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Abstract
A central and fundamental issue in ecology is to understand the relationship between complexity and stability. Increased 
empirical evidences demonstrated no clear relationships between complexity metrics and stability, and recent food web loop 
analyses suggested that maximum loop weight as well as the summation ratio between 3- and 2-link feedback loop weights 
could be better estimators of system stability. However, the importance of longer loops than 3-link on the stability remains 
unclear. Here, we use 127 marine food webs and the matrix product and trace method to investigate the relationship between 
loops with maximum of 7 links and food web stability. We found that feedback metrics |a

2n+1∕a2n| , i.e., the ratio of the sums 
of (2n + 1)-link and 2n-link loop weights, are strongly related with stability. These sum weight ratios can be regarded as 
the coupling strength between omnivory loops and their one-species-delete subloops, including the smallest three species 
and high-level omnivory ones. Further theoretical simulations of bioenergetic consumer-resource models with allometric 
constraints strengthen this finding. These results suggest that both longer loops and omnivory are important drivers of the 
food web stability.

Keywords Ecosystem community · Food webs · Feedback loops · Interaction strength · Stability · Matrix trace

Introduction

The stability of food webs is considered to be important 
for the maintenance of ecosystem functions such as carbon 
and nutrient cycles (de Vries et al. 2013). Current multiple 
anthropologic stresses on ecosystems have heightened the 
need to understand the mechanism underlying food web 
stability. The relation between the structure and stability 
of food webs has been widely studied (MacArthur 1955; 
Paine 1966), since key features to stability provide neces-
sary information for both ecological theorists and operators 
for the restoration and management of ecosystems.

The complex-stability debate (McCann 2000) was initi-
ated more than 50 years ago and has been a fundamental 
topic of ecological research since then (Jacquet et al. 2016). 
Network complexity, including species richness and con-
nectance, was taken into consideration for food web stability 

after May (1972) studied the relation between complexity 
and stability in theoretical random matrices and predicted 
that a system could be stable only if certain criteria were 
satisfied. Gardner and Ashby (1970) found that the con-
nectance of large dynamic systems was critical for stability, 
and Tang et al. (2014) showed that a simple yet overlooked 
feature of natural food webs, the correlation between the 
effects of consumers on resources and those of resources 
on consumers, substantially accounts for their stability. It 
has become increasingly clear that the trophic interactions 
between predator and prey, depending on top-down and bot-
tom-up effects and the patterning of strong and weak interac-
tions, were crucial to food web stability (Brose et al. 2006; 
Neutel et al. 2007; Allesina and Tang 2012; Butler and 
O’Dwyer 2018; Tu et al. 2019).

A trophic interaction loop describes a pathway of inter-
actions from a certain species through the web back to the 
same species without visiting other species more than once 
(Levins 1974; Neutel et al. 2002); hence, a loop is a closed 
chain of trophic links, which came into focus. Neutel et al. 
(2002) showed that the low loop weight of long loops, 
defined by the geometric mean of the absolute values of 
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the interaction strengths in the loop, stabilizes complex food 
webs. Generally, it is the omnivorous loop that comprises 
a prey, a consumer of the prey and an omnivorous predator 
consuming both, that had the maximum loop weight, which 
limits the stability of the food web (Neutel et al. 2007). 
Analyzing the stability of an observed food web, the maxi-
mum weight of the omnivorous loop (Neutel et al. 2007; 
Mitchell and Neutel 2012; Michalska-Smith et al. 2015) as 
indicator of food web stability was refined into the ratio of 
the summed weights of 3- and 2-link trophic interaction 
feedback loops (Neutel and Thorne 2014). The understand-
ing in terms of key feedback loops has revealed that it was 
not network complexity (the number of species or their 
connectance) that places constraints on system stability, 
but the energy-flow and biomass distribution in the trophic 
pyramid (Neutel et al. 2002). Specifically, it was shown that 
increased predation pressure over trophic levels leads to less 
stability (Neutel and Thorne 2014). Considering commu-
nity matrices of a predator–prey system with Holling type 
I, II, III response, Neutel and Thorne (2015) showed that 
the relation between the dominant eigenvalue and 3- and 
2-link feedback loop weights is very significant. Because 
of the complexity of empirical food webs, many empirical 
and theoretical studies concentrated on the smaller scale 
of subgraph (Milo et al. 2002; Arim and Marquet 2004; 
Bascompte and Melián 2005; Camacho et al. 2007; Paulau 
et al. 2015; Stouffer and Bascompte 2010; Li et al. 2021), 
i.e., trophic modules and network motifs, that mostly have 
three or four species.

