSC4 (43 percent), and for culling 

mostly due to MMSC4 (56 percent). MMSC3 and MMSC4 SOM cases during the 

year respectively contributed 34 percent and 48 percent to the mean direct annual 

economic loss. 

 

4 Milk production losses, culling, discarded milk. 
5 Veterinary services, treatments, hoof trimming, inseminations, and feed. 
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The mean indirect annual economic loss was €6,281 (€−6,174; €19,499). The largest 

contributor to the mean indirect annual economic loss was due to changes in culling 

costs for cows not directly culled as a result of SOM. This loss amounted to €4,053 

(€−2,883; €11,373). The second largest indirect annual economic loss arose due to 

herd-level changes in the expected milk returns and amounted to €2,185 (€−8,242; 

€13,143). The third and last indirect annual economic loss was due to changes in 

insemination costs amounting to €43 (€−270; €360). 

The sensitivity analysis showed that economic parameters concerning the cost of 

culling are important for the total annual economic loss due to SOM (Figure 2.4). 

Increasing replacement heifer rearing costs by 20 percent resulted in an increase of 

the total annual economic loss to €22,354 while reducing these costs resulted in 

€8,379. A 20 percent increase and decrease for the price received per kg of slaughter 

weight for a culled cow respectively resulted in a decrease of the total annual 

economic loss to €12,097 and increase to €18,640. In addition, the economic 

importance of culling due to SOM was shown by the sensitivity analysis in two ways. 

Firstly, allowing the maximum number of additional treatments in one lactation to 

Table 2.8 Mean total annual direct economic losses (€) due to SOM cases (5th 

and 95th percentiles shown in parentheses). 

Cost variable SOM case Total 

MMSC2 MMSC3 MMSC4 MMSC5  

Milk losses 0 

(0; 0) 

2,580 

(1,714; 

3,399) 

2,055 

(1,159; 

3,161) 

136 

(0; 357) 

4,771 

(3,320; 6,223) 

Culling 700 

(0; 2,186) 

454 

(0; 1618) 

1579 

(0; 3703) 

79 

(0; 643) 

2,812 

(626; 5,482) 

Discarded milk 429 

(166; 707) 

240 

(70; 464) 

200 

(39; 387) 

28 

(0; 95) 

898 

(483; 1,331) 

Veterinary 

services 

0 

(0; 0) 

0 

(0; 0) 

223 

(0; 667) 

222 

(0; 594) 

445 

(0; 1,217) 

Labour 0 

(0; 0) 

0 

(0; 0) 

276 

(148; 440) 

5 

(0; 20) 

281 

(154; 445) 

Treatments 0 

(0; 0) 

0 

(0; 0) 

174 

(59; 469) 

19 

(0; 49) 

193 

(68; 480) 

Hoof trimmer 0 

(0; 0) 

18 

(3; 41) 

2 

(0; 7) 

0 

(0; 0) 

20 

(3; 45) 

Feed 0 

(0; 0) 

−194 

(−255; 

−129) 

−155 

(−239; 

−87) 

−10 

(−27; 0) 

−360 

(−468; −251) 

Total 1,129 

(265; 

2,644) 

3098 

(1,978; 

4,498) 

4354 

(0; 1,368) 

480 

(0; 1,459) 

9,061 

(5,932; 

12,983) 
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be increased by 2 and then 4 treatments reduced the total annual economic loss to 

€13,862 and €13,305, respectively. Secondly, when mobility scores had no effect on 

oestrus detection and conception, by setting the respective relative risks to 1, less 

cows were culled for fertility reasons resulting in a reduced total annual economic 

loss of €12,257. Increasing and decreasing the transitional risk from a mobility score 

2 respectively increased and decreased €17,662 and €13,110. Adjustments in the 

parameters concerned with only DD infection dynamics showed to have an important 

effect on the total annual economic loss due to SOM. 

 
Figure 2.4 Top 10 percent most important results from the sensitivity analysis, 

showing the positive or negative effect of parameter adjustments on the total 

annual economic loss due to SOM ordered by magnitude of effect per model 

component. The y-axis shows the important parameters with their respective 

adjustments in parentheses. The x-axis shows the relative effect of parameter 

adjustments on the total annual economic loss due to SOM. 
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2.4 Discussion 

The bio-economic simulation model we developed is the first to simulate the economic 

effect of all SOM case severities in association with the incidence and dynamics of 

hoof disorders at hoof level, providing insight on the direct and indirect economic 

effect due to SOM. It includes two epidemiological modules, the Greenwood and the 

Reed-Frost model. This makes our model the first bio-economic model with respect 

to hoof disorders and SOM to simulate the incidence of infectious DD infections with 

a contagious disease spread module. Although our model includes other infectious 

hoof disorders (i.e., IDHE and IP), their incidence was modelled as environmental 

infections due to a lack in information pertaining to their transmission dynamics. As 

this information for these infectious hoof disorders become more available, they can 

be included in the contagious disease spread module. 

The simulated mean annual prevalence of hoof disorders in our study was 58 percent, 

which is lower than the 80 percent prevalence previously reported by Somers et 

al.(2003). However, unpublished data from DigiKlauw (2020) showed that the 

prevalence of hoof disorders in the Netherlands has been decreasing since 2007 

reaching a 55 percent prevalence in 2020. Despite this, the prevalence of hoof 

disorders in our study are longitudinal estimates that consider changes in hoof 

disorder prevalence after hoof trimming occurred. Whereas in practice, prevalence 

estimates are cross-sectional at the time of hoof trimming (DigiKlauw, 2020). 

The routine hoof trimming showed visible positive effects as the prevalence of HYP, 

IDHE, IP, OH, SH, SU, and WLD decreased after hoof trimmer visits. The positive 

effect, however, were only short lasting since the prevalence increased quickly after 

hoof trimming. Consequently, the prevalence of mobility scores ≥2 increased, which 

has also been observed by Frankena et al. (2009). On the other hand, a positive effect 

of hoof trimming on the prevalence of DD was not as clear. Small increases in DD 

prevalence occurred for approximately 3 months after hoof trimming in both periods 

before an observable decrease in DD prevalence occurred. This corresponds to the 

positive associations of DD prevalence and short hoof trimming intervals (<6 

months) compared with longer hoof trimming intervals (≥12 months) that have 

previously been observed (Holzhauer et al., 2006). 

Parameterisation of the transitional risks between mobility score progression per hoof 

disorder was challenging due to a lack of relevant information. Therefore, a general 

transitional risk per mobility score was assumed irrespective of hoof disorder, while 

studies have shown that some hoof disorders are more prevalent in mild forms of 

SOM than in severe forms and vice versa (Blackie et al., 2013; Tadich et al., 2010). 

Despite this, the simulated results from our study showed that DD, IP, and WLD 

were the three most common hoof disorders that occurred with the severe MMSC4 
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and MMSC5 forms of SOM. These disorders also have previously been reported as 

the more common hoof disorders associated with severe SOM (Charfeddine & Pérez-

Cabal, 2017; Dolecheck et al., 2019; Tadich et al., 2010). On the other hand, SU is 

often associated with higher mobility scores due to its large impact on a cow's gait 

(Blackie et al., 2013; Tadich et al., 2010) and this is not shown in our results. The 

general transitional risk between mobility scores and assuming that a hoof could not 

have more than one hoof disorder at a time could restrict the potential losses in 

production if the hoof disorder with highest prevalence had the lowest effect on 

mobility, thus the lowest impact on production, or vice versa. This demonstrates a 

limitation in the model. More information on the transitional risks between mobility 

scores respective of hoof disorders as well as hoof level comorbidities are needed to 

simulate these specific dynamics more accurately. 

The annual distribution of mobility scores in our model corresponds with what has 

been previously reported (Frankena et al., 2009; O’Connor et al., 2019; Tadich et al., 

2010). The annual prevalence of cows with SOM and a mobility score ≥2 from our 

model was 56 percent. This is higher than the 17 percent found in The Netherlands 

(Amory et al., 2006), 20 percent found in Ireland (Somers et al., 2019) and 21 percent 

found in the UK (Randall et al., 2018). Our annual prevalence of cows with SOM is 

higher because we included mobility score 2 in our definition of SOM, whereas the 

aforementioned studies omit this mobility score in their definitions. When we omitted 

mobility score 2 from the annual prevalence of cows with SOM in our study the 

annual prevalence was 21 percent; corresponding to the aforementioned studies. 

Other studies investigating the economic losses associated with hoof disorders exist 

(Bruijnis et al., 2010; Charfeddine & Pérez-Cabal, 2017; Guard, 2008; Willshire & 

Bell, 2009), but do not include the effect of hoof disorders on cow mobility. Therefore, 

comparing the economic losses of SOM cases from our study with the economic losses 

of mild or severe hoof disorder cases reported in the aforementioned studies is 

difficult. However, results from our model show that culling and milk yield losses 

contribute the most to the total direct economic loss due to SOM. These results are 

in general agreement with other studies investigating the economic losses due to hoof 

disorders (Bruijnis et al., 2010; Cha et al., 2010; Charfeddine & Pérez-Cabal, 2017; 

Guard, 2008; Willshire & Bell, 2009). 

Simulation studies that estimated the direct economic loss due to SOM have only 

considered severe SOM. The mean economic loss in our study for severe SOM cases 

MMSC4 and MMSC5 were respectively €226 and €259 (a combined mean of €229). 

These results are higher than the estimated mean economic loss of €192 per SOM 

case reported by Ettema et al. (2006) but within the range of €185 – €333 reported 

by Liang et al. (2017). New results from our model show that the costs associated 

with mild forms of SOM per MMSC2 and MMSC3 were respectively €13 and €49: 
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significantly lower than the losses of MMSC4 and MMSC5. However, these mild 

forms of SOM contribute 47 percent to the total direct economic loss due to SOM 

because of the high MMSC2 and MMSC3 incidence suggesting that previous studies 

underestimate the total direct economic losses due to SOM. In addition, these new 

calculations imply that the herd-level economic losses due to mild forms of SOM are 

no less important than those due to severe forms of SOM. This observation is 

supported by the results from the sensitivity analysis whereby adjustments made to 

the transitional risk from a mobility score 2 to a mobility score 3 increased the total 

annual economic loss by 15 percent. Cows with mild forms of SOM are treated during 

the routine hoof trimming that happens twice a year. Treating these cows on a more 

regular basis may help reduce the economic losses associated with mild SOM, reduce 

the number of cows transitioning to a mobility score 4 and increase cow welfare. 

An interesting result of our study is the distribution of total annual economic losses 

of SOM. We discovered that the indirect economic losses due to SOM contributed 

41 percent to the total annual economic loss, which is a substantial proportion. The 

economic analysis showed that changes in culling costs for non-SOM reasons and 

herd-level changes in expected milk returns were the most significant. 

An increase in indirect culling costs due to culling for non-SOM reasons arose because 

of the effect that SOM had on reproductive performance (i.e., oestrus detection and 

conception). This meant that more cows on average were culled for fertility reasons 

before completing their expected number of lactations. This was confirmed in the 

validation rounds showing that there was no mean effect on the number of cows 

culled for fertility reasons in a scenario where SOM had no effect on reproductive 

performance compared with the "without" SOM scenario. Poor reproductive 

performance is often the primary cause of culling (Nor et al., 2014). However, culling 

is multi-factorial in practice and fertility related culling may be due to a culmination 

of health problems that lead to poor reproductive performance.  Results from the 

"with" SOM scenario showed that most of the cows culled for fertility reasons had a 

maximum mobility score 2 or 3 during the conception period. These results further 

suggest that better detection leading to earlier intervention of the mild mobility 

scores may benefit reproductive performance, in turn reducing the risk of fertility 

related culling costs indirectly due to SOM. 

The second indirect economic losses in expected milk returns reflect production losses 

that arose with more young replacement heifers entering the herd due to an increased 

culling rate because of SOM. Young replacement heifers produce less milk than older 

cows. Therefore, the total milk yield of a younger herd in the "with" SOM scenario 

is lower when compared with an older herd in the "without" SOM scenario. This was 

confirmed in the validation rounds when the mean total annual milk yield in a 

scenario where SOM had no effect on culling was the same as that of the "without" 
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SOM scenario. The wide variation between the 5th and 95th percentiles for the losses 

in expect milk yield in the "with" SOM scenario is due to the stochastic 

determination of each cow’s RPL that was either culled or entered the herd. 

Our simulation study has helped provide insight on the direct and indirect losses due 

to SOM for all level of severity resulting from hoof disorders. At herd-level, the results 

show that mild SOM contributes significantly, both directly and indirectly, to the 

total annual economic loss due to SOM. Farm personnel are less sensitive in detecting 

mild forms of SOM, and if detected treatment is often prolonged (Alawneh et al., 

2012a). This may be due to farmers perceptions and attitudes towards SOM (Bruijnis 

et al., 2013) or work plan. It is also possible that mild SOM is not detected by farmers 

at all because farmers perceive SOM prevalence to be lower than the actual SOM 

prevalence (Bruijnis et al., 2013). This entails that mild SOM is often only treated 

twice a year during routine hoof trimming. Emphasis must be placed on the economic 

importance of mild forms of SOM that occur more frequently than severe forms. The 

use of sensors to continuously monitor the mobility of cows may help identify cows 

with mild SOM faster and more frequently, promote cow specific intervention in a 

timelier manner and in turn reduce the economic losses due to SOM and improve 

cow welfare. In addition, sensor generated data could help better parameterise 

uncertain input variables used in our model and other bio-economic simulation 

models. 

The developed bio-economic model is flexible and can be applied for a wide range of 

options for various situations with necessary parameter adjustments. With the 

model's ability to simulate the dynamics of SOM per mobility score, it can be further 

applied to evaluate cost-effectiveness of different management strategies tailored to 

the dynamics of specific mobility scores found in other dairy systems. In addition, 

the model also provides a foundation for research on the impact of mobility scores 

on cow welfare. 

2.5 Conclusion 

The dynamic, stochastic, and mechanistic bio-economic simulation model described 

in this study is a novel simulation model that provides an estimation on the economic 

losses due to SOM in relation to the hoof disorders described within this study. The 

total annual economic loss due to SOM for a typical Dutch dairy farm of 125 cows 

was €15,342. This loss was composed of direct and indirect economic losses. The 

total direct economic loss was €9,061, of which 47 percent was due to cows with mild 

forms of SOM. The model generated novel insights on the indirect economic losses 

due to SOM: making up 41 percent of the total annual economic loss due to SOM. 
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These indirect economic losses were mostly due to decreases in the expected milk 

returns and increases in culling costs for non-SOM reasons. These results, along with 

the direct economic losses, imply that the economic losses due to SOM are more 

substantial than farmers might think. The results from this study can help stimulate 

dairy farmer awareness with respect to the economic importance of SOM, especially 

in the mild forms. Timely intervention of cows with SOM could reduce the economic 

losses and lead to improved cow health and welfare provided suitable intervention 

methods can be established.  
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2.6 Appendix 
  

Table A 2.1 Distribution of cow parity. 

Parity Default 

value 

Distribution Description Source 

1 0.31 Sample Proportion of cows in parity 1 - 

≥5 

CRV 

(2019) 

2 0.26    

3 0.20    

4 0.12    

≥5 0.11    
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Table A 2.2 Reproduction related parameters and values. 

Parameter Default 

values(s) 

Distribution Description Source 

First 

oestrus 

 Sample Days to first oestrus post-

calving 

Authors’ 

expertise 

Parity 1 14 – 27     

Parity ≥2 18 – 21     

Following 

oestrus 

21 Fixed Days to subsequent oestrus Authors’ 

expertise 

Λ(𝑜𝑒𝑠𝑡) 0.55 𝐵(𝑛, 𝑃) Base risk of oestrus 

detection 

Based on 

Rutten et al. 

(2014) 

Λ(𝑐𝑜𝑛𝑐)  𝐵(𝑛, 𝑃) Base risk of successful 

conception following nth 

insemination (Ins.) 

Based on 

Inchaisri et 

al. (2011) 

Ins. 1 0.69    

Ins. 2 0.58    

Ins. 3 0.54    

Ins. 4 0.50    

Ins. 5 0.42    

Ins. ≥6 0.16    

Gestation 

(days) 

𝜇 = 281; 𝜎 

= 3 

𝒩(𝜇, 𝜎) Gestation period length Based on 

Inchaisri et 

al. (2010) 

VWP 

(days) 

84 Fixed Voluntary waiting period Inchaisri et 

al. (2010) 

DPL (days) 56 Fixed Dry period length Inchaisri et 

al. (2010) 
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Table A 2.3 Culling and replacement parameters and values. 

Parameter Default 

values(s) 

Distribution Description Source 

General 

culling 

 𝐵(𝑛, 𝑃) Daily probability for general 

culling reasons for cows in 

parity 1 – ≥5 

Calibrated 

input 

Parity 1 6.58e – 5    

Parity 2 1.53e – 4    

Parity 3 1.53e – 4    

Parity 4 2.19e – 4    

Parity ≥5 4.38e – 4    

Yield 

threshold 

15 

Fixed Daily milk yield (kg) 

threshold for cows culled due 

to infertility 

Authors’ 

expertise 

Mortality  

0.02 

𝐵(𝑛, 𝑃) Probability of general cull 

cow succumbing to death 

Authors’ 

expertise 

Replacement 

0.3 

Geometric Probability of heifer replacing 

a dead cow on a given day 

within a month 

Calibrated 

input 
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Table A 2.4 Lactation curve parameters and values. 

Parameter Default 

values(s) 

Distribution Description Source 

𝑀(𝑎𝑑𝑦)  Fixed Average daily yield (kg) for 

cows in parity 1 – ≥3 

Kok et al. 

(2017) 

Parity 1 23.9    

Parity 2 28.9    

Parity ≥3 30.5    

𝑎  Fixed Factors modelling shape of 

lactation curve 

Kok et al. 

(2017) 

Parity 1 31.6    

Parity 2 40.6    

Parity ≥3 44.1    

𝑏  Fixed   

Parity 1 −0.0447    

Parity 2 −0.0708    

Parity ≥3 −0.0835    

𝑐 −16.1 Fixed   

𝑘 0.06 Fixed   
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Table A 2.5 Cow energy requirement (VEM) parameters and values. 

Parameter Default 

values(s) 

Distribution Description Source 

Growth  Fixed Daily growth energy 

requirements for cows in 

parity ≤2 

van Es (1978) 

Parity 1 660    

Parity 2 330    

Pregnancy 

stage 

 Fixed Daily energy requirements 

for pregnant cows from 4 

months to last month 

before calving 

Remmelink et 

al. (2015) 

4 months 

pre-

calving 

450    

3 months 

pre-

calving 

850    

2 months 

pre-

calving 

1500    

1 month 

pre-

calving 

2700    
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Table A 2.6 Risk factors associated with hoof disorder 𝒅. 

Risk 

factor 

(λ) 

Class Hoof disorder (d) relative risks Source 

HYP IDHEa IDP OH SH SU WLD DDa,b 

Parity 1 1 1; 

1 

1 1 1 1 1 1; 

1.05 

Somers et al. 

(2005a, 2005b); 

Holzhauer et al. 

(2008b); 

Barker et al. 

(2009) 

 

𝑟 = 1 2 1 1.25; 

1.55 

1 1 1 1 1.51 0.97; 

1.01 

 3 1 1.92; 

1.89 

1 1 1 1.31 1.9 0.91; 

0.95 

 ≥4 1 1.97; 

2.04 

1 1 1 1.92 2.92 0.62; 

0.66 

Lactation 

stage 

≤30 1 1 1 1 1 1 1 1 
Somers et al. (2005a);  

Holzhauer et al. 

(2008b);  

Holzhauer et al. 

(2006) 
 

𝑟 = 2 31 – 60  1 1.51 1 1 1 1.32 1 1.2 

 >60 1 1.78 1 1 1 1.63 1 1.2 

 Dry 1 0.72 1 1 1 1.16 1 1 

RPLc <20% 1 1 1 1 1 1 1 1  

𝑟 = 3 21 – 

40% 

1 1 1 1 1 1 1 1 

 41 – 

60% 

1 1 1 1 1 1 1 1 

 61 – 

80% 

1 1 1 1 1 1 1 1 

 >80% 1 1 1 1 1 1 1 1 

Hoof Front 0.05 0.02 0.02 0.05 0.05 0.05 0.05 0.05 Based on  

Alvergnas et al.  

(2019) 

𝑟 = 4 Hind 1 1 1 1 1 1 1 1 

a Parity risk factors are provided for both periods (pasturing; housing). 
b Effect of housing on parity risk factor is adjusted by approximate estimation. 
c RPL = relative production level. 
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Table A 2.7 Time spent with each mobility score before probable transition to 

the succeeding mobility score for hoof disorder 𝒅. 

Parametera Mobility 

score 

Daysb 

HYP IDHE IDP OH SH SU WLD DD 

𝑇𝑚𝑖𝑛
↑  2 7 9 0 0 7 3 1 14 

 3 7 14 0 0 13 3 2 4 

 4 14 7 0 0 4 3 2 4 

𝑇𝑚𝑎𝑥
↑  2 7 17 1 0 17 4 2 17 

 3 7 22 1 0 28 4 2 7 

 4 14 14 1 0 14 4 3 7 

𝑇𝑚𝑖𝑛
↓  2 2 2 0 0 5 2 2 2 

 3 2 2 0 0 0 2 2 2 
 4 1 1 1 0 0 2 2 1 

 5 1 1 1 0 0 1 1 1 

𝑇𝑚𝑎𝑥
↓  2 3 3 1 1 10 3 3 3 

 3 3 3 1 0 0 2 2 3 

 4 2 2 1 0 0 2 2 3 

 5 2 2 1 0 0 1 1 1 
a Intervals between score transitions; superscripts ↑ and ↓ denote mobility score progression 

and recovery, respectively. 
b Mean values of expert opinion except for DD mobility score 2 where 𝑇𝑚𝑖𝑛

↑  = 14 and 𝑇𝑚𝑎𝑥
↑  

= 17 were derived by the sojourn time a DD lesion would spend in lesion class M1 as per 

Biemans et al. (2018). 
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Table A 2.8 Hoof disorder cure base risk after treatment by farmer, hoof 

trimmer or veterinarian. 

Hoof disordera Mobility score cure base risks Source 

2 3 4 5 

Treated by farmer 

DD 0.79 0.79 0.79 0.79 Holzhauer et al. (2008a) 

HYPb 0 0 0 0 Authors’ expertise 

IDHE 0.65 0.65 0.6 0.5 Authors’ expertise 

IDP 1 0.98 0.98 0.98 Bruijnis et al. (2010) 

OH 1 1 1 1 Authors’ expertise 

SH 0.7 0.6 0.55 0.45 Authors’ expertise 

SU 0.79 0.68 0.63 0.53 Authors’ expertise 

WLD 0.79 0.68 0.63 0.53 Authors’ expertise 

Treated by hoof trimmer or veterinarian 

DD 0.79 0.79 0.79 0.79 Holzhauer et al. (2008a) 

HYP 1 0.8 0.8 0.8 Authors’ expertise 

IDHE 0.8 0.7 0.65 0.6 Authors’ expertise 

IDP 1 1 0.98 0.98 Bruijnis et al. (2010) 

OH 1 1 1 1 Authors’ expertise 

SH 0.75 0.65 0.6 0.5 Authors’ expertise 

SU 1 0.8 0.75 0.75 Authors’ expertise 

WLD 1 0.8 0.8 0.8 Authors’ expertise 
a Base cure risks had to be estimated due to the little information available. Where 

information was available it was used. 
b Farmers will not treat a case of interdigital hyperplasia (HYP) since a veterinarian is 

required to perform a claw-amputation. 
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Table A 2.9 Risk factors associated with cure of hoof disorder. 

Risk factor (λ) Class Relative risk Source 

Parity 1 1 Reader et al. (2011) 

𝑟 = 8 2 1.05  

 3 0.91  

 ≥4 0.8  

Lactation stage <90 1 Reader et al. (2011) 

𝑟 = 9 90 – 180 0.92  

 >180 0.8  

 Dry 1  

Duration of disorder (days) <14 1 Reader et al. (2011) 

𝑟 = 10 15 – 28 0.7  

 29 – 126 0.54  

 >126 0.28  
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Table A 2.10 Mobility score effects on production parameters. 

Parameter Class Source 

 Mobility score  
 1 2 3 4 5  

𝑀(𝑚𝑦𝑟)a 0 0 0.05 0.48 0.53 Based on 

O’Connor 

et al. 

(2020a) 

𝜆(𝑜𝑒𝑠𝑡)b 1 0.91 0.82 0.73 0.64 Walker et 

al. (2008) 

𝜆(𝑐𝑜𝑛𝑐)c,d 1 1 PERT(0.41, 0.78, 0.88)  

Cullinge 1 1.07 1.18 1.48 1.48 Walker et 

al. (2008) 

 Parity  

 1 2 3 4 ≥5  

Cullinge 1 1.1 1.2 1.3 1.5 O’Connor 

et al. 

(2020a) 

 Relative production level  

 ≤20% 21 – 40% 41 – 60% 61 – 80% ≥80%  

Cullinge 1 0.34 0.24 0.16 0.06 Booth et al. 

(2004) 
a Daily percentage milk yield reduction per mobility score. 
b Relative risk of oestrus detection where the default input in Table A 2.2 is taken as the 

base risk. 
c Relative risk of conceiving after successful oestrus detection and artificial insemination 

(AI) where the default probability of conception after insemination inputs in Table A 2.2 

are taken as the base risks. 
d PERT(min, med, max) distribution is distributed over mobility scores ≥3. 
e Relative risk of a cow being culled with mobility score 1 – 5 in parity 1 – ≥5 and in one 

of five relative production level classes where general culling rate in Table A 2.3 is taken as 

the base risk. 
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Chapter 3  

A new approach and insights on 

modelling the impact of 

production diseases on animal 

welfare 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: Edwardes, F., van der Voort, M., Rodenburg, T.B., 

and Hogeveen, H. (2023). A new approach and insights on modelling the impact of 

production diseases on animal welfare. Animal (revised and resubmitted). 
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Abstract 
Animal welfare is becoming an important consideration in animal health related 

decision making. Incorporating animal welfare in the animal health decision making 

requires the impact of health disorders to be known. Yet little research quantifies the 

impact, making it difficult to include animal welfare in the animal health decision 

making process. Quantifying the impact of health disorders on animal welfare is 

incredibly challenging due to empirical animal-based data collection constraints. An 

approach to circumvent these constraints is to rely on expert knowledge whereby 

welfare impairment weights are indicative of the negative welfare effect. In this 

research, we propose an expertise-based method to quantify the impact of sub-

optimal mobility (SOM) on welfare of dairy cows, because of its welfare importance. 

We first quantified welfare impairment weights of SOM by eliciting expert knowledge 

using adaptive conjoint analysis (ACA). Second, using the welfare impairment 

weights we derived the welfare disutility (i.e., negative welfare effect) of mobility 

scores 1 – 5 (1 = optimally mobility, 5 = severely impaired mobility). Third, using 

the welfare disutility per mobility score we quantified the welfare impact at case- and 

herd-level of SOM for different SOM severity. Results showed that the welfare 

disutility increased with each increase in mobility score. However, the welfare impact 

of SOM cases with lower mobility scores were higher compared to SOM cases with 

higher mobility scores. This was because of the longer lasting duration of the SOM 

cases with lower mobility scores. Moreover, the herd-level welfare impact was largely 

due to SOM cases with lower mobility scores because of the longer duration and more 

frequent incidence compared to the SOM cases with higher mobility scores. These 

results entail that better welfare of dairy cows with respect to SOM can be achieved 

if lower mobility scores are detected and treated sooner. Our research demonstrates 

a novel approach that quantifies the impact of health disorders on animal welfare. 
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3.1 Introduction 

Farm animal welfare is an ever-pressing societal concern, especially in European 

countries (Eurobarometer, 2016). For farmers this means that animal welfare should 

be an aspect considered in the decision-making process. Among other welfare risks, 

health disorders are important factors leading to impaired animal welfare (Broom & 

Corke, 2002). While there is a growing need to include farm animal welfare in the 

animal health decision-making process, decision-making in animal health is largely 

considered from an economic perspective (Hennessy & Marsh, 2021; McInerney et 

al., 1992; Rushton, 2009). Incorporating animal welfare into the decision-making 

process requires the impact of health disorders on animal welfare to be known. 

However, quantifying welfare impacts is challenging, demonstrated by the relatively 

few studies reporting the welfare impacts of health disorders (Bruijnis et al., 2012; 

Nielsen et al., 2021). 

Animal welfare is complex and best understood as a combination of scores in different 

domains. This is for instance illustrated by the Five Domains model, whereby animals 

should have good feeding, good housing, good health, the ability to show natural 

behaviour and the possibility to experience positive emotions, where each domain 

lists several welfare indicators (Mellor et al., 2020). Understanding the impact of 

health disorders on these welfare domains through the welfare indicators can help 

identify their impact on overall animal welfare (EFSA, 2012). Previous studies have 

used a weighting approach combined with expert knowledge elicitation to quantify 

the impact of health disorders on various welfare indicators whereby a “welfare 

impact score” is obtained by summing the weights associated to the welfare indicators 

respective of health disorders (Bruijnis et al., 2012; Nielsen et al., 2021; Teng et al., 

2018). Similarly, this weight-based approach has also been used to assess the welfare 

impact of different housing and management systems in swine and dairy farming 

(Bracke et al., 2002; Ursinus et al., 2009). Obtaining these weights by expert 

knowledge elicitation is deemed appropriate when a lack of empirical evidence exists 

(EFSA, 2014). 

The Delphi method is a commonly used expert knowledge elicitation method in 

animal welfare related studies (Bertocchi et al., 2018; Lorenzi et al., 2022; Rioja-Lang 

et al., 2020). Bruijnis et al. (2012) and Nielsen et al. (2021) used derivations of the 

Delphi method in their health disorder welfare impact assessments for swine and 

dairy cows. However, using this method may lead to obscured weights because the 

welfare indicators are addressed individually, ignoring the health disorder’s relative 

effect on other welfare indicators, while a health disorder may affect several welfare 

indicators simultaneously with varied effects per welfare indicator. Assessing welfare 

indicators simultaneously via comparison-based elicitation techniques may help 

obtain more accurate weights since the relative effect of a health disorder on welfare 
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indicators are considered in the expert knowledge elicitation process. To date only 

Teng et al. (2018) used a paired comparison-based elicitation method to assess the 

welfare impact of disease. However, their study concerned companion animals and 

not farm animals. For now, assessing the welfare impact of health disorders in farm 

animals is mostly Delphi based, which lacks depth in the weighing process. 

The objective of this study was to propose a new method apropos quantifying the 

impact of health disorders on animal welfare and to apply this method to an 

estimation of the welfare effect of suboptimal mobility in dairy cattle. Our method 

incorporates a comparison-based elicitation technique, known as Adaptive Conjoint 

Analysis (ACA), to obtain the necessary weights required to quantify the impact of 

a health disorder on animal welfare. ACA is a fitting methodology because it allows 

for multiple welfare indicators to be assessed simultaneously, which is an advantage 

over the more commonly used Delphi method. We then demonstrate how the elicited 

weights can be used to quantify the impact of a health disorder on animal welfare 

via simulation modelling. We position this research in the context of dairy cow sub-

optimal mobility (SOM), because this is a common health disorder in dairy farming 

with high animal welfare importance (Broom & Corke, 2002; Welfare Quality®, 

2009a; Whay & Shearer, 2017). SOM is characterised by different severities that are 

often described by mobility scores, such as the 5-point ordinal mobility scoring scale 

(1 = optimal mobility, 5 = severe SOM; Sprecher et al., 1997). Using SOM as a case 

study demonstrates how our proposed method can identify the welfare impact of 

different health disorder severities. 

3.2 Methodology 

The approach used in this research was multi-faceted. First, we identified animal-

based welfare indicators affected by SOM with reference to the 5-Domains model of 

Animal Welfare by Mellor et al. (2020). Second, welfare impairment weights were 

elicited for various levels of the animal-based welfare indicators using ACA (Orme, 

2006; Sawtooth Software, 2007). Third, the relative importance of welfare indicators 

was estimated. Lastly, the welfare impairment weights were then used in a simulation 

model (Edwardes et al., 2022a) to quantify the welfare impact of SOM. The approach 

is described in greater detail in the following sub-sections. 
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3.2.1 Animal-based welfare indicators 

Animal-based welfare indicators are important in the assessment of animal welfare 

(EFSA, 2012). These welfare indicators offer more accurate insight on the response 

of, and the effects of, the individual animal when afflicted with a welfare debilitating 

factor such as a health disorder. The 5-Domains model of Animal Welfare is a 

framework (Mellor et al., 2020) that includes several animal-based welfare indicators 

in the nutrition, health, and behaviour domains. These animal-based welfare 

indicators can then be linked to the fifth affective experience domain (i.e., mental 

state) meaning that every animal-based welfare indicator that is affected may be 

followed by an emotional or subjective response that may also affect the mental state. 

For example, a reduction in food intake (i.e., welfare indicator) affects the nutrition 

domain and may lead to the experience of hunger, affecting the mental state domain.  

We identified animal-based welfare indicators physically affected by the occurrence 

of SOM in dairy cows with reference to the nutritional, health, and behavioural 

domains of the 5-Domains model of Animal Welfare (Mellor et al., 2020) in 

combination with scientific literature and expert discussions (expert group 1; EG1) 

apropos dairy cow SOM and hoof health. The degree to which the welfare indicators 

are physically affected by SOM were defined by intervals in terms of welfare indicator 

levels. The defined welfare indicators and respective welfare indicator levels are 

presented in Table 3.1. For the feed and water intake welfare indicator, cows with 

SOM may have a reduced feed and water intake of 0 percent, 10 percent and 20 

percent compared to a cow without SOM (Norring et al., 2014). The functional 

impairment welfare indicator refers to difficulties in performing everyday activities, 

and in this case, it is the functional use of a cow’s hoof. It is assumed a hoof is 

functionally impaired due to the presence of a hoof disorder. Functional impairment 

is reflected by 5 mobility scores where 1 = no functional impairment and 5 = severe 

functional impairment (Sprecher et al., 1997). The body condition score (BCS) 

welfare indicator is a visual and an indirect estimate of energy balance and is 

associated with SOM (O’Connor et al., 2019). A cow experiencing sub-optimal 

mobility may decrease in BCS by 0, 0.5 or 1 (O’Connor et al., 2019). The behavioural 

change welfare indicator was based on a cow’s activity budget. Within this budget 

cows behave in certain ways based on activities. Due to SOM the behaviour in 

relation to an activity may change, ultimately affecting at least one other behaviour 

since the activity budget is limited. For example, when afflicted with SOM a cow can 

experience increased lying resulting in decreased standing (Walker et al., 2008). The 

behavioural change indicator was kept broad due to the inherent interaction of 

behaviours and to capture all changes in behaviour. Hence, three levels of behavioural 

change percentages were defined of 0 percent, 10 percent, or 20 percent. With respect 

to the cow-human interaction welfare indicator, signs of avoidance in distance, 

stepping back and/or turning head, is a measure of cow-human interaction (Welfare 
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Quality®, 2009a). For example, a cow with SOM may feel more vulnerable and 

perceive a human approaching as a threat and show signs of avoidance (Sharma & 

Phillips, 2019). Three levels of cow-human interaction indicators were defined as 

signs of withdrawal at an additional distance of 0cm, 1cm – 50cm, 51cm – 100cm, 

>100cm (Welfare Quality®, 2009a). 

The welfare indicator levels are the physical and measurable effects of SOM on the 

respective welfare indicator. After identifying the welfare indicators and respective 

levels, we then estimated their effect on the mental state. The effects of welfare 

indicator levels on the mental state were represented by welfare impairment weights, 

which were obtained through expert elicitation. 

 

Table 3.1 Welfare indicators and respective welfare indicator levels. 

Welfare indicator 

(𝒋) 

Indicator 

abbreviati

on 

Welfare indicator level (𝒌) Source 

Feed and water intake 

(% reduction) 

fwi 0 Norring et al. 

(2014)  10 

 20 

Functional impairment 

(mobility score) 

fim 1 (no functional impairment) Sprecher et al. 

