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Summary

Droughts can have wide-spread environmental, societal and financial impacts. Climate
change and related amplified land-atmosphere feedbacks intensify the hydrological cycle on
a global scale. This makes securing freshwater and food production for society increasingly
difficult. Accurate drought monitoring and prediction strategies are therefore more and
more important. Monitoring drought events is complicated as they present themselves
in different parts of the water cycle (i.e. soil moisture, groundwater, surface water) in
different phases of the event. When a drought affects soil moisture levels, it is called a
soil moisture drought. Soil moisture is the direct link between precipitation and vegetation
functioning and takes a central role in the water cycle and climate system, with important
positive feedback cycles that can influence drought occurrence and severity.

Because of the central role of soil moisture in the water cycle, accurate soil moisture
estimates at a high spatial resolution can improve numerical weather prediction, serve
applications such as precision agriculture, and enhance monitoring and prediction of hydro-
meteorological disasters, such as droughts. For optimal performance of these systems,
accurate gridded soil moisture observations are needed, ideally at the same spatiotemporal
resolution as that of the model in question. Several global or continental gridded soil
moisture datasets are currently available. However, their spatial resolution does not yet
allow for soil moisture drought monitoring at the scale of individual fields or even at the
sub-field scale (Chapter 2). The work done for this thesis therefore had two main aims.
First, to obtain accurate satellite soil moisture observations at a high resolution (Chapters
3 and 4), and second, to determine the relevance and potential of state-of-the-art soil
moisture data for drought monitoring (Chapters 2 and 5).

Soil moisture droughts often affect vegetation, so they are commonly referred to as agri-
cultural droughts. However, the link between soil moisture drought and its impact on
vegetation is nonlinear. During short soil moisture drought events, vegetation is not al-
ways negatively affected and sometimes even thrives because the weather conditions that
are associated with droughts favour vegetation growth. In Chapter 2 ESA CCI surface soil
moisture data and MODIS NDVI vegetation greenness data were used to test whether asyn-
chronies and discrepancies occurred between major European soil moisture and vegetation
droughts. A clear delay was observed between the onset of soil moisture and vegetation
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drought, with correlations generally peaking at the end of the growing season. At lower
latitudes, correlations peaked earlier in the season, likely due to an earlier onset of water
limited conditions. In some cases, vegetation showed a positive anomaly, even during soil
moisture drought events. That suggests that soil moisture and vegetation droughts should
be considered separately.

In Chapter 3 a first step towards high resolution soil moisture data was taken. Active
microwave sensors can provide backscatter data on a 20 m spatial resolution. It is common
practice to multilook this backscatter data prior to retrieving soil moisture to mitigate
speckle noise. While such preprocessing indeed reduces speckle, it also decreases the
spatial resolution and removes possibly useful high resolution information from the data.
It was hypothesised that using higher resolution backscatter data for soil moisture retrieval
would result in a higher retrieval accuracy. A high-resolution field study was combined
with a synthetic experiment to show that calculating soil moisture prior to multilooking
to the final target resolution (calculate-then-average) has substantial advantages over the
average-then-calculate approach. Currently, the latter strategy is most often applied in
soil moisture studies, mainly due to its computational advantage compared to the former
approach. By making use of a higher source resolution backscatter data than the target
resolution, soil moisture retrieval accuracy over an agricultural field was improved.

The calculate-then-average retrieval strategy was used in Chapter 4 to explore the potential
of active microwave data to monitor soil moisture at high spatial resolutions. Sentinel-1
C-band SAR data at a 20 m resolution was inverted to soil moisture at six spatial resolu-
tions ranging from 20 to 120 m. This was compared to a closely spaced (20 m) in situ
dataset collected on a non-irrigated agricultural field in the Southeast of Luxembourg. The
comparison showed that soil moisture was accurately estimated at spatial resolutions of
60 m and coarser. At 60 m, sub-field variations in soil moisture were still detected. Spatial
correlation was limited by the absence of soil moisture variability within the field. These
results indicate that high spatial resolution soil moisture estimates from Sentinel-1 data can
be valuable for monitoring temporal soil moisture variations within agricultural fields.

While it was now clear that soil moisture data could be retrieved on sub-field scales, their
relevance for drought monitoring remained to be studied. To that end, the 60 m dataset
that was used in Chapter 4, was extended to cover Luxembourg. In Chapter 5, two
additional soil moisture datasets over Luxembourg were used: the vanderSat dataset with
a 100 m spatial resolution and the Copernicus dataset with a 1 km resolution. Monthly
anomalies of the three satellite retrieved soil moisture datasets were evaluated with those of
reference in situ soil moisture and precipitation. An analysis on the national scale showed
that the Copernicus data most often correctly identified a drought observed in the in situ
data. Compared to precipitation anomalies, the 60 m dataset also performed well, while
the 100 m data showed lower correlations. On smaller scales, both the Copernicus and
vanderSat datasets showed spatially constant anomalies. Only the 60 m dataset could
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distinguish local soil moisture variations. Hence, while Copernicus data allowed for soil
moisture drought monitoring on the national scale, higher resolution data is needed to
adequately monitor droughts on local scales.

Although this research showed that high resolution soil moisture retrieval for drought
monitoring currently still has its limitations, its potential was also shown. The data can
already be useful on bare soil fields for sub-field scale drought monitoring and mitigation.
That means that the data can be used for precision agriculture purposes. This is especially
useful when soil moisture data is combined with other types of (remote sensing) data
that can provide information on vegetation functioning. For an efficient drought mitigation
strategy, all these data do have to be available to farmers in near-real time.

