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Abstract
Promotion of soil organic carbon (SOC) sequestration as a potential solution to 
support climate change mitigation as well as more sustainable farming systems is 
rising steeply. As a result, voluntary carbon markets are rapidly expanding in which 
farmers get paid per tons of carbon dioxide sequestered. This market relies on 
protocols using simulation models to certify that increases in SOC stocks do indeed 
occur and generate tradable carbon credits. This puts tremendous pressure on SOC 
simulation models, which are now expected to provide the foundation for a reliable 
global carbon credit generation system. There exist an incredibly large number SOC 
simulation models which vary considerably in their applicability and sensitivity. 
This confronts practitioners and certificate providers with the critical challenge of 
selecting the models that are appropriate to the specific conditions in which they will 
be applied. Model validation and the context of said validation define the boundaries 
of applicability of the model, and are critical therefore to model selection. To date, 
however, guidelines for model selection are lacking. In this review, we present a 
comprehensive review of existing SOC models and a classification of their validation 
contexts. We found that most models are not validated (71%), and out of those 
validated, validation contexts are overall limited. Validation studies so far largely 
focus on the global north. Therefore, countries of the global south, the least emitting 
countries that are already facing the most drastic consequences of climate change, 
are the most poorly supported. In addition, we found a general lack of clear reporting, 
numerous flaws in model performance evaluation, and a poor overall coverage of 
land use types across countries and pedoclimatic conditions. We conclude that, 
to date, SOC simulation does not represent an adequate tool for globally ensuring 
effectiveness of SOC sequestration effort and ensuring reliable carbon crediting.
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1  |  INTRODUCTION

Soils are recognized as the second most essential resource to human 
life on the planet, after water (van Leeuwen et al., 2017). Soils are 
multifunctional and are crucial in supporting a broad range of eco-
system services, such as food, fibre and energy production, climate 
regulation, nutrient cycling and biodiversity protection (Kopittke 
et al., 2022). Regrettably, anthropogenic activities, and particularly 
agriculture, have degraded one third of soils globally, threatening the 
welfare of 3.2 billion people (Shukla et al., 2019). Indeed, the green 
revolution has allowed food production to sharply increase world-
wide from the middle of the 20th century, with a more than three-
fold increase in the last 50 years (www.fao.org/faostat). However, 
the focus on this single ecosystem service (food production) has 
come at the expense of others, jeopardizing soil multifunctionality 
and making agriculture the single largest driver of environmental 
change (Tilman et al., 2001).

Soil organic carbon (SOC) has long been considered to be the 
most important indicator of overall soil functioning (Bünemann 
et al., 2018) and is increasingly argued to be the pivotal element 
around which all soil functions revolve (Kopittke et al., 2022). 
Furthermore, soils represent a carbon store of global significance, 
containing more carbon than global vegetation and atmosphere com-
bined, and representing the equivalent of approximately 160 times 
the current annual anthropogenic CO2 emission rate (Friedlingstein 
et al., 2022). Based on these observations, it is commonly argued 
that a proportionally small increase in global carbon stocks would 
not only revert the soil degradation trend by rebuilding the central 
element of soil multifunctionality, but also contribute to mitigating 
climate change by removing significant concentrations of CO2 from 
the atmosphere (IPCC, 2022; Lal, 2004).

As a result, increasing organic carbon stocks in agricultural 
soils (SOC sequestration) has become a central strategy to transi-
tion agriculture towards more sustainable management and meet 
the tremendous challenges of ensuring food security, by producing 
enough food for a growing global population, while mitigating cli-
mate change. However, criticism exists around the actual mitigation 
potential of soils and there are trade- offs between SOC sequestra-
tion and food production (Moinet et al., 2023). In addition, the adop-
tion of greenhouse gas removal techniques can lead to deterrence or 
delay in emission reduction (a risk known as mitigation deterrence; 
McLaren, 2020). In spite of this, enthusiasm for SOC sequestration 
has never been higher, with numerous papers (Amelung et al., 2020; 
Chabbi et al., 2017; Derrien et al., 2023), and international initiatives 
(The ‘4p1000 initiative’ launched during the COP21 in 2015, the 
Koronivia workshops held during the COP23 in 2018) and reports 
(FAO, 2017, 2019) promoting the role of soil carbon sequestration in 
climate change mitigation.

Matching this societal demand, public and private sectors are 
seizing the opportunity to promote soil management for SOC se-
questration by paying farmers per tons of CO2 sequestered (or not 
emitted) in initiatives often referred to as ‘carbon farming’ (Paul 
et al., 2023). These initiatives allow farmers to register their fields 

with commercial certificate providers who certify the increase in 
SOC stocks. These certificates can then be sold as voluntary emis-
sion offsets on carbon markets, with schemes already existing at 
least in Europe, the United States and Australia (Paul et al., 2023).