Three-species trophic modules make up complex food 
webs and can be viewed as their simple building blocks 
(Stouffer and Bascompte 2010). Recent loop studies have 
been limited to 3- and 2-link loops and systems with 10–30 
species (Neutel and Thorne 2014; Neutel et al. 2007). The 
importance of loops longer than 3-link on the stability remains 
unclear. Given that the long loops indicate longer food chains 
consisting of more complex top-town and bottom-up effects 
among species, which may provide new insights into how 
trophic interactions between predators and prey drive food 
web stability, Li et al. (2021) further found that swapping 
only two (pairs) of interaction strengths in the empirical Jac-
obian matrix may not affect the heaviest omnivorous loops 
with three species but could have a profound effect on food 
web stability. Therefore, there is a need to test how coupling 
strengths within longer feedback loops in empirical food 
webs drive food web stability. And there is a need to test the 
longer feedback metric from realistic empirical data (Neutel 
and Thorne 2016). For an ecosystem of n species or trophic 
groups, the longest loops may have n-link length that show 
very complicated structure and the most expensive computa-
tional cost, so only the total effect of three-link and two-link 
loops is researched up to present (Neutel and Thorne 2014), 
but longer loops should affect stability definitely.

In the present paper, we analyzed the stability of 127 
natural marine ecosystems (Colléter et al. 2013, 2015) by 
calculating the weights of long loops with four or more 
links. The results indicated that not only 3- and 2-link, but 
also (2n + 1) - and 2n-link ( n = 2, 3,⋯ ) feedback loops ratios 
were related to food web stability. Nevertheless, (2n)- and 
(2n − 1)-link ( n = 2, 3,⋯ ) feedback loops ratios showed lit-
tle relationship to food web stability. Furthermore, a bioen-
ergetic consumer-resource dynamic model with allometric 
constraints (Domínguez-García et al. 2019) was analyzed to 
confirm these findings.

Methods

Empirical food web models A total of 127 empirical marine 
food webs were used in this study. Biomass dynamics of 
trophic species is the basis of Ecopath, expressed in the form 
of coupled linear differential equations as

where Bi (t  km-2) and (P∕B)i (per year) are the biomass and 
production/biomass ratio, respectively, of trophic species i; 
fi (t km -2 per year) corresponds to fishery yields; (Q∕B)j 
(per year) is the consumption/biomass ratio of predator j; 
and DCji is the proportion of trophic species i in the diet 
of predator j. The mortality resource, M

0i (per year), is 
(1 − EEi) × (P∕B)i , where EEi is the ecotropic efficiency of 
i, corresponding to the fraction of production used in the 
food web. The model consists of functional groups rather 
than all of the species present since functional groups are a 
way of simplifying the high taxonomic diversity encountered 
in many communities and partly a way of describing the eco-
logical roles or “functions” of different species. The concept 
is particularly important for modeling approaches that focus 
on understanding the behavior of ecological systems.

These 127 marine ecosystem models, including conti-
nental shelf, open ocean, upwelling, bay, coastal lagoon, 
estuarine, and channel, published worldwide, were 
equipped in Ecopath with the Ecosim software’s reposi-
tory (Colléter et al. 2013, 2015), and we ran them until a 
stable state (mass balance with dBi∕dt = 0 ) or the maxi-
mum number of steps was reached (unstable state). The 
ultimate biomass B∗

i
 was substituted in the Jacobian com-

munity matrix (Jacquet et al. 2016):

(1)

dBi

dt
= Bi × (P∕B)i − fi −

∑

j

[Bj × (Q∕B)j × DCji] −M
0i × Bi,

(2)

⎛
⎜
⎜
⎝

0 𝛾
ij
= (P∕B)

j
× DC

ji
×

B
∗
j

B
∗
i

(i < j)

𝛾
ij
= −(Q∕B)

j
× DC

ji
(i > j) 0

⎞
⎟
⎟
⎠

, i, j = 1, 2,⋯ , n
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where diagonal elements were set to zero, since we empha-
sized interspecific interaction strength between species and 
ignored intraspecific ones. Elements in the Jacobian matrix 
represent the trophic interaction strength between predator 
and its prey; specifically, the positive elements show the 
interaction of the prey on the predator, whereas the negative 
elements show the interaction of the predator on the prey.

Different from Neutel and Thorne (2014, 2016), which 
constructed a “normalized” matrix by dividing each row of 
the community matrix by the absolute value of the corre-
sponding diagonal element, we used Michalska-Smith et al. 
(2015) method without “normalization.” Further details of 
the Ecopath modeling approach can be obtained at http:// 
ecoba se. ecopa th. org.