Future work can focus on further improving the signal filtering and data processing to
increase the accuracy of high resolution soil moisture products and to make the data
useful for a larger range of field and climatic conditions. Improved soil moisture data can
then help local drought mitigation and alleviation strategies as well as regional to national
water management strategies. The continuation of the Sentinel-1 constellation and planned
missions such as ROSE-L can further improve temporal resolution, retrieval accuracy and
penetration depth. The resulting longer data availability will also make the data increasingly
suitable for drought monitoring efforts.





Samenvatting

Droogtes kunnen grote ecologische, maatschappelijke en financiële gevolgen hebben. Kli-
maatverandering, en daaraan gerelateerde terugkoppelingen tussen land en atmosfeer,
intensiveren de hydrologische cyclus op globale schaal. Dit maakt het veiligstellen van
zoet water voor de samenleving steeds moeilijker. Nauwkeurige droogtewaarnemingen en
droogtevoorspellingen worden daarom steeds belangrijker. Het monitoren van droogtes is
ingewikkeld, omdat ze zich voordoen in verschillende delen van de waterkringloop (bijvoor-
beeld bodemvocht, grondwater, of oppervlaktewater) in verschillende fases van de droogte.
Wanneer een droogte plaatsvindt in het bodemvocht, noemen we dit een bodemvocht-
droogte. Bodemvocht speelt een centrale rol in de watercyclus: het is het directe verband
tussen neerslag en het functioneren van de vegetatie. Bovendien is bodemvocht onderdeel
van belangrijke positieve feedbackcycli die invloed hebben op zowel het optreden, als de
ernst van droogtes.

Gezien de centrale rol van bodemvocht in de watercyclus, hebben nauwkeurige
bodemvochtschattingen op een hoge ruimtelijke resolutie verscheidende toepassingen.
Zij kunnen numerieke weersvoorspelling verbeteren, toepassingen zoals precisielandbouw
dienen en waarnemingen en voorspellingen van hydrometeorologische rampen, zoals
droogtes, verbeteren. Voor optimale prestaties van deze systemen zijn dus nauwkeurige
gerasterde bodemvochtwaarnemingen nodig, idealiter met dezelfde ruimtelijke en tem-
porele resolutie. Er zijn momenteel verschillende continentale en zelfs wereldwijde geras-
terde datasets voor bodemvocht beschikbaar. Hun ruimtelijke resolutie maakt het echter
nog niet mogelijk om bodemvocht te monitoren op de schaal van individuele percelen of
zelfs op nog kleinere schaal (Hoofdstuk 2). Het werk voor dit proefschrift had daarom
twee hoofddoelen. Ten eerste het verkrijgen van nauwkeurige satellietwaarnemingen van
bodemvocht op een hoge resolutie (Hoofdstukken 3 en 4), en ten tweede het vaststellen
van de relevantie van moderne bodemvochtmetingen voor droogtewaarnemingen (Hoofd-
stukken 2 en 5).

Bodemvochtdroogtes beı̈nvloeden vaak de vegetatie en worden om die reden ook wel
landbouwdroogtes genoemd. Het verband tussen bodemvochtdroogtes en de werking van
vegetatie is echter niet-lineair. Tijdens korte bodemvochtdroogtes wordt vegetatie niet altijd
negatief beı̈nvloed. Sterker nog, vegetatie kan zelfs goed gedijen in zulke omstandigheden.
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In Hoofdstuk 2 gebruikten we daarom oppervlakkige ESA CCI bodemvochtdata en MODIS
NDVI vegetatiedata om te testen of er grote verschillen tussen de twee optraden tijdens
recente Europese droogtes. Er was een duidelijke vertraging zichtbaar tussen het begin
van bodemvochtdroogtes en het begin van vegetatiedroogtes. Correlaties tussen de twee
droogtes bereikten in het algemeen hun piek aan het einde van het groeiseizoen. Op
lagere breedtegraden waren correlaties al eerder in het seizoen op hun hoogst, waarschijn-
lijk als gevolg van een eerder begin van watergelimiteerde omstandigheden. In sommige
gevallen vertoonde de vegetatie een positieve anomalie, zelfs tijdens droge periodes van
bodemvocht. We pleiten er daarom voor om bodemvocht- en vegetatiedroogtes afzonder-
lijk te beschouwen, in plaats van de gezamenlijke term landbouwdroogtes.

In Hoofdstuk 3 zetten we een eerste stap richting hoge resolutie bodemvochtdata. Actieve
microgolfsensoren kunnen weerkaatsingsdata leveren met een ruimtelijke resolutie van
20 m. Om ruis in de data te verminderen is het gebruikelijk om deze data ruimtelijk te
middellen alvorens deze om te rekenen tot bodemvocht. Hoewel een dergelijke voorbe-
werking inderdaad ruis vermindert, verlaagt het ook de ruimtelijke resolutie en verwijdert
het daarmee mogelijk nuttige informatie uit de data. We veronderstelden daarom dat
het gebruik van weerkaatsingsdata met een hogere resolutie voor de omrekening naar
bodemvocht zou resulteren in een hogere nauwkeurigheid van de bodemvochtschattin-
gen. Om dat te testen, hebben we een veldexperiment met hoge resolutie gecombineerd
met een synthetisch experiment. Dit toonde aan dat het berekenen van bodemvocht
voorafgaand aan het ruimtelijk middellen substantiële voordelen heeft ten opzichte van de
omgekeerde benadering. Momenteel wordt de tweede strategie het vaakst toegepast in
bodemvochtstudies, voornamelijk vanwege het rekenvoordeel in vergelijking met de eerste
benadering. We laten zien dat het gebruik van weerkaatsingsdata met een hogere resolutie
dan de doelresolutie de nauwkeurigheid van bodemvochtwaarnemingen verbetert.