(1997)  2 (mild functional impairment) 

 3 (moderate functional 

impairment) 

 4 (marked functional 

impairment) 

 5 (severe functional 

impairment) 

Body condition score 

(point decrease) 

bcs 0 O’Connor et 

al. (2019)  0.5 

 1 

Behavioural change 

(% change) 
bch 0 Expert 

discussions  10 

 20  

Cow-human 

interaction 

(withdrawal at an 

additional distance) 

chi 0cm Welfare 

Quality® 

(2009a) 
 1cm - 50cm 

 51cm - 100cm  

 >100cm  
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3.2.2 Eliciting welfare impairment weights 

We used ACA to elicit welfare impairment weights. Traditionally used in economic 

and marketing research, ACA is centred on Lancaster’s (1966) theory postulating 

that consumers make consumption decisions based on a combination of product 

aspects rather than the overall product itself. For example, consider a 1 litre milk 

carton: this product can be decomposed into multiple attributes 𝐽 where 𝑗 ∈  𝐽 (e.g., 

welfare label, origin, price, fat content) that vary by 𝐾𝑗 attribute levels where 𝑘 ∈ 𝐾𝑗 

(e.g., high, medium, or low welfare for the welfare label attribute). ACA is designed 

as an experiment used to elicit consumer preferences for existing or hypothetical 

products with varying attribute levels. A consumer’s preference for a product is based 

on a combination of attribute levels, one for each attribute, and reflected in the 

utility 𝑈 for a specific product. The utility 𝑈 is expressed as ∑ 𝛽𝑗,𝑘𝑗∈𝐽  where 𝛽𝑗,𝑘 is 

the part-worth utility (the utility associated with a particular aspect level in a multi-

aspect conjoint analysis model) for attribute 𝑗 with attribute level 𝑘 over 𝐽 different 

product attributes. So, 𝛽𝑗,𝑘 represents a “preference weight” that a consumer places 

on an attribute level of a product. For additional information on ACA see Orme 

(2006) and Sawtooth Software (2007). 

To elicit welfare impairment weights apropos SOM we adapted the ACA terminology 

to suit the objectives of this study. Welfare indicators 𝐽 represented the attributes 

with 𝑗 ∈  𝐽 and welfare indicator levels 𝐾𝑗 represented the attribute levels per welfare 

indicator 𝑗 with 𝑘 ∈ 𝐾𝑗. The welfare impairment weight 𝛽𝑗,𝑘 represented the part-

worth utility for welfare indicator 𝑗 with welfare indicator level 𝑘. Therefore, the 

combination of welfare indicator levels, one for each welfare indicator, represents the 

product and reflects the welfare disutility 𝐷 , representing utility, given the 

combination of welfare indicator levels and their associated welfare impairment 

weights: 𝐷 =  ∑ 𝛽𝑗,𝑘𝑗∈𝐽 . In other words, 𝐷  represents the negative effect of the 

combined welfare indicator levels on the mental state. 

The ACA took form of a survey and was distributed online to dairy cow welfare 

experts (expert group 2; EG2) that were participating in the 54th Congress of the 

International Society of Applied Ethology (2nd – 6th August 2021: ISAE 2021), which 

took place online due to the covid-19 pandemic). Prior to survey distribution it was 

unknown how many dairy cow welfare experts would attend ISAE 2021. By the end 

of ISAE 2021, 33 experts took part in the survey. From the pool of 33 experts, a total 

of 10 were removed from the original dataset for either not having completed the 

survey (n = 7) or showing a low degree of involvement (n = 3). 
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Survey design 

The welfare indicators and respective welfare indicator levels were treated as inputs 

in the design of the ACA survey (Table 3.1). The survey took form in an electronic 

3-step procedure and was designed in Lighthouse Studio (Sawtooth Software, 2021). 

In the design of the survey, prior information was specified for the welfare indicator 

levels for each welfare indicator assuming that welfare was impaired more for each 

increase in welfare indicator level. For example, a 10 percent reduction of feed and 

water intake will impair welfare more than a 0 percent reduction, and a 20 percent 

reduction of feed and water intake will impair welfare more than a 10 percent 

reduction. 

The first step of the survey dealt with collecting prior information from the experts 

whereby they specified the relative importance for each welfare indicator. This was 

done by identifying the magnitude in differences among the considered welfare 

indicator levels. Magnitudes in differences between welfare indicator levels within a 

welfare indicator is more informative than importance specifications per welfare 

indicator level. Hence, experts were asked to specify the importance of a change from 

the lowest to the highest welfare indicator level for each welfare indicator in terms 

of welfare impairment. Seven possible answers ranged between “not important” to 

“extremely important”. This prior information was used in the second step. 

In the second step, experts were shown a series of customised paired-comparison 

trade-off questions. These paired-comparison questions were defined in combination 

with the prior information from the first step. In each paired-comparison trade-off 

question, experts were shown two cards representing virtual cows with SOM where 

the effect of SOM on welfare indicators varied according to the respective welfare 

indicator levels. Each time the two virtual cow cards were nearly equal in welfare 

disutility, which is reflected in the sum of the welfare impairment weights (i.e., 

∑ 𝛽𝑗,𝑘𝑗∈𝐽 ). After each paired-comparison question per expert, the welfare impairment 

weights were updated with ordinary least squares regression (Sawtooth Software, 

2007). The updated welfare impairment weights were then used to select a 

combination of welfare indicator levels for the next paired-comparison question that 

would generate two virtual cow cards being nearly equal in welfare disutility. This 

process ultimately forced the experts to consider the importance of the welfare 

indicator levels for each welfare indicator, which is a strength of ACA that helps 

identify the most important welfare indicator levels per welfare indicator per expert. 

In the third step, the experts’ degree of involvement during the survey was 

investigated. A series of questions were asked about a single virtual cow’s welfare 

described by varying combinations of welfare indicator levels. Experts were asked to 

specify a “likely welfare impairment score” between 0 and 100 (0 = cow’s welfare is 
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not at all impaired; 100 = cow’s welfare is most impaired). The degree of involvement 

was used to determine an intercept and regression coefficient for the welfare 

impairment weights to best predict logits of likelihood responses (Sawtooth Software, 

2007). The experts’ degree of involvement was identified by correlating the experts’ 

logit of likelihood responses and welfare impairment weights (estimated in the 

preceding step). 

Data processing and analysis 

The final set of welfare impairment weights for each expert was extracted from 

Lighthouse Studio (Sawtooth Software, 2021) then processed and analysed with R in 

RStudio (R Core Team, 2022). Experts that showed a low degree of involvement (R2 

< 0.5, estimated in step 3) were removed from the final data set because their degree 

of involvement was not correlated with their welfare impairment weights (estimated 

in step 2). With the remaining expert responses (n = 23), the mean and standard 

deviation of welfare impairment weights for each welfare indicator level were 

calculated. In addition, the relative importance of each welfare indicator was 

calculated per expert by finding the range between welfare impairment weights per 

welfare indicator divided by the sum of all welfare indicator impairment weight 

ranges. Hence, the relative importance 𝜌𝑖,𝑗  of welfare indicator 𝑗  in 𝐽  welfare 

indicators for expert 𝑖 is expressed as 

 𝜌𝑖,𝑗  =
max
𝑘∈𝐾𝑗

(𝛽𝑖,𝑗,𝑘)  −  min
𝑘∈𝐾𝑗

(𝛽𝑖,𝑗,𝑘)

∑ [max
𝑘∈𝐾𝑗

(𝛽𝑖,𝑗,𝑘)  −  min
𝑘∈𝐾𝑗

(𝛽𝑖,𝑗,𝑘)]𝑗∈𝐽

 (3.1) 

where 𝛽𝑖,𝑗,𝑘 is the welfare impairment weight for expert 𝑖 with respect to welfare 

indicator level 𝑘 in 𝐾𝑗 welfare indicator levels for welfare indicator 𝑗 across 𝐽 welfare 

indicators. With 𝜌𝑖,𝑗, the mean of the experts’ relative importance, and standard 

deviation between experts per welfare indicator was also calculated. 

3.2.3 Disutility of SOM on animal welfare 

After estimating the welfare impairment weights for all welfare indicator levels, we 

then identified the welfare disutility for different severity of SOM. Identifying the 

welfare disutility per mobility score was a necessary step to quantify the welfare 

impact of SOM since the welfare disutility reflects the total effect on the mental 
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state. In Edwardes et al. (2022a), SOM severity is described by a 5-point ordinal 

mobility scoring scale (1 = optimal mobility, 5 = severe SOM) as per Sprecher et al. 

(1997). To identify the welfare disutility per mobility score we asked the SOM and 

hoof health experts in EG1 to participate in a questionnaire. Per welfare indicator, 

they were asked to specify the welfare indicator level that best fitted each mobility 

score 1 – 5. Experts in EG1 were blind to the elicited welfare impairment weights 

obtained from the experts in EG2. After experts in EG1 completed the questionnaire 

the median welfare indicator level per welfare indicator per mobility score was 

calculated. Thereafter, the corresponding welfare impairment weights per median 

welfare indicator level per welfare indicator per mobility score were identified and 

used as input for the simulation model. Furthermore, the welfare disutility 𝐷𝑙 for 

mobility score 𝑙 was estimated: 𝐷𝑙  = ∑ 𝛽𝑗,𝑘,𝑙𝑗∈𝐽 . In other words, 𝐷𝑙  represents the 

negative effect of the mobility score on the mental state. 

3.2.4 Modelling SOM welfare impacts 

In brief, the model described in Edwardes et al. (2022a) simulates a typical Dutch 

dairy herd in daily time-steps where cows are housed in cubicles with concrete slatted 

floors in Autumn and Winter, have pasture access for >6 hours a day in Spring and 

Summer, and have their hooves routinely trimmed at the start of Spring and 

Autumn. SOM is modelled at cow-level using a 5-point ordinal mobility scoring scale 

(1 = optimal mobility, 5 = severe SOM; Sprecher et al., 1997) and could occur due 

to the incidence of eight different hoof disorders (digital dermatitis, interdigital 

hyperplasia, interdigital dermatitis/heel-horn erosion, interdigital phlegmon, 

overgrown hoof, sole haemorrhage, sole ulcer, and white-line disease). Hoof disorders 

and SOM were first modelled at the hoof-level (detailed explanation in Edwardes et 

al., 2022a), this means that a cow could have 4 possible mobility scores (i.e., one for 

each hoof; detailed explanation in Edwardes et al., 2022a). If no hoof disorder or a 

latent digital dermatitis lesion was present, the hoof was assigned a mobility score 1. 

If a hoof became infected with any of the eight hoof disorders, a mobility score 2 was 

first assigned to the hoof. Thereafter, mobility score transitions were probabilistically 

determined after a minimum mobility score duration occurred respective of hoof 

disorder. Minimum mobility score durations were determined by sampling from 

uniform distributions respective of mobility score and hoof disorder. After these hoof-

level processes were simulated, the cow-level mobility score dynamics were 

determined in each time step as the maximum mobility score between the 4 possible 

hoof-level mobility scores resulting from the underlying hoof disorders. 

The incidence and duration of SOM cases (mobility score ≥2) were then quantified 

for a one-year period. SOM cases were allocated to a Maximum Mobility Score SOM 
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Case (MMSC) category because a SOM case can be composed of more than one 

mobility score. Hence, four MMSC were defined as MMSC2, MMSC3, MMSC4, and 

MMSC5 for maximum mobility scores 2 – 5, respectively. For each of these MMSC 

categories, the duration of mobility scores within a SOM case was also quantified. 

MMSC incidence and duration were used as input to quantify the welfare impact of 

SOM at MMSC- and herd-level (Table A 3.1). 

Simulating the welfare impact 

The corresponding welfare impairment weights per mobility score (identified in 

Section 3.2.3) were used as inputs to quantify the welfare impact, expressed as 

“welfare impact scores”, per SOM MMSC (i.e., MMSC2, MMSC3, MMSC4, MMSC5) 

incident that occurred in a one-year period. The duration of mobility scores within 

an MMSC per incident per cow were respectively weighed by the welfare impairment 

weights with the following equation: 

 𝑊𝐼ℎ,𝑖 = ∑∑ 𝛽𝑗,𝑘,𝑙 × 𝛼ℎ,𝑖,𝑙
𝑙∈𝐿ℎ

4

𝑗=1

 +  ∑ 𝛽𝑗=5,𝑘,𝑙 × 𝛾ℎ,𝑖,𝑙
𝑙∈𝐿ℎ

 (3.2) 

where 𝑊𝐼ℎ,𝑖 is the total welfare impact score of SOM case ℎ for cow 𝑖, 𝛽𝑗,𝑘,𝑙 is the 

welfare impairment weight for welfare indicator 𝑗 with welfare indicator level 𝑘 in 

association with mobility score 𝑙 in the 𝐿ℎ set of mobility scores that occurred during 

SOM case ℎ, 𝛼ℎ,𝑖,𝑙 is the duration (days) of mobility score 𝑙 during SOM case ℎ for 

cow 𝑖, and 𝛾ℎ,𝑖,𝑙 is the number of cow-human interactions directly related to SOM 

(i.e., treatments) for mobility score 𝑙 during SOM case ℎ for cow 𝑖. Cow-human 

interactions were separated from the summation of the 4 other welfare indicators to 

limit the indirect effects of SOM on cow-human interactions that may occur during 

daily farming activities. 

The welfare impact scores were analysed at MMSC-level and normalised to the 

maximum welfare impact score to obtain welfare impact scores between 0 and 100. 

The mean (5th and 95th percentiles) of MMSC-level welfare impact scores produced 

by the 500 simulations were then calculated. The normalised MMSC-level welfare 

impact scores per MMSC were aggregated to obtain herd-level welfare impact scores 

per MMSC category. 

 



80 

Sensitivity analysis 

A global sensitivity analysis was run to assess the variation in total MMSC welfare 

impact scores at herd-level (i.e., output) attributable to the variation in welfare 

impairment weights per welfare indicator per mobility score (i.e., input parameter 

𝛽𝑗,𝑘,𝑙). Variation attributable to welfare impairment weights were represented by 

first- and total-order sensitivities and were quantified with a variance decomposition 

method (Saltelli et al., 2008). First-order sensitivity indices indicate the contribution 

of variation in output caused by the variation in 𝛽𝑗,𝑘,𝑙 without interactions with other 

input parameters. Total-order sensitivity indices indicate the contribution of 

variation in output caused by the variation in 𝛽𝑗,𝑘,𝑙 including all variation caused by 

its interactions, of any order, with any other input parameter. In summary, first- and 

total-order sensitivity indices indicate the relative importance of 𝛽𝑗,𝑘,𝑙 with higher 

values indicative of larger effects on the output variance. First- and total-order 

sensitivity indices were computed after Azzini et al. (2020) in R (R Core Team, 2022) 

using the sensobol package (Puy et al., 2022b) and sensitivity indices of >0.05 were 

reported. Gamma distributions of 5000 draws for each 𝛽𝑗,𝑘,𝑙   were drawn with a Latin 

hyper cube sample design to efficiently cover the parameter space of each 𝛽𝑗,𝑘,𝑙. To 

gain better insight on the variation in herd-level welfare impact scores attributable 

to the variation in welfare impairment weights we fixed the duration (i.e., 𝛼) and 

number of cow-human interactions (i.e., 𝛾) per mobility scores per MMSC to their 

means. 

3.3 Results 

3.3.1 Relative importance of welfare indicators and 

welfare indicator level impairment weights 

Results from the 23 experts were included in the final data set and are presented in 

Table 3.2. From the 5 welfare indicators included in the ACA experiment, the mean 

relative importance of functional impairment and reduced feed and water intake were 

respectively the most (38.1 percent) and second most (20.8 percent) important 

welfare indicators identified by the experts. For all welfare indicators, the welfare 

impairment weights indicate that experts collectively agreed that each increase in 

welfare indicator level increases welfare impairment. A note of caution is that 

individual welfare impairment weights between different welfare indicators cannot be 

compared, but changes in welfare impairment weights within a welfare indicator can 

be compared between welfare indicators. For example, a change from no functional 
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impairment to mild functional impairment can be compared with a change in 

behaviour from 0 and 10 percent, and, in this example, these changes are equal in 

terms of welfare impairment. 

3.3.2 Mobility score welfare disutility 

The welfare disutility, reflecting the total effect on the mental state, of mobility 

scores on animal welfare were identified by fitting welfare impairment weights per 

welfare indicator to mobility scores (Table 3.3). Mobility score 1 was considered not 

to impair animal welfare since the welfare impairment weights were 0 across all 

Table 3.2 Mean (standard deviation between experts) relative importance of 

welfare indicators and welfare impairment weights per welfare indicator level. 

Welfare indicator and levels % Relative  

importance 

(sd) 

Welfare 

impairment 

weight (sd) 

Feed and water intake (% reduction) 20.8 (7.26)  

0  0.00 (0.18) 

10  0.57 (0.16) 

20  1.14 (0.28) 

Functional impairment (mobility score) 38.1 (9.58)  

1 (no functional impairment)  0.00 (0.22) 

2 (mild functional impairment)  0.42 (0.30) 

3 (moderate functional impairment)  1.01 (0.24) 

4 (marked functional impairment)  1.46 (0.20) 

5 (severe functional impairment)  2.06 (0.37) 

Body condition score (point decrease) 14.2 (5.95)  

0  0.00 (0.26) 

0.5  0.39 (0.18) 

1  0.67 (0.24) 

Behavioural change (% change) 14.4 (5.78)  

0  0.00 (0.21) 

10  0.42 (0.18) 

20  0.75 (0.19) 

Cow-human interaction (withdrawal at an 

additional distance) 

12.5 (4.90)  

0cm  0.00 (0.23) 

1cm - 50cm  0.20 (0.18) 

51cm - 100cm  0.40 (0.19) 

>100cm  0.62 (0.22) 

 

 

  



82 

welfare indicators. Mobility score 2 was considered to impair animal welfare only 

through the mild functional impairment welfare indicator level belonging to the 

functional impairment welfare indicator. Mobility scores ≥3 impaired animal welfare 

across all welfare indicators. Mobility score 3 was considered to impair animal welfare 

less than mobility scores 4 and 5, across all welfare indicators except the cow-human 

interaction welfare indicator. 

3.3.3 Welfare impact of Maximum Mobility Score sub-

optimal mobility Case (MMSC) 

The simulation model produced welfare impact scores between 0 – 100 per MMSC. 

Aggregating these welfare impact scores produced the total welfare impact at herd-

level. The relative shares of MMSC to the total herd-level welfare impact are found 

in Table 3.4. The less severe MMSC2 and MMSC3 contribute the most (~87 percent) 

to the total herd-level welfare impact with MMSC3 being the dominant contributor. 

This is due to the more frequent cumulative incidence and longer duration of MMSC2 

and MMSC3 despite the lower welfare disutility associated with mobility scores 2 

and 3. MMSC4 and MMSC5 contribute less (~13 percent) to the total welfare impact 

at herd-level because of the lower incidences although welfare disutility associated 

with mobility scores 4 and 5 are highest. 

Table 3.3 Welfare impairment weight 𝜷𝒋,𝒍 for welfare indicator 𝒋 and mobility 

score 𝒍. 

Mobility 

score (𝒍) 

Welfare indicator (𝒋)a Welfare 

disutility 

(∑ 𝜷𝒋,𝒌,𝒍𝒋∈𝑱 ) 
fwi fim bcs bch chi 

1 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.42 0.00 0.00 0.00 0.42 

3 0.57 1.01 0.39 0.42 0.20 2.59 

4 1.14 1.46 0.67 0.75 0.20 4.22 

5 1.14 2.06 0.67 0.75 0.20 4.82 

a Welfare indicator j abbreviations: fwi = feed and water intake; fim = functional 

impairment; bcs = body condition score; bch = behavioural change; chi = cow-human 

interaction. 
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The average welfare impact score due to SOM was 14 (0; 60) considering all MMSC 

welfare impact scores together. For specific MMSC, MMSC2 had the lowest average 

welfare impact score of 4 (0; 14) and MMSC3 had the highest average welfare impact 

score of 30 (1; 91). Average welfare impact scores for a MMSC4 and MMSC5 were 

20 (3; 64) and 17 (2; 66), respectively. Welfare impact scores were not indicative of 

specific MMSC due to variations in duration within and between MMSC (Figure 

3.1). For all MMSC the welfare impact scores increased as the MMSC duration 

increased. For MMSC2, the welfare impact score is the result of the presence of 

mobility score 2 only. Because of this no variation in welfare impact scores for specific 

durations were observed. The variation in welfare impact scores for MMSC3, MMSC4 

and MMSC5 increased with increasing MMSC duration. This was due to the 

composition of mobility score duration within the MMSC. For example, keeping 

MMSC3 duration constant (i.e., at the mean MMSC3 duration) the welfare impact 

score was higher when the proportion of mobility score 3 duration was more than 

half the total MMSC3 duration (brown points) in comparison to the lower welfare 

impact scores when the proportion of the mobility score 3 duration was less than half 

the total MMSC3 duration (green points). Due to the composition of mobility score 

durations within a MMSC, MMSC4 and MMSC5 with higher welfare impact scores 

and longer durations mostly occurred because of preceding mobility scores with a 

longer duration. 

Table 3.4 Maximum Mobility Score sub-optimal mobility Cases (MMSC) 

relative share of total herd-level welfare impact. 

MMSC Mean (5th; 95th percentiles) 

2 16.43 (12.06; 22.18) 

3 70.49 (62.36; 77.31) 

4 12.06 (6.41; 18.72) 

5 1.17 (0.12; 3.38) 
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3.3.4 Sensitivity analysis 

The global sensitivity analysis showed that herd-level welfare impact scores per 

MMSC are most sensitive to variations in welfare impairment weights apropos 

functional impairment as it was the prominent occurring welfare indicator across 

herd-level welfare impact scores per MMSC (Figure 3.2). For MMSC2 and MMSC3 

welfare impairment weights respective of the maximum mobility score of the MMSC 

contributed most to the variation in welfare impact scores per MMSC. For MMSC4 

and MMSC5 welfare impairment weights respective of mobility scores preceding the 

maximum mobility score of the MMSC contributed the most to the variation in 

welfare impact scores per MMSC. Complete first and total order sensitivity indices 

for herd-level welfare impact scores per MMSC are found in Table A 3.2 and Table 

A 3.3 of the Appendix. 

 
Figure 3.1 Relationship between welfare impact score and duration of Maximum 

Mobility Score sub-optimal mobility Case (MMSC). Each point represents a 

sub-optimal mobility case per MMSC category that occurred in the 500 

simulations for 1 year. Point colours represent the proportion of the maximum 

mobility score duration over the total MMSC duration. Black horizontal and 

vertical lines respectively indicate the mean MMSC welfare impact score and 

MMSC duration. Boxplots indicate the interquartile range for MMSC welfare 

impact scores and MMSC duration. 
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3.4 Discussion 

We proposed a multi-faceted approach, that can contribute to future research 

apropos the impact of health disorders on animal welfare. Our research is positioned 

in the context of SOM due its welfare importance (Broom & Corke, 2002; Welfare 

Quality®, 2009a; Whay & Shearer, 2017). The first step was to identify animal 

welfare indicators whereby the effect of SOM on these welfare indicators can be 

physically measured. The second step in this research was to estimate the welfare 

impairment weights per welfare indicator level that were indicative the welfare effects 

per welfare indicator level, and the relative importance of welfare indicators. With 

the first and second step complete, the third step could be achieved, and this was to 

quantify the welfare impact of SOM. 

We chose to identify animal-based welfare indicators with reference to the 5-Domains 

model of Animal Welfare (Mellor et al., 2020) because it discriminates between 4 

 

Figure 3.2 First and total-order sensitivity indices >0.05 apropos welfare 

impairment weight parameters 𝜷𝒋,𝒍 for welfare indicator 𝒋 and mobility score 𝒍 

per Maximum Mobility Score sub-optimal mobility Case (MMSC). Welfare 

indicator j abbreviations: bch = behavioural change; bcs = body condition 

score; fim = functional impairment; fwi = feed and water intake. 
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physical domains and 1 affective experience domain. The nutrition, health and 

behaviour domains list several animal-based welfare indicators whereby the effect of 

a health disorder on these welfare indicators can be physically measured. These 

physical effects were defined as welfare indicator levels in our study. Although these 

effects possess information on the degree to which the welfare indicators are affected, 

they remain physical effects and do not provide information on the degree of animal 

welfare impairment they cause. A more informative metric apropos the welfare 

impairment caused by these welfare indicator levels are in the form of welfare 

impairment weights that indicate the effects on the mental state. We identified 5 

welfare indicators where the effects of SOM on these animal-based welfare indicators 

have been measured. With sufficient resources it is possible to physically measure the 

effects of SOM on more animal-based welfare indicators as well. However, linking the 

physical effects of SOM on the animal-based welfare indicators in the physical 

domains to the affective experience domain (i.e., mental state) is much more difficult 

and seems impossible in animals. In other words, we can measure how SOM can 

affect BCS or food intake, but it is incredibly challenging to measure how the mental 

state of the animals is affected by these conditions. Therefore, we estimated these 

physical effects on animal welfare in the form of welfare impairment weights that 

were obtained with expert elicitation. 

Welfare impairment weights were estimated through an expert knowledge elicitation 

exercise. Using elicited expert knowledge is a suitable alternative when empirical 

evidence is limited (EFSA, 2014). We used ACA as an elicitation method instead of 

the Delphi method proposed by the European Food Safety Authorisation (2014) that 

is often used in animal welfare related research (Bertocchi et al., 2018; Bruijnis et 

al., 2012; Lorenzi et al., 2022; Nielsen et al., 2021; Rioja-Lang et al., 2020) because 

ACA is advantageous over the Delphi method. ACA is a paired-comparison 

elicitation method that allows for the degree of SOM welfare impairment on multiple 

welfare indicators to be assessed relative to each other instead of independently like 

in the Delphi method. This feature of ACA allows for a more realistic assessment of 

SOM welfare impairment on welfare indicators because SOM can affect these 

indicators simultaneously. Moreover, the selection of welfare indicator levels are 

chosen with mathematical reasoning per expert respondent ensuring that the welfare 

indicator levels with similar welfare impairment weights are properly compared 

relative to other welfare indicator levels. A relative assessment of SOM welfare 

impairment on welfare indicator levels contributes to a better understanding of the 

relative importance of welfare indicators, which in turn provide more informed 

welfare impairment weights.  

Functional impairment was the welfare indicator with highest average relative 

importance in terms of welfare impairment. Using mobility scores to describe the 

functional impairment welfare indicator may have subconsciously influenced 
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respondents to select the cow card with the highest mobility score always. Ultimately 

resulting in an overestimated relative importance and welfare impairment weights. 

This is because SOM overall is an indicator of poorer welfare (Welfare Quality®, 

2009a; Whay & Shearer, 2017) and is described by mobility scores. In other words, 

the welfare impact in a functional impairment level may have been perceived to be 

greater than the level itself, leading to an overestimated functional impairment 

relative importance and welfare impairment weights per functional impairment level. 

However, if the cow card with the highest mobility score was always chosen, we could 

expect a 100 percent relative importance for the functional impairment indicator. 

Our results show the relative importance for functional impairment per respondent 

ranged between 22 – 56 percent, meaning that other indicator levels were considered 

to impact animal welfare more than the highest level of functional impairment shown. 

Respondents may have selected the cow card with the higher functional impairment 

level more frequently because higher mobility scores are associated with increasing 

levels of pain (Dyer et al., 2007). These results imply that the subjective experience 

of pain, a welfare indicator in the mental state domain (Mellor et al., 2020), is an 

important contributor to impaired animal welfare. 

Defining the behavioural change welfare indicator and respective welfare indicator 

levels apropos SOM for the purpose of the ACA was challenging and may impose a 

limitation to the ACA. We defined it as a broad welfare indicator to capture all 

behavioural changes for a cow afflicted with SOM. Behaviour can be expressed as 

activities performed during an activity-budget and SOM is known to effect 

behavioural activities in various ways (Navarro et al., 2013; Walker et al., 2010, 

2008). Therefore, we considered that a change of x percent in the duration of one 

activity would lead to a cumulative change of x percent in the duration of all other 

activities within the activity budget. This description may have influenced the 

respondents’ degree of attention toward the welfare indicator and respective welfare 

indicator levels ultimately affecting the welfare impairment weights resulting in the 

lower relative importance of behavioural change. On the other hand, a behavioural 

change for a cow afflicted with SOM may also benefit animal welfare because the 

negative effects are compensated for to cope with SOM. Respondents may have 

considered this lending explanation to the lower relative importance of the welfare 

indicator because a change in behaviour may not always impair welfare when afflicted 

with a health disorder. 

The distribution of welfare impairment weights per welfare indicator were expected: 

the weights increased with each increase in welfare indicator level. Using ACA 

permitted us to link welfare indicator levels to mobility scores per welfare indicator 

to obtain a welfare disutility per mobility score. This process emulates what is 

typically done with ACA in economic and marketing research to obtain the utility 

(respectively: welfare disutility) of a product (mobility score) given a combination of 
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product attribute levels (welfare indicator levels). Resultingly, we found that the 

welfare disutility was non-linear in increasing mobility scores. By using the welfare 

impairment weights linked to specific mobility scores as inputs for the simulation 

model we were able to assess the welfare impact of SOM. A better understanding of 

the welfare impacts of SOM at MMSC-level over time was realised. 

Interestingly MMSC5 on average had the second lowest welfare impact score despite 

mobility score 5 having the highest welfare disutility (i.e., strongest negative welfare 

effect). This is because the duration of mobility score 5 during the cases was short 

on average. Conversely, the longer MMSC3 had the highest welfare impact score 

despite mobility score 3 having an intermediate welfare disutility. These results imply 

that disease severity at individual animal-level should be assessed over the duration 

of the case to assess the welfare impacts because a cross-sectional assessment does 

not capture the entirety of the welfare impact. Moreover, the total welfare impact at 

herd-level were largest for MMSC3 SOM cases due to the high frequency in MMSC3 

cumulative incidence. In practice, better animal welfare apropos SOM can be 

achieved at cow- and herd-level if cows with lower mobility scores are detected and 

treated sooner since they contribute significantly to impaired animal welfare. 

The global sensitivity analysis showed interesting results regarding the effects in 

welfare impairment weights associated with mobility scores 2 and 3 on the total 

MMSC4 and MMSC5 welfare impact scores at herd-level. The results showed that 

the uncertainty in welfare impairment weights for mobility scores 2 and 3 outweigh 

the uncertainty in welfare impairment weights for mobility scores 4 and 5. This means 

that efforts in understanding the welfare impairment of longer lasting mobility scores 

2 and 3 should be prioritised because of the cumulative effect they have on cow 

welfare under current SOM management. 

The welfare impact of SOM per MMSC were calculated based on cow-level mobility 

scores. However, it could be that a cow has more than one mobility score (i.e., each 

hoof can be scored individually). Future research should consider the effect of 

multiple less severe mobility scores at hoof-level compared to a single mobility score 

at cow-level. Future research should also focus on coping mechanisms associated with 

mobility scores that reduce the negative welfare impact of a mobility score over time. 

These coping mechanisms could be represented by dynamic marginal changes in 

welfare impairment weights. Our simulation model does not include dynamic 

marginal changes in welfare impairment weights. Including dynamic marginal 

changes could help attain welfare estimates more representative of “actual welfare” 

as aggravating or coping mechanisms are captured for each additional day spent with 

a mobility score. This could be achieved by including a time variable in the adaptive 

conjoint analysis to obtain a time-adjusted welfare impairment weight. 
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We focussed on the welfare impact of SOM, without considering the effect on 

mortality and early culling, therefore forgetting the length of life. Welfare Adjusted 

Life Years (WALY; Teng et al., 2018) is a metric that takes both into account, where 

the effect of a health disorder on life years is corrected for. It may be of interest for 

future studies to combine our approach with the WALY approach to provide 

additional insight on the life year corrected welfare impact of health disorders. 

Our approach can be expanded to quantify the welfare impact of multiple health 

disorders at the same time. This can be achieved by identifying multiple welfare 

indicator levels across multiple health disorders. Using ACA welfare impairment 

weights can be estimated per welfare indicator level irrespective of health disorder. 

Then the welfare disutility per health disorders per severity can be obtained by 

linking health disorder severities to corresponding welfare indicator levels, as we did 

for mobility scores (Table 3.3). Using this elicitation approach to quantify the welfare 

impact across multiple health disorders, with simulation modelling for example, 

ensures that the quantified welfare impacts across health disorders and severities are 

comparable because the underlying welfare impairment weights are elicited relative 

to each other. Additionally, the comparison of welfare impacts across health disorders 

and respective severities with simulation modelling makes it possible to evaluate the 

effects of disease prevention and/or management that can support disease 

management decisions apropos animal welfare. 

3.5 Conclusion 

In this research we demonstrate a multi-faceted approach to estimate the welfare 

effect of a health disorder. The approach consisted of an estimation of the effect of a 

disorder on welfare indicators in combination with a weighing of these indicators 

regarding the total welfare. This approach allowed us to quantify the welfare impact 

of the health disorder on animal welfare given the derived animal welfare weights. 

Our research shows that ACA is a suitable methodology to elicit expert knowledge 

to simultaneously evaluate the effect of a health disorder, SOM in this case, on 

various animal welfare indicators and to obtain the relative importance of welfare 

indicators and welfare impairment weights per welfare indicator level. This is an 

advantage of this method because welfare impairment weights per health disorder 

severity class, mobility scores in this case, can be derived. Our results showed that 

welfare impairment weights were non-linearly increasing in mobility score severity. 

Albeit cases of SOM with lower mobility scores had the largest impact on herd-level 

welfare. This demonstrates the importance of early detection and treatment of lower 

mobility scores to improve animal welfare and that welfare impacts of different health 
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disorder severities should be assessed over the duration of a case and not only at a 

cross-sectional level.   
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3.6 Appendix 
  

Table A 3.1 Mean (5th; 95th percentiles) cumulative incidence, cases/125 cows 

per year, duration (days), and direct cow-human interactions due to sub-

optimal mobility (SOM) per maximum mobility score SOM case (MMSC). 

Mean results for preceding mobility score. 

SOM 

case 

Preceding 

mobility score(s)  

in SOM case 

Cumulative 

incidence  

125 cows/year a 

Duration 

(days) 

Cow-human 

interactions  

MMSC2 2 131.60 

(107; 153) 

90.08 

(75; 108) 

0.64 

(0.30; 1.01) 

MMSC3 3 74.77 

(54; 97) 

115.85 

(93; 145) 

0.81 

(0.41; 1.27) 

 2 65.70 

(47; 86) 

39.34 

(24; 57) 

0.13 

(0.04; 0.23) 

MMSC4 4 19.88 

(12; 29) 

19.79 

(15; 25) 

1.49 

(1.14; 1.85) 

 3 17.89 

(10; 27) 

39.03 

(12; 73) 

0.21 

(0.00; 0.47) 

 2 18.33 

(11; 27) 

58.62 

(21; 100) 

0.25 

(0.05; 0.53) 

MMSC5 5 2.21 

(1; 5) 

5.71 

(3; 11) 

1.41 

(1.00; 2.57) 

 4 2.01 

(1; 4) 

6.19 

(1; 15) 

0.16 

(0.00; 1.00) 

 3 2.16 

(1; 4) 

39.25 

(1; 174) 

0.23 

(0.00; 1.00)  
2 2.11 

(1; 5) 

70.66 

(1; 237) 

0.32 

(0.00; 1.00) 
a Cumulative incidence of preceding mobility scores may not match the cumulative 

incidence of maximum mobility score of the MMSC because some cases may have occurred 

at the start of the year with the maximum mobility score. 
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Table A 3.2 First and total order sensitivity indices for herd-level welfare impact 

scores per Maximum Mobility Score sub-optimal mobility Case (MMSC) apropos 

MMSC2 and MMSC3. 