Despite the lack of overall regulation and variation in over-
all methodologies and protocols (Oldfield et al., 2022), current 
standards for soil carbon certification, such as The GoldStandard 
Foundation's ‘Soil organic carbon framework methodology’ (2020), 
and the ‘Methodology for improved agricultural land management’ 
approved by Verra (2020), and the European ‘Framework for car-
bon removals’ (European Commission, 2021) agree on a few gen-
eral principles. The first and perhaps the most important principle is 
quantification. Accurately quantifying SOC changes over time (e.g. 
monitoring SOC) after a change in land management practices is in-
deed a condition without which the achievement of the desired out-
come (SOC sequestration) cannot be guaranteed. As summarized by 
Paul et al. (2023), three options exist for monitoring of SOC stocks, 
including: (1) direct measurements, (2) remote- sensing and (3) sim-
ulation models. Direct measurements are the most reliable method 
but are costly and time consuming for large areas. Remote- sensing is 
a potentially cost- effective way to monitor SOC over large areas in 
the topsoil, but precise estimations require specific conditions (bare 
soil conditions, low water content, uniform SOC content through the 
plough layer) and no studies to date have successfully detected SOC 
changes at the field scale (Paul et al., 2023). While simulation mod-
els are the cheapest and the most readily available option, they can 
result in large uncertainties if not appropriately applied. Yet, models 
are already in use by a number of certificate providers and in the 
most publicly available protocols (Oldfield et al., 2022).

Despite large uncertainties due to the complexity of the soil 
system, models simulating SOC stocks and their temporal changes 
(thereafter referred to as SOC models) have been described as the 
only economic SOC monitoring option (Campbell & Paustian, 2015; 
Lugato et al., 2021). The large number of existing SOC models (87 
were reported by Campbell & Paustian, 2015) testifies to both their 
importance and the complexity of modelling SOC stocks. Different 
models are suitable for different contexts (i.e. combination of land 
use and management practices, climate, soil texture, temporal and 
spatial scales), have different constraints or needs (data availability, 
objective of the simulation) and may be formulated using different 
types of processes, each with a specific number of parameters and 
input data requirements (Campbell & Paustian, 2015; Manzoni & 
Porporato, 2009; Smith et al., 1997).

Campbell and Paustian (2015) presented a comprehensive over-
view of SOC models, describing their application domain, scale of 
use and the type of processes they simulate. This review was critical 
in bringing SOC model development nearer its scientific and policy 
applications. More recently, Le Noe et al. (2023) published a review 
that provides information regarding decomposition kinetics, scope 
and validation procedures of a selection of SOC models, and shows 
their evolution across the last 90 years. Despite this effort, the 
large number of existing models and model versions today, which 
vary considerably in their applicability and sensitivity, still confronts 
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practitioners and certificate providers with the critical challenge of 
selecting the right model, appropriate to the specific conditions in 
which they are working. With respect to this, model validation (the 
process of assessing the prediction accuracy of a model by com-
paring simulation results with data obtained by observation and 
measurement of the real system (Le Noe et al., 2023) and the envi-
ronmental and land use context in which it has been performed are 
particularly critical, as they define the boundaries of applicability of 
the model.

Promoting global SOC sequestration as a carbon removal tech-
nology to mitigate climate change poses ethical challenges due to 
potential trade- offs with other sustainability objectives (Moinet 
et al., 2023) and mitigation deterrence mechanisms which jeopardize 
efforts to cut emissions (McLaren, 2020). Notwithstanding, carbon 
markets for soil certificates are growing and the most recent author-
itative assessments argue that climate goals will not be met without 
CO2 removals (IPCC, 2022). Accurate model simulations of changes 
in SOC stocks that are site and management specific are critical 
now more than ever before. However, clear guidelines are urgently 
needed to enable educated choices of models and, therefore, fair 
and realistic allocation of carbon certificates where they are applied.

In this article, we present a comprehensive review of the most 
updated versions of existing SOC models and a classification of their 
validation context. Our aim is to facilitate an appropriate choice of 
models for simulating SOC stocks and their changes over time. The 
complexity of the task, as described below, prevented the full de-
velopment of complete selection guidelines, but our work forms a 
basis for SOC model selection and is a necessary step towards the 
establishment of a standardized and reliable method for estimating 
SOC stocks and their changes.

2  | METHODS

To provide a comprehensive list of existing models simulating SOC 
stocks or SOC changes and their validation context, we developed 
a search methodology following three main steps, as described in 
the following subsections. Due to the complexity of model history 
and the inconsistent reporting of information, the search method 
evolved over time, which resulted in a complex search methodology 
requiring a range of search strings used in different search engines 
and correspondence with authors from relevant papers. The whole 
process is summarized in Figure 1.

Briefly here, we started by creating a list of named models pub-
lished between 1933 and March 2022 that had been used to esti-
mate SOC dynamics (Section 2.1). Second, as models often evolve 
over time in sometimes complex ways (Figure 2), we investigated 
the history of each model development and identified all relevant 
model entities for further research (Section 2.2). Third, we evalu-
ated whether these model entities had been validated following a 
list of criteria for adequate modelling validation, and then searched 
for a range of information defining the validation context, such as 
the countries, range of land use types and soil textures in which the 
model entities had been successfully validated, as well as the avail-
ability of the software or code for the model (Section 2.3).