De strategie die het beste werkte (berekenen en daarna ruimtelijk middellen) werd vervol-
gens toegepast in Hoofdstuk 4 om te onderzoeken wat het potentieel van actieve micro-
golfgegevens is voor het meten van bodemvocht op hoge ruimtelijke resoluties. Sentinel-1
C-band SAR data met een resolutie van 20 m werd omgerekend naar bodemvochtdata
met zes ruimtelijke resoluties (variërend van 20 tot 120 m). Deze data werd vergeleken
met een hoge resolutie (20 m) velddataset, die was verzameld op een ongeı̈rrigeerd land-
bouwperceel in het zuidoosten van Luxemburg. De vergelijking liet zien dat bodemvocht
nauwkeurig kon worden gemeten bij ruimtelijke resoluties van 60 m en grover. Op 60 m
was de temporele correlatie 0,67 en er konden daarnaast nog steeds lokale variaties in
bodemvocht worden waargenomen. Ruimtelijke correlatie werd gelimiteerd door een
matige ruimtelijke variabiliteit in bodemvocht op het perceel. Deze resultaten gaven aan
dat bodemvochtwaarnemingen met een hoge ruimtelijke resolutie op basis van Sentinel-1
data waardevol kunnen zijn voor het monitoren van temporele bodemvochtvariaties in
landbouwgebieden.
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Na het bestuderen van de mogelijkheid om bodemvocht te meten op schalen kleiner dan
de veldschaal, werd hun relevantie voor droogtemonitoring bestudeerd. Daartoe werd de
dataset van 60 m die in hoofdstuk 4 werd gebruikt, uitgebreid tot aan de Luxemburgse
buitengrenzen. In Hoofdstuk 5 maakten we daarnaast gebruik van de unieke beschik-
baarheid van twee extra bodemvochtdatasets over Luxemburg: de vanderSat-dataset met
een ruimtelijke resolutie van 100 m en de Copernicus-dataset met een ruimtelijke resolu-
tie van 1 km. Maandelijkse anomalieën van de drie satellietbodemvochtdatasets werden
geëvalueerd met die van referentie in situ bodemvocht en in situ neerslag. Een analyse
op nationale schaal toonde aan dat Copernicus data het vaakst correct een droogte iden-
tificeerde die werd waargenomen in de in situ data. Vergeleken met neerslaganomalieën,
presteerde de 60 m dataset ook goed, terwijl de 100 m data lagere correlaties liet zien.
Op kleinere schaal vertoonden zowel de datasets van Copernicus als vanderSat ruimtelijk
constante anomalieën. Alleen de 60 m dataset kon lokale variaties in bodemvocht onder-
scheiden. Daaruit concludeerden we dat, hoewel de gegevens van Copernicus het mogelijk
maakten om droogte in de bodem op nationale schaal te monitoren, gegevens met een
hogere resolutie nodig zijn om droogte op lokale schaal adequaat waar te nemen.

Hoewel dit onderzoek aantoonde dat hoge resolutie bodemvochtdata voor droogtewaarne-
mingen op dit moment nog zijn beperkingen heeft, hebben we ook zijn potentieel laten
zien. Op kale gronden kan de data kan al nuttig zijn voor droogtewaarnemingen en
-mitigatie op schalen kleiner dan landbouwpercelen. Dat betekent dat de gegevens kun-
nen worden gebruikt voor precisielandbouwdoeleinden. Dit is vooral praktisch wanneer
bodemvochtgegevens worden gecombineerd met andere soorten (satelliet)gegevens die
informatie kunnen geven over het functioneren van de vegetatie. Bovendien moeten, voor
efficiënte droogtemitigatiestrategieën, al deze gegevens kort na de meting beschikbaar zijn
voor boeren.

Toekomstig werk kan zich richten op het verder verbeteren van het filteren en verwerken
van weerkaatsingsdata, ten eerste om de nauwkeurigheid van hoge resolutie bodemvocht-
producten te vergroten en ten tweede om de gegevens bruikbaar te maken voor een
groter aantal veld- en klimatologische omstandigheden. Verbeterde bodemvochtgegevens
kunnen dan verder helpen bij het lokaal beperken en verlichten van droogte, evenals bij
regionaal en nationaal waterbeheer. Bovendien kunnen de voortzetting van de Sentinel-1
metingen en geplande missies zoals ROSE-L de temporele resolutie, de nauwkeurigheid
van de data en de penetratiediepte verder verbeteren. Een langere databeschikbaarheid zal
de gegevens daarnaast steeds geschikter maken voor droogtemonitoring.
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2 Introduction

1.1 Drought: concept and definition

A drought is often referred to as a "creeping disaster": it is slow in nature, but it can have
wide-spread environmental, societal and financial impacts (Naumann et al., 2021; Stahl
et al., 2016). Over the past two decades, droughts have often plagued Europe (Bakke et al.,
2020; Hanel et al., 2018; Ionita and Nagavciuc, 2021; Laaha et al., 2017). The 2003 heat
wave and drought over Europe caused increased mortality, forest dieback, and agricultural
losses amounted to at least 8.7 billion Euros (Buras et al., 2020; COPA-COGECA, 2003;
European Commission, 2007). The 2018–2019 drought event was record-breaking and
covered more than 50% of the European continent in extreme drought conditions (Hari
et al., 2020). In some places this multi-year drought even lasted until 2020 (van der Wiel
et al., 2023). In August 2022, 60% of the European continent was under a drought alert yet
again (Toreti et al., 2022).

