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There has been an increasing trend of using artificial intel-
ligence (AI) in high-stakes decision-making that has an 
impact on human lives, including but not limited to the 
criminal justice system, autonomous vehicles, food safety, 
and radiology [1]. The current standard for AI in radiology 
is deep learning [2]. Deep learning uses neural networks 
with many interconnected layers that involve nonlinear rela-
tionships. Even if we try to understand and describe these 
layers and connections, it is unfeasible to fully grasp how 
the neural network makes its decisions. This is why deep 
learning is often called a “black box.” People are worried 
that these black boxes might have biases that go unnoticed, 
which could have serious consequences in high-stakes deci-
sion-making [1].

There is a growing demand for methods to improve our 
understanding of the black box nature of deep learning. 
These methods are often referred to as explainable artificial 
intelligence (XAI) [3]. Some notable XAI initiatives include 
those by the United States Defense Advanced Research Pro-
jects Agency (DARPA) and the Association for Computing 
Machinery’s (ACM) conferences on Fairness, Accountabil-
ity, and Transparency (ACM FAccT) [4, 5]. For medical 
imaging, there is a dedicated annual workshop on Interpret-
ability of Machine Intelligence in Medical Image Computing 
(iMIMIC) at the International Conference on Medical Image 
Computing and Computer Assisted Intervention (MICCAI) 
[6].

Current XAI status

Current XAI techniques in radiology typically either pro-
vide a visual explanation, a textual explanation, an exam-
ple-based explanation, or a combination of these [7]. Visual 

explanations often provide a “heatmap” or “saliency map,” 
pinpointing where the algorithm based its decision on. 
Visual explanations are currently by far the most used XAI 
technique in radiology [7]. Textual explanations provide tex-
tual descriptions, ranging from relatively simple descriptions 
such as “hyperintense lesion” up to entire medical reports. 
Example-based explanations provide relevant examples to 
explain how a neural network made a decision. It is similar 
to how a radiologist leverages past cases to analyze the case 
at hand.

Many XAI methods are post hoc, which means that they 
provide explanations after a neural network has already been 
trained. This has several advantages [7]. For example, post 
hoc XAI techniques are often open source and relatively 
“plug and play,” especially in frameworks such as captum.
ai. Furthermore, post hoc XAI is often model agnostic, 
meaning that it will generate an explanation regardless of 
the algorithm it is explaining. Therefore, it is possible to 
provide explanations to neural networks that are currently 
operational in your clinic or department. There are also some 
notable disadvantages to post hoc XAI. Post hoc XAI can 
demonstrate unexpected behavior. For example, not all post 
hoc XAI techniques demonstrate high validity [8], defined as 
whether the explanation is correct and corresponds to what 
the end user expects [7]. Furthermore, there are concerns 
about robustness [9]. A practical advice to overcome these 
disadvantages is to examine multiple post hoc XAI tech-
niques and assess the consistency between the explanations.

Future XAI potential

An important step is to evaluate how well an XAI tech-
nique performs. Several evaluation methods exist from 
computer vision [10], but these do not fully translate to 
radiology. Therefore, “Clinical XAI Guidelines” have 
recently been proposed [11] to evaluate XAI techniques 
in medical images based on five criteria: (1) understand-
ability, (2) clinical relevance, (3) truthfulness, (4) informa-
tive plausibility, and (5) computational efficiency. These 
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five criteria were evaluated in radiological tasks for six-
teen commonly used visual explanation techniques; none 
of them met all five criteria [11]. This further reinforces 
the need for adopting explainable-by-design methods [1], 
which integrate explainability into AI models from their 
initial development stages [1].

It is often said that there is an inherent tradeoff between 
performance and explainability that cannot be avoided. 
This is not necessarily true: An exciting development is 
to utilize XAI to improve AI performance [12]. As an 
example, visual explanations can be used to rank which 
radiological images should be used next in active learn-
ing, leading to a better-performing AI model [13]. This 
ranking could also be used to select which image to label 
next, in case of a human-in-the-loop setting with many 
unlabeled images. Another example uses visual explana-
tions to enforce differentially between visual explanations 
per class in each sample. This yields better performance, 
and the visual explanations align more with expert annota-
tions [14].

XAI can be expanded to incorporate biological explana-
tions. As an example, pathway analyses of gene expression 
data from RNA sequencing revealed that MRI character-
istics of breast cancer, such as the contrast enhancement, 
the smoothness, and the sharpness of the cancer, can be 
explained by ribosome and peptide chain elongation path-
ways [15]. This shows the potential of biological processes 
to be used as explanations.

To go beyond mere correlation and provide explana-
tions that demonstrate cause-and-effect relationships, XAI 
needs to incorporate causal relationships [16]. By integrat-
ing causality in XAI, radiologists can gain a deeper under-
standing of the underlying mechanisms behind AI-driven 
decisions. An advantage of incorporating causality is the 
ability to gain insights into potential biases or to remove 
such biases [17]. Initial examples of causality in XAI include 
those using a counterfactual explanation. Let us imagine a 
chest X-ray showing pleural effusion. How would the same 
chest X-ray need to appear for the classifier to not predict 
pleural effusion? This is a counterfactual explanation. Such 
a counterfactual can provide a personalized and interactive 
explanation [18].

In summary, explainable artificial intelligence (XAI) is 
a young, rapidly evolving, and exciting field. It is essential 
for us as a community to actively contribute to the direction 
of XAI in the field of radiology. By deciding together on the 
criteria and aspects that should be prioritized, we can shape 
the future development of XAI techniques in radiology. This 
involvement ensures that the emphasis is placed on the spe-
cific needs and challenges of the radiology domain, enabling 
us to create personalized XAI that aligns with the need of 
clinicians, radiologists, and patients, while complying with 
regulatory standards [19].
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