2.1  | Model search and selection

The model search and selection started with the list of models 
compiled by Campbell and Paustian (2015) which reviewed models 
published between 1933 and 2009 (and reviewed earlier by Falloon 

F IGURE  1 Search and identification framework. String searches were mainly input into Web of Science Core Collection.
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4  |    GARSIA et al.

& Smith, 2000; Manzoni & Porporato, 2009; Stockmann et al., 2013). 
Campbell and Paustian (2015) identified 221 models and narrowed 
their review list by selecting only ‘named’ models in which SOC stocks 
were explicitly included in the model's first version formulation, and 
whose name had been cited in the title, key word or abstract of a 
scientific publication.

We drew inspiration from Campbell and Paustian's (2015) ap-
proach, but our approach differed in that we also included mod-
els whose updated versions (e.g. forms of the same models with a 
change in the equations and thus in the structure of the model) sim-
ulate SOC dynamics, even though the first version formulation does 
not. For each of them, we verified if there was at least one study, 
different from the publication paper of the model version indicated 
by Campbell and Paustian (2015), which adopted it for estimating 
SOC stocks and/or their changes. We did this by applying the search 
string 1 (Table S1) on Web of Science Core Collection (WoS- CC). We 
reviewed titles and abstracts of the resulting papers and kept only 
the model versions that had been used for SOC dynamic simulation 
and their publication paper for further analysis.

We also extended the search to include those models that were 
cited and applied for the simulation of SOC dynamics after the pub-
lication of Campbell and Paustian (2015). For this, we identified SOC 
models published or applied at least once between 2009 and March 
2022 using search string 2 (Table S1). This second search string re-
sulted in a comprehensive list of 1180 publications citing models 
and model versions. This list was further narrowed down through 
a review of the title and abstract: articles mentioning models that 
did not simulate SOC dynamics or models without a name were ex-
cluded from any further analyses. When the model's name or the 
model version referred to in the article was not in the list provided 

by Campbell and Paustian (2015), it was added to the list of models 
to further analyse, together with its related article(s).

2.2  | Model history and identification of 
model entities

Model development is rarely linear, with new model versions 
being developed as updates to the main models (defining the 
‘trunk’ of a model history tree, Figure 2) and ‘branching’ versions 
representing modifications of the trunk main or updated versions 
and may become new models or merge back to the main ones 
(Figure 2). Therefore, following identification of relevant models 
or model versions as described in Section 2.1, we set out to 
identify all relevant model entities, that is, the latest version for 
each branch and trunk of the model tree (Figure 2). This required 
that we identified the first model version (trunk 1), new versions 
of the model and whether these versions had been included or 
not in any model updates (Figure 2). The publications presenting 
the first version of each model in our list were either provided 
by Campbell and Paustian (2015) or were retrieved by an in- text 
reference search within the selected articles associated with the 
listed models all the way back to the original publication. For each 
initial model, we tracked model development by identifying all 
citations for the paper presenting the model, and searching within 
them those articles that mention the model's name and SOC 
as specified in search string 3 (Table S1). The resulting list was 
explored to identify branches of the model, updates to the model 
and whether branches had been included or not on those updates 
(Figure 2). If we were unable to identify the different model 

F IGURE  2 Hypothetical examples of (a) linear development history and (b) complex development history of soil organic carbon models. 
Each box represents one model version. Grey boxes represent model entities. Complex development histories often include several 
branches, some of which have not been included in updates to the main model or model trunk.
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    | 5GARSIA et al.

versions from the literature, we searched for them on the potential 
official model website (searching for the model's name together 
with the word soil carbon in Google Scholar as specified in search 
string 5 of Table S1). Outdated model versions were excluded 
from further analyses. Model ensembles, that is, combinations 
of two or more model versions whose output is aggregated, for 
example, by averaging, to obtain a better predictive performance 
than the one of the single models (Kotu & Deshpande, 2015), were 
also considered as model entities. Finally, we further selected the 
model entities by looking at the date of publication and at their 
further use for SOC dynamic simulation. If the model entity was 
published before 2016, we verified that there was at least one 
study, different from the model publication paper, which adopted 
that model entity for estimating SOC stock and/or their changes. 
To do so we used the option ‘refining the search’ in WoS- CC and 
applied string 3 (Table S1) to search within the list of papers citing 
the publication of each model entity. Moreover, we selected all 
model entities published after 2016, as the absence of citation 
in this case could reflect the young age of the publication rather 
than a lack of interest. Exceptions to this method of model entity 
identification are reported in Supporting Information, Methods.