Unlike a flood, that can be seen as an event with a fixed threshold (i.e. flooding or no
flooding, water level exceeding the height of the river bank or dike), a drought is not
directly linked to a visible threshold. Instead, a drought is always defined relative to a
threshold based on "normal" conditions. These "normal" conditions are different for each
climate and each season, so the threshold for a drought varies in both time and space.
The reason for this approach is that the impacts of dry spells are very different in different
climates and different seasons. For instance, a desert is in an almost permanent state of
little precipitation, so the impact of a dry spell on the ecosystem will be limited. A similarly
long dry spell in a humid climate will have very different impacts. The same concept holds
for seasonality: a dry spell in the wet season can have a larger impact than a dry spell in
the dry season.

Many definitions of droughts exist, and at least as many indices to quantify them (Heim
Jr., 2002; Zargar et al., 2011). In this thesis, the drought definition by Tallaksen and
van Lanen (2004) is used: a sustained period of below-normal water availability. Both
parts of this definition play an important role as to how droughts are characterised and
quantified. Firstly, a drought only occurs when water availability to the ecosystem is low
for a sustained period. This indicates that a system is not immediately in drought if it does
not rain for a week. Instead, most large scale drought indices use moving averages or
monthly timescales, to dampen the natural temporal variability in hydrological variables
(Heim Jr., 2002). Secondly, below-normal water availability indicates that current water
availability should be compared relative to conditions in the same time of year over the past
climatic reference period (normally 30 years). A dry spell in the desert is now considered
"normal" and thus not necessarily a drought, whereas a below-normal water availability in
any climate is in fact a drought, and adequate measures can be taken.

Droughts can be further categorised based on the part of the water cycle that suffers from
a below-normal water availability (van Loon, 2015). A precipitation deficit, sometimes
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combined with increased evapotranspiration, is referred to as a meteorological drought.
Similarly, a soil moisture drought indicates below-normal soil moisture levels. Because
this second type of drought often affects vegetation, it is also often referred to as an
agricultural drought. The third type of drought is a hydrological drought, where surface and
subsurface water bodies experience below-normal water levels. If meteorological droughts
are severe or prolonged, they can propagate into a soil moisture drought, and further
into a hydrological drought (van Loon, 2015). Although droughts manifest themselves
in the environment, their impacts include immense social, environmental, and economic
ramifications (e.g. Nilson, 2014). For that reason, a fourth type of drought, socio-
economic, is often also considered. This encompasses the impact of natural droughts on
society and economy.

1.2 Droughts in a changing climate

Global warming directly influences water fluxes (Kundzewicz, 2008; Madakumbura et
al., 2019; Peleg et al., 2018; Samaniego et al., 2018), and as such, climate change and
related amplified land-atmosphere feedbacks intensify the hydrological cycle on a global
scale. This intensification consists of increased occurrences as well as increased severity
of hydrological extremes, such as floods and droughts (Berg et al., 2016; Hari et al., 2020;
Samaniego et al., 2018; Teuling, 2018). This still holds if a changing hydrological regime is
considered (Wanders et al., 2015). We can also expect an increase in compound events,
where two extremes co-occur (i.e., hot droughts with little precipitation as well as high
temperatures, Buras et al., 2020; Seneviratne et al., 2010; Zscheischler et al., 2018), and
flash droughts, which have a rapid onset due to high temperatures (Christian et al., 2023;
Yuan et al., 2019).

Over Europe, the impact of anthropogenic warming on drought occurrence is spatially
divergent. The increasing temperature does lead to positive evapotranspiration trends
throughout Europe, but precipitation trends are negative in southern Europe and positive
in northern Europe. Mediterranean Europe has therefore so far seen an increase in drought
occurrence, and the opposite is visible in northern Europe (Stagge et al., 2017). Under
a projected 3°C global warming, which seems likely based on an intermediate emission
scenario (IPCC, 2023), additional drought exposure as well as financial impact are ex-
pected to be largest in the Mediterranean sub-region, and smallest in the Boreal sub-region
(Cammalleri et al., 2020; Marx et al., 2018; Naumann et al., 2021).

European summer droughts have been shown to be induced by Mediterranean winter
rainfall deficits (Vautard et al., 2007; Zampieri et al., 2009). These rainfall deficits lead to
anomalously warm and dry air, that is transported northward with southerly winds and in-
creases temperature and vegetation water demand in continental Europe. The Rhine basin,
one of the main hydrological systems in Northwestern Europe, is normally supplied with
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atmospheric moisture from the Atlantic Ocean. During the 2003 and 2018 droughts, how-
ever, persistent high pressure systems over the Rhine basin decreased the supply from this
moisture source (Benedict et al., 2021), leading to major drought events. Large-scale land-
atmosphere feedbacks thus have a big influence on hydrological extremes (Schumacher
et al., 2019).