Parametera MMSC2 MMSC3 

First Order Total order First Order Total order 

βfwi,2 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βfwi,3 0 

(-0.02; 0.03) 

0 

(0; 0) 

0.09 

(0.06; 0.12) 

0.13 

(0.12; 0.14) 

βfwi,4 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βfwi,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βfim,2 0.59 

(0.54; 0.64) 

0.6 

(0.55; 0.65) 

-0.02 

(-0.04; 0.01) 

0.01 

(0.01; 0.02) 

βfim,3 0 

(-0.02; 0.03) 

0 

(0; 0) 

0.35 

(0.33; 0.38) 

0.36 

(0.34; 0.37) 

βfim,4 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βfim,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βbcs,2 0.38 

(0.33; 0.44) 

0.39 

(0.34; 0.44) 

-0.01 

(-0.04; 0.02) 

0.01 

(0.01; 0.01) 

βbcs,3 0 

(-0.02; 0.03) 

0 

(0; 0) 

0.23 

(0.21; 0.26) 

0.23 

(0.22; 0.25) 

βbcs,4 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βbcs,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βbch,2 0.02 

(-0.01; 0.05) 

0.01 

(0.01; 0.02) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βbch,3 0 

(-0.02; 0.03) 

0 

(0; 0) 

0.27 

(0.24; 0.29) 

0.26 

(0.25; 0.27) 

βbch,4 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βbch,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βchi,2 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βchi,3 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βchi,4 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

βchi,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

-0.02 

(-0.05; 0.01) 

0 

(0; 0) 

a Welfare impairment parameter 𝛽𝑗,𝑙 for welfare indicator 𝑗 and mobility score 𝑙. Welfare 

indicator 𝑗 abbreviations: fwi = feed and water intake; fim = functional impairment; bcs = 

body condition score; bch = behavioural change; chi = cow human interactions. 
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Table A 3.3 First and total order sensitivity indices for herd-level welfare impact 

scores per Maximum Mobility Score sub-optimal mobility Case (MMSC) apropos 

MMSC4 and MMSC5. 

Parametera MMSC4 MMSC5 

First Order Total order First Order Total order 

βfwi,2 0 

(-0.02; 0.03) 

0 

(0; 0) 

0 

(-0.02; 0.03) 

0 

(0; 0) 

βfwi,3 0.05 

(0.02; 0.08) 

0.06 

(0.06; 0.06) 

0.05 

(0.03; 0.08) 

0.07 

(0.06; 0.07) 

βfwi,4 0.1 

(0.07; 0.12) 

0.1 

(0.09; 0.1) 

0.01 

(-0.02; 0.04) 

0.01 

(0.01; 0.01) 

βfwi,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

0.01 

(-0.01; 0.04) 

0.01 

(0.01; 0.01) 

βfim,2 0.16 

(0.13; 0.19) 

0.19 

(0.17; 0.2) 

0.24 

(0.21; 0.26) 

0.27 

(0.26; 0.29) 

βfim,3 0.16 

(0.13; 0.19) 

0.17 

(0.16; 0.17) 

0.19 

(0.16; 0.21) 

0.19 

(0.18; 0.2) 

βfim,4 0.07 

(0.04; 0.1) 

0.07 

(0.07; 0.07) 

0.01 

(-0.02; 0.03) 

0.01 

(0.01; 0.01) 

βfim,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

0.01 

(-0.01; 0.04) 

0.01 

(0.01; 0.01) 

βbcs,2 0.12 

(0.09; 0.16) 

0.12 

(0.1; 0.14) 

0.18 

(0.14; 0.22) 

0.18 

(0.15; 0.21) 

βbcs,3 0.12 

(0.09; 0.14) 

0.11 

(0.1; 0.12) 

0.13 

(0.11; 0.16) 

0.12 

(0.12; 0.13) 

βbcs,4 0.04 

(0.01; 0.07) 

0.04 

(0.04; 0.05) 

0 

(-0.02; 0.03) 

0 

(0; 0) 

βbcs,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

0 

(-0.02; 0.03) 

0 

(0; 0) 

βbch,2 0.01 

(-0.02; 0.04) 

0 

(0; 0.01) 

0.01 

(-0.02; 0.04) 

0.01 

(0; 0.01) 

βbch,3 0.13 

(0.11; 0.16) 

0.12 

(0.11; 0.13) 

0.15 

(0.13; 0.18) 

0.14 

(0.13; 0.14) 

βbch,4 0.06 

(0.03; 0.08) 

0.05 

(0.05; 0.06) 

0.01 

(-0.02; 0.03) 

0 

(0; 0) 

βbch,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

0.01 

(-0.02; 0.03) 

0 

(0; 0) 

βchi,2 0 

(-0.02; 0.03) 

0 

(0; 0) 

0 

(-0.02; 0.03) 

0 

(0; 0) 

βchi,3 0 

(-0.02; 0.03) 

0 

(0; 0) 

0 

(-0.02; 0.03) 

0 

(0; 0) 

βchi,4 0 

(-0.02; 0.03) 

0 

(0; 0) 

0 

(-0.02; 0.03) 

0 

(0; 0) 

βchi,5 0 

(-0.02; 0.03) 

0 

(0; 0) 

0 

(-0.02; 0.03) 

0 

(0; 0) 

a Welfare impairment parameter 𝛽𝑗,𝑙 for welfare indicator 𝑗 and mobility score 𝑙. Welfare 

indicator 𝑗 abbreviations: fwi = feed and water intake; fim = functional impairment; bcs = 

body condition score; bch = behavioural change; chi = cow human interactions. 
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Chapter 4  

The economics of sensor-based 

management of dairy cow sub-

optimal mobility 
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Abstract 
Sub-optimal mobility (SOM) is a costly health condition in dairy production. Current 

SOM management is based on visual SOM detection by farm staff. This often leads 

to cows with severe SOM being detected and promptly treated, while the detection 

and subsequent treatment of cows with mild SOM is delayed or non-existent resulting 

in prolonged cases of mild SOM being treated at twice-yearly routine hoof trimming. 

Using automatic SOM detection sensors may improve early detection of mild SOM 

allowing for improved SOM management. However, the economic value of these 

sensors when used for sensor-based SOM management are not well known. The 

objective of this study was to evaluate the added economic value of automatic SOM 

detection sensors. A recently developed bio-economic simulation model was extended 

to simulate a farm without and with automatic SOM detection sensors and farm 

economic performance comparisons were drawn. Moreover, for the farm with sensors, 

novel sensor-based SOM management strategies were designed. Within these sensor 

based-management strategies multiple scenarios with different sensor performance in 

terms of sensitivity, specificity, and mobility score detection were simulated. A new 

alert prioritization method was also introduced. Results from this study provide 

insights on the economic trade-offs in production losses and additional labour costs 

for the different sensor-based management strategies, sensor performances and alert 

prioritization. Simulations show that the added economic value of automatic SOM 

detection sensors are sensitive to the sensor-based management strategies, sensor 

performance and the introduced alert prioritization method. 39 of the 80 simulated 

scenarios obtained a positive mean net economic sensor effect: the highest was €6,360 

per year (€51 per cow per year). Based on evidence from our scenarios we suggest 

that twice-yearly routine hoof trimming with the addition of automatic SOM 

detection sensors should be replaced with cow specific hoof trimmer treatments 

following SOM detection by the sensor. Earlier detection and subsequent treatment 

of mild SOM resulted in economic gains when the alert prioritization method was 

introduced. Implementing automatic SOM detection sensor systems allows for many 

options to alter SOM management where improvements in farm economic 

performance can be achieved in combination with improved cow mobility. The 

implications for future research are discussed. 
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4.1 Introduction 

Sub-optimal mobility (SOM) is a costly health condition in dairy farming largely due 

to the associated milk production losses, premature culling, negative reproduction 

effects and treatment related expenditures (Dolecheck & Bewley, 2018). Farmers 

generally underestimate the economic impact and prevalence of SOM (Bruijnis et al., 

2013; Leach et al., 2010) meaning that cows with severe SOM are mostly detected 

visually and treated shortly afterwards while the detection and subsequent treatment 

of cows with mild SOM is often delayed (Alawneh et al., 2012a). The associated mild 

SOM production losses contribute significantly to the total direct cost of SOM 

(Edwardes et al., 2022a). Detecting and treating cows with mild SOM sooner may 

significantly reduce the total direct cost of SOM. Moreover, it will also reduce the 

risk of mild SOM transitioning to severe SOM (Leach et al., 2012) and additional 

treatments (Reader et al., 2011) with an altogether reduction in significant costs 

associated with severe SOM (Edwardes et al., 2022a). 

Detecting cows with mild SOM can only be achieved by increasing the detection 

frequency and performance coupled with increased farmer awareness of SOM. Doing 

this by means of visual detection is expected to incur additional costs due it’s 

subjective and time-consuming nature. To circumvent these visual detection 

limitations, many automatic SOM detection sensors are being researched and 

developed to objectively, continuously, and autonomously monitor the mobility of 

cows (Alsaaod et al., 2019; Schlageter-Tello et al., 2014). Despite the growing body 

of literature on automatic SOM detection, their detection performance varies, due to 

difference in algorithms applied for example (Alsaaod et al., 2019; Schlageter-Tello 

et al., 2014), and only a few of these sensor systems are available in practice. The 

farmers’ willingness to implement these sensors in practice depends, amongst others, 

on whether their added economic value is clear (Steeneveld & Hogeveen, 2015). This 

results in a need to quantify the economic value of automatic SOM detection sensors 

to support farmers’ investment decisions with respect to better and economically 

feasible SOM management. 

To date, only Van De Gucht et al. (2017a) and Kaniyamattam et al. (2020) 

investigated the economic value of these sensors. Although both studies found that 

an added economic value is obtainable with these sensors, the studies possess 

limitations. For example, Van De Gucht et al. (2017a) considered changes in SOM 

management but not sensor system costs, while Kaniyamattam et al. (2020) 

considered sensor system costs but not changes in SOM management. This 

demonstrates the need to combine multiple aspects such as changes in SOM 

management, sensor system costs and performance to realize a better understanding 

of the added economic value of automatic SOM detection sensors.  
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With respect to SOM management, it is expected that management is required to 

change when automatic SOM detection sensor systems are implemented. It is 

expected that farmers will need to react to sensor generated alerts more frequently 

as Steeneveld and Hogeveen (2015) found that many farmers hardly use the output 

of sensors (i.e., alerts). More frequent reaction to alerts will increase the associated 

labour costs of SOM management, especially if the performance of an automatic SOM 

detection sensor is poor. Including the additional opportunity costs of labour to check 

alerts will provide a better estimate of the economic value apropos automatic SOM 

detection sensors systems. These labour costs were not considered by Van De Gucht 

et al. (2017a) and Kaniyamattam et al. (2020) and should be considered given that 

a high frequency of alerts could be generated depending on SOM prevalence and 

sensor performance. 

Eckelkamp and Bewely (2020) found that farmers tend to completely ignore alerts if 

too many are generated in a single day. Reducing the number of generated alerts to 

stimulate farmer reaction calls for alert prioritization methods. These methods have 

not been investigated apropos automatic SOM detection sensors (Dominiak & 

Kristensen, 2017). However, alert prioritization methods should only be considered if 

they add economic value to the sensor, which also depends on sensor performance, 

SOM severity and sensor-based SOM management strategy. 

Therefore, the objective of this study is to contribute further to the limited literature 

concerning the economic value of automatic SOM detection sensors through economic 

analysis by addressing the multiple aspects of sensor-based SOM management in 

combination. An economic analysis was conducted to include changes in labour 

related costs associated with sensor-based SOM management that would not have 

been addressed through a financial analysis. An economic analysis ultimately leads 

to a better economic valuation of value of automatic SOM detection sensors used in 

sensor-based SOM management. Very few automatic SOM detection sensors are 

commercially available making data from practice scarce. To overcome this data 

scarcity, we quantify the economic value of these sensors via bio-economic simulation 

modelling. A variety of sensor-based SOM management scenarios were simulated. 

Based on these results, the considerations for future research are discussed. 

4.2 Methodology 

To quantify the economic value of automatic SOM detection sensors we used a 

recently developed bio-economic simulation model (Edwardes et al., 2022a). We 

updated necessary model parameter values and extended the model by including 

sensor-based SOM management scenarios so that our objective could be met. The 
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economic objective was to quantify the mean net economic sensor effect by comparing 

a with and without sensor scenario. This was done for 5 sensor scenarios, each with 

16 sub-scenarios that included differences in SOM management, sensor performance 

and alert generation intervals. Components of this study are described in the 

subsequent sections in the following order: Simulation model in brief, Model 

extensions, Economic analysis, Simulation scenarios, Sensitivity analysis, and lastly 

Sensor classification parametrization. 

4.2.1 Simulation model in brief 

The developed stochastic, mechanistic, and time-discrete bio-economic simulation 

model simulates a typical Dutch dairy herd of 125 cows (extensively described in 

Edwardes et al., 2022a). The model was parameterized for a system where cows have 

access to pasture for >6 hours per day during the Spring and Summer months 

(pasture period) and are housed in cubicle housing with concrete slatted floors during 

the Autumn and Winter months (housing period). Cows are either lactating or dried-

off and are subject to removal by culling decisions on the premise that a replacement 

heifer is available on the following day. 

The model simulates the actual SOM situation of the cows. This is done by simulating 

the infection dynamics of hoof disorders 6  at the hoof-level as the underlying 

mechanisms responsible for the dynamics of SOM expressed at cow-level. Cow 

mobility is modelled by a 5-point ordinal mobility scoring method (1 = optimal 

mobility, 5 = severely impaired mobility; Sprecher et al., (1997) and we define a cow 

with SOM when she is scored with a mobility score ≥2. We define a cow as SOM as 

opposed to lame because the term lame often varies in its definition when using the 

same mobility scoring method. For example, a cow with mobility score ≥3 is typically 

defined as lame (Amory et al., 2006; Randall et al., 2018; Somers et al., 2019) whereas 

a cow with mobility score ≥2 (Olechnowicz & Jaśkowski, 2015) or ≥4 (Kovács et al., 

2015) has also been defined as lame. By avoiding the term lameness, we can 

specifically focus on varying levels of mobility as defined by the mobility scoring 

method used in this study. More recently, other studies have focused on specific 

mobility scores (O’Connor et al., 2020a) Furthermore, mild forms of SOM are 

 

6 Eight hoof disorders were included in the model described in Edwardes et al. (2022a). The 

hoof disorders are: digital dermatitis, interdigital hyperplasia, interdigital dermatitis/heel-horn 

erosion, interdigital phlegmon, overgrown hoof, sole haemorrhage, sole ulcer, and white-line 

disease. 
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represented by grouping mobility scores 2 and 3 whereas severe forms are represented 

by grouping mobility scores 4 and 5. 

Preventative treatment of hoof disorders is routinely done by the hoof trimmer twice 

a year: at the start of the pasture and housing period, respectively. Hoof trimming 

when cows are dried is not performed. All cows have their hind hooves trimmed at 

routine hoof trimming and front hooves are trimmed if a hoof disorder is present and 

responsible for a mobility score ≥3. Between the routine hoof trimming, cows with 

mobility scores 3, 4 and 5 are visually detected by farm personnel with increasing 

probabilities, respectively. Cows detected with mobility score 3 are treated at routine 

hoof trimming. Cows detected with mobility score 4 are treated by the farmer while 

cows detected with mobility score 5 are treated by a veterinarian, uniformly 

distributed 1 – 21 (Alawneh et al., 2012a) and 1 – 3 days after detection, respectively. 

Treatment efficacy depended on the underlying hoof disorder and agent performing 

the treatment. All hoof disorders were treated regardless of clinical sign. It was 

assumed that farmer related treatment was less effective than the hoof trimmer and 

veterinarian due to varying skillsets. Cows are treated with antibiotics for interdigital 

phlegmon and have their milk withdrawn for 5 days in total. Cows with SOM are 

subject to a SOM culling probability per mobility score. Additionally, cows with 

severe SOM were culled if they required a fourth treatment. 

(Re)Production events were: milking, feeding, culling, oestrus detection, 

insemination, and calving, all simulated in daily time-steps. These (re)production 

events are affected per mobility score 1 – 5. Economic calculations are based on 

production events (unaffected and affected by SOM), and management actions in 

non-SOM specific situations (i.e., inseminations) and SOM specific situations (i.e., 

treatment). Production and production loss input parameters and respective values 

are found in Tables A 4.1 – A 4.4 of the Appendix. 

  



103 

4.2.2 Model extensions 

For brevity of this manuscript, we omit the description of simulation processes 

already described in Edwardes et al. (2022a). The following sections describe only 

the model extensions apropos simulation processes and inputs. 

Automatic mobility score classification 

The model was adapted to include a module that simulates sensors that have the 

ability to classify a cow with one of the five mobility scores as per Sprecher et al. 

(1997). In each time-step, each cow is subject to the probability of being correctly 

classified by the sensor with her actual mobility score. The outcome of a correct 

mobility score classification is predicted by a binomial distribution  

 𝜙𝑖,𝑠,𝑡 = 𝐵(1, 𝑃𝑠) (4.1) 

where 𝜙𝑖,𝑠,𝑡  is the logical classification outcome for cow 𝑖 being correctly classified 

by the sensor with a probability 𝑃𝑠 for mobility score 𝑠 in time-step 𝑡. If a cow is not 

correctly classified with her mobility score (i.e., 𝜙𝑖,𝑠,𝑡 = 0), an incorrect mobility score 

is assigned to the cow by the sensor according to a weighted random sample. The 

sensor classification of cows with SOM is dependent on the mobility score threshold 

value for SOM inherent to the sensor. For example, the sensor classifies a cow with 

a mobility score ≥3 as a cow with SOM. 

After the mobility score classification process has run, alerts are generated for the 

cows classified with SOM as per on the mobility score threshold value for SOM. To 

limit the number of false alerts that may potentially arise given the performance of 

the sensor, we imposed a simple alert condition. The condition considers the ratio of 

total classifications per mobility score per cow to an alert notification interval (1, …, 

n days) and a threshold value for the ratio. Between notification intervals mobility 

scores for each cow are continuously classified and the alert notification interval can 

be specified for each mobility score. Hence, at each alert notification, interval alerts 

are generated if  

 
∑ 𝛼𝑎,𝑖,𝑠
𝑛
𝑎 =1

𝑛𝑠
  ≥ 𝑥𝑠 (4.2) 

where 𝛼 is a vector of logical classification outcomes for mobility score s of cow 𝑖 

during an interval of 𝑛𝑠 days and 𝑥𝑠 is a predefined classification threshold.
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If an alert is generated, intervention is prompted. Intervention is described in more 

detail in Section 4.2.4. Briefly, it is a two-step procedure where an alert is first 

confirmed by the farmer by setting aside time and visually inspecting the mobility of 

the identified cows. Second, if the cow is perceived as SOM by the farmer, treatment 

is performed by either the farmer, hoof trimer or veterinarian. 

Economic calculations 

We briefly summarize the important economic calculations described in Edwardes et 

al. (2022a). The respective parameter inputs are found in Table A 4.5 of the 

Appendix. Refer to Edwardes et al. (2022a) for the full description of economic 

calculations. 

Gross milk production per cow was calculated on a daily basis using a Wilmink 

lactation curve (Wilmink, 1987). Actual milk production per cow was calculated with 

a milk production loss factor of gross milk production per mobility score. Milk 

production loss factors per mobility score 1 – 5 were 0, 0, 0.05, 0.48 and 0.53, 

respectively. These factors were estimated as the ratio between the quotient of an 

average 305d yield production loss per mobility score reported in O’Connor et al. 

(2020a) and the median duration of a SOM case of a maximum mobility score output 

by the model in the baseline scenario (Scenario 0). Mobility scores according to the 

mobility scoring method used in O’Connor et al. (2020a) were adjusted to match the 

mobility scores used in this current study. The daily cost of milk production loss per 

cow was calculated by multiplying the milk price and the difference between daily 

gross and actual milk production.  

Daily feed energy requirements per cow were modelled as a function of daily kg 

FPCM production and expressed as VEM (1 VEM = 1.65 kcal of NEL; van Es, 1978). 

Additional VEM were included for cows in parity ≤ 2 and pregnancy stage 

(Remmelink et al., 2015; Van Es, 1978). The daily cost of VEM per cow was 

calculated as the product of VEM and price per kVEM. 

Culling costs were calculated using a depreciation method. If a cow was culled before 

the end of the expected number of lactations the cull value of the cow was not realised 

and resulted in a culling cost, which reflects a capital loss. If the cow exceeded the 

number of expected lactations, no culling cost was incurred. The culling cost per 

culled cow was calculated as the salvage value (i.e., replacement heifer price less cull 

cow price) of the culled cow multiplied by the remaining lactations before completing 

the number of expected lactations. 
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In this current study, the economic calculations as in Edwardes et al. (2022a) are 

extended with the following components. 

Alert confirmation costs. For each alert that was generated to notify the farmer 

of a cow with SOM, an alert confirmation cost is incurred and calculated with 

 𝐶𝑖
(𝑐𝑜𝑛𝑓𝑖𝑟𝑚)

=
𝑁(𝜇𝑐𝑜𝑛𝑓𝑖𝑟𝑚 , 𝜎𝑐𝑜𝑛𝑓𝑖𝑟𝑚)

60
× 𝐶(𝑙𝑎𝑏𝑜𝑢𝑟) (4.3) 

where 𝐶𝑖
(𝑐𝑜𝑛𝑓𝑖𝑟𝑚)

 is the alarm confirmation cost for cow 𝑖, 𝜇𝑐𝑜𝑛𝑓𝑖𝑟𝑚 is the mean alert 

confirmation duration in minutes, 𝜎𝑐𝑜𝑛𝑓𝑖𝑟𝑚 is the standard deviation of an alarm 

confirmation duration in minutes and 𝐶(𝑙𝑎𝑏𝑜𝑢𝑟) is the farmer labor price per hour. We 

assumed 1 minute for 𝜇𝑐𝑜𝑛𝑓𝑖𝑟𝑚, 0.2 minutes for 𝜎𝑐𝑜𝑛𝑓𝑖𝑟𝑚 and the farmer labor price 

per hour is €30.70 (Blanken et al., 2017). 

Hoof trimmer costs. Hoof trimmer cost calculations were calculated on a per 

treated cow basis using an hourly rate of €47.95 assuming a hoof trimmer can attend 

to 7 cows per hour (Blanken et al., 2017). In addition, a call out fee of €17.50 was 

incurred at every visit. Calculations and inputs were based on Blanken et al. (2017). 

Sensor costs. We based our cost estimates on the cost for a wearable Nedap 

Smarttag leg with heat detection and health monitoring sensor (Nedap, 2021; 

Sleurink, 2018) because few automatic SOM detection sensors are commercially 

available and Van De Gucht et al. (2017b) report that farmers prefer wearable 

sensors. Sensor related costs were treated as a fixed annual overhead cost. Although 

it is treated as a fixed overhead, we include it in the model because it concerns the 

proactive management of SOM: incurring an annual cost of €1553.75. This annual 

sensor cost is composed of an initial investment cost of €110 per unit per cow (Nedap, 

2021; Sleurink, 2018), an annual depreciation of the sensor system initial investment 

cost depreciated over a 10-year useful life, annual maintenance costs at 0.5 percent 

of the initial investment cost, and sensor replacement costs at a rate of one unit per 

year. 

4.2.3 Economic analysis 

The primary objective was to obtain the mean net economic sensor effect, which 

reflects changes in individual cost factors, with the implementation of sensors. To 

obtain the mean net economic sensor effect, preliminary steps had to be performed. 

First the net economic results for each simulation in a 1-year time horizon were 

computed. This was obtained with 
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 𝑁𝐸𝑅𝑦,𝑧 = ∑∑𝑅𝑖,𝑡,𝑦,𝑧
(𝑚𝑖𝑙𝑘)

365

𝑡=1

125

𝑖 = 1

− ∑∑∑ 𝐶𝑖,𝑡,𝑦,𝑧
(𝑘)

𝑘∈ 𝐾

365

𝑡=1

− 𝐶𝑦,𝑧
(𝑠𝑒𝑛𝑠𝑜𝑟)

125

𝑖 = 1

 (4.4) 

where 𝑁𝐸𝑅𝑦,𝑧 is the net economic result for simulation 𝑦 in scenario 𝑧 and 𝑅𝑖,𝑡,𝑦,𝑧
(𝑚𝑖𝑙𝑘) is 

the gross milk returns for cow 𝑖 in time-step 𝑡. For notational convenience, the cost 

factors for each cow 𝑖 in the simulation model are denoted as 𝐶𝑖,𝑡,𝑦,𝑧
(𝑘)  where 𝑘 ∈  𝐾 = 

{milk, discard, feed, insemination, culling, hoof-trimmer, veterinarian, labour, 

treatment, confirm}. The (cost) elements of 𝐾 associated with the cost factor 𝐶(𝑘) 

are briefly described: milk is the cost milk loss due to SOM, discard is the cost of 

discarded milk where a cow with SOM was treated with antibiotics, feed is the cost 

of feed, insemination is the cost of an insemination following the successful detection 

of oestrus, culling is the net cost of culling, hoof-trimmer is the cost of the professional 

hoof-trimmer for the hoof trimming of a cow, veterinarian is the cost of the 

veterinarian for the treatment of a cow with severe SOM, labour is the cost of the 

farmer for the treatment of a cow with SOM, treatment is the cost of treating a cow 

with SOM, and confirm is the cost of confirming a sensor generated alert. Lastly, 

𝐶𝑦,𝑧
(𝑠𝑒𝑛𝑠𝑜𝑟) is the annual cost of a sensor. The mean, 5th and 95th percentiles were then 

calculated. 

Once the net economic results were obtained, the mean net economic sensor effect 

for each sensor scenario was calculated by comparing the mean net economic results 

against the mean net economic results of the baseline without sensor scenario (𝑧 = 

0): 

 𝑁𝐸𝑆𝐸𝑧 = 
1

𝑅
(∑ 𝑁𝐸𝑅𝑟,𝑧 −

𝑅

𝑟 = 1

 ∑ 𝑁𝐸𝑅𝑟,0

𝑅

𝑟 = 1

) (4.5) 

where 𝑁𝐸𝑆𝐸𝑧 is the mean net economic sensor effect for the with sensor scenario 𝑧, 

and 𝑅 is the number of replications required per scenario for model convergence. In 

addition, the mean totals for all the economic factors in the with sensor scenarios (𝑧 

= 1:80) were compared with those of the without sensor scenario (𝑧 = 0) to gain 

insight on the composition of 𝑁𝐸𝑆𝐸𝑧. To reduce the number of scenarios required for 

a detailed analysis on the compositions of the mean net economic sensor effect, we 

selected those with a mean net economic sensor effect in the top, centre, and bottom 

5 percent of the mean net economic result distribution for the 80 sensor scenarios. 
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4.2.4 Simulation scenarios 

Several simulation scenarios were defined (Table 4.1). A baseline scenario was defined 

for a farm without an automatic SOM detection sensor system (Scenario 0) so that 

a farm with an automatic SOM detection sensor system could be compared against 

it. Five scenarios were defined for a farm with an automatic SOM detection sensor 

system, each with primary differences in the mobility score threshold value for SOM 

classification by the sensor system and in the management of SOM with a sensor 

system. 

Most automatic SOM detection sensors being developed use the Sprecher et al. (1997) 

mobility scoring method as classification method, where mobility score ≥3 is the 

threshold value for SOM classification by the sensor (Alsaaod et al., 2019). Therefore, 

Scenarios 1 – 3 incorporate mobility score ≥3 as the threshold value for SOM 

classification by the sensor. Scenarios 4 – 5 include mobility score ≥2 as the threshold 

value for SOM classification by the sensor, because this score can be considered as 

the onset of SOM and may be of interest in detecting to prevent a case of severe 

SOM. 

In respect to SOM management with a sensor system, Scenario 1 simulated a 

situation where the sensor system was an addition to current SOM management (i.e., 

twice a year hoof trimming by a professional). The farmer perceived alerts generated 

for cows with mobility score 3 as false because farmers tend to underestimate the 

prevalence of SOM (Bruijnis et al., 2013; Leach et al., 2010), consequentially leading 

to cows with mobility scores 4 and 5 being treated. Hence, only severe cases of SOM 

were treated by the farmer (mobility score 4) or veterinarian (mobility score 5) after 

detection (Bruijnis et al., 2013; Leach et al., 2010). Different SOM management were 

introduced in Scenarios 2 – 5. Firstly, routine hoof trimming at the start of the 

pasture and housing period no longer occurred. This was to incorporate more precise 

intervention for cows that were detected with SOM that cannot be achieved with 

twice-yearly hoof trimming. This includes treatment of mild SOM, which is 

prevention of severe SOM, and treatment of severe SOM. Thus, the intensity of 

treatments was increased where all cows detected with SOM as per the threshold 

value for SOM classification by the sensor (Scenario 2 – 3: mobility score ≥3; Scenario 

4 – 5: mobility score ≥2) were treated. Cows that had true-positive alerts for mobility 

score 3 (Scenario 2) and mobility scores 2 – 3 (Scenario 4) were treated by the farmer. 

Cows that had true-positive alerts for mobility score 3 (Scenario 3) and mobility 

scores 2 – 3 (Scenario 5) were treated by a professional hoof trimmer. Cows that had 

true-positive alerts for mobility scores ≥4 in Scenarios 2 – 5 were treated as in 

Scenario 1. Due to the increased treatment intensity in Scenarios 2 – 5, the decision 

rule to cull a cow with severe SOM if the cow required a fourth treatment for SOM 

in the same lactation, as in Edwardes et al. (2022a), was removed. 
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In addition, sub-scenarios for each Scenario 1 – 5 were simulated. The sub-scenarios 

included changes in the performance of the sensor in terms of sensitivity and 

specificity and the ability of the sensor system to distinguish between mild and severe 

SOM by means of the alert notification interval. For example, a daily notification 

interval entails that the sensor system cannot distinguish between mild and severe 

SOM, whereas a notification interval of more than one day for mild SOM entails that 

the sensor system can distinguish between mild and severe SOM. Changes in sensor 

performance and mild SOM notification intervals respectively occurred at 4 levels. 

Including mild SOM notification intervals help address trade-offs between alert 

confirmation costs and additional production losses incurred, considering potential 

mobility score transitions, during the interval.  

A full factorial of 16 sub-scenarios for each Scenario 1 – 5 were simulated. A total of 

81 scenarios were simulated: 1 for the baseline without sensor system scenario 

(Scenario 0) and 80 for the with sensor scenarios. 500 replications (i.e., 𝑅 = 500) for 

each of the 81 scenarios were required for model convergence. 
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Table 4.1 Description of simulated scenarios and sub-scenarios. 

Aspect Scenario 

 0a 1 2 3 4 5 

Sensors on 

farm 

No Yes Yes Yes Yes Yes 

Mobility score 

threshold 

value for SOM 

NA Mobility 

score ≥3 

Mobility 

score ≥3 

Mobility 

score ≥3 

Mobility 

score ≥2 

Mobility 

score ≥2 

Routine hoof 

trimming at 

start of 

pasture and 

housing period 

Yes Yes No No No No 

SOM cow treated by: 

- Mild 

SOMb 

NA NA Farmer Hoof 

trimmer 

Farmer Hoof 

trimmer 

- Severe 

SOMc 

Farmer/ 

vet. 

Farmer/ 

vet. 

Farmer/ 

vet. 

Farmer/ 

vet. 

Farmer/ 

vet. 

Farmer/ 

vet. 

  

Sub-scenarios 

Overall sensor 

performanced 

NA a) Sensitivity = 68%; Specificity = 88% 

  b) Sensitivity = 75%; Specificity = 79% 

  c) Sensitivity = 82%; Specificity = 81% 

  d) Sensitivity = 88%; Specificity = 91% 

Notification 

interval 

(n) for mild 

SOM alertsb 

NA 

a)  1 day   

  b)  7 days 

  c) 14 days 

  d) 30 days 
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4.2.5 Sensitivity analysis 

A sensitivity analysis allowed us to assess the sensitivity in mean net economic sensor 

effect due to changes in the farmer labour and hoof trimmer price per hour. We 

performed a sensitivity analysis apropos these two parameters because of their 

economic uncertainty regarding changes in SOM management as per the simulated 

scenarios previously described. 

Farm labour price may vary between farmers based on the required time to perform 

on-farm activities that they value most within their time budget due to behavioural, 

emotional, and intuitive reasons. For example, the disutility of giving up an 

additional time unit may be valued more than the utility in commensurate gains, 

such as reduced production losses, and vice versa (Tversky & Kahneman, 1992). This 

idea is encapsulated in the endowment effect (Kahneman et al., 1991). Thus, the 

labour price to perform SOM related management activities may vary based on the 

farmers perception towards SOM management, and respective changes in SOM 

management. Hoof trimmer fee structures may also change due to changes in the 

frequency of hoof trimmer visits. To account for these uncertainties and the resulting 

sensitivity in mean net economic sensor effects, the default farm labour and hoof 

trimmer price per hour values were increased and decreased by €10 and €20, 

respectively. Changes in the hoof trimmer call out fee were omitted because 

preliminary simulations with a smaller number of replications showed insignificant 

effects on the mean net economic sensor effect. The hoof trimmer price per hour was 

not adjusted for Scenario 1 because the frequency of hoof trimming remained 

unchanged. The sensitivity analysis was limited to the top, centre, and bottom 5 

percent selected sub-scenarios. 

Predefined 

alert threshold 

for mobility 

score (𝑥𝑠)e 

  𝑥3 = 0.5 𝑥2:3 = 0.5 

a Baseline simulation scenario: visual detection as per Edwardes et al. (2022a). 
b In Scenarios 2 and 3 mild SOM is defined by mobility score 3 and in Scenarios 4 and 5 

mild SOM is defined by mobility scores 2 – 3. 
c Severe cases of SOM with mobility score 5 are treated by the veterinarian. 
d Mobility score specific classification probabilities are found in Table 4.2. 
e See Equation 4.2. 
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4.2.6 Sensor classification parameterisation 

For sub-scenario (a) apropos the sensor performance, 𝑃𝑠 (Eq. 4.1) was directly based 

on the mobility score classification sensitivity reported in Van Hertem et al. (2016) 

in their 4-tier mobility confusion matrix as shown in Table 4.2. The weights used in 

the weighted random sample to simulate incorrect mobility score classifications (i.e., 

when 𝜙𝑖,𝑠,𝑡 = 0) was obtained by setting the diagonals of Van Hertem et al. (2016) 

4-tier confusion matrix to NA and estimating the remaining distribution of incorrect 

mobility score classification as percentages per observed mobility score (Table 4.3). 

The overall sensor performance in terms of specificity and sensitivity were then 

obtained by transforming the 4-tier confusion matrix into a binary scaled confusion 

matrix (SOM and non-SOM) according to the mobility score threshold value for 

SOM defined in the Scenarios 1 – 5 (Table 4.1). 

 

Table 4.2 Sensor mobility score classification probabilities. 

Sensor 

performance 

sub-scenario 

Probability (𝑷𝒔) of correct mobility 

score classification 

Source 

1 2 3 ≥4  

a) 0.54 0.75 0.50 0.49 
Van Hertem et al. 

(2016) 

b) 0.45 0.55 0.60 0.65 Hypothetical inputs 

c) 0.50 0.60 0.70 0.75 

d) 0.85 0.80 0.80 0.85 

 

Other than the study by Van Hertem et al. (2016), current literature at the time of 

publication apropos specific mobility score classification sensitivity does not exist. 

Thus, we hypothetically set the sensor performance 𝑃𝑠 for each mobility score for 

sub-scenarios (b), (c) and (d) (Table 4.2). In sub-scenarios (b) and (c), 𝑃𝑠  were 

hypothetically set to achieve overall gains in sensitivity and losses in specificity 

compared with sub-scenario (a); a trade-off apparent in literature (Dominiak & 

Kristensen, 2017). In sub-scenario (d), 𝑃𝑠 was hypothetically set to emulate a sensor 

with the highest performance in both sensitivity and specificity in comparison to sub-

scenarios (a), (b) and (c); in practice high performance in terms of sensitivity and 

specificity is a desirable sensor feature (Dominiak & Kristensen, 2017; Van De Gucht 

et al., 2017b). Weights for the weighted random sample of incorrect mobility scores 

in sub-scenarios (b), (c) and (d) remained as per Table 4.3. Using the hypotheticals 

set for 𝑃𝑠 found in Table 4.2, the number of correct mobility score classifications were 

calculated in accordance with the row total per observed mobility score in the 4-tier 
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confusion matrix. The remaining observations not correctly classified were then 

distributed along the incorrect mobility scores per the weights in Table 4.3. The 

overall sensor performance was then estimated through a binary scale transformation 

as described for sub-scenario (a). 