2.3  |  Identifying whether and in which conditions 
models were validated

To identify the model validations of each single model entity, we 
checked within the model entity publication (or reference article) if 
a validation was performed for SOC stocks and/or their temporal 
changes. We then used WoS- CC to search for papers citing the 
model publication, and within those, we used the option ‘refining the 
search’ to identify papers that may have evaluated model fit using 
search string 4 (Table S1). Reference articles of some model entities 
are not indexed in WoS- CC. Thus, the search of validation papers for 
such models was performed on Google Scholar using search string 
5 (Table S1). Additionally, when evaluating the literature throughout 
the entire process, we followed up on claims of model validations 
using in- text citations. Once the validation articles were obtained, 
we inspected the text to verify the correctness of the validation 
procedure, and we reported the relevant information related to 
each validation in terms of both validation context and availability 
of the code/software and its language. If no validation was found 
for a certain model entity, we searched for the validation of the 
immediately preceding model version.

Although we did not systematically list all articles citing models 
and model versions (including validation papers), we estimate the 
final list of reviewed papers to near 4000.

In the light of the IPCC guidelines (Shukla et al., 2019), we con-
sidered a model to be ‘validated’ under the following circumstances:

• There was a clear distinction between the calibration and valida-
tion data.

• Validation data were not used for model initialization.

• The authors provided metrics indicative of the goodness of fit 
of the model simulation when compared to the validation set, 
and the metrics were interpreted to be indicative of a successful 
validation by the authors. This led to the exclusion of validation 
efforts that reported only a visual comparison between the ob-
served and simulated values. However, it is important to specify 
that we considered the simulated datapoints falling within the 
confidence interval of the measured data a sufficient statistical 
indicator of goodness of fit, but only if confidence intervals were 
obtained from measurement of replicates and not if they were 
calculated with the standard deviation of measurements covering 
different pedoclimatic conditions. Despite issues with the inter-
pretation (see discussion), we also deemed sufficient the use of 
linear regression between observed and simulated data, but only 
if the coefficient of determination (R2) or the correlation coeffi-
cient (r) were given together with a graph of the observed versus 
simulated data.

• Validation data were directly measured and were not the output 
from a different model nor the result of an interpolation, thus 
excluding gridded reconstructed databases, such as SoilGrids 
(Poggio et al., 2021), the Harmonized World Soil Database, or 
HWSD (Nachtergaele et al., 2012), the Northern Circumpolar 
Soil Carbon Database, or NCSCD (Hugelius et al., 2013) and the 
WISE30sec database (Batjes, 2015). This choice was made due to 
the uncertainty associated with the methods used to extrapolate 
information in these databases (Tifafi et al., 2018).

Then, for each model entity, we identified the environmental con-
text of validation and identified the software and code availability.

Specifically, for the validation of each model entity we recorded 
the conditions regarding:

• Ecosystem type, including cropland (upland herbaceous crops, 
paddy rice cropland, orchard systems), agroforestry systems, 
grassland, forest and wetlands. A specific category was used for 
validations that were done after a land use conversion.

• Location, consisting of nation and possibly (for large nations such 
as the United States, China and India) sub- national region or prov-
ince or state.

• Number of soil types or textures in which validation was applied. 
Due to the diversity of soil type and texture classifications, we 
report only whether the validation was done on one, two or more 
than two soil types or textures as identified by the authors.

• Soil depth.
• Temporal scale. The temporal scale of validation can be a single 

time estimate of SOC stock, or a SOC stock change over a certain 
period of time (the latter also referred to as ‘diachronic validation’ 
by Le Noe et al., 2023). The former occurs when the SOC stock 
of the model was initialized based on a steady- state assumption 
(spin- up) or with a value of SOC stock obtained from gridded da-
tabases and the simulated SOC stock is compared to one single 
measured value. The latter occurs when at least two measure-
ments of the SOC stock are made at different times, and at least 
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6  |    GARSIA et al.

the second one is compared with a simulated value. We also re-
port the time step of the model used to perform the validation.

• Spatial scale, including field scale, regional scale (sub- national or 
cross- national regions), national scale and global scale.

Within the publication for each model entity, we also searched 
for information about the availability of the code/software and its 
language. If no clear information was found, we searched for it on 
the potential official model website (found by searching in Google 
the model's name together with the word ‘soil carbon’). We reported 
this information when available and clear. If the information was not 
available, or if the link to the code indicated in the literature did not 
work, we report ‘unclear’ in the extended model classification table 
(Table S2).

3  |  RESULTS

A total of 221 model entities (hereinafter also referred to as models) 
were identified. According to our method, only 64 (29%) of the 
selected models were validated at least once for single time estimates 
of SOC stock and/or its changes overtime (Figure 3). The list of 
validated model entities, together with summarized information 
related to the model validation status are presented in Table 1. An 
extended version of the classification with detailed information about 
model validation contexts and detailed bibliographic information is 
presented in Table S2. The list of selected model entities that were 
not validated according to the criteria in Section 2.3 is presented in 
Table S3. Due to the very large number of citations (942), references 
for both validated (Table 1; Table S2) and non- validated (Table S3) 
models are provided as Supporting Information, as well as brief 
description of the model development history (Table S4).