An intensifying hydrological cycle makes securing freshwater for society increasingly diffi-
cult (Carvalho-Santos et al., 2017). Even more so, because ecosystems are more vulnerable
to droughts in a summer following a drought (preconditioning, Zscheischler et al., 2020).
Added to that, impacts of a subsequent drought event can be larger because of legacy
effects, especially if water levels do not fully recover during the winter season (Bastos
et al., 2021). Hence, increased drought occurrence due to climate change, combined with
decreasing freshwater storage due to shrinking glaciers (Beniston and Stoffel, 2014), deplet-
ing high-quality groundwater aquifers (Rotzoll and Fletcher, 2013), and increasing societal
water demand (Wada et al., 2013; Wanders and Wada, 2015), poses a threat for water se-
curity. Society thus needs accurate drought monitoring systems as well as improved early
warning systems to limit the negative impacts of extreme events, and long-term strategies
to mitigate and cope with any remaining detrimental effects.

1.3 Soil moisture’s central role in the water cycle

Soil moisture levels are dependent on precipitation and temperature, and in turn they
influence air temperature, moisture recycling, and evapotranspiration (Fig. 1.1, Berg and
Sheffield, 2018; Teuling et al., 2006a). Via evapotranspiration, soil moisture is the direct link
between precipitation and vegetation functioning. However, the relationship between soil
moisture drought and its impact on vegetation is non-linear (Heim Jr., 2002; Seneviratne et
al., 2010). During a soil moisture drought, vegetation growth may be limited by depleted
soil moisture reservoirs, but, in humid climates, vegetation can simultaneously benefit
from increased solar radiation (Jolly et al., 2005; Kowalska et al., 2020; Mastrotheodoros
et al., 2020; Teuling et al., 2006c). Hence, climate change can have divergent impacts on
vegetation (Berg and Sheffield, 2018), dependent not only on temperatures and increased
CO2 concentrations (Erda et al., 2005), but also on water availability.

Soil moisture thus takes a central role in the water cycle, with important positive feedback
cycles that can influence drought occurrence and severity. Soil moisture’s large influence on
the ecosystem can also be seen in the impact of changing initial soil moisture conditions in
meteorological (Liang and Yuan, 2021), hydrological (Grillakis et al., 2016; Yin et al., 2022)
and land surface models (Kim and Wang, 2007). Optimal initial soil moisture conditions
can reduce model warm up times, thus allowing for an optimal use of available data (Kim
et al., 2018). Hence, for optimal performance of hydrological models, we need accurate
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gridded soil moisture observations, ideally at the same spatiotemporal resolution as that of
the model in question.

Figure 1.1: Illustration of the central role of soil moisture in the water cycle, with important
feedback loops. The picture was taken in the experimental field on Nov 6th, 2020. Adapted from
Teuling (2018).

1.4 Satellite soil moisture observations

Observing soil moisture is difficult because of its high small-scale spatial variability (Brocca
et al., 2010). In situ observations are accurate, but made at point scale and thus lack
spatial representativeness as well as spatial coverage (Babaeian et al., 2019; Crow et al.,
2012b; Peng et al., 2021; Seneviratne et al., 2010; Teuling et al., 2006b). Another issue is
that a large range of sensors, observation depths and sensor calibrations are used, making
it difficult to compare different sites. Even though efforts are being made to collect and
publish in situ soil moisture data (Dorigo et al., 2021), they remain scarce because of
the costs and time involved in acquiring, installing and maintaining in situ sensors. Air-
and spaceborne sensors can provide large-scale gridded estimate of soil moisture, with
sizes ranging from field- to catchment scale for airborne observations and global scale for
spaceborne observations. Such large-scale soil moisture data can be assimilated directly in
hydro-meteorological models (Hostache et al., 2020), used for drought monitoring (Fang
et al., 2021; Ford and Quiring, 2019; Liu et al., 2019), or even used to reduce farmers’
drought risk exposure (Vroege et al., 2021).
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Figure 1.2: Concepts of passive and active satellite soil moisture observations. Passive sensing
of dry (a) and wet (b) soils is shown on the left, and active sensing of dry (c) and wet (d) soils on
the right.

Soil moisture can be estimated using a variety of satellite sensors that can be categorised
by the part of the electromagnetic spectrum where measurements are taken (Babaeian
et al., 2019; Li et al., 2021; Petropoulos et al., 2015; Zhang and Zhou, 2016): optical,
thermal and microwave sensors. All these methods have their own advantages and disad-
vantages (Babaeian et al., 2019). Both optical and thermal sensors are limited to daytime
retrievals and cloudless conditions. Microwave sensors do not have these disadvantages,
but are influenced by surface roughness. A disadvantage that the three measurement
types have in common is their sensitivity to vegetation biomass. This thesis focuses on
microwave sensors because their sensitivity to longer wavelengths than optical and thermal
sensors limits interference by meteorological conditions and increases penetration depth
into the soil.

Both passive and active microwave sensors make use of the contrast between the dielectric
permittivity of bare soil and water (Babaeian et al., 2019; Ulaby et al., 1986). Passive mi-
crowave sensors (radiometers) measure the brightness temperature of the Earth’s surface.
This temperature depends on the emissivity of the soil, that, in turn, inversely relates to the
dielectric permittivity. Increased soil water content therefore leads to a lower brightness
temperature (Fig. 1.2a, b). Active microwave sensors (scatterometers or Synthetic Aperture
Radars) emit a microwave signal and measure the fraction of radiation scattered back by
the Earth’s surface (backscatter). Increased soil dielectric permittivity leads to increased
interaction with, or scattering of, the satellite signal. This increases the backscatter that is
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measured by the sensor (Fig. 1.2c, d). Passive measurements have a low spatial resolu-
tion, because of the weak signal emitted by the Earth’s surface. That does allow for more
frequent revisit times and results in a high temporal resolution of soil moisture products
from passive sensors. For active sensors, this is the other way around: their products have
a low temporal resolution but a high spatial resolution.