Feedback metric A loop describes a pathway of interactions 
from a certain species through the web back to the same spe-
cies without visiting other species more than once (Hofbauer 
and Sigmund 1988). Neutel et al. (2002) defined the loop 
weight as the geometric mean of the absolute values of the 
interaction strengths in the loop. For zero-diagonal matrices, 
Neutel and Thorne (2014) proposed a feedback metric 
expressed as a ratio of 3-link and 2-link feedback loops: 
3

√
∣
a
3

a
2

∣ , where a
2
=
∑

�ij�ji represents the sum of all 2-link 

feedback loops and a
3
=
∑
(�ij�jk�ki + �ik�kj�ji) is the sum of 

all 3-link feedback loops. �ij is an element of a Jacobian com-
munity matrix model (linearization of ordinary differential 
equations of dynamic systems):

whose local stability is determined by the largest real part 
of the eigenvalues, where Bi is the biomass of the species, 
B∗ is the equilibrium point, and (dBi∕dt)|B∗ = 0 . For the 
smallest omnivorous structures, i is the bottom prey, j is the 
intermediate predator, and k is the omnivore. For an eco-
logical network with three species, the characteristic poly-
nomial of the Jacobian community matrix at equilibrium 
biomass can be expressed as �3 + a

1
�2 + a

2
� + a

3
 (Neutel 

and Thorne 2014), but with S species, S > 3 , an cannot 
be obtained through the coefficients of the characteristic 
polynomial.

According to zero-diagonal Jacobian community matrix 

Γ
0
=

(
0 �ji

�ij 0

)

 , a
2
= tr(Γ

0
× Γ

0
) = tr((Γ

0
)2) can be easily 

proved, where tr is the trace of the matrix, i.e., the sum of the 
diagonal elements. We can similarly hold a

3
= tr((Γ

0
)3) and

(3)Γ =

⎛
⎜
⎜
⎜
⎝

�
11

�
12

⋯ �
1n

�
21

�
22

⋯ �
2n

⋮ ⋮ ⋱ ⋮

�m1 �m2 ⋯ �mn

⎞
⎟
⎟
⎟
⎠

=
�(dBi∕dt)

�Bj

�
�
�
�
�B∗

,

(4)an = tr((Γ
0
)n), n = 2, 3,⋯ ,

which have more simple program implementation than Neu-
tel’s formula (Neutel and Thorne 2014). We extend feedback 
metric 3

√
∣
a
3

a
2

∣ to ∣ an

an−1
∣l, n = 4, 5, 6,⋯ , where the power l is 

introduced for more robustness of different food webs with 
various stability. In most case, the power l is one.

Feedback loop structure Five-link feedback loops applied 
in our trace method are depicted in Fig. 1c and d, and loops 
with an edge from one species to itself can be neglected 
since diagonal intraspecific strengths in our Jacobian com-
munity matrices are zero. Loops of Fig. 1c are cycles in 
graph theory that can be searched out by Johnson’s algo-
rithm (Johnson 1977), and the left part of Fig. 1d is a high-
level omnivory module (McLeod and Leroux 2021; Wootton  
2017) compared to a classic omnivory loop (left part of 
Fig. 1b). Our trace a

5
 can be divided into the sum weight of 

high-level omnivory modules, which is dominant, since it far 
outweighs the other (Fig. 5b), and the sum weight of 5-link 
cycles, which can be omitted. For all of the zero-diagonal 

Fig. 1  Predator–prey feedback loop structure: a 4-link loop without 
repeated species (cycle in graph theory), which can be searched by 
Johnson’s algorithm (Johnson  1977); b Classic smallest omnivory 
loop and its three one-species-delete subloops (2-link loop); c 5-link 
loop without repeated species (cycle in graph theory); d High-level 
module (McLeod and Leroux 2021; Wootton 2017) and its five one-
species-delete subloops (4-link loop). Our trace a

5
 includes a high-

level omnivory module and 5-link cycle (c), and the sum weight of 
the high-level omnivory module is far greater than that of 5-link cycle 
(c), so 5-link cycle (c) can be discarded. The same applies to 4-link 
cycle (a)

http://ecobase.ecopath.org
http://ecobase.ecopath.org
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community matrices, a
2
 and a

3
 by our trace method are just 

double and triple sum weights of 2- and 3-link loops found 
by Johnson’s algorithm (Fig. 5b).

Feedback loops of toy omnivory model To better explain the 
idea of feedback loops, a toy Lotka-Volterra Intraguild Pre-
dation (IGP) Model of three groups (Holt and Polis 1997), 
comprising a basal resource, an intermediate predator on 
resource, and an omnivorous predator consuming both, is 
defined as

The P, N, and R are the densities of the omnivorous 
predator, intermediate predator, and basal resource, respec-
tively. The quantities a′R and �N are functional responses of 
the top predator to the resource and intermediate predator, 
respectively; aR is the functional response of the intermedi-
ate predator to the basal resource; and m and m′ are density-
independent mortality rates. The parameters b and b′ convert 
resource consumption into reproduction for the intermedi-
ate and omnivorous predator, respectively; the parameter � 
scales the benefit enjoyed by the omnivory from its con-
sumption of intermediate predator. We deliberately use the 
symbol � to denote mortality inflicted on the intermediate 
predator by the top predator, because in some circumstances, 
such mortality could be viewed as interspecific interfer-
ence competition and might be measured by a competition 
coefficient (even though the actual mechanism is mortal-
ity from predation). Finally, the basal resource when alone 
grows according to a logistic model with carrying capacity 
K, each consumer has linear functional responses, and con-
sumer growth is proportional to the rate of consumption. For 
instance, phytoplankton, zooplankton, and shrimps form an 
IGP food chain (Fig. 2a) where phytoplankton is the basal 
resource, zooplankton is the intermediate predator, and 
shrimps are the omnivorous predator.