4.3 Results 

The mean net economic result was €279,209 per farm per year for the baseline 

scenario (Scenario 0) and ranged between €268,214 and €285,569 per farm per year 

for the 80 sensor sub-scenarios (Figure 4.1). Overall, the mean net economic results 

for 39 of the 80 simulated sub-scenarios were greater than the mean net economic 

results for the baseline Scenario 0. Of these 39 simulated sub-scenarios, most were 

either part of Scenario 3 (16 sub-scenarios), had an alert notification interval of 7 or 

14 days for mild SOM (12 sub-scenarios, respectively) or concerned a sensor system 

with an 88 percent sensitivity and 91 percent specificity (12 sub-scenarios). On the 

other hand, the 41 sub-scenarios with a mean net economic result lower than the 

baseline Scenario 0, most were either part of Scenario 1 or Scenario 4 (16 sub-

scenarios, respectively), had an alert notification interval of 1 day for mild SOM (14 

sub-scenarios) or concerned a sensor system with a 68 percent sensitivity and 88 

percent specificity, or a 75 percent sensitivity and 79 percent specificity, or an 82 

percent sensitivity and 81 percent specificity (11 sub-scenarios, respectively). 

When sensors were used as an addition to current SOM management (Scenario 1), 

none of the scenarios had a mean net economic result greater than the mean net 

economic result of the baseline Scenario 0 (range between €272,984 and €278,610). 

Increasing SOM treatment intensity (Scenario 2 – 5) resulted in increasing mean net 

economic results for most of the scenarios respective of sensor performance and alert 

notification  interval.  The  mean  net  economic  results  were  higher when the hoof  

Table 4.3 Incorrect mobility score classification weights for sub scenarios a, b, 

c, and d. 

Simulated 

(correct) 

mobility score 

Incorrect classification weights Source 

1 2 3 ≥4 

1 NA 0.95 0.05 0.00 Van Hertem et al. (2016) 

2 0.33 NA 0.65 0.02 

3 0.03 0.83 NA 0.15 

≥4 0.01 0.17 0.83 NA 
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trimmer treated cows detected with mild SOM (Scenario 3 and 5) compared with the 

farmer treating cows detected with mild SOM (Scenario 2 and 4). In Scenario 2, when 

the threshold value for SOM classification by the sensor was mobility score 3, the 

mean net economic results were higher in comparison with Scenario 4, when the 

threshold value for SOM classification by the sensor was mobility score 2. Increasing 

the alert notification interval for mild SOM from 1 day to 7 days showed an increase 

in mean net economic results for all Scenarios 1 – 5 respective of the sensor 

performance. A notification interval of 7 days for mild SOM resulted in the highest 

mean net economic result for most Scenarios 1 – 5 respective of sensor performance. 

Compared to the sensor with a 68 percent sensitivity and 88 percent specificity and 

daily notification interval for mild SOM, the mean net economic results were lower 

in all Scenarios 1 – 5 for sensors with a 75 percent sensitivity and 79 percent 

specificity or 82 percent sensitivity and 81 percent specificity and daily notification 

 
Figure 4.1 Distributions of net economic results for the 80 sensor scenarios 

(boxplots) separated by alert notification intervals (panels) and coloured by 

sensor performance. The horizontal red dashed line represents the mean net 

economic results for the baseline without sensor scenario. Scenarios on the x-

axis refer to SOM management alterations (see Table 4.1 for details on 

Scenarios). 

 



114 

interval for mild SOM. Within Scenarios 1 – 5, the mean net economic results 

between sensors were relatively constant for sensors with a notification interval of 7 

days for mild SOM. 

The composition of mean net economic results for the 12 selected sub-scenarios – 

including the baseline Scenario 0 – are shown in Table 4.4 (top 5 percent), Table 4.5 

(centre 5 percent), and Table 4.6 (bottom 5 percent). Sub-scenarios in the top 5 

percent of mean net economic results all included a changed SOM management 

strategy where the hoof trimmer treated cows with mild SOM, as defined per the 

threshold value for SOM classification by the sensor, after an alert for cows requiring 

treatment for mild SOM was generated every 7 or 14 days. On the other hand, sub-

scenarios in the bottom 5 percent of the mean net economic results did not include 

the hoof trimmer in the changed SOM management strategy and alerts for mild SOM 

were generated daily. Sensors with the highest performance (Se: 88 percent and Sp: 

91 percent) were included in 3 of the 4 top 5 percent selected sub-scenarios. No other 

observable commonality with respect to sensor performance was clear in the 12 

selected sub-scenarios. To illustrate the differences between the economic factors in 

the 12 selected sensor sub-scenarios in contrast to the without sensor scenario a 

graphical representation of the mean absolute changes in the economic factors are 

shown in Figure 4.2 with the mean net economic sensor effect in the top-right corner 

of each sub-scenario panel. The mean net economic sensor effect was positive for all 

top 5 percent selected scenario. In the centre 5 percent selected scenarios, only 1 of 

4 had a positive mean net sensor economic effect. Reductions in the milk production 

loss and culling costs were largest in the top 5 percent selected sub-scenarios. Similar 

reductions in the milk production loss and culling costs were observed in the centre 

5 percent selected sub-scenarios. But these reductions were offset by the increase in 

labour costs due to increased labour time required to treat cows with SOM and/or 

the increased time required to confirm alerts, and an increase in the total treatment 

costs incurred by the farmer. Conversely, the mean net economic sensor effect was 

negative for the bottom 5 percent of selected sensor sub-scenarios. This was largely 

due to the high costs incurred for confirming alerts daily. This especially held for 

scenarios when the threshold value for SOM classification by the sensor was mobility 

score 2 (i.e., Scenario 4) despite reductions in milk production loss and culling costs 

in these bottom 5 percent sub-scenarios being similar to those observed in the top 5 

percent performing sub-scenarios. 
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Table 4.4 Composition of net economic results in €'000 for top 5 percent selected 

scenarios (5th and 95th percentiles shown in parenthesis). 

Scenario 0 5 3 5 3 

Sensor 

performancea 

     

Sensitivity 

Specificity 

- 88% 

91% 

88% 

91% 

88% 

91% 

82% 

81% 

Alert (days)a - 7 7 14 7 

Returns      

Gross milk returns 388.9  

(381.29; 

396.37) 

389.57  

(382.08; 

396.71) 

389.67  

(382.09; 

397.65) 

389.46  

(382.22; 

396.44) 

389.59  

(383; 

397.04) 

Costs      

Milk production loss 4.3  

(2.94; 5.79) 

0.3 

(0.17; 0.44) 

0.55  

(0.32; 0.84) 

0.65  

(0.41; 0.91) 

0.58  

(0.35; 0.85) 

Discarded milk 0.91  

(0.55; 1.32)  

1.08  

(0.67; 1.48) 

0.57  

(0.31; 0.88) 

1.05  

(0.68; 1.53) 

0.58 (0.27; 

0.9) 

Inseminations 2.67 

(2.43; 2.9) 

2.65 

(2.4; 2.9) 

2.58  

(2.35; 2.83) 

2.65 

(2.4; 2.89) 

2.61  

(2.36; 2.85) 

Feed 78.06  

(77.54; 

78.62) 

78.6  

(78.08; 

79.11) 

78.48  

(77.95; 

79.04) 

78.55  

(78.04; 79.1) 

78.48  

(77.99; 

79.03) 

Culling 21.41  

(15.44; 

27.52) 

16.21  

(10.71; 

22.02) 

18.38  

(13.15; 24.5) 

16.75  

(11.97; 

21.93) 

18.61  

(12.79; 

24.36) 

Treatment labour 0.24  

(0.12; 0.37) 

0.19  

(0.08; 0.33) 

0.28  

(0.13; 0.47) 

0.26  

(0.12; 0.43) 

0.27  

(0.13; 0.46) 

Alert confirmation 

labour 

0  

(0; 0) 

0.26  

(0.17; 0.37) 

0.17  

(0.13; 0.2) 

0.23  

(0.13; 0.32) 

0.41  

(0.35; 0.46) 

Hoof trimmer 1.7  

(0.88; 2.65) 

2.94  

(2.04; 3.96) 

1.37  

(1.03; 1.73) 

2.57  

(1.59; 3.54) 

1.37  

(1.06; 1.7) 

Veterinarian 0.24  

(0; 0.69)  

0.1 

(0; 0.36) 

0.2 

(0; 0.51) 

0.15 

(0; 0.47) 

0.2 

(0; 0.55) 

Treatments 0.16  

(0.05; 0.35) 

0.12  

(0.03; 0.29) 

0.39  

(0.08; 0.89) 

0.31  

(0.06; 0.91) 

0.39  

(0.09; 0.89) 

Sensor 

(fixed cost) 

0  

(0; 0) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

Total costs 109.7  

(103.19; 

115.93) 

104  

(98.35; 

109.74) 

104.53  

(98.99; 

110.88) 

104.72  

(99.35; 

110.03) 

105.05  

(99.3; 

110.82) 

Net economic result 279.21  

(270.13; 

289.58) 

285.57  

(276.45; 

293.64) 

285.14  

(276.07; 

294.28) 

284.74  

(276.4; 

293.28) 

284.54  

(275.12; 

294.03) 
a Alert notification interval (days) 
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Table 4.5 Composition of net economic results in €'000 for centre 5 percent 

selected scenarios (5th and 95th percentiles shown in parenthesis). 

Scenario 0 2 2 2 2 

Sensor performance      

Sensitivity 

Specificity 

- 88% 

91% 

75% 

79% 

82% 

81% 

68% 

88% 

Alert (days)a - 1 30 30 1 

Returns      

Gross milk returns 388.9  

(381.29; 

396.37) 

389.32  

(381.95; 

396.81) 

389  

(381.19; 

396.76) 

388.94  

(381.72; 

396.49) 

389.37  

(382.23; 

397.29) 

Costs      

Milk production loss 4.3  

(2.94; 5.79) 

0.15  

(0.08; 0.25) 

2.23  

(1.55; 3) 

1.79  

(1.23; 2.39) 

0.19 

(0.1; 0.3) 

Discarded milk 0.91  

(0.55; 1.32)  

0.57  

(0.31; 0.89) 

0.53  

(0.29; 0.82) 

0.54  

(0.27; 0.85) 

0.55  

(0.27; 0.85) 

Inseminations 2.67  

(2.43; 2.9) 

2.59  

(2.34; 2.83) 

2.61  

(2.36; 2.84) 

2.6 

(2.36; 2.84) 

2.58  

(2.35; 2.83) 

Feed 78.06  

(77.54; 

78.62) 

78.5  

(77.95; 

79.05) 

78.26  

(77.71; 78.8) 

78.31  

(77.78; 

78.86) 

78.49  

(77.97; 

79.07) 

Culling 21.41  

(15.44; 

27.52) 

18.38  

(12.92; 

24.17) 

19.44  

(13.95; 

25.73) 

19.57  

(13.93; 

25.29) 

18.3  

(12.61; 

24.06) 

Treatment labour 0.24  

(0.12; 0.37) 

1.36  

(0.83; 1.98) 

1 

(0.66; 1.37) 

1.09  

(0.72; 1.51) 

1.34  

(0.83; 1.99) 

Alert confirmation 

labour 

0  

(0; 0) 

2.3 

(2.04; 2.53) 

0.39  

(0.33; 0.47) 

0.3 

(0.25; 0.36) 

2.99 

(2.7; 3.25) 

Hoof trimmer 1.7  

(0.88; 2.65) 

0  

(0; 0) 

0  

(0; 0) 

0  

(0; 0) 

0  

(0; 0) 

Veterinarian 0.24  

(0; 0.69)  

1.21  

(0.56; 1.91) 

1.14  

(0.57; 1.75) 

1.19  

(0.68; 1.82) 

1.21  

(0.61; 1.93) 

Treatments 0.16  

(0.05; 0.35) 

3.32  

(1.87; 4.97) 

2.97  

(1.69; 4.34) 

3.17  

(1.94; 4.68) 

3.32  

(1.93; 5) 

Sensor 

(fixed cost) 

0  

(0; 0) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

Total costs 109.7  

(103.19; 

115.93) 

109.93  

(104.28; 

116.01) 

110.13  

(104.12; 

116.28) 

110.11  

(104.56; 

115.89) 

110.54  

(104.88; 

117.04) 

Net economic result 279.21  

(270.13; 

289.58) 

279.4  

(270.26; 

289.26) 

278.86  

(269.06; 

287.93) 

278.84  

(269.48; 

288.76) 

278.83  

(270.35; 

287.69) 
a Alert notification interval (days) 
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Table 4.6 Composition of net economic results in €'000 for bottom 5 percent 

selected scenarios (5th and 95th percentiles shown in parenthesis). 

Scenario 0 1 4 4 4 

Sensor performance      

Sensitivity 

Specificity 

- 82% 

81% 

68% 

88% 

82% 

81% 

75% 

79% 

Alert (days)a - 1 1 1 1 

Returns      

Gross milk returns 388.9  

(381.29; 

396.37) 

388.24  

(380.06; 

395.36) 

389.56  

(381.75; 

397.02) 

389.42  

(382.53; 

397) 

389.61  

(381.32; 

397.41) 

Costs      

Milk production loss 4.3  

(2.94; 5.79) 

2.83  

(1.82; 3.82) 

0.02 

(0; 0.05) 

0.02 

(0; 0.05) 

0.02  

(0; 0.05) 

Discarded milk 0.91  

(0.55; 1.32)  

0.95  

(0.59; 1.37) 

1.03  

(0.68; 1.41) 

1.05  

(0.71; 1.45) 

1.02  

(0.64; 1.44) 

Inseminations 2.67  

(2.43; 2.9) 

2.66 

(2.4; 2.89) 

2.66  

(2.42; 2.92) 

2.67  

(2.44; 2.9) 

2.66 

(2.4; 2.89) 

Feed 78.06  

(77.54; 

78.62) 

78.19  

(77.58; 

78.73) 

78.61  

(78.06; 

79.19) 

78.6  

(78.06; 

79.15) 

78.62  

(78.07; 

79.17) 

Culling 21.41  

(15.44; 

27.52) 

20.72  

(14.69; 

27.12) 

16.26  

(11.43; 

21.48) 

16.23  

(10.99; 

22.43) 

16.18  

(11.27; 

21.71) 

Treatment labour 0.24  

(0.12; 0.37) 

0.29  

(0.15; 0.44) 

2.31  

(1.67; 3.16) 

2.34  

(1.69; 3.24) 

2.32  

(1.68; 3.22) 

Alert confirmation 

labour 

0  

(0; 0) 

5.53  

(4.11; 6.83) 

10.72  

(10.62; 

10.81) 

11.59  

(11.49; 

11.68) 

12.72  

(12.62; 

12.82) 

Hoof trimmer 1.7  

(0.88; 2.65) 

1.74  

(0.88; 2.65) 

0  

(0; 0) 

0  

(0; 0) 

0  

(0; 0) 

Veterinarian 0.24  

(0; 0.69)  

0.24 

(0; 0.62) 

1.5 

(0.93; 2.05) 

1.46  

(0.98; 1.94) 

1.52  

(1.01; 2.11) 

Treatments 0.16  

(0.05; 0.35) 

0.53 

(0.1; 1.25) 

4.73  

(3.27; 6.21) 

4.65  

(3.37; 5.94) 

4.78  

(3.45; 6.25) 

Sensor 

(fixed cost) 

0  

(0; 0) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

1.55  

(1.55; 1.55) 

Total costs 109.7  

(103.19; 

115.93) 

115.24  

(108.46; 

122.2) 

119.38  

(113.65; 

125.52) 

120.17  

(114.41; 

126.51) 

121.4  

(116; 

127.29) 

Net economic result 279.21  

(270.13; 

289.58) 

272.98  

(262.75; 

282.26) 

270.18  

(260.49; 

279.21) 

269.26  

(259.51; 

278.8) 

268.21  

(257.96; 

277.77) 
a Alert notification interval (days) 
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Results from the sensitivity analysis showed that the mean net economic sensor effect 

remained positive due to changes in the farm labour and hoof trimmer price per hour 

in the top 5 percent sub-scenarios (Figure 4.3). The mean net economic sensor effects 

were more sensitive to changes in the hoof trimmer price per hour compared to 

changes in the farm labour price per hour, especially for sub-scenarios in Scenario 5. 

The mean net economic sensor effect for sub-scenarios in the centre 5 percent were 

positive with a €10 reduction in the labour price. The mean net economic sensor 

effect for sub-scenario in the bottom 5 percent remained negative across all changes 

in the farm labour price. 

The mean total number of alerts generated during the year varied considerably 

between the 12 selected sub-scenarios (Table 4.7). The highest number of alerts were 

generated in sub-scenarios from the bottom 5 percent where on average >98 percent 

of the alerts generated were false. Sub-scenarios from the bottom 5 percent all had a 

daily alert notification interval for cows with mild SOM and 3 of the 4 sub-scenarios 

included mobility score 2 as a threshold value for SOM (Scenario 4). Increasing the 

notification interval from 1 to either 7, 14 or 30 days for mild SOM reduced the mean 

total number of generated alerts considerably. The fewest number of mean alerts was 

generated in the sub-scenario for a sensor with a 30-day alert notification interval 

and, 82 percent sensitivity and 81 percent specificity. Increasing the alert notification 

alert intervals from 1 day also reduced the false alert rate. False alert rates were on 

average >40 percent lower than the true alert rate in scenarios when mobility score 

2 was included in the threshold value for SOM for sensors with a performance of 88 

percent sensitivity and 91 percent specificity. 
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We report 1 sub-scenario from each Scenario 1–- 5 to demonstrate the effect that 

changes in SOM management, in terms of increasing treatment intensity, apropos 

the use of sensors have on yearly mobility score prevalence trends in contrast to SOM 

management without sensors (Figure 4.4). Scenario 0 illustrates the trend apropos 

Table 4.7 Number of alerts during the year for the 12 selected sub-scenarios. 

Sub-scenarios are ordered by net economic results in descending order. Centre 

5 percent scenarios are shown in shaded rows. 

Simulated scenario details Mean total yearly 

alertsa  

(5th and 95th 

percentiles) 

Mean alert rate per 

alert notificationa,b  

(5th and 95th 

percentiles) 

Scenario  Sensitivity; 

Specificity 

Alert 

(days) 
TRUE FALSE TRUE FALSE 

5 88%; 91% 7 316 

(188; 464) 

184 

(126; 252) 

6.1 

(3.6; 8.9) 

3.5 

(2.4; 4.8) 

3 88%; 91% 7 115 

(77; 160) 

194 

(162; 225) 

2.2 

(1.5; 3.1) 

3.7 

(3.1; 4.3) 

5 88%; 91% 14 335 

(187; 481) 

61 

(41; 82) 

12.9 

(7.2; 18.5) 

2.3 

(1.6; 3.2) 

3 82%; 81% 7 115 

(78; 156) 

649 

(563; 730) 

2.2 

(1.5; 3) 

12.5 

(10.8; 14) 

2 88%; 91% 1 119 

(75; 170) 

4370 

(3890; 4814) 

0.3 

(0.2; 0.5) 

12 

(10.7; 13.2) 

2 75%; 79% 30 83 

(58; 113) 

334 

(290; 378) 

6.9 

(4.8; 9.4) 

27.8 

(24.2; 31.5) 

2 82%; 81% 30 92 

(62; 124) 

301 

(258; 342) 

7.7 

(5.2; 10.3) 

25 

(21.5; 28.5) 

2 68%; 88% 1 117 

(73; 171) 

5732 

(5160; 6229) 

0.3 

(0.2; 0.5) 

15.7 

(14.1; 17.1) 

1 82%; 81% 1 29 

(14; 44) 

10778 

(8033; 13340) 

0.1 

(0; 0.1) 

29.5 

(22; 36.5) 

4 68%; 88% 1 234 

(169; 317) 

20719 

(20496; 

20933) 

0.6 

(0.5; 0.9) 

56.8 

(56.2; 57.4) 

4 82%; 81% 1 236 

(172; 326) 

22406 

(22191; 

22604) 

0.6 

(0.5; 0.9) 

61.4 

(60.8; 61.9) 

4 75%; 79% 1 235 

(171; 327) 

24630 

(24398; 

24855) 

0.6 

(0.5; 0.9) 

67.5 

(66.8; 68.1) 

a Values rounded to the nearest whole number. 
b Mean alert rate is the average number of alerts (either true or false) expected at every time 

an alert is generated. 
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SOM management without sensors. The mean prevalence for mobility score 1 

increased twice during the year after routine hoof trimming occurred at the start of 

the pasture and housing period. Thereafter the mean prevalence for mobility score 1 

decreased as the mean prevalence for mobility scores 2 and 3 increased. The mean 

prevalence for mobility scores 4 and 5 were lower due to lower incidence rates and 

faster intervention when compared with mobility scores 2 and 3. When sensors were 

implemented in addition to current SOM management (Scenario 1) the mean 

prevalence for mobility scores 1, 2, and 3 were like the prevalence trend for the same 

mobility scores compared to the without sensor scenario. The mean prevalence for 

mobility scores 4 and 5 in Scenario 1 were lower with less variation compared with 

the mean prevalence for the same scores in the without sensor scenario as treatment 

in reaction to the detection of these mobility scores occurred earlier when compared 

with Scenario 0. Changes in the mobility score prevalence were more apparent in 

Scenario 2 – 5. In Scenarios 2 and 3 when cows with a mobility score 3 were treated, 

either by the farmer (Scenario 2) or hoof trimmer (Scenario 3), after an alert was 

generated, the prevalence of mobility score 3 showed a decrease compared with 

Scenarios 0 and 1. A lower mean prevalence for mobility score 3 was achieved when 

the hoof trimmer treated cows with this score after an alert was generated every 7 

days for these cow (Scenario 3) compared with when the farmer treated cows with a 

mobility score 3 after an alert was generated every 30 day for these cows (Scenario 

2). The mean prevalence of mobility score 2 increased and showed an increasing trend 

during the year in Scenarios 2 and 3 in contrast to Scenarios 0 and 1. This occurred 

because mobility score 2 was below the threshold value for SOM classification by the 

sensor (mobility score 3). Including mobility score 2 in the threshold value for SOM 

classification by the sensor in Scenarios 4 and 5 considerably reduced the mean 

prevalence of mobility score 2 to below 10 percent in both these Scenarios. Overall, 

this showed a beneficial effect with the highest prevalence of mobility score 1 being 

achieved during the year in Scenarios 4 and 5. The prevalence of mobility score 1 

varied more in Scenario 5 because of a longer alert notification interval (7 days) 

meaning that some cows would be scored with a mobility score 2 or 3 for longer 

before an alert was generated, and subsequently treated, compared with the shorter 

notification interval (1 day) in Scenario 4. 
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Figure 4.4 Daily mobility score prevalence. Mean daily prevalence is illustrated 

by the solid-coloured lines. Variation in mobility score prevalence between the 

500 replications is illustrated by the shaded areas. Panels are ordered from top 

left to bottom right by increasing Scenario as per an increase in treatment 

intensity. 

 

4.4 Discussion 

In light of the automatic SOM detection sensor systems that are documented in the 

literature (Alsaaod et al., 2019; Schlageter-Tello et al., 2014), a dearth in research 

quantifying their economic value exists. Information concerning their economic value 

is paramount in stimulating the uptake of these sensors by farmers, e.g., Steeneveld 

and Hogeveen (2015). We investigated the economic value of automatic SOM 

detection by simulating various scenarios with and without automatic SOM detection 

sensors and drew comparisons between them. Our scenarios are not exhaustive since 
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differences within other important economic factors such as SOM prevalence, 

automatic SOM detection sensor cost and type were excluded (Kaniyamattam et al., 

2020; Van De Gucht et al., 2017a). Including different sensor types may have been 

of interest since farmers have shown preferences for different sensor types (Van De 

Gucht et al., 2017b). We opted for a sensor type that farmers show greatest 

preference for (Van De Gucht et al., 2017b). However, the scenarios apropos different 

sensor performance can represent different sensor types (Alsaaod et al., 2019; 

Schlageter-Tello et al., 2014). 

The scenarios included in our research contribute to the literature concerning the 

economic value of automatic SOM detection sensors by combining various sensor-

based SOM management that had not previously been combined (Kaniyamattam et 

al., 2020; Van De Gucht et al., 2017a). We designed management scenarios that went 

beyond current SOM management, trying to bring out the full potential of sensor-

based SOM management. The most favourable scenario, Scenario 5 for a sensor with 

a sensitivity of 88 percent and specificity of 91 percent and a 7-day alert notification 

interval, obtained a mean net economic sensor effect of €6,360. The least favourable 

scenario, Scenario 4 for a sensor with a sensitivity of 75 percent and specificity of 79 

percent and a daily alert notification interval, obtained a mean net economic sensor 

effect of €-10,995. 

Implementing automatic SOM detection sensor systems to be used in addition to 

current SOM management, i.e., twice-yearly routine hoof trimming, did not obtain 

any additional economic value. A change in SOM management is required to obtain 

their economic value. By increasing the treatment intensity with prompt treatment 

of mild SOM by the farmer following a daily notification interval for mild SOM, 

production loss costs such as culling and milk production losses can be reduced by 

approximately 80 percent and 100 percent, respectively. This is because the costs 

concerning mild SOM, which contribute to a large share of the overall SOM costs 

(Edwardes et al., 2022a), as well as the subsequent severe SOM costs, are ultimately 

avoided. Furthermore, the costs associated with severe SOM are also avoided due to 

the treatment of mild SOM. However, increasing treatment intensity increased 

treatment and labour costs considerably when mild SOM treatments were performed 

by the farmer. Our results suggest that by increasing the frequency of hoof trimmer 

visits to treat specific cows detected with mild SOM by the sensor, opposed to twice 

yearly routine hoof trimming, as per Scenario 0 and 1, allows for a more precise 

resource allocation and as such greater economic value in the sensors can be obtained. 

This is in contrast to Van De Gucht et al. (2017a) who showed that the economic 

value for automatic SOM detection sensors was greater when only the farmer 

performs treatments. This is because results from our study show that farmer related 

treatment and labour costs are more expensive than the hoof trimmer costs. 
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The labour price per hour associated with SOM management may vary based on the 

idea of the endowment effect (Kahneman et al., 1991). Results from the sensitivity 

analysis apropos the 12 selected sub-scenarios showed that the mean net economic 

sensor effects were more sensitive to changes in the labour price when more labour 

was required (Scenario 1, 2, and 4). These results imply that the additional economic 

value in automatic SOM detection sensors used for sensor-based SOM management 

will vary between farmers based on the endowment effect apropos SOM management. 

This has been observed in mastitis management for example (Huijps et al., 2010). 

Changes in the hoof trimmers’ price per hour may occur as their services become 

required more frequently with a change in SOM management. The sensitivity analysis 

showed that the mean net economic sensor effect remained positive for all changes in 

the hoof trimmer price per hour. This suggests that sensor-based SOM management 

like in the top 5 percent sub-scenarios will remain economically positive due to 

changes in the hoof trimmer price per hour. Farm personal may also be required more 

often during hoof trimmer visits to assist the hoof trimmer, which would incur 

additional labour related costs. Our scenarios did not include additional farm labour 

assistance. Inferring additional labour related assistance costs through increasing 

labour prices per hour coupled with hoof trimming, as in the sensitivity analysis, 

showed that increased labour prices did not affect the net economic sensor effect as 

much as increasing hoof trimmer prices. Including additional management scenarios 

in future research alongside the novel sensor-based SOM management scenarios 

described within this study can improve the advice farmers require to make 

economically optimal choices apropos sensor-based SOM management. It would also 

be interesting to compare sensor-based SOM management scenarios with scenarios 

that address farmer training apropos SOM awareness and intervention in the absence 

of automatic SOM detection sensors. 

Automatic SOM detection sensor systems will not add economic value to the farming 

operation when they are implemented in addition to current SOM management. Due 

to the perception of SOM by farmers under current management strategies (Alawneh 

et al., 2012a; Bruijnis et al., 2013; Leach et al., 2010), alerts may be checked but 

treatment is ignored as these alerts are perceived as false. Our study shows that 

checking alerts perceived as false is time consuming and costly. However, these costs 

may be an overestimation because farmers are expected not to react to every alert 

they perceive is false (Eckelkamp & Bewley, 2020). Besides, over time some farmers 

may completely ignore alerts as they become familiar with the sensor system 

(Eckelkamp & Bewley, 2020). 

It is crucial to maintain farmer confidence in sensors by conveying the correct 

information and avoid an altogether disregard of alerts over time (Eckelkamp & 

Bewley, 2020) that may contribute to prolonged SOM cases resulting in production 
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losses. The quality of sensor generated information is indicated by sensor performance 

metrics (i.e., sensitivity and specificity). These metrics must be interpreted with 

caution as they can be inflated through the transformation of non-binary prediction 

outcomes (i.e., mobility scores) to obtain predictive performance of binary outcomes 

(i.e., SOM vs non-SOM; Van Hertem et al., 2016). Due to limited information on 

sensor performance at a non-binary level, we included hypothetical non-binary sensor 

performance inputs. Our results show that although the specificity of a sensor is high 

at the binary level, the underlying performance of the sensor at a non-binary level 

generates an undesirable number of false alerts. Ultimately this can contribute to an 

increase in alert confirmation costs large enough to outweigh the reduction in 

production losses. This especially occurred when the prevalence of mobility scores 

skewed towards a distribution of mobility scores considered as non-SOM. Ideally, a 

high sensitivity and also a high specificity should be present across all non-binary 

levels to ensure a consistent performance with changing mobility score prevalence. 

Future research apropos sensor development should also report the predictive 

performance of non-binary outcomes. 

Including a time dimension can help improve the information quality of sensors by 

alert prioritization because SOM is continuous and progressive in severity, making 

sensitivity and specificity alone not complete (Friggens et al., 2007). In their review, 

Dominiak and Kristensen (2017) found a limited number of published research 

concerning alert prioritization sensors. In our study, we included a simple and novel 

alert prioritization method by incorporating a time dimension (i.e., Eq. 4.2) in the 

form of notification intervals respective of SOM severity. Notification intervals of 7, 

14 or 30 days for cases of mild SOM reduced the total number of false alerts generated 

through-out the year in contrast to a daily notification interval, but additional 

production losses and associated costs were incurred. However, these scenarios with 

intervals of >1 day obtained greater economic benefits compared to daily notification 

intervals because trade-offs in intervention related costs were greater than the 

additional production losses, considering potential mobility score transitions, during 

the notification intervals (i.e., Figure 4.2). Within sensor performance scenarios, 

optimal economic results were most often obtained with a notification interval of 7 

days. For example, the mean net economic sensor effect was €1,212 for a 7-day 

notification interval compared to €−372 for a daily notification interval for a sensor 

with 68 percent sensitivity and 88 percent specificity in Scenario 2. A notification 

interval of 7 days meant that fewer false alerts were generated, and consequently 

checked, reducing the associated intervention costs more than the additional 

production losses incurred during the 7-day interval. Despite a 7-day increase in 

production losses, large production losses were still avoided in a timely manner as 

prompt treatment after the onset of SOM was still achieved in comparison to Scenario 

0. Additional benefits of an alert notification interval can arise in the form of a setting 
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that farmers can specify to meet their individual preferences (Van De Gucht et al., 

2017b). 

Automatic SOM detection sensors generally do not consider mobility score 2 as a 

SOM (Alsaaod et al., 2019). We explored the economic value of sensors detecting 

this score as mild SOM. When only the farmer treated mild SOM cows, our results 

show that it was never economically viable since farm labour and treatment costs 

outweighed the reductions in production losses. However, when the hoof trimmer 

treated cows with mild SOM, the mean net economic sensor effect was positive for 

all scenarios with an alert notification interval of 7, 14, or 30. Although more alerts 

were generated, the additional associated costs were outweighed by a reduction in 

culling costs since the risk of cows indirectly culled due to SOM was reduced. This 

shows that mobility score 2 should be considered as the threshold value for SOM 

during sensor development due to the overall indirect costs associated with this 

mobility score (Edwardes et al., 2022a). Treating cows with this score shows 

economic benefits as additional costs associated with transitions from mobility score 

2 to mobility score ≥3 where ultimately avoided. 

Beyond the economic value of automatic SOM detection sensors, a largely discussed 

topic apropos sensors is the increased level of animal welfare that can be achieved 

through their use (Buller et al., 2020; Hogeveen & van der Voort, 2021; Manning et 

al., 2021; Schlageter-Tello et al., 2014; van Erp-van der & Rutter, 2020). SOM 

prevalence is often used as a welfare indicator in welfare assessments (Welfare 

Quality® (2009a)). Using similar indicators from our simulation scenario results, we 

observed reductions in SOM prevalence in all the scenarios that included a 

management shift (Figure 4.4). This demonstrates that improvement of animal 

welfare with sensors is possible while increasing the net economic returns of 

production when SOM management changes. However, in some scenarios the highest 

level of welfare, in terms of SOM prevalence, resulted in the lowest net economic 

results (Scenario 4). If this optimal level of welfare is at the forefront of dairy farming, 

then future research is required to quantify the added economic value of sensors 

concerning optimal gains in animal welfare to compensate for the losses in net 

economic returns due to increased intervention costs as found in our sensor-based 

SOM management scenarios. 

4.5 Conclusion 

We extended a recently developed bio-economic simulation model that can evaluate 

the economic effects of sensor-based SOM management. The model allowed us to 

estimate a wide range of hypothetical sensor performance levels in combination with 
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management scenarios. Results from the simulated scenarios showed that the 

maximum gain in terms of the mean net economic sensor effect was €6,360 per year 

(€51 per cow per year). To obtain the economic value of automatic SOM detection 

sensor systems, SOM management should be adapted to the use of sensors since a 

large part of the economic gain is in early treatment of mobility scores 2 and 3. 

Results from our simulations suggest that whole herd hoof trimming twice a year 

should be replaced with more frequent intervals of cow specific treatment by the hoof 

trimmer following SOM detection by the sensor. Seven-day intervals within sensor 

performance scenarios obtained economic optimal results. Furthermore, the 

development of proper detection algorithms before commercial roll-out is important 

because the results were very sensitive to the sensitivity and specificity of the sensors, 

especially apropos mobility score specific sensitivities and specificities and changing 

mobility score distributions. 
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4.6 Appendix 
  

Table A 4.1 Lactation parameters. 

Parameter Description Value  Source 

𝑎 
Parity 1 

Parity 2 

Parity ≥3 

𝑏 
Parity 1 

Parity 2 

Parity ≥3 

𝑐 
𝑘 

Factors responsible for shape of 

lactation curve 

 

31.6 

40.6 

44.1 

 

−0.0447 

−0.0708 

−0.0835 

−16.1 

0.06 

Kok et al. (2017) 

Ms
(loss) 
Mobility score 

1 

Mobility score 

2 

Mobility score 

3 

Mobility score 

4 

Mobility score 

5 

Proportional daily milk loss per 

mobility score 𝑠 

 

0 

0 

0.05 

0.48 

0.53 

Based on 

O’Connor et al. 

(2020a) 

Note: Daily lactation was modelled using the Wilmink lactation curve with general form 

𝑦 = 𝑎 + 𝑏 × 𝐷𝐼𝑀 + 𝑐 × exp(−𝑘 × 𝐷𝐼𝑀)  where DIM is day in milk (Wilmink, 1987). 

Individual cow variation in daily milk production was accounted for with 𝑦 +  ӯ × 𝑅𝑃𝐿 

where ӯ is the average 305d daily lactation and RPL is an individual cow’s relative 

production level modelled as N(0, 0.1) (Edwardes et al., 2022a; Kok et al., 2017). 
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Table A 4.2 Fertility and reproduction parameters. 

Parameter Description Value  Source 

Gestation Length of gestation period (days) Ν(281, 3) Inchaisri et al. 

(2010) 

Voluntary 

waiting period 

Voluntary waiting period before 

first insemination postpartum 

(days) 

84 Inchaisri et al. 

(2010) 

Dry period Dry period length prepartum (days) 56 Inchaisri et al. 

(2010) 

First oestrus 

Primiparous 

Multiparous  

Days to first calving postpartum  

14 – 27 

18 – 21  

Authors’ 

expertise 

Following 

oestrus 

Days to following oestrus 21 Authors’ 

expertise 

Oestrus 

detection 

Base risk of oestrus detection 0.55 Based on Rutten 

et al. (2014) 

Adjusted 

oestrus 

detection 

Mobility 

score 1 

Mobility 

score 2 

Mobility 

score 3 

Mobility 

score 4 

Mobility 

score 5 

Relative risk of oestrus detection 

per mobility score 

 

 

1 

0.91 

0.82 

0.73 

0.64 

Walker et al. 