Those 64 validated models largely cover cropland (44 models), 
forests (26) and grassland (26) systems (note that the number of 

models does not sum to 64 as some models are validated for multi-
ple land uses). Other land uses are severely under- represented com-
pared to these three main land use types (Figure 3). Most of the 64 
models (43), however, were validated for more than two soil types 
or textures (Figure 3). In some cases (2) the soil categorization was 
not clearly defined, which poses questions on the applicability of the 
models for SOC assessment.

Most strikingly, model validations are not evenly distributed 
across world regions, with Africa and the middle- east being ex-
tremely under- represented (Figure 4). Overall, with the exception 
of China, model validation is predominantly concentrated in North 
America, Western Europe and Australia.

Furthermore, we observed that about a third (21) of the mod-
els were validated only once, in a single country and for a unique 
land use type (Figure 5). In contrast, very few models were validated 
across multiple countries and land uses, and within those, even 
fewer were validated by multiple studies (Figure 5). For example, 
MILLENNIALv2 (Abramoff et al., 2022) was validated in 47 coun-
tries by a single study using a global dataset covering six land use 
types. Interestingly, the six land use types are relatively well distrib-
uted across countries, with several land use types validated in each 
country, except for Africa, where most countries have validations for 
only one land use type (except Senegal, Ivory Coast and Togo which 
have validations for three land use types; Figure S1). MEMS2 (Zhang 
et al., 2021) was also validated in a significant number of countries 
(27), but by only two studies and restricted to grasslands and for-
ests. YASSO07 (Tuomi et al., 2009) is the model whose validations 
cover the greatest number of countries (49), covering seven land use 
types across nine studies. It is interesting to note that one of the 
validations for YASSO07 and the validation for MILLENNIALv2 were 
done using the same global dataset and together constitute 100% of 
validations found for many of the African countries. Finally, by far, 
RothC26.3 (Coleman & Jenkinson, 1996) is the most studied model, 
with 25 studies validating the model and covering 22 countries. 

F IGURE  3 Pie charts summarizing some features of the models. From left to right: number of validated and not validated models, number 
of models validated for each land use (note that the number of models in this chart does not sum to 61 as some models are validated for 
multiple ecosystems), and number of models validated for one, two and more than two soil types.
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However, these numerous validations for RothC26.3 are restricted 
to cropland, grassland and forest. Century- v4 (Metherell et al., 1993) 
and EPICv1102 (Izaurralde et al., 2012) follow RothC26.3 in terms 
of number of validations with 12 and 14 validation studies re-
spectively. Century- v4 was validated for five land uses across 10 
countries. However, reporting of land use type within countries of 
validation was inconsistent between studies, so it is not possible to 
know systematically whether each country has one or several land 
uses validated within them. Generally, inconsistent reporting made 
it impossible to produce maps such as the one for MILLENNIALv2 
(Figure S1) detailing validated land use types within countries.

4  | DISCUSSION

As we introduced at the start of this paper, societal and scientific 
attention for SOC sequestration has risen steeply in recent years. 
The most recent IPCC report (IPCC, 2022) substantiated this trend 
by proposing SOC sequestration in agricultural soils as the third 
most potent option to support climate change mitigation working 
towards a 2030 timeline. As a result, voluntary carbon markets are 
rapidly expanding, and the majority rely on SOC simulation models 
for verification (Oldfield et al., 2022; Paul et al., 2023). This puts tre-
mendous pressure on simulation models, which are now expected to 
provide the foundation for a reliable global carbon credit generation 
system. Our attempt in this paper was to provide a comprehensive 
list of SOC simulation models, with their validation contexts, aimed 
at defining guidelines for users on model selection and paving the 
way to ensuring consistent, transparent, robust and fair carbon cred-
iting schemes. Our work fell short of such guidelines, and revealed a 
large gap between current state- of- the- art in model validation and 
the requirements imposed by the urgency and importance of this 
task.

Our main finding is that, despite a tremendous number of SOC 
models and hundreds of publications related to the validation and 
usage of such models, validation contexts are extremely limited. 
Particularly critical is that the main focus is on the global north (with 
a few exceptions), with severe under- representation of models suit-
able for ecosystems in Africa and the middle east, and to a lesser 
extent central and south America and Asia (except China). While 
countries of the global south overall hold a much smaller responsibil-
ity in past and current cumulated emissions, they are considered to 
hold an equal share in calculations of the global climate change mit-
igation potential of SOC sequestration (IPCC, 2022). It is therefore 
critically important that adequate tools are provided for inclusion of 
land managers from countries of the global south in carbon farming 
schemes. The current status of the SOC model validation means that 
appropriate models for simulation are not available for selection in 
these countries and we propose that there needs to be significant 
investment in both appropriate models and validated models for an 
equitable development of carbon markets globally.

Furthermore, we evidenced that a few models (RothC26.3, 
Coleman & Jenkinson, 1996; Century- v4, Metherell et al., 1993; and M
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10  |    GARSIA et al.