To evaluate local stability of the full three-species equi-
librium P∗ , N∗ , and R∗ at which growth rates reach zero, 
we follow standard Jacobian matrix procedures (May 1972). 
The elements in the Jacobian matrix near equilibrium which 
equal the partial derivative of the population growth equa-
tion of the species corresponding to row i with respect to 
the species corresponding to column j, evaluated at equi-
librium, are regarded as interaction strengths (Laska and 
Wootton 1998), which conceptually represent the direct 
effect of an individual of one species on the total popula-
tion of another species at or near equilibrium. This definition 

(5)

dP

dt
= P(b�a�R + ��N − m�),

dN

dt
= N(abR − m − �P),

dR

dt
= R(r(1 − R∕K) − aN − a�P).

has received considerable attention in food web models. The 
Jacobian matrix of model (5) is as follows:

For testing the local stability of the equilibrium, a 
small and temporary perturbation is added to phytoplank-
ton from equilibrium, for example (also can be to two or 
all species, one for simplicity and easy explanation), and 
then three growth rates all change to be nonzero. The 
growth rate of phytoplankton must be greater than zero 
for its density increment from equilibrium, so phytoplank-
ton growth rate must be pulled back through interaction 
strengths �

31
 and �

32
 . There are three possible paths to do 

it, one is �
32
�
23

= (−aR∗)(baN∗) called two-link feedback 
loop, implying abundant phytoplankton enriches zooplank-
ton and more zooplankton eat increased phytoplankton 
conversely. The other two are three-link feedback loops 
�
32
�
21
�
13

= (−aR∗)(−�N∗)(b�a�P∗) having positive weight 
to enlarging phytoplankton and instability (Fig. 2b black 
arrow) and �

31
�
12
�
23

= (−a�R∗)(��P∗)(baN∗) having nega-
tive weight to decreasing phytoplankton and leading more 
stability (Fig. 2b red arrow).

Negative loop can be explained as that increasing phyto-
plankton brings about zooplankton and shrimps which will 

(6)
⎛
⎜
⎜
⎝

�
11

�
12

�
13

�
21

�
22

�
23

�
31

�
32

�
33

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

0 ��P∗ b�a�P∗

−�N∗
0 baN∗

−a�R∗ − aR∗ −
rR∗

K

⎞
⎟
⎟
⎠

.

Fig. 2  A toy Lotka-Volterra Intraguild Predation Model with three 
species and feedback loops based on Jacobian matrix: The omnivo-
rous feeding rates loop (a) generates two trophic interaction loops (b), 
one negative clockweise loop (−a�R∗)(��P∗)(baN∗) and one positive 
anti-clockwise loop (−aR∗)(−�N∗)(b�a�P∗) . a Predator–prey relation-
ship in the IGP model (Eq. 5) taking phytoplankton, zooplankton, and 
shrimps as examples, intermediate predator zooplankton consume 
aRN basal resource phytoplankton per unit time, meanwhile omnivo-
rous shrimps eat zooplankton �NP and phytoplankton a′RP per unit 
time. b There are 3 two-link feedback loops with all negative weights 
causing stability and 2 three-link loops with one negative weight 
and one positive weight leading to instability in the Jacobian matrix 
(Eq. 6) induced from model (Eq. 5)



Theoretical Ecology 

1 3

eat additional phytoplankton to go back to the original equi-
librium, whereas positive loop is that increasing phytoplankton 
directly flourishes shrimps which consume more zooplankton 
and fading zooplankton will strengthen phytoplankton far away 
the equilibrium. The system’s stability can be determined by 
the total effects of negative and positive feedback loops of 
different lengths. For an ecosystem of n species or trophic 
groups, the longest loops may have n-link lengths that show 
very complicated structure and the most expensive computa-
tional cost, so only the total effect of three-link and two-link 
loops is researched up to present (Neutel and Thorne 2014), 
but longer loops should affect stability definitely.