(2008) 

Conception 

ins. 1 

ins. 2 

ins. 3  

ins. 4 

ins. 5 

ins. ≥6 

Base risk of successful conception 

after insemination (ins.) number 1 

– ≥6 

 

0.45 

0.42 

0.41 

0.38 

0.33 

0.27 

Inchaisri et al. 

(2011) 

Adjusted 

conception 

Relative risk of successful 

conception per mobility score 

 Alawneh et al. 

(2011) 
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Mobility 

score 1 

 1  

Mobility 

score 2 

 1  

Mobility 

scores 3 – 5 

 PERT(0.41, 

0.78, 0.88) 
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Table A 4.3 Energy requirements (VEM) parameters. 

Parameter Description Value  Source 

Growth 

Parity 1 

Parity 2 

Daily growth energy requirements for 

parity ≤2 cows 

 

660 

330 

van Es (1978) 

Months pre-

partum 

4 

3 

2 

1 

Daily energy requirements for pregnant 

cows from 4 to last month before 

calving 

 

 

450 

850 

1500 

2700 

Remmelink et al. 

(2015) 
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Table A 4.4 Culling parameters. 

Parameter Description Value  Source 

General culling 

Parity 1 

Parity 2 

Parity 3 

Parity 4 

Parity ≥5 

Daily general culling probability for 

parity 1 - ≥5 cows 

 

2.74e-5 

6.85e-5 

6.85e-5 

2.74e-4 

5.48e-4 

Calibrated input 

Yield threshold Daily milk yield threshold (kg) for 

cows culled due to infertility 

15 Authors expertise 

Adjusted culling 

(mobility scores) 

Mobility score 2 

Mobility score 3 

Mobility score 4 

Mobility score 5 

Relative risk of culling per mobility 

score for cows with mobility score 

>1b 

 

 

1.07 

1.18 

1.48 

1.48 

O’Connor et al. 

(2020a) 

Adjusted culling 

(parity) 

Parity 1 

Parity 2 

Parity 3 

Parity 4 

Parity ≥5 

Relative risk of culling per parity 

for cows with mobility score >1a 

 

 

1 

1.1 

1.2 

1.3 

1.5 

Walker et al. 

(2008a) 

Adjusted culling 

(RPL) 

≤20% 

21 – 40% 

41 – 60% 

61 – 80% 

>80% 

Relative risk of culling per relative 

production level (RPL) category for 

cows with mobility score >1b 

 

 

1 

0.34 

0.24 

0.16 

0.06 

Booth et al. 

(2004) 

a General culling probability per parity was taken as base risk. 
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Table A 4.5 Economic parameters. 

Parameter Description Value  Source 

Milk price Average monthly milk price (€/kg) for the 

period 01/2016 – 02/2022 

0.3559 Wageningen 

Economic 

Research 

(2022) 

kVEM price Average monthly price of supplement feed 

(€/kg) for the period 09/2019 – 06/2020 

0.1766 Wageningen 

Livestock 

Research 

(2020) 

Farmer 

hourly rate 

Price per hour of farm labour (€/h) 30.70 Blanken et 

al. (2017) 

Hoof 

trimmer 

hourly ratea 

Price per hour of hoof trimming (€/h) 47.95 Blanken et 

al. (2017) 

Hoof 

trimmer call 

out fee 

Price per hoof trimmer visit (€/visit) 17.50 Blanken et 

al. (2017) 

Veterinarian 

hourly rate 

Price per hour of veterinarian treatment 

(€/h) 

139.20 Expertise 

Veterinarian 

call out fee 

Price per veterinarian visit (€/visit) 31.35 Expertise 

Farmer 

treatment 

time  

Farmer treatment time per cow (min/cow) 20 Authors’ 

expertise 

Hoof 

trimmer 

treatment 

time  

Hoof trimmer treatment time per cow 

(min/cow) 

8.6 Blanken et 

al. (2017) 

Veterinarian 

treatment 

time 

Veterinarian treatment time per cow 

(min/cow) 

20 Authors’ 

expertise 

Treatments 

per hoof 

disorderb 

SH; SU; 

WLD 

IP; IDHE 

DD 

OH 

HYPc 

Additional treatment costs (€) per disorder 

per hoof applied by either veterinarian or 

farmer 

 

 

8.1 

0.6 

2.61 

0 

182.02d; 0e 

Expertise 

Rearing costs Rearing costs per replacement heifer 

(€/heifer) 

PERT(919, 

1790, 

3307) 

Mohd Nor 

et al. (2015) 

Carcass 

dressing 

Carcass dressing as factor of live body 

weight for culled cow 

0.6 Rutten et 

al. (2014) 
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Meat price Average monthly meat price (€/kg) 

discretely sampled for first to third grade 

slaughter cows for the period 01/2016 – 

02/2022 

2.86; 2.54; 

2.17 

Wageningen 

Economic 

Research 

(2022) 

Expected 

lactations 

Expected minimum number of lactations  6 Author’s 

expertise 
a The hoof trimer hourly rate includes hoof disorder treatment costs as in Edwardes et al. 

(2022a). 

b DD = digital dermatitis; HYP = interdigital hyperplasia; IDHE = interdigital 

dermatitis/heel-horn erosion; IP = interdigital phlegmon; OH = overgrown hoof; SH = 

sole haemorrhage; SU = sole ulcer; and WLD = white-line disease. 

c Only differences between costs for veterinarian and farmer deal with HYP since only a 

veterinarian will perform a claw amputation; high costs account for the time involved for 

this procedure and zero additional treatment costs are incurred by the farmer. 
d Veterinarian treatment costs. 
e Farmer treatment costs. 
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Chapter 5  

Quantifying the economic and 

animal welfare trade-offs of 

classification models in precision 

livestock farming for sub-optimal 

mobility management 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: Edwardes, F., van der Voort, M. and Hogeveen, H. 

(2023). Quantifying the economic and animal welfare trade-offs of classification 

models in precision livestock farming for sub-optimal mobility management. 

Computers and Electronics in Agriculture (revised and resubmitted). 
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Abstract 
Animal health disorders, such as sub-optimal mobility (SOM; mobility score 1 = 

perfect mobility and mobility score 5 = severely impaired mobility) in dairy farming, 

have significant economic and welfare consequences in animal husbandry. Precision 

livestock farming (PLF) offers a technology-based management approach with the 

potential gains such as efficient and cost-effective monitoring of animal health 

thereby also enhancing animal welfare. The quality of these technologies lies in the 

performance of the underlying diagnostic test that produces diagnostic marker values 

used to classify cows into SOM classes. To classify cows to one SOM class, cut-off 

threshold values are used, which results in probabilities for correct and incorrect 

SOM classification (i.e., classification outcomes). However, changing these cut-off 

threshold value may influence the economic and welfare outcomes depending on the 

diagnostic test built into sensor. In addition, SOM is often classified as a binary 

health disorder while SOM is not binary. Using PLF technology that classifies SOM 

into more than two classes may be more economically and welfare beneficial. 

However, additional classification classes increase the complexity in deciding on 

appropriate cut-off threshold values for the various SOM classes as the classification 

outcomes are highly interactive. In this study we assess whether economic and welfare 

gains can be achieved with 3-class SOM classifiers. Moreover, we quantify the trade-

offs in classification outcomes as cut-off threshold values are varied and how these 

trade-offs affect the economic and welfare gains. Eight classifiers each with 600 

different classification outcomes were defined for SOM classification and 

management. Mobility scores were grouped into various SOM classes depending on 

the classifier. A bio-economic simulation model was used to simulate the economic 

and welfare effects of the various classifiers and respective classification outcomes. 

The simulated output data was first analysed using an exploratory approach to 

explore the general effects of classifiers and classification outcomes on economic and 

welfare. Second, a novel method accounting for the highly interactive classification 

outcomes was developed to quantify the trade-offs in classification outcomes and how 

these trade-offs affected the economic and welfare gains. All tested classifiers showed 

economic and welfare gains on average. Classifiers with larger separation between 

non-SOM and SOM classes showed the highest economic gains. Including mobility 

score 2 into a SOM class showed meaningful welfare gains on average as opposed to 

when mobility score 2 was included in a non-SOM class. Larger increases in economic 

gains were often achieved at the cost of smaller reductions in welfare gains with 

trade-offs in classification outcomes. This study provides valuable insights on 

designing appropriate 3-class SOM classifiers that could also be beneficial when 

designing classifiers for health disorders other than SOM. This study also 

demonstrates the value in using simulation models to test classifiers by highlighting 

interesting classification outcomes that can be further validated in practice. 
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5.1 Introduction 

Animal health disorders pose significant economic and welfare consequences in animal 

husbandry (Hennessy & Marsh, 2021; Rushton, 2009). To overcome these 

consequences, it is crucial to improve the detection and management of health 

disorders. However, traditional labour-based approaches for detecting animal health 

disorders are often time-consuming that may result in high opportunity costs as other 

important farming activities, such as oestrus detection and subsequent artificial 

inseminations, could be potentially ignored as a result. 

Precision livestock farming (PLF) offers a promising solution to this problem. PLF 

is a technology-based approach that involves continuous and autonomous monitoring 

of animals, generating specific information per animal that farmers can use for animal 

health decision-making (Berckmans, 2017). By using advanced technologies such as 

sensors and statistical models, PLF technology collects and processes data from 

individual animals to generate animal specific information, enabling farmers the 

potential to monitor animal health more efficiently and cost-effectively (Banhazi et 

al., 2012; Wathes, 2009). 

In terms of animal health, PLF technology serves as a diagnostic test that classifies 

animals into various health classes based on the collected and processed data. The 

added value of the PLF technology is influenced by the quality of generated 

classification information (Rojo-Gimeno et al., 2019). The quality of classification is 

often assessed in terms of sensitivity and specificity (Dominiak & Kristensen, 2017). 

Sensitivity refers to the probability of correctly classifying animals to the class of 

interest (i.e., sick), and specificity refers to the probability of correctly classifying 

animals to the alternative class (i.e., healthy) when compared to a golden standard 

of health classes. High sensitivity and specificity are essential for reducing 

misclassifications. This is important to farmers (Van De Gucht et al., 2017b), because 

the misclassifications may incur unnecessary costs. For example, a sick animal that 

is misclassified as healthy may incur prolonged production losses whereas a healthy 

animal misclassified as sick may incur unnecessary intervention costs. 

However, achieving high sensitivity may come at the cost of lowering specificity 

because a cut-off threshold is required to separate the distributions of diagnostic 

marker values generated by the diagnostic test into the healthy and sick classes 

(Flach, 2016). Furthermore, sensitivity and specificity are applicable to binary 

classification problems whereas health disorders in animals are often not binary, such 

as sub-optimal mobility (SOM) in dairy cows, which can be described by multiple 

classes (Sprecher et al., 1997). 
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SOM is a common health disorder in dairy cows that has negative economic 

(Dolecheck & Bewley, 2018; Edwardes et al., 2022a) and welfare (Whay & Shearer, 

2017) consequences. Significant efforts have been invested into developing PLF 

technology to monitor SOM, but many of the underlying diagnostic tests classify 

SOM into only two health classes, non-SOM and SOM (Alsaaod et al., 2019; 

Schlageter-Tello et al., 2014). With this approach certain mobility scores are grouped 

together into either the non-SOM or SOM class, meaning that farmers’ reaction to 

the generated information apropos SOM classification is the same for all cows 

classified to the SOM class. However, it might be economically beneficial to generate 

information for some cows while prolonging information generation for other cows. 

Edwardes et al. (2022b) classified SOM into three classes and showed that economic 

outcomes could be improved through this approach because classification information 

apropos one SOM class could be prolonged and allowed opportunities to improve the 

information quality that ultimately contributed towards more precise intervention 

decisions. However, Edwardes et al. (2022b) showed that SOM prevalence, an 

important welfare indicator (Welfare Quality®, 2009a), was lower in SOM 

management situations where the underlying diagnostic tests classified SOM into two 

classes. Albeit SOM prevalence was still noticeably reduced when it was classified 

into three SOM classes. These results suggest that a trade-off between economic and 

welfare value exists when using PLF technologies for SOM management. 

Understanding the potential economic and welfare value, as well as the trade-offs 

between them, is important for prospective SOM related PLF technology developers 

to ensure that farmers’ technology use preferences are satisfied. This is especially true 

when developing the underlying diagnostic tests to classify SOM into three classes. 

However, this is challenging for the PLF technology developers because the 

underlying diagnostic tests can produce an array of classification outcomes with 

various classification outcome trade-offs (Nakas & Yiannoutsos, 2004), ultimately 

affecting the quality of classification information generated. Although potential 

diagnostic tests that classify SOM into three, or more, classes exist, only one 

classification outcome is reported (Thorup et al., 2015; Van Hertem et al., 2016). 

Therefore, understanding how trade-offs in classification outcomes for three SOM 

classes affect the potential economic and welfare value is of interest. 

The objective of this study is to quantify the effect of trade-offs in classification 

outcomes on economic and welfare value for various diagnostic tests that classify 

SOM into three SOM classes. With this study we provide insight on the direction 

prospective SOM related PLF technology developers should strive for when 

developing the underlying diagnostic tests that classify SOM into three classes. The 

insights from this study will also have implications for other PLF technology 

interested in health disorders other than SOM. Additionally, this research can also 

benefit farmers by providing decision support apropos how they can achieve their 
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desired economic and welfare outcomes from a PLF-based SOM management 

approach. 

5.2 Methodology 

In this section we describe the steps taken to achieve our objectives. First, we present 

a conceptual framework that allowed us to understand the trade-offs in classification 

outcomes for diagnostic tests. Second, using the conceptual framework we apply it 

to SOM to define hypothetical diagnostic tests that generate different SOM 

classification outcomes based on the quality of the respective diagnostic tests. Third, 

we briefly describe a simulation model that was used to gain insight on the effects of 

sampled classification outcomes per diagnostic test. Lastly, methods to analyse the 

simulated results are described. 

5.2.1 Conceptual framework 

Receiver operator characteristic (ROC) analysis is a powerful evaluation technique 

used to determine the quality of diagnostic tests that classify subjects belonging to 

classes, as per a golden standard, into the respective classes (Flach, 2016; Nakas, 

2014; Nakas and Alonzo, 2007; Sahiner et al., 2008a). For brevity we further refer to 

diagnostic tests as “classifiers”. Classifier types can vary between those that use a 

single variable to those that use multiple variables, such as statistical models, to 

classify subjects into classes. The classification of subjects is dependent on the 

subjects’ diagnostic marker value generated by the classifier, and some cut-off 

threshold 𝑐 that determines the boundary between the distribution of diagnostic 

marker values for each class. The diagnostic marker values for subjects in each class 

can be real valued numbers, and 𝑐 can be any value within the domain of diagnostic 

marker values. For all values of 𝑐, a square matrix (𝑃) of classification outcomes 

exists, where 𝑃𝑖𝑗 denotes the classification probability of subjects belonging to class 𝑖 

being classified to class 𝑗. 

For a binary classification problem, let 𝐾 = {1, 2} be the set of classes where 𝑖, 𝑗 ∈ 𝐾, 

𝑚𝑣𝑖 be the distribution of diagnostic marker values for class 𝑖, as per the golden 

standard, where diagnostic marker value 𝑥𝑖 ∈ 𝑚𝑣𝑖 , and 𝑐 ∈ {𝑚𝑣1, 𝑚𝑣2} . Four 

classification probabilities 𝑃𝑖𝑗 exist (i.e., |𝐾|2) whereby the probability of classifying 

subjects from class 𝑖  to class 𝑗  is as follows: 𝑃𝑖1 = 𝑃(𝑥𝑖 ≤ 𝑐)  and 𝑃𝑖2 = 𝑃(𝑥𝑖 > 𝑐) 

where ∑ 𝑃𝑖𝑗 = 1𝑗∈𝐾  for any subject belonging to class 𝑖 with diagnostic marker value 

𝑥𝑖. Therefore, as 𝑐 increases trade-offs in correct classification probabilities 𝑃11 and 
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𝑃22 and incorrect classification probabilities 𝑃12 and 𝑃21 occur given some overlap 

between 𝑚𝑣1 and 𝑚𝑣2 exists. The quality of a binary class classifier is therefore 

dependent on the overlap between the two distributions and their densities.  

For a 3-class classification problem, now let 𝐾 = {1, 2, 3} , maintaining 𝑖, 𝑗 ∈ 𝐾 , 

meaning that three distributions of diagnostic marker values exist: 𝑚𝑣1, 𝑚𝑣2, 𝑚𝑣3, 

where diagnostic marker value 𝑥𝑖 ∈ 𝑚𝑣𝑖 . Two cut-off thresholds 𝑐1  and 𝑐2  are 

required to discriminate between the three classes, where 𝑐1, 𝑐2 ∈ {𝑚𝑣1, 𝑚𝑣2, 𝑚𝑣3} 

subject to 𝑐1 ≤ 𝑐2. Hence, nine classification probabilities 𝑃𝑖𝑗 will exist whereby the 

probability of classifying subjects from class 𝑖 to class 𝑗 is as follows: 𝑃𝑖1 = 𝑃(𝑥𝑖 ≤ 𝑐), 

𝑃𝑖2 = 𝑃(𝑐1 ≤ 𝑥𝑖 < 𝑐2) and 𝑃𝑖3 = 𝑃(𝑥𝑖 > 𝑐2) maintaining ∑ 𝑃𝑖𝑗 = 1𝑗∈𝐾  for any subject 

belonging to class 𝑖 with diagnostic marker value 𝑥𝑖 . Trade-offs between correct 

classification probabilities 𝑃11, 𝑃22 and 𝑃33will exist depending on whether one or 

both cut-off thresholds vary. The relationship between incorrect classification 

probabilities is more complex because of the increased dimensionality of the 

probability space whereby trade-offs and synergies between the different incorrect 

classification probabilities exist. 

5.2.2 Application to SOM classification 

SOM was defined by five ordinal mobility scores as per Sprecher et al. (1997), where 

mobility score 1 represents optimal mobility and mobility score 5 represents severely 

impaired mobility. Three classes of SOM, 𝐾 = {1, 2, 3} where 𝑖, 𝑗 ∈ 𝐾, were defined for 

eight different classifiers for two management scenarios. For classifiers 1 – 4 

(management scenario 1), mobility scores 1 and 2, mobility score 3, and mobility 

scores 4 and 5 were respectively grouped into SOM classes 𝐾1, 𝐾2, and 𝐾3 . For 

classifiers 5 – 8 (management scenario 2), mobility score 1, mobility scores 2 and 3, 

and mobility scores 4 and 5 were respectively grouped into SOM classes 𝐾1, 𝐾2, and 

𝐾3. 

The distribution of diagnostic marker values 𝑚𝑣𝑖 used in our study were arbitrary7 

but necessary values to calculate classification probabilities 𝑃𝑖𝑗 with respect to the 

overlap in diagnostic marker values and cut-off thresholds values of 𝑐1 and 𝑐2. The 

distribution of diagnostic marker values 𝑚𝑣𝑖 for SOM class 𝐾𝑖 are found in Table 5.1. 

 

7 Diagnostic marker values in general can be any real number. Diagnostic marker values in 

the context of SOM can be derived from one variable, such as back posture (Piette et al., 

2020), or multiple variables (Van Hertem et al., 2016). Therefore, the values are dependent on 

how the variables are measured and integrated. 
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The mean and standard deviation for the distributions of 𝑚𝑣𝑖 were chosen to reflect 

classifiers that had noticeable differences in their ability to discriminate between 

different SOM classes, which reflected the quality of the classifiers in SOM class 

classification. The ability in SOM class discrimination is determined by the overlap 

in 𝑚𝑣𝑖 where complete overlap entails a useless classifier and complete separation 

entails a perfect classifier (Nakas & Yiannoutsos, 2004). A constant standard 

deviation of 0.885 was used for all 𝑚𝑣𝑖 per classifier 1 – 8. Three mean values of -1, 

0, 1 were used as reference points that were either shifted (±) by half a standard 

deviation (0.4425) or two standard deviations (1.77). 

The resulting theoretical distributions of 𝑚𝑣𝑖 of SOM class 𝐾𝑖 for the eight classifiers 

are shown in Figure 5.1 to illustrate their ability in SOM class discrimination. 

Classifiers 1 and 5 show a weak ability in SOM class discrimination due to the 

considerable overlap between the diagnostic marker values for SOM classes 𝐾𝑖 . 

Classifiers 2 and 6 show less overlap between the diagnostic marker values for SOM 

classes 𝐾𝑖 . Classifier 3 and 7 shows considerably less overlap between diagnostic 

marker values for SOM classes 𝐾1  and 𝐾2 , while considerable overlap between 

diagnostic marker values for SOM classes 𝐾2 and 𝐾3 exists. Classifier 4 and 8 shows 

considerable overlap between diagnostic marker values for SOM classes 𝐾1 and 𝐾2, 

while considerably less overlap between diagnostic marker values for SOM classes 𝐾2 

and 𝐾3 exists. In summary, the smaller the overlap between the diagnostic marker 

values for SOM classes 𝐾𝑖, the better the classifier is at discriminating between SOM 

classes 𝐾𝑖. 

Classification probabilities 𝑃𝑖𝑗 for the eight classifiers were determined as per the 

conceptual framework with the distributions of diagnostic marker values 𝑚𝑣𝑖 found 

in Table 5.1. The number of draws per 𝑚𝑣𝑖  were based on scientific literature 

describing classifiers for three, or more, SOM classes ensuring the relative share of 

𝑚𝑣𝑖 between SOM classes was maintained (Bicalho et al., 2007; Ghotoorlar et al., 

2012; Thorup et al., 2015; Van Hertem et al., 2016, 2014b). For classifiers 1 – 4, the 

number of draws for 𝑚𝑣1, 𝑚𝑣2, and 𝑚𝑣3 were 288, 122, and 89, respectively. For 

classifiers 5 – 8, the number of draws for 𝑚𝑣1, 𝑚𝑣2, and 𝑚𝑣3 were 121, 289, and 89, 

respectively. Hence, a total of 499 diagnostic marker values were used for all 

classifiers. This generated 125,250 different classification outcome matrices for each 

classifier 1 – 8. 
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Table 5.1 Distribution of diagnostic marker values for classifiers 1 - 8. 

Classifier Mobility scorea SOM 

class  

Distributionb of diagnostic marker values 

(𝒎𝒗𝒊) for class 𝑲𝒊 

1 K1 = ms1, ms2 

K2 = ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −1, 𝜎 = 0.885) 
𝑚𝑣2~𝒩(𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  1, 𝜎 = 0.885) 

2 K1 = ms1, ms2 

K2 = ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −1.4425, 𝜎 = 0.885) 
𝑚𝑣2~𝒩(𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  1.4425, 𝜎 = 0.885) 

3 K1 = ms1, ms2 

K2 = ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −2.77, 𝜎 = 0.885) 
𝑚𝑣2~𝒩(𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  1, 𝜎 = 0.885) 

4 K1 = ms1, ms2 

K2 = ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −1, 𝜎 = 0.885) 
𝑚𝑣2~𝒩(𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  2.77, 𝜎 = 0.885) 

5 K1 = ms1 

K2 = ms2, ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −1, 𝜎 = 0.885) 
𝑚𝑣2~𝒩( 𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  1, 𝜎 = 0.885) 

6 K1 = ms1 

K2 = ms2, ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −1.4425, 𝜎 = 0.885) 
𝑚𝑣2~𝒩(𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  1.4425, 𝜎 = 0.885) 

7 K1 = ms1 

K2 = ms2, ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −2.77, 𝜎 = 0.885) 
𝑚𝑣2~𝒩(𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  1, 𝜎 = 0.885) 

8 K1 = ms1 

K2 = ms2, ms3 

K3 = ms4, ms5 

𝑚𝑣1~𝒩(𝜇 = −1, 𝜎 = 0.885) 
𝑚𝑣2~𝒩(𝜇 =  0, 𝜎 = 0.885) 
𝑚𝑣3~𝒩(𝜇 =  2.77, 𝜎 = 0.885) 

a. ms1 = mobility score 1; ms2 = mobility score 2; ms3 = mobility score 3; ms4 = mobility 

score 4; ms5 = mobility score 5. 
b Normal distribution 𝒩(∙) with parameters: μ = mean; σ = standard deviation. 

 

 

 



147 

 
Figure 5.1 Theoretical distributions of diagnostic marker values for the eight 

classifiers. 

 

5.2.3 Quantifying the economic and welfare effects of 

classification outcomes 

For this study we used an existing stochastic cow-level dynamic bio-economic 

simulation model that incorporated PLF technology (i.e., a classifier) in the 

management of SOM (Edwardes et al., 2022b). For both management scenario 1 and 

2, cows that were classified to class 𝐾1 were not treated for SOM (because no alerts 

for these cows were generated). The model includes an alert prioritisation criterion 

whereby alerts for cows classified to class 𝐾2 are generated every 7 days on condition 

that 𝐾2 classifications per cow occurred at least 50 percent of the time during a 7-

day hoof-trimming interval. Following an alert on the 7th day, they were treated if 

necessary (mobility score 3 [management scenario 1]; mobility score 2 and 3 

[management scenario 2]) by a professional hoof-trimmer. Alerts were generated 

immediately for cows classified to class 𝐾3 and were treated immediately if necessary 

by the farmer (mobility score 4) or veterinarian (mobility score 5). 

The model calculates the annual net economic results as a function of the daily milk 

revenue per cow less the daily SOM and SOM management associated costs per cow. 

The costs include: milk losses, discarded milk due to SOM related antibiotic use, 

feed, insemination, culling, hoof-trimming, veterinary, labour, and the annual 
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depreciation of the PLF technology. For complete information please refer to 

Edwardes et al. (2022a, 2022b).  

The model was extended for this study with a SOM welfare impact component as 

described in Edwardes et al. (2023) to assess the effect of PLF technology in the 

management of SOM on the SOM welfare impact. In brief, the annual SOM welfare 

impact is calculated as the aggregated product of mobility score duration per SOM 

case and a mobility score welfare impairment weight for all SOM cases that occurred 

during the year. 

To study the SOM economic and welfare effects of classification outcomes, 600 of the 

125,250 classification outcome matrices per classifier 1 – 8 were randomly selected8 

and used as input for the updated simulation model used in this study. Due to model 

stochasticity, 500 replications per classification outcome per classifier 1 – 8 were run. 

The mean net economic results and welfare impact per classification outcome per 

classifier 1 – 8 were then computed and compared to a baseline situation that 

represented current SOM management without PLF technology to obtain the relative 

differences in economic and welfare SOM impact. Relative difference values were 

expressed as a gain (𝑦) where 𝑦 > 0 represent the relative reduction in economic and 

welfare SOM impact (i.e., positive gain) compared to the baseline situation whereas 

values of 𝑦 < 0 represent the relative increase in economic and welfare SOM impact 

(i.e., negative gain) compared to the baseline situation. 

5.2.4 Exploratory overview of results 

First, we explored the general economic and welfare effects simulated output per 

classifier 1 – 8. Of the eight classifiers, two were then selected for further detailed 

analysis. The two classifiers were selected for either having the lowest or highest 

mean aggregated economic and welfare effect (assuming equal weighting for both 

economic and welfare effects). 

Secondly, for the two selected classifiers we explored the economic and welfare effects 

of classification probabilities 𝑃11, 𝑃22, and 𝑃33 through a visual analysis of plots. 𝑃11, 

𝑃22, and 𝑃33 values were plotted against the range of economic and welfare gains that 

were divided into 15 intervals. This visual analysis allowed us to study the general 

 

8  A random selection of 600 classification outcomes per classifier was done due to the 

computational expense required from this study; an estimated 12,000 simulation hours was 

required from 8×600 classification outcomes. 



149 

requirements of 𝑃11 , 𝑃22 , and 𝑃33 , without considering other 𝑃𝑖𝑗  interactions, to 

achieve higher economic and welfare gains. 

5.2.5 Synthesis model 

The simulation model produced output that made it difficult present the economic 

and welfare effects succinctly with respect to each 𝑃𝑖𝑗. Therefore, to estimate the 

economic and welfare effects of 𝑃𝑖𝑗 we first developed a method that accounted for 

the complex behaviour of classifiers apropos trade-offs and synergies between 𝑃𝑖𝑗 

when the cut-off threshold values of 𝑐1 and 𝑐2 varied (described in Appendix 1 with 

accompanying Table A 5.1). This method contributed to the development of a 

synthesis model that permitted us to ultimately estimate the economic and welfare 

effects 𝑃𝑖𝑗. The general form of the synthesis model is 

 𝑦 =∑𝑥𝑖𝑗𝑃𝑖𝑗 ; ∀ 𝑖, 𝑗 (5.1) 

where 𝑦 is the economic or welfare gain and 𝑥𝑖𝑗 is the effect of 𝑃𝑖𝑗 on 𝑦. Parameter 

values of 𝑥𝑖𝑗  were calibrated on the simulated outputs with maximum likelihood 

estimation using the bbmle package (Bolker & R Development Core Team, 2022) 

for R (R Core Team, 2022). The synthesised results apropos economic and welfare 

gains were expressed in terms of 𝑃11 and 𝑃22 (Appendix 1). 
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5.3 Results 

5.3.1 Overview of results 

Figure 5.2 shows the distribution of economic and welfare gains for the 600 different 

classification outcomes for classifiers 1 – 8, respective of management scenario 

(summary statistics are found in Table A 5.2) relative to a baseline situation that 

represented current SOM management without PLF technology (i.e., no-classifier 

situation). For all classifiers, most of the simulated classification outcomes resulted 

in positive economic and welfare gains (i.e., reductions in SOM economic and welfare 

impact). In management scenario 1, the highest economic and welfare gains were 

observed in classifier 3, whereby the economic and welfare impact of SOM was 

respectfully reduced by ~20 and ~40 percent on average.  

In management scenario 2, the highest economic gains were observed in classifier 7 

(second highest average welfare gains) with an average ~33 percent reduction in 

SOM economic impact, and the highest welfare gains were observed in classifier 8 

(lowest average economic gains) with an average ~87 percent reduction in SOM 

welfare impact. When mobility score 2 was grouped in class 𝐾2  (management 

scenario 2) as opposed to class 𝐾1 (management scenario 1) higher economic and 

 

 
Figure 5.2 Distributions of the economic and welfare effects for the 600 different 

classification outcomes per classifier 1 – 8. The Value on the y-axis is 

interpreted as the relative difference in economic and welfare SOM impact 

compared to a no-classifier situation. Positive values indicate a reduction in 

SOM economic or welfare impact (i.e., positive gain), while negative values 

indicate an increase in SOM economic or welfare impact (i.e., negative gain). 



151 

welfare gains were observed on average as well as a reduction in variance for both 

economic and welfare gains.  

Of the 8 classifiers, classifier 1 (weak ability in SOM class discrimination for all SOM 

classes) and classifier 7 (strong ability in 𝐾1 and 𝐾2 SOM class discrimination; weak 

ability in 𝐾2 and 𝐾3 SOM class discrimination) respectively produced the lowest and 

highest mean aggregated economic and welfare gain. Figure 5.3 (classifier 1) and 

Figure 5.4 (classifier 7) illustrate the general trends in classification probabilities 𝑃11, 

𝑃22, and 𝑃33 as the economic and welfare gains increase from minimum to maximum. 

Both for classifier 1 and classifier 7, 𝑃11 showed increasing trends for increases in 

economic gains while 𝑃11 showed decreasing trends for increases in welfare gains, 

indicating economic and welfare trade-offs for changes in 𝑃11. 𝑃22 showed increasing 

trends for both increases in economic and welfare gains, indicating economic and 

welfare synergies for changes in 𝑃22. 𝑃33 showed decreasing trends for increases in 

economic gains while 𝑃33 showed increasing trends for increases in welfare gains, 

indicating economic and welfare trade-offs for changes in 𝑃33. Wider ranges of 𝑃𝑖𝑗 

values within quantile ranges were due to a higher number of classification outcomes 

that produced economic and welfare gains within the specified interval. Similar trends 

as described were observed for the other six classifiers (Figures A 5.1 – A 5.6 of 

Appendix 2). 
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Figure 5.3 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 1 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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Figure 5.4 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 7 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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5.3.2 Synthesis model output: estimated economic and 

welfare effects of 𝑷𝒊𝒋 

Figure 5.5 illustrates the economic and welfare effect of 𝑃11 and five levels of 𝑃22, 

while considering the underlying trade-offs and synergies between different 𝑃𝑖𝑗, of 

classifier 1 and classifier 79. Classifier 1 had the lowest economic gains and the highest 

welfare gains when 𝑃11 and 𝑃22 were both set to 0. Increasing levels of 𝑃22 generally 

led to increased economic gains (illustrated by the upward shift in 𝑃22 lines) but 

decreased welfare gains (illustrated by the downward shift in 𝑃22 lines). However, the 

reductions in welfare gains were smaller than the increases in economic gains for 

increases in 𝑃22. Lines respective of different 𝑃22 levels generally showed trade-offs in 

economic and welfare gains as 𝑃11 increased. Synergies in economic and welfare gains 

were observed at higher values of 𝑃11 where the gradients of the economic and welfare 

gain lines were both negative. Increasing 𝑃11 had a larger positive effect on economic 

gains than negative effects on welfare gains, as indicated by the steeper positive 

gradient of lines representing economic gains compared to the flatter negative 

gradient of lines representing welfare gains. For example, the economic and welfare 

gain lines representing 𝑃22 when set to 0 showed that as 𝑃11 increased from 0 to 0.82, 

the additional economic gains were larger as illustrated by steeper positive gradient 

compared to the reductions in welfare gains as illustrated by flatter negative gradient. 

However, as 𝑃11 increased beyond 0.82 to 1, the additional economic gain diminished 

until increases in 𝑃11 had a negative effect on economic gains and reductions in 

welfare gains became larger. 

For classifier 7, the effect of increasing 𝑃22 from 0 to 0.25 was largest on the economic 

gain. Thereafter, increasing levels of 𝑃22 had smaller effects on economic and welfare 

gains. For all levels of 𝑃22 , increases in 𝑃11  generally lead to larger increases in 

economic gains compared to smaller reductions in welfare gains. However, when 𝑃11 

increased beyond ~0.9, economic gains began to diminish and then reduce and 

reductions in welfare gains became larger. Following decreases in economic and 

welfare gains for  𝑃11 values near the extremity of 1, acute increases in economic and 

welfare gains occurred. This was due to the limited number of observations from our 

simulations with 𝑃11 values near 1, ultimately influencing the maximum likelihood 

estimation of 𝑥𝑖𝑗. Albeit increases in economic and welfare gains were observed in the 

simulated data as 𝑃11 approached 1, but not as extreme as shown in Figure 5.5. 

 

9 Figure A 5.7 illustrates the economic and welfare effects of 𝑃11 and five levels of 𝑃22 for the 

remaining classifiers 2 – 6, and 8. 
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Figure 5.5 Effects of 𝑷𝟏𝟏 and 𝑷𝟐𝟐 on the economic and welfare gains for classifier 

1 and classifier 7. The Value on the y-axis is interpreted as the relative 

difference in economic and welfare SOM impact compared to a no-classifier 

situation. Positive values indicate a reduction in SOM economic or welfare 

impact (i.e., positive gain), while negative values indicate an increase in SOM 

economic or welfare impact (i.e., negative gain). 

5.4 Discussion 

In this research, we studied the economic and welfare effects of different classification 

outcomes for underlying classifiers in the context of a PLF based approach to SOM 

management. Our focus was on 3-class classifiers, which were designed as 

hypothetical scenarios due to limited information on 3-class SOM classifiers for SOM 

management. The scenarios were created in a way that would allow for noticeable 

separation or overlap between the distribution of diagnostic marker values among 

classes, thereby enhancing our understanding of their effects on economic and welfare 

outcomes. We chose to study hypothetical 3-class classifiers rather than the more 

common 2-class classifiers described in scientific literature (Alsaaod et al., 2019; 

Schlageter-Tello et al., 2014) because they offer the potential to improve the quality 

of information generated by the classifier and facilitate more precise intervention 

decisions, such as prolonged or immediate intervention procedures (Edwardes et al., 

2022b). The results of our study indicate that implementing a 3-class classification 

PLF based SOM management approach can yield additional economic and welfare 

value. 
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Among the eight classifiers tested, classifier 7 (management scenario 2) produced the 

highest average economic gain. This result was due to the considerably large 

separation between diagnostic marker values 𝑚𝑣1 and 𝑚𝑣2, as well as between 𝑚𝑣1 

and 𝑚𝑣3. This separation allowed for many different classification outcomes whereby 

cows belonging to class 𝐾1, which are not SOM and do not incur production losses, 

were correctly classified thus unnecessary intervention costs were avoided. At the 

same time, high correct classification probabilities were maintained for cows in classes 

𝐾2 and 𝐾3, enabling timely intervention to avoid prolonged production losses. In 

addition, classifier 3, which had the same theoretical distribution of diagnostic marker 

values as classifier 7, produced the highest economic gains on average compared to 

classifiers in management scenario 1 for the same reasons described apropos classifier 

7. Conversely, classifiers 1 and 4 (management scenario 1) and classifiers 5 and 8 

(management scenario 2) had the smallest separation between diagnostic marker 

values 𝑚𝑣1 and 𝑚𝑣2 and resulted in the two lowest economic gains on average within 

management scenario.  