EPICv1102, Izaurralde et al., 2012) occupy most of the literature on 
the topic with numerous validations in many countries, but largely 
restricted to a few land use types. Here, it is important to stress 
that models validated multiple times, even across several countries, 
may have been validated multiple times in similar pedoclimatic con-
ditions and on the same land use. Therefore, although it increases 
their reliability, the number of validations should not be regarded 
directly as a proxy for the generality of these models. On the other 

hand, MILLENNIALv2 (Abramoff et al., 2022 and YASSO07 Tuomi 
et al., 2009), although validated relatively few times, cover larger 
geographical areas than other models, largely thanks to the use of a 
global SOC dataset for validation, and showed good coverage of land 
use types across countries.

In addition to those obvious limitations in terms of applicability, 
coverage and generalization of models, we found several further is-
sues regarding the reliability of reported model performance as well 

F IGURE  4 Map of model validations per country. The colour intensity represents the number of models that were validated within each 
country from 0 (white) to 20 (dark red). Multiple validations of a single model in a country are counted as one.

F IGURE  5 Stacked and textured histogram of the number of countries validated by individual models. Each box represents a model. 
For each model, the number of countries validated by the model is read on the x- axis, the number of publications validating the model is 
indicating by the box colour, and the number of land use types validated by the model is given by the texture.
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as issues concerning the search and identification of relevant model 
versions (regarding both our own methodology and external factors 
inherent to inconsistent information reporting in studies). Below, we 
described these issues and draw a set of preliminary guidelines and 
a set of warnings to help potential users of our list in Table S2 for 
adequate model identification.

4.1  |  Issues with validation

We found many instances of validation attempts which were lacking 
a clear distinction between the calibration and validation datasets 
(and sometimes partial or total overlap between them). We classified 
the validation attempts in the light of the IPCC guidelines (Shukla 
et al., 2019). In particular, we made a clear distinction between the 
term ‘validation’, also referred to as ‘performance evaluation’, which 
is the comparison of model output with data that was not used for 
calibration (i.e. independent data), and the term ‘verification’ which 
refers to the comparison of model output with the data that was 
used to calibrate the model (also referred to as ‘non- independent 
validation’ by Le Noe et al., 2023). As examples of rejected valida-
tion attempts, we give Franko et al. (2011) and Riggers et al. (2019) 
which initialized the SOC pool by giving to it the value that best 
fitted the SOC dataset on which the model was ‘validated’ (non- 
independently), inflating the performance as compared to a SOC 
simulation in which future SOC values are unknown. Our results are 
in line with those of Le Noe et al. (2023), who, despite applying a 
different methodology for their model selection and review found a 
lack of ‘independent validations’.

We also found many instances of lack of clarity about the ini-
tialization procedure. It should be made clear whether initial SOC 
values (total and/or fractionated) are quantified using real measure-
ments or instead evaluated with a spin- up procedure, which relies 
on the assumption that the SOC content has reached a steady state.

In general, we recommend the use of the IPCC guidelines for 
model validation (see also Moriasi et al., 2007), and while not the 
focus of this study, we underline the importance of the calibration 
procedure to model performance. See for example the efforts by 
Luo and Schuur (2020) or Tao et al. (2020) to refine parametrization 
and calibration procedures that lead to better model performance, 
such as allowing for time and space heterogeneity of parameters, 
or machine learning techniques to infer parameters. We also call 
for efforts to try to identify and quantify the different sources of 
error/uncertainty from the modelling, calibration and initialization 
assumptions and choices, as well as from the measurements (see 
some guidelines in Refsgaard, 1997; Refsgaard et al., 2007; Thornton 
& Rosenbloom, 2005). We also note that, as underlined by Le Noe 
et al. (2023), ‘diachronic validation’ which makes use of time- series 
data of SOC stocks allows for a more precise and trust- worthy 
evaluation of the model's performance as compared to a validation 
performed with measurements taken at a single point in time, be-
cause it reduces possible errors on initial SOC values and allows 
to reliably predict temporal trends. Lastly, we want to point to two 

additional specific issues encountered when assessing model valida-
tion performance.

The first issue concerns the use of linear regressions in validation 
attempts. We often observed the use of a linear regression in model 
performance estimation, where the simulated (herein called Pi for 
predicted) values given by the model are taken as an explanatory 
variable for the measured (herein called Oi for observed) values. This 
can indeed bring useful information about the overall performance 
of the model. However, we found numerous examples of poor in-
terpretations of such regressions in the context of model validation. 
A linear regression allows for a rapid visualization of possible sys-
tematic (non- zero intercept) bias and magnitude- dependent (slope 
different than one) bias. However, the predictions resulting from the 
linear regression Preg,i = intercept + slope × Pi do not have, unlike Pi, 
any clear mechanistic/biological interpretation. As a consequence, 
it is not correct to interpret the coefficient of determination R2 of 
the linear regression as a measure of the (mechanistic) model perfor-
mance, nor is it correct to say that the model explains R2 per cent of 
the variation of the data, when in fact R2 measures how well Preg,i fits 
the observed data (in other words it evaluates the performance of 
the linear regression). Ťupek et al. (2016) and Zhang et al. (2020) are 
good examples of this issue. In both cases, the fitted model did not 
perform very well, as can be seen by how the slope of the linear re-
gression between the Pi and Oi values deviates from the 1:1 line. The 
authors, however, incorrectly interpreted the high R2 from the linear 
regression (which indicates that the regression line fits the observed 
data well) as the fraction of variance explained by the mechanistic 
models. To achieve the aim of evaluating the model performance, 
one should instead use the Nash– Sutcliffe efficiency, which mea-
sures how well the predicted values Pi (i.e. the model) fits the ob-
served data, in the exact same way as R2 measures how well Preg,i 
fits the observed data. Note that Ťupek et al. (2016) still complied 
with the criteria listed in Section 2.3 and was deemed a correct val-
idation. However, in Zhang et al. (2020), the models were calibrated 
using the validation dataset and the paper therefore did not qual-
ify as a correct validation and was excluded from our classification 
(Table S2).