For the diagonal values in Jacobian matrix at the equilib-
rium, denoting intraspecific interference, we lacked empirical 
information to identify them. There are several ways to “deal” 
with the diagonal values (Altena et al. 2014). We choose to 
set all diagonal values equal to zero (Neutel and Thorne 2014; 
Rip and McCann 2011; Tang et al. 2014). This implies that 
the matrix will have some eigenvalues with positive real parts, 
and then, we cannot speak of stability of the matrix in the 
strict, mathematical sense, but the real part of the maximum 
eigenvalue (Re(�max)) can then indicate the level of resilience. 
The lower the value of the Re(�max) , the more resilient the 
food web (Neutel and Thorne 2014; Tang et al. 2014).

Theoretical food web model Following Domínguez-García 
et al. (2019), we constructed the simulation model step by 
step using the niche model (Williams and Martinez 2000) 
and employed a bioenergetic consumer-resource model with 
allometric constraints:

where the interaction term is defined as

The synthetic parameterization of the model is discussed in 
Supplementary Information in Domínguez-García et al. (2019).

We simulated the biomass of each species by Eq. (7) in the 
R language, where the function runsteady in library root-
Solve solves the steady-state condition of ordinary differ-
ential equations (ODEs) by dynamically running until the 
summed absolute values of the derivatives become smaller 
than some predefined tolerance, and the function jacobian.
full in library rootSolve estimates the Jacobian matrix at 
the steady state. The rows and columns corresponding to 
the extinct species and bottom prey were deleted, and the 
diagonal was substituted with zeros without normalization 

(7)

dBi

dt
= riGiBi + Bi

∑

j∈prey

e
0jFij −

∑

k∈pred

BkFki − xiBi − diBi,

(8)Fij =
�icijB

1+q

j

mi(1 + �i

∑
k∈prey cikhikB

1+q

k
)
.

by diagonal elements, which formed the final community 
matrices to calculate the maximum real parts of the eigenval-
ues Re(�max) and feedback levels an, n = 2,⋯ , 7 . Herewith, 
the assumed diagonal values of zero will let the matrices 
have some positive eigenvalues. In this way, this cannot be 
defined as the stability of the matrix in a strict mathematical 
sense; the values of Re(�max) can then indicate the level of 
stability. That is, if the value of the Re(�max) is larger, the 
food web becomes more unstable (Neutel and Thorne 2014; 
Neutel et al. 2002).

Results

Complexity‑stability relation We first investigated the rela-
tion between stability and classic complexity descriptors, 
i.e., species richness S; connectance C; standard deviation 
of interaction strength (IS) � ; coefficient of variation of 
IS �∕E , where E is the mean of IS; skewness and kurtosis 
of IS. We observed no relation between food web stability 
and species richness and connectance, neither with skew-
ness nor kurtosis (Fig. 3a, b, f, g). The standard deviation 
of IS � is an important factor for food web stability. Coef-
ficient of variation �∕E and May’s complexity criterion 
�

√
SC (May 1972) implied little dependence on the stabil-

ity. Standard deviation � and related metrics are not critical 
to determining food web stability (Fig. 3c–e), and other 
metrics of the substructure beyond basic statistics of inter-
action strength should be considered.

Weight sum ratio determines stability Surprisingly, we 
found that predator–prey feedback metrics |a

3
∕a

2
| , |a

5
∕a

4
| , 

and |a
7
∕a

6
| were strongly related to the matrix stability 

measure Re(�max) , and their slopes gradually decreased, 
which implied that |a

3
∕a

2
| contributed most to the stability 

of an ecosystem among the three metrics (Fig. 4a). It was 
noted that |a

4
∕a

3
| and |a

6
∕a

5
| exhibited almost no relation 

with stability Re(�max) (Fig. 4b, c). Pairwise metrics (Tang 
et al. 2014) also showed little correlation with stability with 
R2 = 0.36 (Fig. 4d), which satisfied the opinions in Neutel 
and Thorne (2016) and Jacquet et al. (2016) but contradicted 
the results in Michalska-Smith et al. (2015). Predator–prey 
feedback metrics |a

2n+1∕a2n|, n = 1, 2,⋯ are generally good 
indicators of stability, but |a

2n∕a2n−1|, n = 2, 3,⋯ are not.

Feedback loop weight decomposition Since cycles greater 
than five are numerous for large ecological networks, we 
selected 74 smaller Ecopath marine models and identified all 
of their 2-, 3-, 4-, and 5-links cycles from our 127 models using 
Johnson’s algorithm. The cumulative proportion curves were 
almost the same whether subtracting the sum weight of 4- and 
5-link cycles from our sum weights a

4
 and a

5
 , respectively 
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(Fig. 5a). The sum weights an and an−1 must have different 
signs, i.e., a