1.5 Spatial resolution

Accurate soil moisture estimates at a high spatial resolution can improve numerical weather
prediction (Lagasio et al., 2019a; Lagasio et al., 2019b), serve applications such as pre-
cision agriculture (Vereecken et al., 2014), and enhance monitoring and prediction of
hydro-meteorological disasters, such as droughts (Bierkens et al., 2015; Peng et al., 2021;
Vergopolan et al., 2021; Wood et al., 2011). Several global or continental gridded soil
moisture (SM) datasets are currently available (Peng et al., 2021), such as European Space
Agency (ESA) Climate Change Initiative (CCI) soil moisture (Gruber et al., 2020), National
Aeronautics and Space Administration (NASA) United States Department of Agriculture
(USDA) Global Soil Moisture Data, and Copernicus Global Land service Surface Soil Mois-
ture. These open data can be very useful for modelling studies thanks to their large-scale
coverage. However, their spatial resolution (0.25°, 0.25°, 1 km, respectively) does not yet
allow for soil moisture monitoring at the scale of individual fields or even at the sub-field
scale. This can be seen clearly in Fig. 1.3, where a 1 km resolution image is compared to
two images with higher resolutions (100 m and 60 m). At a 1 km resolution, we can get a
global view of the region, but higher spatial resolutions are required to differentiate fields
or even distinguish sub-field variation.

Active microwave backscatter data could be used to retrieve soil moisture at the sub-field
scale. Two active microwave satellites are currently operating, both at C-band (wavelength
of 3.75–7.5 cm): Advanced SCATterometer (ASCAT) and Sentinel-1 (S1) (Babaeian et al.,
2019). ESA’s S1 constellation provides high spatiotemporal resolution Synthetic Aperture
Radar (SAR) data with a ground-range resolution of 20 m and a six day repeat cycle up until
December 2021, when one of the two satellites failed. The function of the failed B-satellite
is planned to be replaced by the C- and D-satellites in 2023 and 2024, further improving
the constellation’s temporal resolution. The satellites are kept under a strict acquisition
scenario, and ESA is expected to continue these observations for the next few decades
(Bauer-Marschallinger et al., 2019; Peng et al., 2021).

The reason that the previously discussed available datasets do not yet use active microwave
data for soil moisture retrieval at its native resolution is because the SAR backscatter
accuracy is limited by speckle. Speckle causes variations in the backscatter intensity
that do not necessarily relate to variations in soil moisture. Speckle can be reduced by

1Bous, Dalheim, Mondorf-les-Bains, Remich, Schengen and Waldbredimus
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Figure 1.3: Illustration of the importance of fine resolutions for imaging purposes. Orthoimages
(Portail Open Data, 2017) are shown for the six most southeastern municipalities of Luxembourg1

with, from left to right, a 1 km, 100 m, and 60 m resolution, which are the same spatial resolutions
as used in Chapter 5. The agricultural field where soil moisture was observed for Chapters 3
and 4 is indicated in white.

spatially aggregating the data, but this also reduces the spatial resolution, so the final spatial
resolution of the data will be lower than that of native SAR data (Bauer-Marschallinger et al.,
2019; Pulvirenti et al., 2018; Zappa et al., 2021).

1.6 This thesis

Monitoring drought events is complicated as they present themselves in different parts
of the water cycle (i.e. soil moisture, groundwater, surface water) in different phases of
the event (Buitink et al., 2021; van Loon, 2015). Because of the large financial implica-
tions of soil moisture droughts via its influence on crop production, this thesis focuses
on the monitoring of these droughts, in the understanding that they are caused by mete-
orological droughts and can propagate into hydrological droughts. Remotely sensed soil
moisture has shown to be useful for soil moisture drought monitoring (e.g. Bolten et al.,
2010; Ford and Quiring, 2019; Martínez-Fernández et al., 2016), but this is still done
on low spatial resolutions. Higher resolution data would allow for drought monitoring
on the (sub-)agricultural plot scale, with applications such as crop insurance, precision
irrigation and improved hydro-meteorological modelling.

In the four main research chapters, this thesis discusses the research done to answer three
main research questions (Fig. 1.4):

1. What is the value of state-of-the-art satellite soil moisture products for drought mon-
itoring?
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Figure 1.4: Topics and spatial resolutions discussed in each chapter.

2. What is the highest spatial resolution at which soil moisture can be accurately re-
trieved from satellite data?

3. Can high resolution satellite soil moisture data be used for large scale drought moni-
toring?

The first research question is covered by Chapter 2. Making use of an existing large scale
satellite soil moisture dataset with a 0.25° resolution and a vegetation greenness dataset at
a 5 km resolution, major European droughts are analysed for asynchronicities between soil
moisture and vegetation. Long periods of decreased water availability can negatively impact
vegetation. Conversely, short drought events are often linked to an increase in available
energy, which can have a positive impact on energy-limited vegetation growth.

One of the main hypotheses underlying this thesis is that S1 data at its native spatial
resolution (20 m) contains relevant information on sub-field moisture conditions. To that
end, I set up a field experiment in the Southeast of Luxembourg (indicated in Fig. 1.3) where
I collected in situ soil moisture data at the S1 native spatial resolution. This experiment
together with a synthetic experiment are described in Chapter 3 to find the best strategy to
retrieve high resolution soil moisture data from Sentinel-1 backscatter intensity data. That
strategy is then applied in Chapter 4, where soil moisture retrieval accuracy is compared
to the field observations at different high spatial resolutions (20–120 m). Together, these
two chapters answer the second research question.