The other issue that we deemed worth further explaining re-
lates to cases in which authors compare, not the actual simulated 
and observed values, but rather mean values obtained from the 
aggregation of data from contrasting pedoclimatic conditions and 
mean values of the corresponding simulated values. Indeed, by in-
cluding data covering a broad range of pedoclimatic conditions, one 
can increase the variability in the data, and by doing so, increase 
the chance that the confidence intervals of the observations and the 
simulations overlap. Moreover, comparing the means in fact comes 
down to performing a linear regression with only an intercept term 
forcing the slope to zero. Ostrogović Sever et al. (2021) provide 
a good example of a validation we discarded due to this issue. As 
the authors of this article noted themselves, while scatterplots of 
the observed and predicted values do not point towards a good fit 
(Ostrogović Sever et al., 2021; Figure 4), aggregating these points to 
represent the means and standard deviations of particular land use 
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12  |    GARSIA et al.

types allow us to make the conclusion that the means of the obser-
vations do not differ significantly from the simulations (Ostrogović 
Sever et al., 2021; Figure 2). Nevertheless, if one has access to the 
confidence intervals calculated with the standard deviation SDi of 
measurement replicates for each datapoint i (as opposed to SD of 
data with heterogeneous pedoclimatic conditions), we recommend 
the comparison between RMSE and RMSE95 (which is the root mean 
square error expected if the observations are equal to the simula-
tions plus normally distributed errors with standard deviations SDi) 
as explained in Smith et al. (1997).

4.2  |  Issues related to the search and 
identification of model entities

Tracing model histories and identifying all relevant model entities 
proved very difficult, largely due to inconsistent and sometimes 
unclear reporting. In addition, tracking model development in the 
cases in which the model code was open access was also difficult, as 
model development could, in those cases, take place outside of the 
control of the authors of the first trunk. It is therefore likely that we 
missed a few relevant validations for some model entities. As for any 
attempt of a literature review, one simply cannot browse a complete 
set of relevant publications, as no database exists that exhaustively 
reports all publications related to a certain field. In addition, it is not 
guaranteed that all publications of interest are returned by a given 
keyword search string.

In addition, the validation search was limited by the complex-
ity of model development histories found in the literature and by 
our choice to search exclusively for the validations of the identified 
model entities (last model version of both the trunk and possible 
branches), and not of their previous versions. Indeed, it is possible 
that the validations of previous model versions are also relevant for 
the last version. This occurs when new versions bring modifications 
that do not impact SOC dynamics. This can be the case when the 
code is rewritten, when the developers add modules which use the 
outputs of SOC dynamics without affecting them (i.e. such as a car-
bon accounting module), or when they add a process which is specific 
to a certain land use type or crop which does not affect the dynam-
ics of the land use type and crop already simulated in the model. 
Besides, the model development history includes intricate and non- 
explicit branching and merging of versions which brings additional 
difficulty to identifying the model versions whose validations are 
relevant for the selected model entities. Moreover, modifications to 
the model that impact the simulated SOC dynamics seem to be more 
frequent than modifications not affecting SOC dynamics. For this 
reason, we think that the number of missed model validations should 
be reasonably low. Overall, we acknowledge a crucial need for sys-
tematic tracking of the different versions of the model as well as of 
the model validations. This would make it easier to update our classi-
fication table over time, thus allowing an informed choice of model. 
Finally, we urge the provision of clear information on the availability 
of the model code or model software, conditions of use and updated 

links to the download page, all information that is often not provided 
in the relevant model literature or model documentation.

4.3  | Model choice and application

Should actors/stakeholders of the carbon farming landscape use 
the classification provided in this work, we urge them to take into 
consideration the limits of this work. To be applied in certain condi-
tions, a model should have been validated for the same conditions in 
regard to all validation aspects (land use type, climate, soil type/tex-
ture and depth). However, a few issues arise when trying to precisely 
identify from our classification the set of experimental contexts for 
which a model was validated, partly due to the issues described in 
Section 4.2.