2
, a

5
 , and a

6
 are negative and a

3
, a

4
 , and a

7
 are posi-

tive. The magnitudes of an grew exponentially, but the ratios 
an∕an−1 seemed to vary around a constant for different ecologi-
cal systems (Fig. 5a). For 2- and 3-links, sum loop weights of 
our matrix trace method are exactly two and three times as 

much as that of cycles with no repeat nodes, but our method’s 
sum weights far outweigh that of cycles in 4- and 5- links 
(Fig. 5b), so omnivory loops are dominant in loop weight anal-
yses. For a natural marine Ecopath food web (Eritrea’s coral 
reef model (Tsehaye and Nagelkerke 2008)), geometric mean 
loop weights of different lengths searched out by Johnson’s 

Fig. 3  Food web stability related to basic metrics of IS across 127 
natural Ecopath models of marine ecosystems based on empiri-
cally parameterized community matrices: a Number of species S 
at log2 scale for xy axis ( R2 = 0.009, p = 0.28 ). b Connectance 
C = L∕S2 , where L is the number of links at log2 scale for xy axis 
( R2 = 0.001, p = 0.76 ). c Standard deviation � of IS at log2 scale for 

xy axis ( R2 = 0.08, p = 0.0014 ). d May’s complexity �
√
SC of IS at 

log2 scale for xy axis ( R2 = 0.12, p < 10
−6 ). e Coefficient of variation 

�∕E , where E is the mean of IS ( R2 = 0.11, p = 0.0006 ). f Skewness 
of IS ( R2 = 0.004, p = 0.48 ). g Kurtosis of IS at log2 scale for xy axis 
( R2 = 0.0005, p = 0.79 ). h Histogram of species richness



Theoretical Ecology 

1 3

algorithm were almost symmetric at zero (Fig. 5d), so the max-
imum loop weight and sum loop weight had strong correlation 
for a fixed-length loop. This phenomenon also existed in other 
models (Neutel et al. 2002, 2007). Maximum loop weights of 

3-links were almost the maximum of all lengths, and only a 
few maxima of all lengths occurred at other links (Fig. 5c, d); 
therefore, a regression line between maximum loop weights 
of all link lengths and food web stability coincides with that 

Fig. 4  Performance of extended feedback metrics and pairwise met-
ric against stability Re(�max) across 127 natural Ecopath models of 
marine ecosystems based on empirically parameterized community 
matrices. S is the number of species or trophic species, and E,V , and� 
are the mean, variance, and Pearson linear correlation coefficient of 
off-diagonal elements of the Jacobian community matrix, respec-
tively: a Feedback levels |a

3
∕a

2
| , |a

5
∕a

4
| , and |a

7
∕a

6
| showed excel-

lent correlation with stability, with R2 = 0.9, 0.91, 0.9 , respectively, 
and all p values less than 10−16 . However, |a

4
∕a

3
| and |a

6
∕a

5
| could 

not determine food web stability (b, c) and the pairwise metric (d) 

obtained the same conclusion as (b, c). The points in (d) showed no 
concentration trend although R2 equaled 0.36 and its p-value was less 
than 0.05. Note that all of the diagonal elements were set at zero, and 
off-diagonal elements had no scaling by diagonal elements. e Inter-
action strengths of the most unstable system (the largest Re(�max) ) 
among 127 marine food webs. Node sizes of group species were 
drawn according to their trophic levels, and edge widths represented 
their strengths. Interaction strengths with absolute value less than 
0.15 were neglected. f Interaction strengths of the most stable system 
(the smallest Re(�max) ) among 127 marine food webs
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between the maximum loop weight of 3-link and food web 
stability (Neutel et al. 2007; Mitchell and Neutel 2012; Kuiper 
et al. 2015) (Fig. 5c), with R2 = 0.722 less than the effect of 
the sum weight ratio a

3
∕a

2
 ( R2 = 0.9 ) in Fig. 4a.

Theoretical simulations Simulations with the bioenergetic 
consumer-resource model (Domínguez-García et al. 2019) 
revealed that the vulnerability of a system (larger Re(�max) leads 
to more chance of instability) could be roughly predicted by the 

Fig. 5  Relation among loop weights in empirical marine Ecopath food 
webs, where loop weight is the product of interaction strengths without 
averaging: a Sum loop weight an of different lengths by our trace method 
in selected 74 models. 5-link sub means that the sum weight of 5-link 
cycles found by Johnson’s algorithm (Johnson 1977) is subtracted from 
a
5
 so that only high-level omnivory modules (left part of Fig. 1d) are left. 