Soil moisture retrievals at the most favourable spatial resolution are finally used in Chapter 5
to answer the third and last research question. They are applied on a national scale, which
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allows for a discussion on the use of high resolution soil moisture retrievals for drought
monitoring on a large scale.

The main findings of this thesis are discussed in Chapter 6. The research questions are
answered and reflected on in the context of recent and possible future advances in drought
monitoring.
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Abstract

Long-lasting precipitation deficits or heat waves can induce agricultural droughts, which are
generally defined as soil moisture deficits that are severe enough to negatively impact veg-
etation. However, during short soil moisture drought events, the vegetation is not always
negatively affected and sometimes even thrives. Due to this duality in agricultural drought
impacts, the term "agricultural drought" is ambiguous. Using the remotely sensed ESA CCI
surface soil moisture estimates and MODIS NDVI vegetation greenness data, we show that,
in major European droughts over the past two decades, asynchronies and discrepancies
occurred between the surface soil moisture and vegetation droughts. A clear delay is vis-
ible between the onset of soil moisture drought and vegetation drought, with correlations
generally peaking at the end of the growing season. At lower latitudes, correlations peaked
earlier in the season, likely due to an earlier onset of water limited conditions. In cer-
tain cases, the vegetation showed a positive anomaly, even during soil moisture drought
events. As a result, using the term agricultural drought instead of soil moisture or vegeta-
tion drought, could lead to the misclassification of drought events and false drought alarms.
We argue that soil moisture and vegetation drought should be considered separately.
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2.1 Introduction

Due to climate change and enhanced land-atmosphere feedback, droughts and their im-
pacts will likely become more severe over the coming decades (Rasmijn et al., 2018;
Samaniego et al., 2018; Teuling, 2018). Droughts are generally considered to be induced
by a precipitation deficit relative to normal conditions, which, when persisting over longer
time periods, results in insufficient water supply to meet the demands of both human
activities and the environment (Hayes et al., 2011). As a result, the impacts of droughts can
range from decreased crop yield and damage to ecosystems, to land subsidence, insufficient
drinking water, and the disruption of transport.

To monitor and quantify drought across the terrestrial part of the hydrological cycle, nu-
merous drought indices have been developed over the past decades. These can be divided
into indices for the three main drought types (Tallaksen and van Lanen, 2004). Meteoro-
logical droughts are defined as a prolonged period with below-normal precipitation. These
droughts are typically quantified with the Standardized Precipitation Index (SPI) (McKee
et al., 1993), reflecting the current dogma that droughts are measured relative to the mean
climate as well as the climate variability at that location.

Meteorological droughts can propagate into hydrological droughts (Kumar et al., 2016),
which entail below-normal (ground) water levels or river discharge (Seneviratne et al.,
2012), and are generally evaluated using e.g., reservoir levels, the Standardized Runoff In-
dex, or the Streamflow Drought Index (Hayes et al., 2011; Shukla and Wood, 2008). Lastly,
agricultural droughts reflect droughts in the soil moisture. The few studies that provide
explicit definitions of agricultural drought, agree that it concerns a soil moisture deficit
severe enough to hamper vegetation growth, agricultural production, or crop yield (Panu
and Sharma, 2002; Tallaksen and van Lanen, 2004; Wilhite and Glantz, 1985).

Other definitions exist (e.g. IPCC, 2012); however, these also relate soil water status to
vegetation state. Due to its direct relation to food production (through crop yield) and wa-
ter management (through irrigation), agricultural drought is often the key focus of drought
monitoring and forecasting. In line with their definition, agricultural droughts have tradi-
tionally been quantified based on the soil moisture conditions in the root zone (e.g. Bolten
et al., 2010; Carrão et al., 2016; Martínez-Fernández et al., 2016; Sridhar et al., 2008).
The well-known and widely-used Palmer Drought Severity Index (PDSI) calculates a simple
water budget based on the monthly values of precipitation and the potential evapotranspi-
ration, in combination with parameters that have been optimised to ensure similar PDSI
values correspond to similar impacts on vegetation and crop yield even in different climate
conditions (Briffa et al., 1994; Palmer, 1965; Raible et al., 2017).

The development of high-resolution land surface models applied at continental scales also
allows a more physically-based alternative to PDSI, which can account for the local soil
and vegetation properties. In other cases, ranked or standardised in situ or remotely sensed
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soil moisture observations have been used directly as an agricultural drought index (e.g.
Crow et al., 2012a; Mozny et al., 2012; Peled et al., 2010). Helped by the readily available
satellite observations of vegetation indices, such as NDVI, EVI, SIF, fPAR, NIRv, or VOD,
other studies have focused on the use of these vegetation indices to quantify agricultural
drought (Anyamba and Tucker, 2012; Buitink et al., 2020; Hu et al., 2019).

Similarly, Narasimhan and Srinivasan (2005) developed two separate indices for agricultural
drought monitoring: one focused on soil moisture, and the other on evapotranspiration
deficits. In other studies, other combinations were made to quantify agricultural drought,
such as precipitation, potential evapotranspiration, and soil moisture (Cao et al., 2019).
The current definition of agricultural droughts described earlier, i.e., a soil moisture deficit
severe enough to hamper vegetation growth, thus, does not seem to be compatible with
a single index that describes either its cause (soil moisture deficit) or its impact (hampered
vegetation growth).