First, we did not report the climatic region or climate informa-
tion. The reason is those are inconsistently reported in the different 
papers, with some model validations directly reporting the climate 
characteristics of the validation sites (annual precipitation and 
mean temperature) while others mention climatic zones or climate 
regions based on different climate classifications. It is still possible 
to identify, within the classification in Table 1, which model entities 
are applicable to a given climate based on the reported validation 
location (country and possibly sub- national region/state/province). 
To this mean, one can use climate maps such as the Köppen– Geiger 
climate map (Beck et al., 2018) to identify all locations around the 
world which are characterized by the climate type of interest, and 
then search within the classification to identify the model entities 
validated in the corresponding areas. Once this is done, one needs to 
narrow down the list of possible models based on other pedoclimatic 
conditions.

Unfortunately, experimental conditions described in the valida-
tion papers are often given for the globality of the validated dataset, 
and it is not always possible to establish a correspondence between 
experimental conditions and individual samples. As an example, if a 
paper states that the data cover two soil types S1 and S2, two coun-
tries C1 and C2 and two land use types L1 and L2, we do not nec-
essarily know which of the eight pedoclimatic combinations S × C × L 
are effectively represented in the data and thus are considered to be 
validated. In a number of cases, studies used data that cover broad 
ranges of pedoclimatic conditions and give statistical indicators of 
the goodness of fit for the whole dataset. In such cases it is not guar-
anteed that the model performs well when looking at a subset of the 
data corresponding to specific experimental conditions (see Plaza 
et al., 2012 for an illustration of such a situation).

We also underline that the validations reported for a certain 
model regard the specific combination of model structure and cal-
ibration (i.e. the set of parameter values used in the validation run) 
rather than the model alone. Our classification table reports the val-
idations performed for each model, but no information is given on 
the calibration procedure. Therefore, when applying a certain model 
for a simulation, after verifying that it was validated for the specific 
context of interest, it is necessary to read the original validation 
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    | 13GARSIA et al.

paper to determine which (and how) parameters were calibrated and 
use the same ones.

The result of a model validation (intended as reliability/accuracy 
of the model output) is a crucial factor that should be also considered 
when choosing a model. However, there exists a variety of statistical 
tools that can be applied as quantitative measure of the goodness of 
fit between simulated and measured data, all coming with their own 
advantages and drawbacks. The absence of a unique and one- fits- 
all protocol is reflected in the literature encountered, and validation 
papers usually do not give a quantitative and systematic measure 
of the model performance. In addition, the evaluation of the good-
ness of fit is partly subjective: there is no prescribed threshold above 
which a statistical indicator guarantees that a model validation was 
successful (the same holds for the number of samples). Thus, we de-
cided not to try to classify ‘good’ or ‘bad’ validations, but rather leave 
it to the users to decide for each case if the method and accuracy of 
the validation fits their requirements. We refer back to Section 4.1 
as a reminder of a few common flaws found in the reviewed studies 
in terms of model performance assessment.

These considerations limit our ability to make model recommen-
dations for users willing to estimate the SOC in a specific pedocli-
matic context (or estimate the SOC sink potential of specific land 
management practices). Instead of a ready- to- go model selection 
from our classification, one needs to check in the table which mod-
els have been validated for the desired conditions, and then refer to 
the corresponding validations and further carefully verify that the 
paper actually validates the model in the desired context, with the 
required accuracy (whose level is up to the user's choice), and check 
which calibration is to be used. If two or more models are selected 
after this step, we suggest to give a higher level of confidence to the 
model with the highest variety of validated experimental conditions. 
Indeed, it is likely that any new experimental context will differ from 
previously validated conditions regarding detailed and hard to iden-
tify parameters such as localized climate variations, slightly differ-
ent land use/management, difference in microbial communities or in 
land use histories and levels of ecological succession. A model with 
a greater variety of validated contexts is then more likely to make 
accurate prediction in novel experimental conditions.

5  |  CONCLUSIONS

The societal pressure and hope placed on SOC simulation models 
to provide the foundation for fair, consistent, transparent and ro-
bust carbon crediting schemes is enormous. We made great efforts 
to comprehensively report up to date versions of SOC models and 
their validation contexts, and to offer guidelines for selecting mod-
els appropriate to specific pedoclimatic conditions, land use types, 
temporal and spatial scales. The general lack of clear reporting, nu-
merous flaws in model performance evaluation and the poor overall 
coverage of land use types across countries and pedoclimatic con-
ditions prevented us from providing such guidelines. To date, SOC 
simulation does not represent an adequate tool for globally ensuring 

effectiveness of SOC sequestration efforts and ensuring reliable 
carbon crediting. Most critically, countries of the global south, par-
ticularly in Africa, the least emitting countries that are already facing 
the most drastic consequences of climate change, are, here again, 
the most poorly supported. Mitigation deterrence mechanisms and 
context specific trade- offs between SOC sequestration and other 
sustainability objectives already pose large challenges to effective 
use of SOC sequestration as a tool to support sustainability, and 
even question its relevance at global scale (McLaren, 2020; Moinet 
et al., 2023). If we are, as society, to promote SOC sequestration 
based on carbon crediting schemes nonetheless, it is critically urgent 
that the scientific community and society at large invest massively in 
supporting its implementation appropriately, everywhere.
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