Curves of 5-link sub and 4-link sub disappear because they overlap with 
5-link and 4-link curves. b Ratio of sum loop weights of two methods in 

selected 74 models. The numerator is our trace method, and the denomi-
nator is cycles found by Johnson’s algorithm. Cycle is loop without 
repeated species (Fig. 1a–c); c linear regression between maximum loop 
weight and system stability in all our 127 marine food webs. One maxi-
mum is restricted in 3-link feedback loops, and the other is covered with 
all lengths of loops as far as possible in computer’s computing ability; d 
geometric mean loop weight of different lengths in no. 35 food webs with 
25 species (Eritrea’s coral reef model (Tsehaye and Nagelkerke 2008))
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predator–prey feedback metrics ∣ a
2n+1∕a2n ∣

2∕2n+1
, n = 1, 2,⋯ 

(Fig. 6a–c), even when long loops tended to be relatively weak 
(Neutel et al. 2007). The ratio of total odd- to even-link loops 
(minus 1) can capture the stability of food webs, but the ratio 
of total even- to odd-link loops (also minus 1) cannot (Sup-
plementary Fig. S7). The exponent of the ratio ∣ a

2n+1∕a2n ∣ , 
chosen as 2∕(2n + 1) in our simulation, was found to be a key 

parameter to predict Re(�max) , whose numerator 2 is absolutely 
necessary in our simulation and whose denominator 2n + 1 can 
be regarded as the geometric mean of the ( 2n + 1)-link loop 
weights, while the exponents in Ecopath models and their 
randomization tests were all set to 1 for good performance. 
The sensitivity of the exponent of the ratio against stability is 
discussed in the Supplement. As expected, species richness, 

Fig. 6  Performance of extended feedback metrics ∣ a
2n+1∕a2n ∣

2∕2n+1 
and pairwise metric (Tang et  al.  2014) 

√
SV(1 + �) − E against sta-

bility Re(�max) in simulation models (Domínguez-García et al. 2019) 
with species richness ranging from 5 to 100 species, repeated 50 

times for each species: a Predator–prey feedback metric ∣ a
3
∕a

2
∣2∕3 

against stability; b predator–prey feedback metric ∣ a
3
∕a

2
∣2∕3 against 

stability; c predator–prey feedback metric ∣ a
3
∕a

2
∣2∕3 against stabil-

ity; d Tang et al. (2014) pairwise metric against stability
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connectance, and May’s criteria showed no relationships with 
food web stability (Supplementary Fig. S6), and Tang’s pair-
wise metric 

√
SV(1 + �) − E (Tang et al. 2014) also had weak 

correlation with the stability of the simulating bioenergetic 
consumer-resource systems (Fig. 6d).

Discussion

Beyond complexity-stability relationships, substructure in 
complex network (network motifs), from pairwise correla-
tion (Tang et al. 2014) to the smallest omnivorous loops 
(3-link feedback loops), (Tang et al. 2014; Neutel et al. 2007; 
Mitchell and Neutel 2012; Neutel and Thorne 2015; Neutel  
et  al.  2002; Neutel and Thorne 2014; Michalska-Smith 
et al. 2015; Neutel and Thorne 2016), has become an impor-
tant research focus in food web ecology. A maximum three-
species omnivorous loop weight stands out in relation to 
stability among the multitude of feedback loops, and the 
ratio of the sum weights of 3- to 2-link feedback loops a

3
∕a

2
 

has been proposed (Neutel and Thorne 2014), but no one has 
considered the correlation between long-link feedback loops 
and stability in empirical food webs.

We discovered that feedback metrics ∣ a
2n+1∕a2n ∣ , i.e., the 

ratio of the sums of (2n + 1)-link and 2n-link loop weights, 
have a good relation with stability (the real part of the domi-
nant eigenvalue) of community matrices. Why can the sum 
weight ratios a

3
∕a

2
, a

5
∕a

4
, a

7
∕a

6
 capture food web stabil-

ity? As we know, a
3
 is the total effect of classic omnivory 

loops (generated by intraguild predation module), which 
plays an important role in a food web (Holt and Huxel 2007; 
Milo et al. 2002; Arim and Marquet 2004; Bascompte and 
Melián 2005; Camacho et al. 2007; Paulau et al. 2015). If we 
delete one species in turn, three 2-link predator–prey feed-
back loops, whose total effect is measured by a

2
 , occur inde-

pendently (Fig. 1b). Consequently, the ratio a
3
∕a

2
 reflects 

coupling strength (Mougi and Kondoh 2016; Mougi 2018) 
which holds information about ecological network stability. 
Two 3-link loops can be thought as three 2-link loops and two 
5-link loops as five 4-link loops(Fig.  1b, d), since the loops 
without repeated species (Fig. 1c) called cycles in graph 
theory are insignificant to omnivorous loops (Fig. 1b, d). 
These loops have positive and negative weights which lead to 
instability and stability. For all n-link loops, their total weight 
is represent as an, so a3/a2 and a5/a4 show coupling strength.

The main body of a
5
 is a high-level omnivory module 

(McLeod and Leroux 2021; Wootton 2017) (left part of 
Fig. 1d). In the same way, if we delete one species in turn, 
five 4-link predator–prey feedback loops, whose total effect 
is measured by a

4
 , emerge independently (Fig. 1d). Informa-

tion about ecological network stability is also captured by 
coupling strength a

5
∕a

4
 . If the omnivory modules are more 

tightly coupled to their one-species-delete subloops, the 
food web is more stable, since a

4
 and a

6
 have no omnivory 

structure and fail to discover information about food web 
stability (Fig. 4b, c).