These findings highlight the need for the PLF research community to primarily 

develop SOM classifiers that can sufficiently discriminate between the non-SOM class 

and different SOM classes based on their underlying diagnostic marker values. This 

may also be beneficial for other health disorders. A PLF-based health management 

approach can enable earlier and more effective intervention for unhealthy animals, 

resulting in a large proportion of the animal population returning to the healthy class 

once treated and recovered. Consequently, even a small misclassification probability 

for healthy cows can lead to high economic costs due to the additional and 

unnecessary opportunity cost of labour to check false alerts or costs for unnecessary 

interventions.  

Welfare gains were achieved overall for all the eight classifiers. Including mobility 

score 2 to class 𝐾2 in classifiers 5 – 8 (management scenario 2) drastically improved 

the additional welfare gains compared to classifiers 1 – 4 (management scenario 1). 

This was because of two reasons. First, the welfare of cows with mobility score 2 is 

already negatively affected (Edwardes et al., 2023), and in management scenario 2 

these cows were being treated. Second, by including cows with mobility score 2 to 

class 𝐾1, as in management scenario 1, the proportion of cows with mobility score 2 

would steadily increase over time because they would not be treated. This trend 

occurred in Edwardes et al. (2022b) for a PLF based SOM management scenario as 

management scenario 1 in this study. Similar trends were also observed in practice 

when treatment frequency increased (Groenevelt et al., 2014). Including mobility 

score 2 into a class that requires intervention will have positive welfare effects because 

it enables the earliest possible intervention of SOM, which is beneficial as cows can 

quickly become SOM again following treatment (Frankena et al., 2009). In addition, 
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economic gains also improved slightly when mobility score 2 was included in class 𝐾2 

because indirect economic effects were avoided. 

Although additional economic and welfare values were generally attainable with all 

the classifiers under study, improving economic outcomes through changes in 

classification outcomes often came at the cost of reductions in welfare gains. In 

general, larger increases of economic gains were achieved through smaller reductions 

in welfare gains, but when the increases in additional economic gains began to 

diminish the reductions in additional welfare gains became larger (see Figure 5.5 and 

Figure A 5.7). This phenomenon can be explained with reference to classification 

probabilities 𝑃𝑖𝑗. For example, when 𝑃11 and 𝑃22 were set to 0, the lowest economic 

gains were achieved, but the highest welfare gains were also achieved. This is because 

setting 𝑃11 and 𝑃22 to 0 requires the cut-off threshold values of 𝑐1 and 𝑐2 to be equal 

and set at the minimum diagnostic marker values possible. Ultimately all cows were 

classified to class 𝐾3  because 𝑃13 , 𝑃23  and 𝑃33  all equal 1. Hence, alerts were 

generated daily for all cows that were consequently checked and treated if necessary 

(mobility score ≥3 in management scenario 1; mobility score ≥2 in management 

scenario 2), which resulted in maximum additional welfare gains. But because of 

recovery following treatment, the proportion of cows in class 𝐾1 increased and alerts 

were still generated for these cows. This incurred unnecessary opportunity costs of 

labour to check these alerts, which contributed to the negative economic gains. 

Although checking multiple alerts for cows that were recently treated may not be 

representative of what happens in practice (Eckelkamp & Bewley, 2020), the 

assumptions made in this example provide insight on the economic and welfare 

phenomena for changes in 𝑃𝑖𝑗. As 𝑃11 increased the economic gains increased but 

welfare gains decreased. This was because more cows in class 𝐾1 were classified to 

class 𝐾1 , reducing the opportunity costs of checking unnecessary alerts. As 𝑃11 

increased, 𝑃21 and 𝑃31 increased and 𝑃33 decreased, leading to cows in class 𝐾2 and 

𝐾3 being classified to class 𝐾1 that did not have alerts generated for. This incurred 

additional welfare impacts and reduced the welfare gains. The economic welfare gains 

began to reduce drastically when increasing 𝑃11 by an additional percentage unit 

would decrease 𝑃33 by more than one percentage unit. This was because more cows 

in class 𝐾2 and 𝐾3 were classified to class 𝐾1 and did not have alerts generated for, 

meaning that greater production losses occurred while larger reductions in welfare 

gains continued.  

Although setting 𝑃22 to 0 suggests that there may be economic value in a 2-class 

classifier with a management strategy as in this study, it contradicts the purpose of 

a 3-class classifier. This is because cows in class 𝐾2 were never classified to class 𝐾2, 

thereby making the classifier unable to generate improved information quality with 

an alert prioritisation criterion to facilitate more precise intervention decisions, such 

as prolonged or immediate intervention procedures. Our results demonstrate that 



158 

additional economic value can be achieved with a 3-class classification approach 

because increases in 𝑃22, which ensured that cows could be classified into one of three 

classes, constantly produced higher economic gains as a result of decisions taken with 

improved information (Rojo-Gimeno et al., 2019). 

In addition to the research described in this chapter, during the study we also 

assessed a 4-class classification of SOM classes and defined classification outcomes 

based on the logic described in the conceptual framework. Mobility scores 1 – 3 

represented independent classes and only mobility scores 4 and 5 were grouped into 

one class. Comparing the highest average economic and welfare gains for 4-class 

classifiers with the highest average economic and welfare gains for 3-class classifiers 

from management scenario 1 and 2 showed little absolute difference. These results 

further suggest that classifying mobility scores into three classes will suffice in 

providing additional economic and welfare value. It may be that additional values 

exists in a 4-class classifier if each class had very different intervention procedures, 

which we did not test. 

Although methods apropos assessing the performance of 3-class classifiers are well 

documented in the scientific literature (i.e., Sahiner et al., 2008; Xin He & Frey, 

2009), the scope of this study dealt with the economic and welfare effects of varying 

classifier performance. This meant that the highly interactive behaviour of 𝑃𝑖𝑗 trade-

offs and synergies had to be accounted for first. To the best of our knowledge, 

methods to study this behaviour do not exist, making our approach, the synthesis 

model, described in Appendix A1 the first. After developing the synthesis model, we 

could effectively estimate the economic and welfare effects of 𝑃𝑖𝑗  with maximum 

likelihood estimation to gain more insights that the exploratory overview of the 

results could not provide. 

The maximum likelihood estimates of 𝑥𝑖𝑗 were potentially influenced by the sample 

size of classification outcomes (Psutka & Psutka, 2019), which would ultimately 

affect the output of our synthesis model (Equation 1). Increasing the sample size of 

classification outcomes could potentially improve the maximum likelihood estimates 

of 𝑥𝑖𝑗 (Psutka & Psutka, 2019), consequentially improving the output of the synthesis 

model. However, while synthesis model output apropos classifiers 5 – 8 showed 

exaggerated outcomes apropos increases in economic gains and welfare gains >1 when 

𝑃11 approached 1, similar but less exaggerated trends were observed in the simulation 

model output. Moreover, we validated the synthesis model with the estimated 𝑥𝑖𝑗 

parameter values by correlating its output with the simulation model outputs 

(Bolker, 2008). The correlation between the synthesis model and simulation model 

outputs achieved R2 values between 0.92 – 0.99 and 0.86 – 0.97 respectively for 

economic and welfare outcomes. This instilled confidence that our synthesis model 
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with the estimated 𝑥𝑖𝑗 parameter values as inputs was still a good fit to explain the 

economic and welfare effects of 𝑃𝑖𝑗 trade-offs and synergies. 

From this study it is difficult to specify which classification outcomes are optimal 

because this depends on farmer preferences towards economic and welfare gains (e.g., 

Läpple & Osawe, 2022). However, the methods we proposed to study the effects of 

varying 𝑃𝑖𝑗 on classification outcomes (Appendix A1) and the economic and welfare 

effects of such variations (see Equation 1) provide a research foundation for future 

classification model development that is able to match farmer preferences of 

classification outcomes (Van De Gucht et al., 2017b) with their economic and animal 

welfare preferences (e.g., Hansson & Lagerkvist, 2014, 2015). 

This study demonstrates the value of using simulation models to assess the economic 

and welfare effects in response to the quality and performance of SOM classifiers in 

combination with novel designs in PLF based SOM management strategies. A wide 

range of classification outcomes were tested that would be almost impossible to 

implement in practice and provide insight by narrowing down on interesting 

classification outcomes that can be further validated in practice. This approach may 

be very useful for other health disorders as well. 

5.5 Conclusion 

This research focussed on the economic and welfare effects of different SOM 

classification outcomes for 3-class classifiers in the context of a PLF-based SOM 

management approach, extending beyond the typical binary SOM classifiers 

currently developed. Results from the study demonstrated that economic and welfare 

gains are achievable on average with a 3-class SOM classification approach under the 

simulated management strategies. Moreover, our findings suggest that prolonged and 

immediate intervention procedures for cows classified into different SOM classes can 

be improved by harnessing the opportunities only offered by 3-class classification 

approach.  

Assuming that economic and welfare gains are valued equally, classifiers 3 and 7 in 

management scenario 1 and 2 produced the highest economic and welfare gains on 

average within management scenarios. Overall, classifier 7 in management scenario 

2 produced the highest average economic gain due to significant separation between 

diagnostic marker values, allowing for accurate classification and avoidance of 

unnecessary intervention costs. These results suggest that future developments in 

SOM classification models should focus on achieving better 𝐾1 class discrimination 

from 𝐾2 and 𝐾3 classes.  
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In some cases, highest welfare gains were achieved while economic gains were 

negative. Larger increases in economic gains came at the cost of smaller reductions 

of welfare gains as classification outcomes varied. Hence, this study emphasises the 

value of simulation models in assessing economic and welfare implications across a 

wide range of different classifiers and classification outcome scenarios, allowing a 

thorough testing before they are implemented in practice. Ultimately, this the study, 

and the results within, can further support farmer decision making apropos the 

economic and welfare implications of different classification outcomes that best fit 

their PLF-based SOM management preferences. This research also serves the 

potential to further study the economic and welfare implications for 3-class 

classification PLF-based management for other health disorders and support farmer 

decision making apropos the economic and welfare implications of other health 

disorders. 
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5.6 Appendix 1 

5.6.1 Describing the trade-offs and synergies of 𝑷𝒊𝒋 

Describing the trade-offs and synergies between different 𝑃𝑖𝑗 of a 3-class classifier is 

complex due to the locations, and distance between, the cut-off threshold values 𝑐1 

and 𝑐2  along the range of diagnostic marker value distributions (i.e., 𝑚𝑣1 , 𝑚𝑣2 , 

𝑚𝑣3). To estimate the values of 𝑃𝑖𝑗 we require two 𝑃𝑖𝑗 to be known. We begin with 

𝑃22 and 𝑃21, under the following constraints 

Describing the trade-offs and synergies between different 𝑃𝑖𝑗 of a 3-class classifier is 

complex due to the locations, and distance between, the cut-off threshold values 𝑐1 

and 𝑐2  along the range of diagnostic marker value distributions (i.e., 𝑚𝑣1 , 𝑚𝑣2 , 

𝑚𝑣3). To estimate the values of 𝑃𝑖𝑗 we require two 𝑃𝑖𝑗 to be known. We begin with 

𝑃22 and 𝑃21, under the following constraints 

 𝑃22 = [0; 1] (A 5.1) 

 𝑃21 = [0; 1 − 𝑃22]. (A 5.2) 

The value of 𝑃22 is determined by the distance between 𝑐1 and 𝑐2 and the density of 

𝑚𝑣2 between 𝑐1 and 𝑐2. For example, when 𝑃22 = 0, then 𝑐1 = 𝑐2. With 𝑃22 and 𝑃21 

defined, the remaining seven 𝑃𝑖𝑗 are estimated as follows 

 𝑃23 = 1 − 𝑃22 − 𝑃21 (A 5.3) 

 𝑃11 = 1 − (1 − 𝑃21
𝛼1)

1
𝛽1
⁄

 (A 5.4) 

 𝑃31 = (1 − [1 − 𝑃21]
𝛼2)

1
𝛽2
⁄

 (A 5.5) 

 𝑃13 = (1 − [1 − 𝑃23]
𝛼3)

1
𝛽3
⁄  (A 5.6) 

 𝑃33 = 1 − (1 − 𝑃23
𝛼4)

1
𝛽4
⁄

 (A 5.7) 

 𝑃12 = 1 − 𝑃11 − 𝑃13 (A 5.8) 
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 𝑃32 = 1 − 𝑃31 − 𝑃33. (A 5.9) 

The parameters 𝛼 and 𝛽 in equations A 5.4 – A 5.7 determine the shape of the 

functions and are bound between [0; 1]. To estimate their values, we set 𝑐1 = 𝑐2 

meaning that 𝑃12 = 0, 𝑃22 = 0, and 𝑃32 = 0 because all values in 𝑚𝑣𝑖 would never lie 

between 𝑐1 and 𝑐2 as they vary together across the range of diagnostic marker values 

for all classes. Then empirical probability values for 𝑃11, 𝑃13, 𝑃21, 𝑃23, 𝑃31 and 𝑃33 

were calculated for all 𝑐1, 𝑐2 ∈ {𝑚𝑣1, 𝑚𝑣2, 𝑚𝑣3} maintaining 𝑐1 = 𝑐2. Second, with the 

calculated probability values we estimated the parameter values for 𝛼  and 𝛽 , 

respective of functions A4 – A7, with maximum likelihood estimation using the 

bbmle package (Bolker & R Development Core Team, 2022) for R (R Core Team, 

2022). 

5.6.2 Expressing economic and welfare gains in terms of 

𝑷𝟏𝟏 and 𝑷𝟐𝟐 

With two known 𝑃𝑖𝑗, as per equations A 5.1 and A 5.2, the trade-offs and synergies 

between different 𝑃𝑖𝑗  are controlled for (equations A 5.3 – A 5.9). Then we can 

estimate the effect of 𝑃𝑖𝑗  on output 𝑦  (i.e., economic or welfare gain) with the 

following function in general form 

 𝑦 =∑𝑥𝑖𝑗𝑃𝑖𝑗 ; ∀ 𝑖, 𝑗 (A 5.10) 

where 𝑥𝑖𝑗  is the effect of 𝑃𝑖𝑗  on 𝑦 . Parameter values of 𝑥𝑖𝑗  were estimated with 

maximum likelihood estimation using the bbmle package (Bolker & R Development 

Core Team, 2022) for R (R Core Team, 2022). 

Expressing 𝑦 in terms of 𝑃11 and 𝑃22 requires an additional term. We introduce 𝑤, 

where 𝑤 ∈ [0; 1−𝑃22] is a placeholder term for 𝑃21. Referring to equation A4, we solve 

𝑤 for 𝑃11, which yields  

 𝑤 =  𝑒𝑥𝑝 (
𝑙𝑛(−𝑒𝑥𝑝(𝑙𝑛(−𝑃11 +  1)𝛽1) +  1)

𝛼1
) (A 5.11) 

and assign 𝑤 to P21: 𝑤 ↦ 𝑃21. Now, the trade-offs and synergies between different 𝑃𝑖𝑗 

can be described by two known values of 𝑃11 and 𝑃22. Through the manipulation of 

𝑃21, as described, 𝑦 is now expressed in terms of 𝑃11 and 𝑃22 because equations A 5.3, 

A 5.5, A 5.6, A 5.7, and A 5.9 become direct functions of 𝑃11 and P22. In addition, 
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this further allows for the marginal effects of 𝑃11 on 𝑦 to be estimated with respect 

to fixed values of 𝑃22. 
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5.6.3 Parameter values for 𝜶 and 𝜷 

Table A 5.1 Estimated values for 𝜶 and 𝜷 parameters. 

Classifiera Parameter Estimate Std. Error z value Pr(z) b 

1 & 5 𝛼1  0.5356 0.0319 16.8027 2.33E-63 *** 

1 & 5 𝛽1 0.5799 0.0413 14.0540 7.28E-45 *** 

1 & 5 𝛼2  0.5759 0.0337 17.0744 2.30E-65 *** 

1 & 5 𝛽2 0.5280 0.0393 13.4432 3.37E-41 *** 

1 & 5 𝛼3  0.5356 0.0319 16.8027 2.33E-63 *** 

1 & 5 𝛽3 0.5799 0.0413 14.0540 7.28E-45 *** 

1 & 5 𝛼4  0.5759 0.0337 17.0744 2.30E-65 *** 

1 & 5 𝛽4 0.5280 0.0393 13.4432 3.37E-41 *** 

2 & 6 𝛼1  0.4448 0.0271 16.3999 1.92E-60 *** 

2 & 6 𝛽1 0.4374 0.0378 11.5676 6.02E-31 *** 

2 & 6 𝛼2  0.4892 0.0299 16.3810 2.61E-60 *** 

2 & 6 𝛽2 0.3910 0.0358 10.9130 9.99E-28 *** 

2 & 6 𝛼3  0.4448 0.0271 16.3999 1.92E-60 *** 

2 & 6 𝛽3 0.4374 0.0378 11.5676 6.02E-31 *** 

2 & 6 𝛼4  0.4892 0.0299 16.3810 2.61E-60 *** 

2 & 6 𝛽4 0.3910 0.0358 10.9130 9.99E-28 *** 

3 & 7 𝛼1  0.3588 0.0257 13.9381 3.72E-44 *** 

3 & 7 𝛽1 0.1246 0.0230 5.4125 6.21E-08 *** 

3 & 7 𝛼2  0.5810 0.0363 16.0237 8.73E-58 *** 

3 & 7 𝛽2 0.5213 0.0429 12.1390 6.56E-34 *** 

3 & 7 𝛼3  0.3588 0.0257 13.9381 3.72E-44 *** 

3 & 7 𝛽3 0.1246 0.0230 5.4125 6.21E-08 *** 

3 & 7 𝛼4  0.5810 0.0363 16.0237 8.73E-58 *** 

3 & 7 𝛽4 0.5213 0.0429 12.1390 6.56E-34 *** 

4 & 8 𝛼1  0.5386 0.0343 15.7145 1.20E-55 *** 

4 & 8 𝛽1 0.5754 0.0455 12.6586 1.00E-36 *** 

4 & 8 𝛼2  0.3062 0.0271 11.2865 1.53E-29 *** 

4 & 8 𝛽2 0.1853 0.0335 5.5332 3.14E-08 *** 

4 & 8 𝛼3  0.5386 0.0343 15.7145 1.20E-55 *** 

4 & 8 𝛽3 0.5754 0.0455 12.6586 1.00E-36 *** 

4 & 8 𝛼4  0.3062 0.0271 11.2865 1.53E-29 *** 

4 & 8 𝛽4 0.1853 0.0335 5.5332 3.14E-08 *** 
a Classifiers were grouped together because the diagnostic marker values for each class in K 

follow the same theoretical normal distribution. Hence, parameter value estimates were the 

same.  
b Significance codes: ° p < 0.01, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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5.7 Appendix 2 

5.7.1 Descriptive summary results 

Table A 5.2 Descriptive summary results on the economic and welfare effects for 

the 600 different classification outcomes per classifier 1 – 8. 

Management 

scenario 

Classifier Output 

variable 

Mean Median Sda Min.b Percentiles Max.c 

0.05 0.95 

1 1 Economic 

gain 

0.126 0.218 0.275 -1.143 -0.499 0.391 0.424 

  Welfare 

gain 

0.367 0.416 0.166 -0.718 0.107 0.446 0.452 

 2 Economic 

gain 

0.179 0.267 0.270 -1.142 -0.418 0.420 0.461 

  Welfare 

gain 

0.376 0.426 0.180 -0.711 0.072 0.449 0.452 

 3 Economic 

gain 

0.197 0.298 0.301 -1.165 -0.521 0.430 0.485 

  Welfare 

gain 

0.398 0.435 0.144 -0.654 0.227 0.451 0.453 

 4 Economic 

gain 

0.159 0.250 0.272 -1.107 -0.409 0.420 0.470 

  Welfare 

gain 

0.360 0.423 0.223 -0.768 -0.065 0.448 0.450 

2 5 Economic 

gain 

0.253 0.293 0.173 -0.948 -0.037 0.414 0.497 

  Welfare 

gain 

0.859 0.862 0.049 0.753 0.776 0.936 0.948 

 6 Economic 

gain 

0.291 0.320 0.147 -0.941 0.037 0.421 0.461 

  Welfare 

gain 

0.864 0.867 0.050 0.754 0.773 0.940 0.948 

 7 Economic 

gain 

0.331 0.352 0.123 -0.895 0.190 0.435 0.475 

  Welfare 

gain 

0.868 0.873 0.053 0.750 0.771 0.947 0.949 

 8 Economic 

gain 

0.248 0.308 0.209 -0.953 -0.136 0.426 0.463 

  Welfare 

gain 

0.871 0.876 0.048 0.758 0.777 0.943 0.948 

a Standard deviation 
b Minimum 
c Maximum 
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5.7.2 Exploratory results 

  

Figure A 5.1 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 2 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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Figure A 5.2 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 3 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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Figure A 5.3 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 4 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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Figure A 5.4 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 5 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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Figure A 5.5 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 6 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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Figure A 5.6 Trends in classification probabilities 𝑷𝟏𝟏, 𝑷𝟐𝟐, and 𝑷𝟑𝟑 for classifier 8 

with respect to economic gains (A) and welfare gains (B). The Value on the y-

axis is interpreted as the 𝑷𝒊𝒋 value. 
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5.7.3 Estimates of 𝒙𝒊𝒋 

 

Table A 5.3 Estimates of 𝒙𝒊𝒋 for economic outputs of management scenario 1 

with classifiers 1 – 4. 

Classifier Parameter 

𝒙𝒊𝒋 

Estimate Std. 

Error 

z value Pr(z) 

1 𝑥11 0.6662 1.0007 0.6657 0.5056 

 𝑥12 -0.0269 0.8620 -0.0312 0.9751 

 𝑥13 -1.4369 1.1684 -1.2299 0.2188 

 𝑥21 -0.4986 1.2712 -0.3923 0.6949 

 𝑥22 0.1442 0.6551 0.2201 0.8258 

 𝑥23 0.3885 1.1099 0.3500 0.7263 

 𝑥31 -0.3880 1.0716 -0.3621 0.7173 

 𝑥32 -0.0035 0.4079 -0.0085 0.9932 

 𝑥33 -0.0701 0.5409 -0.1296 0.8969 

2 𝑥11 0.7129 0.2085 3.4200 0.0006 *** 

 𝑥12 0.1585 0.1965 0.8066 0.4199 

 𝑥13 -1.2549 0.3266 -3.8419 0.0001 *** 

 𝑥21 -0.6239 0.2895 -2.1555 0.0311 * 

 𝑥22 -0.0267 0.2745 -0.0974 0.9224 

 𝑥23 0.2672 0.2851 0.9371 0.3487 

 𝑥31 -0.3230 0.6938 -0.4655 0.6416 

 𝑥32 0.0065 0.2965 0.0218 0.9826 

 𝑥33 -0.0669 0.2759 -0.2426 0.8083 

3 𝑥11 0.5414 0.1332 4.0634 0.0000 *** 

 𝑥12 0.2052 0.1324 1.5493 0.1213 

 𝑥13 -1.0621 0.1962 -5.4121 0.0000 *** 

 𝑥21 -0.4108 0.3520 -1.1670 0.2432 

 𝑥22 -0.0878 0.2824 -0.3110 0.7558 

 𝑥23 0.1832 0.3016 0.6072 0.5437 

 𝑥31 -0.3394 0.7253 -0.4680 0.6398 

 𝑥32 0.1132 0.3443 0.3288 0.7423 

 𝑥33 -0.0892 0.3316 -0.2690 0.7879 

4 𝑥11 0.8868 0.2641 3.3583 0.0008 *** 

 𝑥12 0.0296 0.2209 0.1342 0.8932 

 𝑥13 -1.2719 0.3506 -3.6274 0.0003 *** 

 𝑥21 -0.8915 0.3052 -2.9214 0.0035 ** 

 𝑥22 0.1788 0.2557 0.6992 0.4844 

 𝑥23 0.3573 0.2806 1.2734 0.2029 

 𝑥31 -0.1749 0.6754 -0.2590 0.7957 

 𝑥32 -0.0804 0.2493 -0.3225 0.7471 

 𝑥33 -0.1001 0.2384 -0.4200 0.6745 
a Significance codes: ° p < 0.01, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A 5.4 Estimates of 𝒙𝒊𝒋 for economic outputs of management scenario 2 

with classifiers 5 – 8. 

Classifier Parameter 

𝒙𝒊𝒋 

Estimate Std. 

Error 

z value Pr(z) 

5 𝑥11 0.8009 0.3946 2.0293 0.0424 * 

 𝑥12 0.2779 0.3982 0.6980 0.4852 

 𝑥13 -1.1110 0.7135 -1.5570 0.1195 

 𝑥21 -0.5811 0.6043 -0.9615 0.3363 

 𝑥22 0.0634 0.5341 0.1188 0.9054 

 𝑥23 0.4854 0.5964 0.8140 0.4157 

 𝑥31 0.4313 0.7437 0.5799 0.5620 

 𝑥32 -0.1421 0.4043 -0.3515 0.7252 

 𝑥33 -0.3214 0.3979 -0.8076 0.4193 

6 𝑥11 0.6095 0.2524 2.4147 0.0157 * 

 𝑥12 0.2873 0.2673 1.0748 0.2825 

 𝑥13 -0.8957 0.5480 -1.6344 0.1022 

 𝑥21 -0.2843 0.2964 -0.9592 0.3375 

 𝑥22 0.0263 0.2871 0.0917 0.9269 

 𝑥23 0.2592 0.3078 0.8418 0.3999 

 𝑥31 0.2642 0.5082 0.5198 0.6032 

 𝑥32 -0.0580 0.2494 -0.2324 0.8162 

 𝑥33 -0.2051 0.2454 -0.8359 0.4032 

7 𝑥11 0.5124 0.1654 3.0974 0.0020 ** 

 𝑥12 0.3194 0.1764 1.8112 0.0701 ° 

 𝑥13 -0.8091 0.4161 -1.9442 0.0519 ° 

 𝑥21 -0.2692 0.2647 -1.0170 0.3091 

 𝑥22 0.0304 0.2361 0.1287 0.8976 

 𝑥23 0.2616 0.2709 0.9655 0.3343 

 𝑥31 0.3320 0.4648 0.7143 0.4750 

 𝑥32 -0.0346 0.2651 -0.1306 0.8961 

 𝑥33 -0.2746 0.2669 -1.0287 0.3036 

8 𝑥11 0.5678 0.2777 2.0446 0.0409 * 

 𝑥12 0.1953 0.2543 0.7680 0.4425 

 𝑥13 -0.7761 0.4478 -1.7333 0.0830 ° 

 𝑥21 -0.1871 0.3134 -0.5969 0.5506 

 𝑥22 0.0822 0.2501 0.3286 0.7424 

 𝑥23 0.0918 0.2925 0.3138 0.7537 

 𝑥31 0.0987 0.3971 0.2486 0.8037 

 𝑥32 -0.0327 0.1814 -0.1802 0.8570 

 𝑥33 -0.0791 0.1723 -0.4591 0.6462 
a Significance codes: ° p < 0.01, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A 5.5 Estimates of 𝒙𝒊𝒋 for welfare outputs of management scenario 1 with 

classifiers 1 – 4. 

Classifier Parameter 

𝒙𝒊𝒋 

Estimate Std. 

Error 

z value Pr(z) 

1 𝑥11 -0.1015 1.0007 -0.1014 0.9192 

 𝑥12 0.0029 0.8620 0.0033 0.9973 

 𝑥13 0.1165 1.1684 0.0997 0.9206 

 𝑥21 0.8544 1.2712 0.6721 0.5015 

 𝑥22 0.4540 0.6550 0.6931 0.4882 

 𝑥23 0.3818 1.1099 0.3440 0.7308 

 𝑥31 -1.7832 1.0716 -1.6641 0.0961 ° 

 𝑥32 -0.0174 0.4079 -0.0427 0.9659 

 𝑥33 -0.0043 0.5409 -0.0080 0.9936 

2 𝑥11 -0.0429 0.2085 -0.2056 0.8371 

 𝑥12 -0.1006 0.1965 -0.5120 0.6087 

 𝑥13 -0.0255 0.3266 -0.0780 0.9379 

 𝑥21 -0.1587 0.2895 -0.5483 0.5835 

 𝑥22 0.0116 0.2745 0.0423 0.9662 

 𝑥23 -0.0218 0.2851 -0.0765 0.9390 

 𝑥31 -1.1845 0.6938 -1.7071 0.0878 ° 

 𝑥32 0.5002 0.2965 1.6871 0.0916 ° 

 𝑥33 0.5154 0.2759 1.8679 0.0618 ° 

3 𝑥11 -0.0236 0.1332 -0.1768 0.8596 

 𝑥12 -0.0047 0.1324 -0.0355 0.9716 

 𝑥13 -0.0051 0.1962 -0.0259 0.9794 

 𝑥21 0.1538 0.3520 0.4370 0.6621 

 𝑥22 -0.1213 0.2824 -0.4295 0.6675 

 𝑥23 -0.0659 0.3016 -0.2185 0.8271 

 𝑥31 -1.1274 0.7253 -1.5545 0.1201 

 𝑥32 0.5688 0.3443 1.6518 0.0986 ° 

 𝑥33 0.5253 0.3316 1.5841 0.1132 

4 𝑥11 0.2739 0.2641 1.0374 0.2996 

 𝑥12 -0.3041 0.2209 -1.3763 0.1687 

 𝑥13 -0.1542 0.3506 -0.4397 0.6602 

 𝑥21 -0.8539 0.3052 -2.7981 0.0051 ** 

 𝑥22 0.3940 0.2557 1.5409 0.1233 

 𝑥23 0.2756 0.2806 0.9823 0.3259 

 𝑥31 -0.7427 0.6754 -1.0996 0.2715 

 𝑥32 0.2658 0.2493 1.0663 0.2863 

 𝑥33 0.2925 0.2384 1.2273 0.2197 
a Significance codes: ° p < 0.01, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A 5.6 Estimates of 𝒙𝒊𝒋 for welfare outputs of management scenario 2 with 

classifiers 5 – 8. 

Classifier Parameter 

𝒙𝒊𝒋 

Estimate Std. 

Error 

z value Pr(z) 

5 𝑥11 0.2687 0.3946 0.6810 0.4959 

 𝑥12 0.3254 0.3982 0.8171 0.4139 

 𝑥13 0.4217 0.7135 0.5910 0.5545 

 𝑥21 0.1626 0.6043 0.2691 0.7879 

 𝑥22 0.3831 0.5341 0.7172 0.4732 

 𝑥23 0.4701 0.5964 0.7883 0.4305 

 𝑥31 0.6315 0.7437 0.8491 0.3958 

 𝑥32 0.2627 0.4043 0.6498 0.5158 

 𝑥33 0.1216 0.3979 0.3056 0.7599 

6 𝑥11 0.2653 0.2524 1.0509 0.2933 

 𝑥12 0.3396 0.2673 1.2704 0.2040 

 𝑥13 0.3968 0.5480 0.7241 0.4690 

 𝑥21 0.2468 0.2964 0.8324 0.4052 

 𝑥22 0.3433 0.2871 1.1956 0.2318 

 𝑥23 0.4116 0.3078 1.3370 0.1812 

 𝑥31 0.5141 0.5082 1.0114 0.3118 

 𝑥32 0.2948 0.2494 1.1818 0.2373 

 𝑥33 0.1928 0.2454 0.7859 0.4319 

7 𝑥11 0.3175 0.1654 1.9193 0.0549 ° 

 𝑥12 0.3422 0.1764 1.9407 0.0523 ° 

 𝑥13 0.3194 0.4161 0.7675 0.4428 

 𝑥21 0.1073 0.2647 0.4054 0.6852 

 𝑥22 0.3508 0.2361 1.4858 0.1373 

 𝑥23 0.5211 0.2709 1.9232 0.0545 ° 

 𝑥31 0.6054 0.4648 1.3026 0.1927 

 𝑥32 0.2703 0.2651 1.0197 0.3079 

 𝑥33 0.1035 0.2669 0.3876 0.6983 

8 𝑥11 0.1322 0.2777 0.4761 0.6340 

 𝑥12 0.2951 0.2543 1.1605 0.2459 

 𝑥13 0.5616 0.4478 1.2542 0.2098 

 𝑥21 0.4248 0.3134 1.3556 0.1752 

 𝑥22 0.3555 0.2501 1.4213 0.1552 

 𝑥23 0.2086 0.2925 0.7131 0.4758 

 𝑥31 0.3594 0.3971 0.9052 0.3654 

 𝑥32 0.3251 0.1814 1.7919 0.0731 ° 

 𝑥33 0.3044 0.1723 1.7668 0.0773 ° 
a Significance codes: ° p < 0.01, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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5.7.4 Synthesis of other classifiers 

Figure A 5.7 Effects of 𝑷𝟏𝟏  and 𝑷𝟐𝟐  on the economic and welfare gains for 

classifiers 2 – 6 and 8. The Value on the y-axis is interpreted as the relative 

difference in economic and welfare SOM impact compared to a no-classifier 

situation. Positive values indicate a reduction in SOM economic or welfare impact 

(i.e., positive gain), while negative values indicate an increase in SOM economic 

or welfare impact (i.e., negative gain). 
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Chapter 6  

General discussion 

 

 

 

 

 

 

This thesis adopts an interdisciplinary approach by integrating three distinct 

elements, namely, i) economics, ii) animal welfare, and iii) data driven insights, under 

one digitally supported animal health management lens to gain insights on the value 

of precision livestock farming (PLF) at the farm-level. Specifically, the research 

within the thesis focuses on decision support apropos the economic and animal 

welfare implications of a prevalent dairy cow health disorder, sub-optimal mobility 

(SOM), which has been the subject of significant amounts of research in the field of 

PLF. By quantifying the economic and animal welfare value of a PLF based strategy 

in the management of SOM, this thesis contributes to the realm of digitally supported 

animal health management by providing insights that can support more effective 

economic and animal welfare decision making. In addition, the thesis also contributes 

towards future PLF technological developments by delivering evidence 

demonstrating how favourable economic and animal welfare outcomes can be 

achieved in digitally supported animal health management. 

In this general discussion, research Chapters 2 – 5 are first summarised by 

highlighting the main results and methodological novelties (section 6.1). The 

summary of research chapters is then followed by sections whereby the results are 

synthesised by placing them in the broader context of digitally supported animal 

health management (section 6.2), methodological reflections are presented (section 

6.3), future research avenues are put forward (section 6.4), and implications for 

animal welfare assessors and the environment are briefly discussed (section 6.5). 

Finally, the general discussion concludes with a list of main conclusions drawn from 

this thesis (section 6.6). 
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6.1 Summary of research chapters 

A bio-economic simulation model was developed and used for all research chapters 

to address the research questions in Chapter 2 – 5. The biological component of the 

simulation model served as a basis to study how epidemiological events manifested 

into economic (Chapter 2 and Chapter 5) and animal welfare impacts (Chapter 3 

and Chapter 5), and management events (Chapter 4 and Chapter 5). Below a 

summary of the research chapters are presented. 

Chapter 2 describes the development of the dynamic cow-level stochastic bio-

economic simulation model that was used to assess the annual economic impact of 

SOM for a typical SOM management strategy. The model is the first of its kind to 

simulate the incidence of hoof disorders at hoof-level, and as the responsible 

mechanisms for dairy cow SOM. To simulate the incidence of hoof disorders, two 

epidemiological sub-models are included (Greenwood and Reed-Frost models), 

making it the first bio-economic simulation model to simulate the infectious hoof 

disorder, digital dermatitis, with a contagious spread model. Given the underlying 

hoof-disorders responsible for SOM, SOM is ultimately described at cow-level by five 

mobility scores. Per day, for every cow spent with one of five mobility scores, 

production- and management-based economic calculations were computed. This 

allowed the opportunity to quantify the annual direct economic impact of SOM per 

maximum mobility score SOM case category accounting for mobility score transitions 

within each case. It also allowed the opportunity to quantify the annual indirect 

economic impact of SOM in general. Key results highlight the direct and indirect 

economic importance of mobility scores 2 and 3, especially concerning mobility score 

2 because the associated economic impact has never been studied before. By 

promoting targeted intervention procedures aimed at reducing the incidence and 

prevalence of mobility scores 2 and 3, the economic impact associated with these 

mobility scores can be mitigated as well as the incidence of mobility scores 4 and 5, 

and their associated economic impact. The methodological contribution of this 

chapter is the simulation model itself. It also demonstrates how future economic 

impact assessments of animal health disorders can be modelled by considering all 

adverse health effects on production parameters that contribute to alterations in 

herd-level dynamics, capturing the indirect economic effects, rather than only the 

affected production performance of individual animals. That is by herd-level 

comparisons of with and without disease scenarios. 

Chapter 3 builds on Chapter 2 whereby the impact of SOM on animal welfare was 

studied and simulated. To better understand the negative effects of SOM on animal 

welfare, additional parameters representing welfare impairment weights were 

incorporated into the model. These weights were based on welfare expert knowledge 

in combination with an understanding apropos the physical effects of SOM on welfare 
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indicators. The welfare impairment weights were obtained using adaptive conjoint 

analysis (ACA), which is a well-established research tool in economics and marketing 

used to understand the relative importance of product attributes in consumption 

related decision making. By applying this approach to animal welfare indicators (i.e., 

attributes) that compose animal welfare, the negative effects of SOM – depending on 

the degree of physical effects and SOM severity – on individual welfare indicators 

were quantified, which collectively contribute to the negative welfare effects of SOM. 

Populating the simulation model with the derived welfare impairment weights 

showed that under a typical SOM management strategy the herd-level welfare impact 

was mostly due to maximum mobility score 3 SOM cases because of the cumulative 

effect of impaired welfare due to dynamics of mobility scores 2 and 3. Cow welfare 

could be enhanced by promoting targeted intervention procedures aimed at reducing 

the incidence and prevalence of mobility scores 2 and 3. In terms of methodological 

contributions, this chapter demonstrates exciting opportunities to i) quantify welfare 

impairment weights apropos physical effects of various health disorders on welfare 

indicators, ii) combine these welfare impairment weights respective of health disorder 

and health disorder severities and iii) simulate the animal welfare impact of different 

health disorders to gain insight on which health disorders farmers, researchers and 

policy makers should primarily focus on. 

Chapter 4 describes a study whereby insights were derived on the economic value of 

sensor-based SOM management strategies. Multiple novel sensor-based SOM 

management strategies that included different i) farmer perceptions towards SOM 

constitution, ii) combinations of sensor detection quality, iii) SOM interventionists, 

and iv) intervention intervals respective of mobility scores were compared against a 

typical SOM management strategy without sensors. A simple and original alert 

prioritisation criterion was implemented in the simulated sensor-based SOM 

management scenarios, which allowed for more effectively timed intervention 

intervals of different mobility scores and provided additional insights on the trade-

offs between production losses and labour costs. Results showed that fundamental 

changes in SOM management are required to obtain the economic benefits from a 

sensor-based SOM management strategy. These changes entailed changes in farmer 

perception towards SOM constitution whereby treating mobility scores 2 and 3 can 

be economically beneficial, and bi-annual whole herd routine hoof-trimming should 

be replaced with more frequent cow specific hoof trimming. Furthermore, the alert 

prioritisation criterion that allowed an intervention interval of seven days proved 

economically beneficial because costly false alerts could be avoided while maintaining 

earlier mitigations of production losses. The alert prioritisation criterion is a valuable 

contribution to the literature, offering the opportunities for future sensor developers 

to improve sensor generated information without major adjustments to existing 

sensors with the potential for higher levels of additional economic value. 
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Chapter 5 provides a comprehensive analysis on the trade-offs and synergies in 

economic and animal welfare value of different sensor-based SOM management 

strategies by integrating methodological approaches and result driven insights from 

Chapters 2, 3, and 4. Specifically, this chapter contributes to the PLF research 

community and relevant literature by exploring the potential application of 3-class, 

as opposed to binary, classification models in PLF for SOM management, with the 

aim of quantifying the trade-offs and synergies between economic and animal welfare 

value while considering the complex classification behaviour exhibited by such 

models. Results showed that 3-class classification models do have the potential for 

additional economic and animal welfare value when used for SOM management. The 

chapter contributes to the literature concerning multi-class receiver operating 

characteristics analysis by introducing a novel methodology that was developed to 

study the complex behaviour between classification probabilities. With this approach 

it was found that, although overall economic and welfare benefits were achieved, 

additional economic benefits were traded for reductions in animal welfare benefits. 

Chapter 5 provides a valuable contribution to the field of PLF and sheds light on 

the potential benefits, and consequential effects of increased benefits, in the 

utilisation of 3-class classification models for SOM management. Furthermore, it 

enables developers of classification models to gain valuable insights into the 

performance of their models and ensure that they align with the preferences of 

farmers. 

In summary the research described in Chapters 2, 3, 4, and 5 contribute to the 

literature by providing insights on methodological approaches that i) capture indirect 

costs of health disorders ii) quantify expertise based welfare impacts of health 

disorders, iii) highlight the importance of less severe but prevalent levels of animal 

health disorders, iv) demonstrate significant opportunities for sensor supported 

animal health management that includes novel sensor-based management strategies, 

v) incorporates economics and animal welfare into the animal health decision making 

framework, and vi) propose a tractable approach to understand the complex and 

interdependent nature of 3-class classification models. 

6.2 Synthesis of results 

In this section the results found in Chapters 2 – 5 are synthesised in the broader 

context of digitally supported animal health management in relation to relevant 

research. The aim of this section is to provide a comprehensive understanding on 

how digital technologies found in PLF can be effectively implemented and used at 

the farm-level to mitigate the negative economic and animal welfare impacts of health 

disorders. To facilitate the discussion, three dominant themes were identified. The 
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first theme presents a discussion on the necessity of comprehensive animal health 

impact assessments so that health disorder severities with critical economic and 

animal welfare impacts are appropriately identified. Building on the insights gained 

through the comprehensive impact assessment, the second theme presents a 

discussion on important animal health aspects, the design of management strategies, 

and technological developments to ensure economic and animal welfare benefits are 

obtained with digitally supported animal health management. Lastly, the third theme 

presents a discussion on the complex interplay of synergies and antagonisms between 

various economic and animal welfare aspects following the implementation of 

digitally supported animal health management. 

6.2.1 The necessity of comprehensive animal health 

impact assessments 

Comprehensive animal health impact assessments refer to thorough evaluations that 

examine the effects of health disorders from various perspectives, including a range 

of severities and their underlying dynamics (i.e., cumulative incidence and duration). 

By doing so, critical impacts congruent to health disorder severities can be 

appropriately identified. This provides direction on designing more effective health 

disorder management strategies that include different intervention approaches 

depending on the dynamics of the severity and associated impacts.  

Typically, impact assessments concern the economic impact of health disorders (e.g., 

Bonestroo et al., 2023; Gussmann et al., 2018). However, animal welfare is affected 

by health disorders too (Broom & Corke, 2002; Galindo & Broom, 2002; Nielsen et 

al., 2021). Given the fact that animal welfare is becoming increasingly important for 

citizens, at least in Europe (EU Monitor, 2022; Eurobarometer, 2016), and is 

considered an integral part towards achieving sustainable livestock production 

systems (FAO, 2018), incorporating animal welfare into the animal health disorder 

impact assessment will provide a more holistic understanding towards the 

consequences of animal health disorders and provide better insights on how to 

effectively manage them from economic and animal welfare perspectives. 

The research in Chapter 2 is a typical economic impact assessment that is linked to 

hoof disorders. Hence, this study can be filed in the same drawer with, for instance, 

the research of Kossaibati and Esslemont (1997), Bruijnis et al. (2010), Charfeddine 

and Pérez-Cabal (2017), and Dolecheck et al. (2019) who estimated the economic 

impact of different hoof disorders. Chapter 2 builds on this research by simulating 

the economic impacts caused by hoof disorders through their impact on cow mobility. 

Doing it this way allows the dynamics of hoof disorders to manifest into the dynamics 
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of SOM. This approach is more informative and contributes to the literature from a 

managerial perspective because hoof disorders, which often induce SOM (Alvergnas 

et al., 2019), are typically addressed after their effects are detected in the form of 

SOM (Alawneh et al., 2012a). Thus, providing comprehensive information on the 

economic impact of SOM can support SOM management decisions.  

Indeed, the economic impact of SOM10 has been studied before. Besides the study of 

Ettema et al. (2010) and O’Connor et al. (2023), other SOM economic impact studies 

did not include the dynamics of hoof disorders (Ettema & Østergaard, 2006; Guard, 

2008; Liang et al., 2017; Willshire & Bell, 2009). In addition, except for O’Connor et 

al. (2023), all other aforementioned authors studying the economic impact of SOM 

only addressed SOM in general by transforming SOM into a binary health state when 

it can be described by more than two severities in the form of mobility scores (e.g., 

Sprecher et al., 1997). This binary transformation of SOM ultimately reduces the 

level of comprehensiveness pertaining to the dynamics of SOM, such as the 

cumulative incidence and prevalence of mobility scores, and consequential cost 

contribution of mobility scores to the overall economic impact. Ultimately little 

insight is provided on how to effectively manage specific mobility scores.  

In Chapter 2 SOM was not transformed to a binary health disorder. Rather, SOM 

was described by independent mobility scores allowing for the dynamics and 

consequential economic impacts to be comprehensively studied. More recently this 

approach was also adopted by O’Connor et al. (2023). However, O’Connor et al. 

(2023) studied the economic impact of mobility scores in an Irish seasonal calving 

dairy system using a 4-point mobility scoring system (see Agriculture and 

Horticulture Development Board, 2020). This is unlike the research in Chapter 2 

where the economic impact of mobility scores were studied in a Dutch continuous 

calving dairy system using the 5-point mobility scoring system by Sprecher et al. 

(1997). The epidemiological results in Chapter 2 showed that mobility scores 2 and 

3 were more prevalent and lasted longer than mobility scores 4 and 5. 

Consequentially, due to the underlying mobility score dynamics, the economic results 

showed that maximum mobility score 3 SOM cases contributed almost a third to the 

annual total direct economic impact. This is a considerable contribution to the annual 

total direct economic impact of SOM that cannot be identified when mobility scores 

≥3 are grouped into a binary SOM state (Ettema & Østergaard, 2006; Guard, 2008; 

Liang et al., 2017; Willshire & Bell, 2009). The economic impact assessment in 

Chapter 2 extended to mobility score 2, which has not been done in the 

aforementioned studies since cows with this mobility score are typically considered 

to not have SOM. By doing so, the economic results also revealed that maximum 

 

10 Sub-optimal mobility is referred to as lameness by the mentioned authors. 
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mobility score 2 SOM cases contributes almost 13 percent to the annual total direct 

economic impact due to the dynamics of maximum mobility score 2 SOM cases. An 

interesting and novel result from Chapter 2 was that the indirect annual economic 

impact of SOM was found to be 41 percent of the total annual economic impact 

mostly due to the negative effects of mobility score 2 and 3 on reproductive 

performance (i.e., fertility related culling). These results suggest that previous studies 

underestimated the economic impact of SOM. More importantly these results 

contribute to our understanding on the economic importance of mobility scores 2 and 

3 that previous studies could not provide as a result of grouping mobility scores ≥3 

together and omitting mobility score 2. Consequentially, the results from Chapter 2 

provide valuable managerial insights. Specifically, these insights suggest that 

mobility score 2 and 3 should be managed differently compared to mobility scores 4 

and 5. The reason is that their different dynamics contribute substantially to the 

annual total cost of SOM. This highlights the significance of comprehensively 

studying the economic impact of health disorders across a range of severities and 

their underlying dynamics to provide more nuanced managerial insights that cannot 

be achieved if health disorders are reduced to a binary state. 

The impact assessment of SOM in this thesis is not limited to the economic impact 

found in Chapter 2, but also the animal welfare impact of SOM described in Chapter 

3. In general, quantifying the impact of health disorders on animal welfare is 

incredibly challenging due to the obvious fact that animals cannot directly 

communicate how they are feeling when afflicted with a health disorder. Overcoming 

this communication barrier by studying how animal-based welfare indicators are 

physically affected when an animal is afflicted with a health disorder can offer 

important insights on the consequential welfare effects of health disorders (EFSA, 

2012; Nielsen et al., 2023). Considering this, the research in Chapter 3 describes an 

innovative approach towards quantifying the impact of SOM on animal welfare 

through the physically affected welfare indicators and is based on expert knowledge 

elicitation and simulation modelling. By focussing on the total contribution of 

different SOM cases to the total welfare impact the study produced novel insights 

demonstrating that maximum mobility score 2 and 3 SOM cases respectively 

contributed ~16 and ~71 percent to the total welfare impact compared to the ~12 

and ~1 percent contribution of maximum mobility score 4 and 5 SOM cases, 

respectfully. Despite mobility scores 2 and 3 having lower welfare disutility scores 

than mobility scores 4 and 5, the higher welfare impact of maximum mobility score 

2 and 3 SOM cases are due to cumulative effect of welfare disutility for mobility score 

2 and 3 in conjunction with their dynamics. Comparing these results with other SOM 

welfare impact assessments is challenging because – to the best of my knowledge – 

no other published studies reporting the welfare impact of SOM are available. 

However, the results can be compared in the context of hoof disorders whereby 

increasing hoof disorder severities have been associated with increasing mobility 
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scores (O’Connor et al., 2019). Bruijnis et al. (2012) estimated that subclinical hoof 

disorders contributed substantially to the total welfare impact of hoof disorders (~54 

percent), corroborating the results in Chapter 3 apropos the substantial contribution 

of lower mobility scores to the total welfare impact. Hence, this comprehensive 

information apropos the contribution of different SOM cases to the total SOM welfare 

impact is crucial for the design of appropriate animal welfare centric management 

strategies that cannot be achieved if SOM continues to be reduced to a binary health 

disorder, as done in previous SOM economic impact assessment literature. 

Therefore, by quantifying the economic and animal welfare impact in Chapter 2 and 

Chapter 3 of specific SOM cases (i.e., maximum mobility score SOM cases) in 

conjunction with their dynamics, a more comprehensive understanding of, and unique 

perspectives on, the economic and animal welfare impact of SOM was achieved. This 

is especially with regards to the lower mobility scores, which have not been 

independently studied before. With a better understanding on the SOM dynamics 

and consequential economic and animal welfare effects, more nuanced SOM 

management approaches tailored to different mobility scores can be designed that 

consider the different economic and animal welfare impacts as a result of different 

mobility score dynamics. These original insights contribute to the literature from a 

SOM managerial viewpoint whereby they can be utilised to promote the uptake of 

newly designed economic and animal welfare enhancing SOM management strategies. 

This can be achieved by demonstrating the economic and welfare importance of 

mobility scores 2 and 3, particularly in situations where farmers tend to 

underestimate SOM prevalence (Cutler et al., 2017; Leach et al., 2010) or where 

farmers perceive less severe forms of SOM as non-problematic on their farms (Bruijnis 

et al., 2013) in a time of ever increasing animal welfare importance (EU Monitor, 

2022; Eurobarometer, 2016; FAO, 2018). 

6.2.2 Digitally supported animal health management: 

successful integration and necessary developments 

Digital agriculture is a concept that refers to the application and integration of 

advanced information and communication technologies, and digital systems with 

tools such as sensors to enhance the productivity, efficiency, and sustainability of 

various agricultural aspects (e.g., De Clercq et al., 2018; Morrone et al., 2022; 

Neethirajan & Kemp, 2021a; Perrett et al., 2017). PLF, a key component of digital 

agriculture, enables farmers to effectively manage their livestock through objective, 

continuous, and autonomous monitoring. PLF can provide real-time information at 

the individual animal level (Berckmans, 2017; Norton et al., 2019), offering the 
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potential for early warnings of poor animal health for more effective animal health 

management (Li et al., 2020; Vranken & Berckmans, 2017; Wathes, 2009).  

Discussions apropos the added value of PLF technologies in animal health 

management is widespread (e.g., Banhazi et al., 2012; Berckmans, 2014, 2015; Perrett 

et al., 2017; Wathes, 2009), but research quantifying the added value is sparse. 

Building on the insights gained from Chapter 2 and Chapter 3, innovative sensor-

based animal health management strategies were designed in Chapter 4 to evaluate 

the value of PLF. These management scenarios contribute to the existing PLF 

literature as they are the first of their kind. Alongside the sensor-based management 

scenarios, the results from Chapter 4 and 5 provide clear normative evidence that 

enriches the academic discourse on the additional economic and animal welfare 

benefits that can be achieved by using PLF technologies for sensor-based animal 

health management. However, achieving these benefits of sensor-based animal health 

management, changes in the cognitive framework of farmers regarding animal health 

disorders are required. In this general discussion the cognitive framework refers to a 

structured system of mental processes and strategies used for organising, interpreting, 

and understanding information (Spink & Cole, 2006). It encompasses various 

cognitive functions such as perception, beliefs, and attitudes that ultimately influence 

decision-making and behaviour. Therefore, fostering changes in the cognitive 

framework in general towards animal health disorders allows for the design of unique 

PLF-based animal health interventions that go beyond simply replacing old 

interventions with technology. In addition, changes in the cognitive framework 

should also be coupled with additional technological developments. The notion on 

requirements for changes in the cognitive framework and technological developments 

are expanded in the discussion below in conjunction with the results from Chapter 4 

and Chapter 5 to inform and guide future integration and advancements of PLF 

technologies for sensor-based animal health management. 

Changes in the cognitive framework of farmer’s apropos health disorders are first and 

foremost required. This is crucial for two reasons. Firstly, a farmer’s cognitive 

framework influences animal health and subsequent management of animal health 

(Adler et al., 2019; Garforth et al., 2013; Jansen et al., 2009; Suit-B et al., 2020). For 

example, in the study by Jansen et al. (2009) the authors found associations between 

farmer attitudes apropos a normative reference frame apropos mastitis (i.e., what a 

normal mastitis situation is on the farm) and mastitis incidence; suggesting different 

beliefs apropos the constitution of a mastitis problem. In the case of SOM, farmers 

may perceive the constitution of SOM differently, considering cows with the higher 

mobility scores 4 and 5 as SOM, while disregarding the lower mobility scores 2 and 

3 (Horseman et al., 2014) and potentially considering these cows as having normal 

mobility (i.e., cows that are not SOM). This lends further explanation to why farmers 

generally underestimate the prevalence of SOM compared with personnel trained in 
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mobility scoring (Bran et al., 2018; Cutler et al., 2017; Richert et al., 2013). Hence, 

one aspect of the cognitive framework that needs to change is how farmers perceive 

the constitution of health disorders. For instance, farmers should acknowledge that 

mobility scores 2 and 3 do constitute SOM – because they have economic and animal 

welfare impacts lends more evidence to this (Chapter 2 and Chapter 3). The second 

reason is contingent upon the first reason. Judgements made by personnel trained in 

animal health concerning healthy and unhealthy states are often used to define the 

golden standard for the PLF technology to distinguish between healthy and 

unhealthy states. If a farmer’s cognitive framework has not been aligned with the 

golden standard, appropriate decisions made with the technology generated animal 

health information may not occur, thereby reducing the potential to obtain the 

additional economic and animal welfare value (Rojo-Gimeno et al., 2019).  

Results from management scenario 1 in Chapter 4 demonstrated that while a farmer’s 

cognitive framework with respect to SOM remained unchanged (i.e., the farmer did 

not consider mobility scores 2 and 3 to constitute SOM; Horseman et al., 2014) and, 

resultingly, SOM management did not change, no additional economic benefits nor 

meaningful reductions in SOM prevalence were obtained. Changing the cognitive 

framework of farmers towards animal health is complex. However, to align it with 

the golden standard of automatic SOM 11  detection sensors, some rudimentary 

changes were made. These changes proxied an improvement of the farmer’s 

understanding and perception towards the constitution of SOM. Moreover, it fostered 

the uniquely designed sensor-based management approaches. As a result, economic 

benefits in management scenarios 2, 3 and 5 and reductions of SOM prevalence in 

management scenarios 2 – 5 were achieved (Chapter 4). The reductions in SOM 

prevalence ultimately resulted in animal welfare benefits in Chapter 5. These results 

highlight the importance in addressing the cognitive framework of farmers apropos 

health disorders as an initial step towards achieving the successful integration of PLF 

technologies in animal health management. However, this necessitates external 

assistance from animal health experts to offer guidance and advice on suitable health 

management (e.g., Main et al., 2012), and – in the context of SOM – can be supported 

by the research presented in this thesis. 

Future implementation of PLF-based animal health management strategies will also 

require technological developments apropos technology driven classification. 

Currently, PLF technologies developed to support mastitis and SOM management 

primarily focus on binary health disorder classifications, overlooking the varying 

dynamics of health disorder severities and their distinct economic and animal welfare 

 

11 SOM was constituted as mobility scores ≥3 in management scenarios 2 and 3, and mobility 

scores ≥2 in management scenarios 4 and 5. 
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impacts (Alsaaod et al., 2019; Bausewein et al., 2022) as discussed in section 6.2.1. 

Future PLF technologies should adopt a more nuanced approach, considering non-

binary health class classifications, which would enable tailored intervention 

procedures for different health disorder severities. This is crucial for effective health 

disorder management because of the different economic and animal welfare impacts 

due to the different health disorder severity dynamics; as demonstrated in Chapter 

2 and Chapter 3 and discussed in section 6.2.1. Therefore, treating all health severities 

as equal, as in binary classification often seen in current PLF technologies (Alsaaod 

et al., 2019; Bausewein et al., 2022), undermines the potential for unique intervention 

procedures respective of health disorder severity. Results from Chapter 4 strongly 

suggest that future PLF technological developments should adopt a non-binary 

health disorder classification procedure to facilitate more nuanced intervention 

procedures respective of health disorder severity to effectively mitigate their negative 

impacts (Chapter 2, Chapter 3, and section 6.2.1). 

When mobility scores ≥3 were grouped together to constitute SOM as binary, which 

is typically done (see review by Alsaaod et al., 2019), the economic benefits were 

minimal or did not exist. This was because daily alerts were indistinguishable with 

respect to the underlying mobility scores ≥3 and incurred large labour costs when 

checked. In contrast, in the non-binary health class classification approach when 

mobility score 3 was separated from mobility scores ≥4 to allow for prolonged alert 

generation, larger economic benefits were achieved. In addition, including mobility 

score 2 into the intervention procedure showed that significant reductions in the 

welfare impact due to SOM could be achieved while maintaining the economic 

benefits (Chapter 5). This further emphasises the need to account for mobility score 

as a form of SOM (Chapter 2 and Chapter 3). More importantly it emphasises the 

need to include mobility score 2 into the non-binary SOM classification procedure 

because currently it is not at all considered as SOM in the classification procedure 

(Alsaaod et al., 2019). These economic and animal welfare benefits were achieved 

because the more nuanced non-binary classification and intervention approach that 

considered the economic and animal welfare impacts associated with different SOM 

dynamics allowed for the customisation of intervention procedures specific to 

different mobility scores. Hence, this customisation included a novel time dimension 

whereby alerts apropos less severe SOM (i.e., mobility score 2 and 3) could be 

prioritised and generated at predefined intervals to reduce the opportunity cost of 

checking false positive alerts while ensuring production losses and animal welfare 

impacts associated with these mobility scores were avoided in a timely manner. Few 

alert prioritisation methods exist (Dominiak & Kristensen, 2017) to reduce the 

number of potentially overwhelming number of alerts (Eckelkamp & Bewley, 2020). 

The alert prioritisation method proposed and used in this study is an original 

methodological contribution to the literature because no alert prioritisation method 

like the one in Chapter 4 exists. Moreover, clear economic and animal welfare benefits 
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are associated with this alert prioritisation contribution. Therefore, results from 

Chapter 4 and Chapter 5 provide compelling evidence that future developments in 

PLF technology for health management should focus on non-binary health 

classification because the dynamics of animal health disorders and their consequential 

economic and welfare impacts can be better accounted for through tailored animal 

health disorder severity intervention procedures. 

The alert's information quality depends on the technology's performance in 

distinguishing between health classes and is based on the respective distribution of 

diagnostic marker values. In turn, the quality of information can influence the added 

value of the technology (Rojo-Gimeno et al., 2019). In a binary health class 

classification context, the quality of information is positively influenced in general by 

greater separation between the two distributions of health class diagnostic marker 

values (Nakas et al., 2023). However, value adding separations between the 

distributions in diagnostic marker values for non-binary health classes becomes more 

complex. This is because more than one separation between the distributions of 

health class diagnostic marker values is required. Chapter 5 provides valuable 

evidence, in the context of non-binary SOM classification, apropos separations 

between diagnostic marker values suggesting that larger separations between the 

distribution of non-SOM (i.e., health class 𝐾1) and other SOM (i.e., health classes 𝐾2 

and 𝐾3) diagnostic marker values can positively influence the added economic and 

animal welfare value of digitally supported animal health management. This is 

because such separations can ensure the increased feasibility of generating alerts with 

information characteristics pertaining to low false positive and high true positive 

probabilities. Furthermore, these information characteristics are aligned with the 

preferences of farmers (Van De Gucht et al., 2017b). 

6.2.3 Understanding synergies and antagonisms in 

digitally supported animal health management and 

implications for farmer preferences 

Farmers are undoubtedly heterogeneous towards animal health management (e.g., 

Biesheuvel et al., 2021; de Lauwere et al., 2020; Doidge et al., 2021; Sok et al., 2016; 

van Soest et al., 2015). For individual farmers to obtain the promising economic and 

animal welfare benefits from digitally supported animal health management, as 

presented in section 6.2.2, it is crucial to consider the factors that contribute to this 

heterogeneity. This involves understanding the complex interplay between synergies 

and antagonisms emerging within digitally supported animal health management 

that can influence animal health decision making alongside animal health 

management preferences. This section explores the synergistic and antagonistic 
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interactions, focusing on economic factors, animal welfare, labour time, and alert 

frequencies. By shedding light on these interplays that potentially influence animal 

health decision making, a deeper understanding is gained to ensure that the 

preferences of individual farmers are accurately considered, thus further promoting 

the successful and optimal implementation of digitally supported animal health 

management tailored to their specific needs. 

Overall, the results from Chapter 5 show promising evidence that synergies between 

economic and animal welfare benefits exist12. This evidence is incredibly valuable to 

stimulate the implementation of animal welfare enhancing management strategies 

because farmers are sensitive to economic factors in the context of animal welfare 

enhancements (Balzani & Hanlon, 2020; Läpple & Osawe, 2022; Latacz-Lohmann & 

Schreiner, 2019; Schröter & Mergenthaler, 2021; Wimmer & Frick, 2021). This entails 

promising implications in encouraging more farmers to invest in animal welfare 

measures without feeling that they are compromising their economic viability 

(Balzani & Hanlon, 2020). In addition, while some farmers are willing to pay for 

enhanced animal welfare (Läpple & Osawe, 2022) the results from Chapter 5 

demonstrate that with digitally supported animal health management this 

antagonism between economic and welfare benefits is generally not needed.  

Despite the overall and promising synergy between economic and animal welfare 

benefits achievable with digitally supported animal health management, a more 

nuanced view is required on certain antagonisms. By enhancing our understanding 

on potential antagonistic aspects found in digitally supported animal health 

management, it becomes possible to further tailor digitally supported animal health 

management strategies and solutions uniquely to consider individual farmer 

preferences. The following discussion highlights specific antagonisms between aspects 

such as labour time and production losses, labour time and animal welfare, and false 

alerts and animal welfare. The insights derived from examining the specific 

antagonistic aspects mentioned above provide valuable insights for PLF technology 

developers and external animal health advisors, enabling them to work alongside 

farmers and ensure that individual preferences regarding animal health management 

are met. 

Reduced labour time is an expected benefit through the use of PLF technology 

(Berckmans, 2015) and is often associated with the adoption of similar technologies 

(Gabriel & Gandorfer, 2023) However, in Chapter 4, higher labour time 13  was 

 

12 This evidence is based on the assumption that farmers’ cognitive framework will change so 

that their constitution of SOM is aligned with the golden standard. 
13 Labour time was not directly measured in Chapter 4 but can be inferred from labour related 

costs whereby higher labour costs are indicative of higher labour time required. 
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required to manage SOM but these increases were generally associated with larger 

reductions in production losses. The antagonism between labour time and production 

losses are important to note because while reduced labour time can be achieved when 

considering the total labour hours over multiple livestock farming activities (e.g., 

Morgan-Davies et al., 2021, 2018), labour time can increase when considering some 

specific activities such as those found in digitally supported animal health 

management. This is important to note because farmers have shown higher 

preferences for technological investments compared to additional labour requirements 

for animal health management in the case of mastitis (Huijps et al., 2009). On one 

hand, making farmers aware of the additional labour time required to mitigate the 

production losses is crucial because labour could remain as an important factor in a 

PLF-based animal health management approach. On the other hand, the significance 

of the antagonism between labour time and production losses is shaped by how 

farmers value their time when labour is constrained with respect to the commensurate 

reductions in production losses. Therefore, making farmers aware of this interplay 

will permit farmers to make more informed decisions apropos optimising labour 

demands while using PLF technology in the face of fluctuating market prices 

(Wageningen Economic Research, 2020, 2022) that have substantial effects on the 

cost of production losses due to animal health disorders (sensitivity analysis; Chapter 

2). 

Without repeating too much in the context of labour time, it is also an important 

factor concerning animal welfare enhancements (Balzani & Hanlon, 2020). Results 

from Chapter 4 showed that scenarios with increased labour time (indicated by higher 

labour costs) were associated with improved cow mobility, and ultimately improved 

animal welfare (Chapter 5). Again, this antagonism will be influenced by how farmers 

value an increase in the additional time required with respect to the commensurate 

gains in animal welfare. Making farmers aware of the additional time required for 

improved animal welfare, in combination with the previously discussed reductions in 

production losses, can further contribute to optimal and personalised digitally 

supported animal health management strategies. 

Farmers have exhibited a preference for PLF technology that have lower false alert 

probabilities (Mollenhorst et al., 2012; Van De Gucht et al., 2017b). Farmers are also 

known to value animal welfare (Hansson & Lagerkvist, 2016; Owusu-Sekyere et al., 

2021) and have thus expressed positive views towards the use of PLF technology to 

enhance animal welfare (Schillings et al., 2023b). Low false alert probability and 

enhanced animal welfare are two aspects that can contradict each other in the context 

of digitally supported animal health management. Chapter 5 provides evidence of 

this. Under the simulated management strategies, when the false alert probability 

decreased (increased), the animal welfare benefits were also decreased (increased). 

This is because more false alerts consequentially mean that more true positive alerts 
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occur (Nakas et al., 2023), thereby prompting intervention for cows with SOM and 

reductions in the associated animal welfare impact. These results are valuable for 

farmers because they can help identify what false alert probabilities are required to 

obtain the farmer’s preference for enhanced animal welfare. These results are also 

valuable for future PLF technology developments. This is especially true in a 

participatory development approach because the implications of farmer preferences 

apropos these two aspects in conjunction with their antagonistic nature can be 

illustrated to provide better insights on how to design suitable PLF technology that 

considers the needs of farmers (Schillings et al., 2023a). 

6.3 Methodological reflections 

It is important to recognise that the majority of the insights gained from this thesis 

are based on a simulation model. Simulation models, and their outputs, are seen as 

more or less useful, rather than more or less true, and are developed as tools within 

specific context to study, describe and explore phenomena of a system understudy 

(Sismondo, 1999). Thus, simulation models are simplifications of the real system they 

represent that often require assumptions within context to study, describe, and 

explore these system phenomena. 

The simulation model described within the contents of this thesis was developed as 

a necessary tool to understand the relative, rather than actual, economic and welfare 

impact of different constitutions of SOM severity as described by various mobility 

scores (Chapter 2 and Chapter 3). With a better understanding on the relative 

economic and welfare impacts of different constitutions of SOM severity, the model 

was further used as a tool to evaluate the economic outcomes of digitally supported 

animal health management strategies (Chapter 4) and how the underlying 

information phenomenon of PLF technologies used in digitally supported animal 

health management would affect the economic and welfare outcomes (Chapter 5). 

Hence, the simulation model is composed of multiple components with complex 

interactions. Box 6.1 presents a high-level schematic illustration and description of 

the simulation model components and the interactions between the components. It 

is presented to provide visual support for points discussed withing this section on 

methodological reflections. 
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Box 6.1 Schematic illustration of bio-economic simulation model components, 

interactions, and extensions. 

  

  
Description: 

This box illustrates the evolution of the simulation model per research chapter as 

components were added and linked. At the core of the simulation model is a 

biological component (developed in Chapter 2) that includes production factors, 

such as fertility and lactation, as well as epidemiological factors, such as incidence 

of hoof disorders and their effect on cow mobility. There are interactions between 

the biological factors depicted by arrows that reciprocally influence production and 

epidemiological factors. For example, lactation stage affects the incidence of hoof 

disorders, which in turn, through sub-optimal mobility, affects lactation quantity. 

Using the biological component as the core permitted linkages between it and the 

economic, welfare and management components in the respective chapters. By 

doing so, the biological processes and corresponding interactions were allowed to 

manifest into consequential economic and welfare impacts, and management 

events. For example, biological factors and their interactions affected factors such 

as milk revenue losses and functional impairment in the economic and welfare 

components, respectively. Furthermore, biological factors also influence factors in 

the management component, which in turn affects factors in the biological, 

economic, and welfare components. For instance, the incidence of a hoof disorder 

that affects cow mobility prompts intervention to cure the underlying hoof 

disorder and mitigate further milk revenue losses and functional impairment. 

Additionally, management factors directly impact factors in the economic and 

welfare components, such as treatment costs and cow-human interactions when 

hooves are trimmed. Ultimately, each extension while maintaining interactions 

between components permitted a more holistic evaluation of the negative health 

disorder effects to be studied for a range of different management strategies. 

(Chapter 2) (Chapter 3) 

(Chapter 4) (Chapter 5) 
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6.3.1 Challenges 

This section presents a discussion on the methodological challenges encountered 

through the development of the simulation model and other closely related methods. 

The implications of model simplifications and assumptions made to overcome these 

challenges, and alternative solutions for future research specific to overcoming these 

challenges are also discussed.  

In Chapter 2 an extensive epidemiological modelling procedure was undertaken, in 

the biological component of the model, to simulate the incidence of eight common 

hoof disorders in the Netherlands (DigiKlauw, 2020). Of the three infectious hoof 

disorders, two of them (interdigital dermatitis and heel horn erosion, and interdigital 

phlegmon) were not modelled as contagious hoof disorders because their transmission 

dynamics are unknown. This imposed a secondary data challenge ultimately leading 

to the two hoof disorders being modelled as environmental infections with a 

Greenwood model. This approach assumes that the probability of infection is 

independent on the concentration of the infectious agent in the herd (Becker, 1989). 

Input parameters apropos their incidence were validated in accordance with evidence 

on their prevalence in dairy farms in the Netherlands with a typical SOM 

management strategy as simulated in Chapters 2 and 3 (DigiKlauw, 2020; Somers et 

al., 2003). However, these input parameters remained unchanged in Chapters 4 and 

5. Because the SOM management strategies simulated in Chapters 4 and 5 differ 

considerably compared to the SOM management strategy simulated in the former 

two chapters, the “true” incidence of these hoof disorders is not captured by the model 

because the effect of a change in SOM management on their transmission dynamics 

are not accounted for since they are yet to be known. Accounting for their 

transmission dynamics consequential of changes in SOM management could provide 

a better understanding of their specific contribution towards the dynamics of SOM, 

and, moreover, a better understanding of their specific contribution to the SOM 

economic and animal welfare impacts. For example, it may be that positive 

associations between the hoof disorders and short hoof trimming intervals exist, as 

observed for the infectious hoof disorder digital dermatitis (Holzhauer et al., 2006). 