Expected changes in varying environmental conditions 
will be reflected in food web architecture; the dynamics 
of weights is a key character accounting for food web sta-
bility. The food web models are obviously not complete 
and miss some properties of species that might be impor-
tant for food web stability, i.e., switching. It is very valu-
able to study switching abilities of consumer for species 
migration. It depends on how we define “switching.” In the 
original literature on switching, it is meant that consumers 
have a “disproportionately” preference for the more abun-
dant prey. This does not change the architecture of the web 
(who eats whom) but also the fluxes. Such switching gen-
erates frequency-dependent selection in favor of the “rare” 
prey and hence promotes stability. The above will generate 
different community matrices, which is equal to add new 
food webs. In order to get the same effect, we randomly 
generate a Jacobian community matrix, an∕an−1 cannot 
predict stability regardless of shuffling the positive ele-
ments to the upper triangle and negative ones to the lower 
triangle (Supplementary Figs. S1 and S2), so there must be 
some conditions on the community matrix for our results. 
We performed eight randomization tests H1–H8 (Jacquet 
et al. 2016) to remove one or several properties of natural 
food webs and compute the stability of the permuted com-
munity matrices. H1–H8 randomization tests of Jacobian 
community matrices of the 127 Ecopath empirical marine 
ecosystems revealed that feedback metric |a

5
∕a

4
| almost 

played the same role as |a
3
∕a

2
| . Feedback metric |a

3
∕a

2
| 

had a better relation with stability than pairwise metric √
SV(1 + �) − E in H2, H4, and H8 tests, but a worse one 

in H5, H6, and H7 tests, and both seemed to have little cor-
relation with stablity in H1 and H3 tests (Supplementary 
Figs. S3 and S5). In the same way, |a

4
∕a

3
| could not cap-

ture the stability of food webs (Supplementary Fig. S4). 
In our simulation models, the R2 of a

3
∕a

2
, a

5
∕a

4
 , and a

7
∕a

6
 

were all about 0.45 (Fig. 6) which was less than values 
in 127 Ecopath natural food webs. One reason is that our 
simulation has more than 127 data points, and large data 
could reduce the p value. Another is that Jacobian com-
munity matrices of our simulation systems are directly 
and numerically computed at equilibrium points, while 
those of Ecopath ecosystems are manually calculated by 
stable state biomass (Eq. 2), which are more dependent on 
off-diagonal elements. Our randomization tests by remov-
ing one or several properties of natural food webs and a 
bioenergetic consumer-resource dynamic model with allo-
metric constraints (Domínguez-García et al. 2019) further 
confirmed these findings and gave more insights into the 
underlying mechanisms.

Early studies concentrating on 3- and 2-link feedback 
loops for long loops contained relatively many weak links 
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and were time-consuming to explore. Since we computed 
the total weight an of n-link feedback loops, there was 
no need to find every loop path and calculate its weight. 
Matrix multiplication and traces could be applied for easy 
computation (Eq. 4). Although the long-loop weight is 
weak, its number is always large enough to have a non-
negligible effect, and the ratio between two tiny numbers 
may be large. Therefore, long feedback loops may affect the 
stability of food webs. It is surprising that feedback levels 
∣ a

2n∕a2n−1 ∣ seem to have little correlation with stability; 
this needs further theoretical confirmation. A rough expla-
nation is based on theorems in linear algebra that the eigen-
values �((Γ

0
)n) of (Γ

0
)n are the n-th power of the eigen-

values of Γ
0
 , i.e., �((Γ

0
)n) = (�(Γ

0
))n , and since the trace 

of a matrix is the sum of all its eigenvalues, then we can 
obtain ∣ a

2n+1∕a2n ∣= |(�2n+1
1

+⋯ + �2n+1
s

)∕(�2n
1
+⋯ + �2n

s
)| , 

where �i is the i-th eigenvalue. So, if the dominant 
eigenvalue �

1
= �max far outweighs the others, then 

�
2n+1
1

+⋯ + �2n+1
s

 can be approximated by �2n+1
1

 , and 
∣ a

2n+1∕a2n ∣≈ |�
1
| = |�max| = �max  ,  since 𝜆max > 0 ,  on 

account of the absence of intraspecific strength (diagonal 
elements) in the community matrix. In the other case, if all 
eigenvalues center on their mean with small deviation and 
are almost equal, then we can also approximate ∣ a

2n+1∕a2n ∣ 
by the largest eigenvalue �max . But to find the pattern of 
interaction strength in the community matrix to ensure 
these conditions is a great challenge.
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