If a similar case for interdigital dermatitis and heel horn erosion, or interdigital 

phlegmon exists, then their underlying economic and welfare impacts may have been 

underestimated in Chapters 4 and 5 because the model is blind to their transmission 

dynamics under changes in SOM management (Thompson & Smith, 2019). Increasing 

data collection efforts apropos their transmission dynamics will contribute towards 

modelling them as contagious hoof disorders. The same argument applies to the 

incidence of the non-infectious hoof disorders as their “true” incidence are unknown 

following a change in SOM management. Acquiring new information on the incidence 

following changes in SOM management will provide more insight on their SOM 

economic and welfare impacts. 
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While acquiring new data can generate new information and enhance our 

understanding of a phenomenon within a system, such as the transmission dynamics 

of a contagious hoof disorder, incorporating such information into the simulation 

model may alter the model structure and increase its complexity. However, model 

complexification could lead to greater uncertainty in model outputs as it’s propagated 

through the uncertainty surrounding the new information, which may arise due to 

factors such as measurement errors, inherent variability, random processes, or 

subjective expert judgements (Puy et al., 2022a). In other cases, model 

complexification may impose structural model errors, such as incorrectly specifying 

relationships between variables, that may promote inaccurate model output 

(Thompson & Smith, 2019). Therefore, careful consideration and evaluation of the 

quality and relevance of the new information and its potential impact on the model 

are necessary before incorporating it into the model and ultimately drawing 

conclusions from new simulations. Balancing model complexity and uncertainty at 

each stage of model complexification can be achieved by calculating the model’s 

effective dimensions that ultimately ensures that the model remains within context 

and fits the initial purpose of application (Puy et al., 2022a). 

Following the incidence of hoof disorders (Chapter 2), their progression in terms of 

impact on cow mobility as defined by mobility scores (Sprecher et al., 1997) were 

modelled. Although certain hoof disorders have stronger associations with various 

mobility scores (Blackie et al., 2013; Tadich et al., 2010), general mobility score 

transitional risks were specified due to data constraints apropos hoof disorder specific 

mobility score transitional risks and were calibrated on mobility score prevalence at 

herd-level (Frankena et al., 2009). Despite this, the results from the model produced 

trends between hoof disorders – digital dermatitis, interdigital phlegmon, and white 

line disease - and mobility scores similar to those based on empirical data 

(Charfeddine & Pérez-Cabal, 2017; Tadich et al., 2010). However, for some hoof 

disorders, sole ulcer specifically, the trends between mobility scores produced by the 

model did not correlate with results based on empirical data (Blackie et al., 2013). 

Additional data on hoof disorder specific mobility score transitional risks could 

improve the model’s representation of trends between specific hoof disorders and 

mobility scores. More refined calibration techniques that focus on mobility score 

trends within hoof disorders as well as at herd-level could also contribute to improved 

trends. However, the choice of calibration technique depends on model complexity. 

Some examples include grid search, simulated annealing (e.g., Dowsland & 

Thompson, 2012), Bayesian optimisation (e.g., Lunderman et al., 2021), and a suite 

of evolutionary algorithms (e.g., Petrowski & Ben-Hamida, 2017). 

An innovative approach was developed to quantify the welfare impact of SOM in 

Chapter 3 by first deriving welfare impairment weights associated with physical 

effects of SOM on welfare indicators with expert knowledge elicitation using ACA. 
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This unique approach offers a more detailed understanding of the impact of SOM on 

animal welfare. It achieves this by examining the physical effects of SOM on various 

welfare indicators, while experts implicitly reveal their beliefs apropos the welfare 

impairments arising from different combinations of these effects by making trade-off 

decisions. Five welfare indicators affected by SOM were included due to the available 

scientific literature concerning these effects, while it can be expected that SOM can 

affect many more welfare indicators considering the number of welfare indicators 

described by Mellor et al. (2020). Increasing the number of welfare indicators in the 

ACA could potentially increase the cognitive burden of expert respondents and affect 

the quality of responses (Watson et al., 2017). While it is important to limit cognitive 

burden, it should not be done by omitting welfare indicators from the ACA based on 

prior assumptions that they are not important. Doing so may conceal welfare 

impairment weights that are unknowingly important for the actual assessment of 

SOM welfare impacts. This was demonstrated by the sensitivity analysis where the 

total welfare impact per maximum mobility score SOM case were consistently 

influenced by welfare impairment weights apropos the less important welfare 

indicators body condition score and behavioural change, suggesting that additional 

research efforts are required to gain a better understanding on how animal welfare is 

impacted through these welfare indicators. If welfare indicators are assumed to be 

unimportant and omitted from the ACA to reduce cognitive burden, the 

corresponding welfare impairment weights will not be captured and neither their 

influence on the total welfare impact of SOM. Therefore, including as many welfare 

indicators is important to gain better insight on the effects of SOM on animal welfare 

that can also guide future research. Albeit a balance between the number of welfare 

indicators and cognitive burden must still be considered. Combining ACA capabilities 

with blocked fractional factorial designs, which distribute subsets of welfare 

indicators among multiple respondents (Louviere et al., 2000), can address all 

relevant welfare indicators while reducing cognitive burden for each respondent.  

After the welfare impairment weights were derived, the impact of SOM on animal 

welfare was then quantified (Chapter 3). The model quantifying this impact assumes 

a linear relationship between welfare disutility and duration per mobility score. This 

might not be the case in reality as a cow may learn to cope with a mobility score 

over time to reduce the welfare impact of the mobility score (Wechsler, 1995). 

Therefore, when this information becomes available, the model will have to be 

respecified whereby welfare impairment weights can be dynamically adjusted as a 

function of dynamic changes in physical affects congruent to mobility score and 

mobility score duration to better reflect the welfare impact of SOM in light of coping 

mechanisms. 
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6.3.2 Opportunities 

Although methodological challenges can lead to opportunities (if you see the glass 

half full), this section delves beyond the opportunities arising in light of challenges 

as it is evident that methodological challenges are not the only factors at play. This 

section presents a discussion on the potential opportunities for future research that 

can be explored utilising the methods employed in this study in and out the context 

of digitally supported animal health management. 

As discussed in the methodological challenges with reference to Chapter 2, data 

apropos the transmission dynamics of certain hoof disorders were not available. 

However, the presence of digital technologies in PLF offers opportunities for 

improved data collection on the transmission dynamics of health disorders in general 

due to their advantageous autonomous, continuous, and diverse data collection 

capabilities. One exciting possibility enabled by these technologies is the study of 

how health disorders spread through animal social networks (de Freslon et al., 2019; 

Neethirajan & Kemp, 2021b). With an enhanced understanding on the transmission 

dynamics of health disorders through social networks, novel digitally supported 

animal health management approaches can be designed. For instance, these 

approaches could provide valuable insights for making more informed decisions 

regarding both the economic and animal welfare implications of quarantining an 

infected animal based on its social network. Here, the risk of spreading health 

disorders to peers, subsequent impacts on production and animal welfare, and the 

compound effects through subsequent infections can be taken into account. These 

data types can help in developing more informative bio-economic simulation models, 

like the one described in this thesis, to assess the economic and animal welfare 

benefits of alternative digitally supported animal health management strategies. 

In Chapter 3, the innovative approach proposed to quantify the welfare impact of 

SOM provides an exciting opportunity to be extended towards assessing the welfare 

impact of multiple health disorders and their respective severities. By using ACA 

and decomposing animal welfare into individual welfare indicators (i.e., welfare 

attributes) and considering the varying measurable physical effects on the welfare 

indicators, this approach allows for the calculation of welfare impairment weights per 

physical effect. Furthermore, this approach focuses solely on the physical effects of 

welfare indicators irrespective of health disorder, ensuring an objective assessment of 

welfare impairment. Ultimately, welfare impairment weights for all physical effects 

on welfare indicators can be obtained. Aggregating the welfare impairment weights, 

in conjunction with the physical effects on welfare indicators per health disorder 

severity, will yield a welfare disutility score indicative of the overall welfare impact 

per health disorder severity. In summary, this approach involves considering the 

impact of different health conditions on the welfare of animals, akin to how disability 
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weights capture the severity of health states in the context of disability adjusted life 

years (DALY) - a metric concerning burden of disease on human populations 

(Devleesschauwer et al., 2014; Salomon et al., 2012). 

With respect to the simulated sensor-based SOM management scenarios in Chapter 

4, the alert prioritisation criterion is composed of a predefined alert threshold 

respective of mobility score. This threshold was kept constant at 0.5 for the number 

of classifications that occurred of the alert notification interval, respective of mobility 

score. It would be interesting to test the economic and animal welfare effects of other 

threshold values for different mobility score that vary over different alert notification 

intervals. For example, it may, or may not, be more economically beneficial to 

increase the threshold value to 0.7 over a 30-day alert notification interval for 

mobility scores 2 and 3 in comparison to the 0.5 threshold value over a 7-day alert 

notification interval for mobility scores 2 and 3 as simulated in Chapter 4 and 

Chapter 5. The simulation model described in this thesis will easily allow for 

additional scenarios to be tested that can further support sensor development and 

implementations decisions. 

The results from Chapter 4 suggest that bi-annal whole herd professional hoof 

trimming should be replaced with weekly cow specific professional hoof trimming. 

This is of course based on the assumption that professional hoof trimmers will 

radically change their hoof trimming practices while in reality it may not be as simple 

as the simulation model suggests. Future scenario-based simulation studies that 

involve multiple stakeholders in animal health management services should be 

engaged in the design of scenarios. 

As highlighted earlier, farmers are heterogeneous regarding animal health 

management (e.g., Biesheuvel et al., 2021; de Lauwere et al., 2020; Doidge et al., 

2021; Sok et al., 2016; van Soest et al., 2015). In conjunction with economic (Huijps 

et al., 2010, 2009) and animal welfare (Owusu-Sekyere et al., 2021) factors that 

influence animal health management, farmers may be heterogenous in the valuation 

of economic and animal welfare gains. For example, Läpple and Osawe (2022) found 

that farmers in different groups of social value orientation differed in terms of the 

economic value they placed on animal welfare enhancements. In Chapter 5 the 

economic and animal welfare value of digitally supported animal health management 

was studied. However, because of the heterogeneity between farmers towards the 

valuation of economic and animal welfare gains it may mean that farmers make 

different decisions following an alert, especially when there is a probability that the 

alert is for a cow that does not need to be checked. In Chapter 5 all alerts were 

checked, while this very strict decision making may not be the case in practice 

(Eckelkamp & Bewley, 2020) and may be because of the information uncertainty the 

alert encapsulates. To simulate empirically observed decisions following an alert one 
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approach would entail incorporating a farmer’s risk preferences apropos the expected 

economic and animal welfare outcomes for different decisions made following an alert 

under an expected utility framework (Von Neumann & Morgenstern, 1947). 

Chapter 5 presented an original approach in describing the behaviour of classification 

probabilities in 3-class classification problems. However, this approach was limited 

to describing the behaviour of classification probabilities defined by normally 

distributed diagnostic marker values. It would be interesting to expand the approach 

to describe non-normal distributions of diagnostic marker values. Hence, additional 

insights on the economic and welfare implications can be obtained for health class 

classifiers that have non-normal diagnostic marker value distributions. These 

opportunities should not be limited to 3-class classification problems, as there is 

potential to study the economic and animal welfare implications across the range of 

classification probabilities for >3-class classifiers used in digitally supported animal 

health management. 

6.3.3 Extending the animal health economics framework 

in animal health management 

The term economics when applied to the context of animal health economics 

encompasses a broader scope that extends beyond the conventional boundaries of the 

field. Traditional animal health economics textbooks predominantly focus on the 

economic consequences of animal health disorders, primarily emphasising monetary 

losses experienced by farmers (i.e., Hennessy & Marsh, 2021; Rushton, 2009). As 

discussed in section 1.1 the theoretical underpinning of animal health economic 

research is the two-dimensional expenditure-loss frontier put forward by McInerny 

et al. (1992) and later adapted by van Soest et al. (2016) and Hogeveen and van der 

Voort (2017). However, the two-dimensional expenditure-loss frontier limits our 

understanding to monetary effects associated with animal health and production 

while it is imperative to acknowledge that the ramifications of health disorders extend 

beyond these mere monetary effects.  

Animal health disorders have profound impacts on animal welfare (Broom & Corke, 

2002; Nielsen et al., 2021; Whay & Shearer, 2017) and the environment (Mackenzie 

& Kyriazakis, 2021; Özkan et al., 2022), making it imperative to incorporate these 

aspects more comprehensively into bio-economic models. Transforming the scope of 

traditional bio-economic models to bio-burden models whereby the term burden 

encapsulates, amongst others, economic, animal welfare and environmental burdens 

(i.e., negative effects) of animal health disorders. By doing so, the traditional two-

dimensional expenditure-loss frontier can be extended to a multi-dimensional 
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“expenditure-burden” frontier. Hence, these bio-burden models can better capture and 

quantify the true impact and value of animal health management strategies aimed 

at addressing animal health issues with an ultimate goal to promote economically, 

ethically, and environmentally sustainable animal husbandry systems (Chemineau, 

2016; FAO, 2018; Keeling et al., 2019; Özkan et al., 2022). 

This thesis makes a pioneering contribution to the field of animal health economics 

by extending the traditional bio-economic model (Box 6.1; Chapter 2), which mostly 

consider the economic impacts only under status quo management. The model 

described within this thesis expands the traditional bio-economic model by including 

an original component aimed at quantifying the animal welfare impact of animal 

health disorders (Box 6.1; Chapter 3). In addition, the traditional bio-economic model 

is enhanced by including an incredibly flexible management component to test the 

economic effects of novel sensor-based management strategies (Box 6.1; Chapter 4). 

By ultimately combining all these components together, the model in Chapter 5 (Box 

6.1) fostered a thorough evaluation of the welfare impact congruent to preventive 

and failure costs within different animal health management strategies. Overall, this 

integrated bio-burden approach in this thesis allowed for a more holistic assessment 

of the economic and animal welfare aspects and helped identify win-win solutions 

apropos management strategies aimed at mitigating the economic and animal welfare 

impact of SOM. 

Although not explicitly done in this thesis, the bio-burden model serves as an example 

apropos how the traditional two-dimensional expenditure-loss frontier can be 

extended. There are two possible extensions. 

The first extension could include the welfare impact of an animal health disorder into 

failure costs. This will require the market value of animal welfare to be known and 

more importantly how a unit of market valued animal welfare is affected by an animal 

health disorder. If this is known, then the expenditure-loss frontier remains two-

dimensional, and the optimal solution is still at the point where the sum of preventive 

and failure costs are minimised. However, capturing the market value of animal 

health disorder induced welfare impact has its challenges. Moreover, “economising” 

animal welfare as by this approach may have implications for the meaning and 

assessment of actual animal welfare. This is because this market value based 

approach detracts from the interests of solely improving actual animal welfare (Buller 

& Roe, 2014), rather it caters to consumer preferences for animal welfare often 

reflected by the price premium they are willing to pay for it (Buller & Roe, 2014; 

Clark et al., 2017; Yang & Renwick, 2019). 

The second extension requires animal welfare to be valued solely as a difference 

between two animal health disorder induced animal welfare impacts. This approach 
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avoids “economising” animal welfare as it focusses solely on improvements of animal 

welfare (Buller & Roe, 2014). Hence, animal welfare impacts of a health disorder are 

kept separate from the associated preventive and failure costs of various animal 

health management strategies, yet the costs associated with mitigating animal 

welfare impacts are still accounted for. This transforms the traditional two-

dimensional expenditure-loss frontier to a three dimensional “expenditure-burden” 

frontier whereby the x-, y-, and z-axis represent the values of failure costs, preventive 

costs, and the welfare impact of different animal health management strategies. 

Navigating the minimization problem across these three dimensions poses potential 

challenges, depending on the resulting shape and complexity of the data within the 

three-dimensional space. However, this approach presents a starting point in 

analysing these three dimensions in animal health management. 

In conclusion, the contribution of this thesis towards advancing the animal health 

economic framework in animal health management is not the panacea to animal 

health disorders. However, this thesis serves as an important steppingstone towards 

addressing the multifaceted nature of animal health management and the associated 

burdens. Future research can build upon the foundation this thesis provides to 

develop more effective and sustainable solutions for promoting animal well-being, 

economic prosperity, and environmental stewardship through managing animal 

health disorders in animal husbandry systems. 

6.4 Future research 

Future research recommendations are put forward in Chapters 2 – 5, while section 

6.3 provide indications for future research specific to methodological components of 

this thesis. Furthermore, this section goes beyond the scope of future research 

concerning methodological components by introducing suggestions for future research 

on specific topics that have not been previously addressed. 

To gain a better understanding on the impact of SOM on animal welfare additional 

welfare indicators are needed for the ACA (Chapter 3). This will require additional 

studies that assess the physical effects of SOM, preferably at the mobility score level, 

on additional welfare indicators. Ideally, these studies should be longitudinal to assess 

how the physical effects of SOM at mobility score level affect the welfare indicators. 

This may provide insight on how a cow afflicted with SOM copes over time given 

the mobility score she is afflicted with. Hence, a more accurate estimation of the 

SOM impact on animal welfare could be achieved. With this information and by 

using ACA, a more holistic understanding on how the physical effects of SOM affect 

animal welfare indicators that can be studied. 
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As intervention for SOM increases with a sensor-based SOM management approach 

the proportion of cows in the herd without SOM will increase. This means that the 

underlying classification model used will generate denser distributions of diagnostic 

marker values for the class of cows without SOM. Hence, a fixed classification 

probability (as defined by the cut-off threshold value) apropos cows without SOM 

will generate higher false alert frequencies (Chapter 4 and Chapter 5). Therefore, 

with an objective concerning the economic and animal welfare effects, it will be 

beneficial to study what dynamic changes in classification probabilities are required 

to reduce the frequency in false alerts while maintaining appropriate classification 

probabilities to ensure cows with SOM are correctly classified in order for appropriate 

treatment to be provided. 

Hopefully future research conducted by the PLF research community concerning the 

development of 3-class classification model for SOM management will be stimulated 

by the research presented in Chapter 5. If it is, a recommendation to prospective 

researchers is to report distribution of diagnostic marker values instead of only the 

performance metrics (i.e., sensitivity, specificity, and the area under the curve) of 

their classification models. By reporting the distribution of diagnostic marker values, 

the implications of their classification models can be better tested alongside the 

design of sensor-based SOM management scenarios that explore the full potential of 

their classification models.  

6.5 Implications for animal welfare assessors and 

the environment 

6.5.1 Animal welfare assessors 

The potential utilisation of PLF technology to assess animal welfare has been widely 

discussed (Buller et al., 2020; Gómez et al., 2021; Hogeveen & van der Voort, 2021; 

Silva et al., 2021; Stygar et al., 2022; van Erp-van der & Rutter, 2020). A common 

theme in these discussions is the ability for continuous animal-based measurements 

with PLF to provide insights on the overall health of the herd or flock that is 

congruent, for example, to the animal welfare principle of good health apropos the 

Welfare Quality® protocols (2009a, 2009b) as opposed to annual assessment (e.g., 

Heinola et al., 2021).  

Considering the data interoperability problem (Bahlo et al., 2019; Rose et al., 2022), 

careful interpretation of data from farmers to welfare assessors is necessary to obtain 
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a representative understanding of the actual health status of the herd or flock, and 

thus the animal welfare implications related to animal health. Relying solely on the 

final health class classification output from PLF technology may not provide an 

accurate representation of actual animal welfare as it may depend on the farmer’s 

animal welfare management preferences. Previously, it was demonstrated in Chapter 

5 that higher animal welfare enhancements were achieved with higher classification 

probabilities for SOM cows in conjunction with lower classification probabilities for 

non-SOM cows. Thus, generally speaking, farmers who prioritise high levels of animal 

welfare can achieve this by selecting classification probabilities for different health 

classes. Farmers with a strong preference for high animal welfare may want all 

animals with poor health to be accurately detected so that proper treatment can be 

provided. Depending on the performance of the sensor, this preference may result in 

a high number of animals without poor health being classified as having poor health 

as well. Consequently, the frequency of poor health classification data may not 

accurately represent actual animal welfare because the health class classification 

performance is tailored to align with a farmer's animal welfare management 

preferences. Therefore, it is crucial for animal welfare assessors to consider 

appropriate ways to evaluate the actual quality of animal welfare as accurately as 

possible, without solely relying on the final classification output data provided by 

PLF technology from farmers. Algorithms for this type of interpretation do not exist 

yet. One approach is to begin with the raw diagnostic marker values, as this would 

provide a better estimate of actual animal welfare regardless of the farmer's animal 

welfare management preferences. This would allow for a more representative 

evaluation of animal welfare, taking into account the full range of relevant factors 

beyond the final classification output. 

In the instance that algorithms exist to evaluate the actual quality of animal welfare 

irrespective of farmers’ animal welfare management preferences, additional data 

interoperability implications exist for welfare assessors that shift towards data driven 

welfare assessments. This lies in the possibility that farmers adopt different types 

PLF technology each with different classification performances (Alsaaod et al., 2019; 

Bausewein et al., 2022) thereby having different separations between distributions of 

diagnostic marker values. The effects of these separations were already discussed in 

relation to Chapter 5. Hence, if different farmers have different sensors, each with 

varying underlying classification models, the data animal welfare assessors receive 

from farmers may vary in quality as a result. Therefore, algorithms developed to 

evaluate the actual quality of animal welfare will also have to consider these 

differences in PLF technology generated data. On the other hand, a simple approach 

towards reducing data interoperability issues across different PLF technologies would 

be for welfare assessors to initiate a standardisation in technology requirements to 

ensure consistent data exchanges. Although farmers have expressed interest in 

consistent data for animal welfare assessments (Schillings et al., 2023b), such a 



205 

standardisation may impose additional implications for the farmers. This is because 

the costs associated with the standardised PLF technology requirements may inhibit 

farmers to participate in the welfare quality schemes given their budget constraints 

(Silva et al., 2021). 

6.5.2 Environment 

More and more in stakeholder dialogues across diverse topics an additional chair is 

provided for the stakeholders. However, this chair does not seat a human stakeholder. 

Rather it is provided as a symbolic gesture towards the environment; it seats the 

environment as a stakeholder. By doing so it helps facilitate a dialogue considering 

the environmental implications in the context of the topic discussed among 

stakeholders. This section is that chair in the context of digitally supported animal 

health management. 

Although the environmental implications of digitally supported animal health 

management were not studied in this thesis, the results suggest that digital animal 

health management may be environmentally beneficial. Research shows that cows 

afflicted with ketosis (Mostert et al., 2018a), hoof disorders (Mostert et al., 2018b), 

and mastitis (Mostert et al., 2019) produce more greenhouse gas emissions per output 

unit compared to cows not afflicted with these health disorders. Thus, reducing the 

incidence and prevalence of health disorders could potentially benefit the 

environment. Chapter 4 and Chapter 5 demonstrate that the prevalence of SOM – 

congruent to hoof disorders – can be drastically reduced with digitally supported 

animal health management. Therefore, these results suggest digitally supported 

animal health management also has positive implications for the environment and 

further contribute the discussion apropos digital agriculture and the environmental 

benefits (e.g., Niloofar et al., 2021). Future research is required to explore and 

quantify the specific environmental benefits of digitally supported animal health 

management. This can be done by building on the foundations set by the research 

found within this thesis whereby the simulation model (Box 6.1) is further extended 

with an environmental component to effectively capture the environmental burden 

of animal health disorders. Moreover, it will facilitate the exploration and 

quantification of the environmental benefits that digitally supported animal health 

management provides. 
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6.6 Main conclusions 

The general objective of this thesis is to offer economic and animal welfare decision 

support in the utilisation of digital technologies (i.e., sensors) found in PLF, to 

enhance animal health management by adding economic and animal welfare value to 

the farming operation. Four research questions were addressed in Chapters 2 – 5 as 

follows: 

1) What do the different dynamics of SOM contribute to the total economic 

cost of SOM? 

2) What do the different dynamics of SOM contribute to the total 

animal welfare impact of SOM? 

3) What changes in SOM management are required to obtain 

additional economic value from a sensor-based SOM 

management approach? 

4) How do changes in the underlying settings of sensors influence 

the economic and animal welfare outcomes apropos sensor-

based SOM management? 

Based on the findings congruent to addressing the research questions, the 

following conclusions are drawn: 

• Mild and moderate suboptimal mobility (SOM) account for a substantial 

proportion (~47 percent) of the total annual direct costs of SOM under a 

typical SOM management strategy. (Chapter 2) 

• SOM has an important indirect effect on fertility related culling, resulting in 

additional fertility related costs. (Chapter 2) 

• The physical effects of SOM on animal welfare indicators can be used to 

derive mobility score associated welfare impediment weights. (Chapter 3) 

• Moderate SOM, respectfully maximum mobility score 3 SOM cases, has the 

largest impact on animal welfare at case- and herd-level under a typical SOM 

management strategy. (Chapter 3) 

• The use of sensors to automatically detect SOM can generate additional 

economic value but radical (cognitive framework) shifts apropos SOM 

management are required to achieve the benefits of sensor-based SOM 

management. (Chapter 4) 

• Using, PLF, twice yearly whole herd routine hoof trimming could be replaced 

by more frequent cow specific hoof trimming to obtain economic and welfare 

benefits. (Chapter 4 and Chapter 5). 
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• Prolonged information generation apropos mobility scores 2 and 3 is 

economically beneficial in sensor-based SOM management opposed to 

immediate information generation. (Chapter 4) 

• Simple frequency based alert prioritisation method can be used to reduce the 

number of false alerts that ultimately add economic value to a sensor-based 

SOM management strategy. (Chapter 4) 

• Mobility score 2 must be considered as SOM due to the associated economic 

and welfare consequences and treating cows with this mobility score results 

in highest overall economic and welfare benefits. (Chapters 2, 3, 4, and 5) 

• 3-class classification models are more economically and welfare beneficial 

compared to binary classification models for SOM classification. (Chapter 5) 

• 3-class classification model generated diagnostic marker value distributions 

for the non-SOM class should be the most separated from diagnostic marker 

value distributions for SOM classes to ensure higher economic and welfare 

outcomes of sensor-based SOM management. (Chapter 5) 

• Economic and animal welfare trade-offs exist in sensor-based SOM 

management. (Chapter 4 and Chapter 5) 

• Bio-economic simulation models provide substantial opportunities to test a 

wide range of digitally supported animal health management strategies and 

associated technological innovations that would be impossible to test in 

practice due to, amongst others, time and financial constraints. By doing so, 

unattractive scenarios can be identified and ruled out without running the 

risk of implementing them in practice with potential negative implications. 

(Chapter 4 and Chapter 5) 
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Summary 

 

 

 

 

 

 

 

 

 

Poor animal health in animal husbandry systems has significant implications for both 

the economic viability of farms and the welfare of the animals. Addressing and 

mitigating animal health disorders is crucial to limit the negative economic effects 

and enhance the overall well-being of animals. Proactive animal health management 

is essential to mitigate these negative effects. Precision livestock farming (PLF) offers 

promising solutions for animal health management. Combining PLF technologies, 

such as sensors, with statistical models, can enable objective and continuous 

monitoring of individual animals with the potential for early warning signals apropos 

the onset of animal health disorders. By detecting and treating animal health 

disorders sooner, a sensor-based animal health management approach could minimise 

production losses and improve animal welfare. However, research quantifying the 

added economic and animal welfare value of such an approach is limited. Thus, an 

understanding of how technologies in PLF (i.e., sensors) can be effectively 

implemented at the farm-level is imperative to ensure economic and animal welfare 

value is harnessed by limiting as best as possible the negative effects of animal health 

disorders on economic and animal welfare outcomes. The overall objective of this 

thesis is to investigate the economic and animal welfare value sensor-based animal 

health management. The animal health disorder sub-optimal mobility (SOM) in dairy 

cows is used as an animal health disorder case in a Dutch dairy context.  
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Chapter 2 describes the development of a novel bio-economic simulation model to 

analyse the effects of hoof disorders on cow mobility and estimate the economic 

impact of SOM in a Dutch dairy herd of 125 dairy cows under a typical SOM 

management strategy. The model considered eight different hoof disorders and their 

role in SOM, utilising a Reed-Frost model for digital dermatitis and a Greenwood 

model for the other seven disorders. SOM is described by a 5-point mobility scoring 

method (1 = perfect mobility; 5 = severely impaired mobility). Per day, for every 

cow spent with one of five mobility scores, production- and management-based 

economic calculations were computed. The total annual economic loss due to SOM 

resulting from the hoof disorders understudy was €15,342, equivalent to €122 per 

cow per year. Maximum mobility score 2 – 5 SOM cases respectfully contributed 13, 

34, 48 and 5 percent to the total annual direct economic loss (€9,061) of SOM. The 

total annual indirect economic losses encompassed additional culling due to SOM 

(~65 percent) and changes in overall herd milk production (~35 percent), with the 

mean total annual indirect economic loss amounting to €6,281. These results 

highlight the economic significance of lower mobility scores and indirect economic 

losses arising from SOM and emphasise the need for better SOM management 

practices especially with respect to lower mobility scores. 

In Chapter 3 the animal welfare impact of SOM was quantified. Due to the lack of 

methods available to quantify the animal welfare impact of health disorders, a novel 

expertise-based method to quantify the animal welfare impact of health disorders is 

proposed. Expert knowledge was elicited and used to quantify animal welfare 

impairment weights apropos the physical effects of SOM on animal welfare indicators. 

These weights congruent to animal welfare indicators were linked to mobility scores 

to obtain an animal welfare disutility per mobility score. Following, the animal 

welfare impairment weights were then used to simulate the animal welfare impact of 

SOM at both individual case- and herd-level using the bio-economic simulation model 

developed in the preceding research chapter. Findings from the study reveal that 

although the animal welfare disutility increase in mobility scores, the simulations 

reveal that SOM cases with lower mobility scores have a greater overall animal 

welfare impact due to their longer duration and higher frequency. Maximum mobility 

score 2 – 5 SOM cases respectfully contributed 16, 70, 12 and 1 percent to the total 

animal welfare impact of SOM. The study suggests that early detection and 

treatment of lower mobility scores can lead to improved animal welfare outcomes for 

dairy cows. Moreover, this research introduces an innovative and unique approach 

to quantifying the influence of health disorders on animal welfare that can be 

extended beyond the context of SOM.  

Chapter 4 focuses on the economics of sensor-based SOM management. To evaluate 

the added economic value, a bio-economic simulation model is used to compare a 

farm without automatic SOM detection sensors to a farm with automatic SOM 
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detection sensors. Eighty original sensor-based SOM management strategies were 

designed that included combinations of different sensor performances, a novel yet 

simple alert prioritisation method, prolonged verses immediate alert generations for 

different constitutions of SOM, and different interventions apropos treatments. The 

results of the study provide valuable insights into the trade-offs between production 

losses and additional labour costs associated with different sensor-based management 

strategies, sensor performances, and alert prioritisation methods. The simulations 

demonstrate that the economic value added by automatic SOM detection sensors is 

sensitive to the sensor-based management strategies apropos: sensor performance, 

interval of prolonged alert generation for lower mobility scores (mobility scores 2 and 

3) and interventionists apropos treatment. Based on the evidence from the scenarios, 

the study suggests that the current practice of twice-yearly routine hoof trimming 

should be replaced with cow-specific hoof trimmer treatments following SOM 

detection by the sensors. Early detection and treatment of mild SOM cases resulted 

in economic gains when combined with the introduction of the novel alert 

prioritisation method. Furthermore, the alert prioritisation criterion that allowed an 

intervention interval of seven days proved economically beneficial because costly false 

alerts could be avoided while maintaining earlier mitigations of production losses. 

The implementation of automatic SOM detection sensor systems offers various 

options to improve SOM management and achieve better farm economic performance 

along with enhanced cow mobility. 

In Chapter 5 components of the preceding research chapters were cumulated to 

evaluate the effect of 3-class classification models and the various classification 

outcomes on economic and animal value. Eight classifiers each with 600 different 

classification outcomes were defined for SOM classification and management. 

Mobility scores were grouped into various SOM classes depending on the classifier. 

A bio-economic simulation model was used to simulate the economic and welfare 

effects of the various classifiers and respective classification outcomes. The simulated 

output data was first analysed using an exploratory approach to explore the general 

effects of classifiers and classification outcomes on economic and animal welfare 

outcomes. Second, a novel method accounting for the highly interactive classification 

outcomes was developed to quantify the trade-offs in classification outcomes and how 

these trade-offs affected the economic and welfare gains. All tested classifiers showed 

economic and welfare gains on average. Classifiers with larger separations between 

non-SOM and SOM classes showed the highest average economic gains. Including 

mobility score 2 into a SOM class showed meaningful animal welfare gains on average 

as opposed to when mobility score 2 was included in a non-SOM class. Larger 

increases in economic gains were often achieved at the cost of smaller reductions in 

animal welfare gains in conjunction with trade-offs in classification outcomes. This 

chapter provides valuable insights on designing appropriate 3-class SOM classifiers 
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that could also be beneficial when designing classifiers for health disorders other than 

SOM.  

In Chapter 6 a general discussion apropos the research within the thesis is presented. 

Overall, as a collection of four research questions addressed in Chapters 2 – 5, this 

thesis contributes to the literature in various ways. It provides insights on 

methodological approaches that i) capture indirect costs of health disorders ii) 

quantify expertise based welfare impacts of health disorders, iii) highlight the 

importance of less severe but prevalent levels of animal health disorders, iv) 

demonstrate significant opportunities for sensor supported animal health 

management that includes novel sensor-based management strategies, v) incorporates 

economics and animal welfare into the animal health decision making framework, 

and vi) propose a tractable approach to understand the complex and interdependent 

nature of 3-class classification models. 

In conclusion, economic and animal welfare value can be achieved through the 

utilisation of sensors in animal health management. However, this requires sensor-

based animal health management strategies to be designed and adhered to, as well 

as further technological developments. Based on the findings congruent to addressing 

the research questions, the following conclusions are drawn: 

• Mild and moderate suboptimal mobility (SOM) account for a substantial 

proportion (~47 percent) of the total annual direct costs of SOM under a 

typical SOM management strategy. (Chapter 2) 

• SOM has an important indirect effect on fertility related culling, resulting in 

additional fertility related costs. (Chapter 2) 

• The physical effects of SOM on animal welfare indicators can be used to 

derive mobility score associated welfare impediment weights. (Chapter 3) 

• Moderate SOM, respectfully maximum mobility score 3 SOM cases, has the 

largest impact on animal welfare at case- and herd-level under a typical SOM 

management strategy. (Chapter 3) 

• The use of sensors to automatically detect SOM can generate additional 

economic value but radical (cognitive framework) shifts apropos SOM 

management are required to achieve the benefits of sensor-based SOM 

management. (Chapter 4) 

• Using, PLF, twice yearly whole herd routine hoof trimming could be replaced 

by more frequent cow specific hoof trimming to obtain economic and welfare 

benefits. (Chapter 4 and Chapter 5). 
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• Prolonged information generation apropos mobility scores 2 and 3 is 

economically beneficial in sensor-based SOM management opposed to 

immediate information generation. (Chapter 4) 

• Simple frequency based alert prioritisation method can be used to reduce the 

number of false alerts that ultimately add economic value to a sensor-based 

SOM management strategy. (Chapter 4) 

• Mobility score 2 must be considered as SOM due to the associated economic 

and welfare consequences and treating cows with this mobility score results 

in highest overall economic and welfare benefits. (Chapters 2, 3, 4, and 5) 

• 3-class classification models are more economically and welfare beneficial 

compared to binary classification models for SOM classification. (Chapter 5) 

• 3-class classification model generated diagnostic marker value distributions 

for the non-SOM class should be the most separated from diagnostic marker 

value distributions for SOM classes to ensure higher economic and welfare 

outcomes of sensor-based SOM management. (Chapter 5) 

• Economic and animal welfare trade-offs exist in sensor-based SOM 

management. (Chapter 4 and Chapter 5) 

• Bio-economic simulation models provide substantial opportunities to test a 

wide range of digitally supported animal health management strategies and 

associated technological innovations that would be impossible to test in 

practice due to, amongst others, time and financial constraints. By doing so, 

unattractive scenarios can be identified and ruled out without running the 

risk of implementing them in practice with potential negative implications. 

(Chapter 4 and Chapter 5) 
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