Whereas soil moisture and vegetation-based indices both aim to quantify agricultural
drought, the relation between soil moisture and vegetation is characterised by considerable
complexity and nonlinearity. This complexity was already acknowledged late in the nine-
teenth century, when Abbe (1894) stated that "a drought affecting agriculture is a complex
result of many considerations" (Heim Jr., 2002). Although combined indices have since
been proposed as a solution to circumvent the nonlinear relation between soil moisture
and vegetation (Sepulcre-Canto et al., 2012; Sivakumar et al., 2010; Yurekli and Kurunc,
2006), it is questionable whether agricultural drought and its impact can be adequately
quantified by a single normalised index across climate gradients.

From the small scale to the continental scale, distinct water- and energy-limited soil mois-
ture regimes can be identified (Denissen et al., 2020), with the relation between soil mois-
ture and the evaporative fraction often being represented by a bilinear relation (Seneviratne
et al., 2010). Above the so-called critical moisture content, which is an absolute value of
soil moisture, evapotranspiration and plant functioning will not be limited nor affected by
a lack of precipitation.

In fact, in humid climates, increased incoming solar radiation during meteorological drought
periods can even enhance evapotranspiration (Teuling et al., 2013) often leading to positive
anomalies in vegetation indices, relative to the mean conditions, despite relatively dry
conditions (Jolly et al., 2005; Kowalska et al., 2020; Mastrotheodoros et al., 2020; Teuling
et al., 2006c), as illustrated in Fig. 2.1.

We hypothesise that because of this duality in agricultural drought impacts, the use of
the term agricultural drought is ambiguous, because vegetation impacts might depend on
the absolute rather than relative soil moisture conditions, in a way that differs from a simple
delayed response. The threshold behaviour associated with the "absolute" critical moisture
content is clearly at odds with the current dogma that drought and its impacts should be
expressed relative to the mean conditions.
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Figure 2.1: The ambiguity of agricultural drought. Normalised agricultural drought indices across
a range of climates or mean soil moisture contents can show contrasting signs due to the non-
linearity between the soil moisture and vegetation water uptake. In water-limited (arid) climates,
a normalised soil moisture drought (i.e., negative soil moisture anomaly) will generally be ac-
companied by a drought in the vegetation indices (i.e., a negative growth anomaly). In humid
climates, where the soil moisture generally does not limit the evapotranspiration and plant func-
tioning, normalised soil moisture indices might indicate drought, whereas vegetation indices
might show positive anomalies, as long as the soil moisture is above the absolute critical soil
moisture content.

To address the issues surrounding the definition of agricultural drought, we aim to charac-
terise the synchrony and similarity between droughts in the soil moisture and vegetation
using readily available long-term (2000–2018) gridded datasets of precipitation, vegeta-
tion functioning, and remotely sensed soil moisture. We additionally aim to contribute to
the debate on the use of drought indices (for agricultural drought in particular), and how
routine global-scale Earth observation products can be used for this.

The relation between soil moisture and vegetation during drought periods has been stud-
ied (Chen et al., 2014; Nicolai-Shaw et al., 2017; Papagiannopoulou et al., 2017; Szczypta
et al., 2014; Zscheischler et al., 2015), and significant correlations have been found,
in addition to a lag between the soil moisture and vegetation response (Chen et al., 2014;
Nicolai-Shaw et al., 2017), especially in water-limited ecosystems (Papagiannopoulou et al.,
2017). Such lags are not expected in humid areas where the soil moisture content, though
relatively low, might not decrease below the absolute critical moisture content.

Based on the aforementioned studies, and the concept of critical soil moisture (Denissen
et al., 2020; Peled et al., 2010), we hypothesise that the link between soil moisture and veg-
etation droughts is more direct in the water-limited Mediterranean region, whereas a more
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complex behaviour is expected in the more humid Northern Europe depending on the inten-
sity and duration of the drought. Though a move toward the more unambiguous separate
use of the two drought types has started over the past years (e.g. van Loon, 2015), there
are ongoing challenges related to the understanding, quantification, and operational mon-
itoring of agricultural drought at larger (sub)continental scales that encompass a range of
climate conditions.

Here, we investigate the relation between the surface soil moisture and vegetation drought,
as observed in negative (< −1) anomalies in soil moisture (SM) and Normalized Difference
Vegetation Index (NDVI) from routine and widely-used Earth observation products. We
investigate six widespread meteorological drought events that occurred over the past two
decades in Europe, including the severe 2003 and, more recent, 2018 events, that occurred
in water- as well as energy-limited regions. In addition, we critically evaluate the practice of
using soil moisture to predict the observed agricultural drought (i.e., the vegetation impact,
e.g. Chakrabarti et al., 2014; Hao and AghaKouchak, 2013; Martínez-Fernández et al.,
2015; Martínez-Fernández et al., 2016; Sridhar et al., 2008).

2.2 Data and methods

2.2.1 Data

Daily remotely sensed surface SM data were obtained from the ESA CCI Combined SM
v04.5 dataset (Dorigo et al., 2017; Gruber et al., 2017; Gruber et al., 2019), with a 0.25°
resolution, spanning from January 1979 until December 2018. The combined CCI algorithm
includes the masking of uncertain soil moisture estimates, for instance in the case of frozen
soil, water bodies, or dense vegetation (Scanlon et al., 2020), though masking can be
insufficient at times (van der Vliet et al., 2020). The information contained in the satellite
soil moisture data mainly contains the surface soil moisture content, rather than the root-
zone soil moisture content (Nicolai-Shaw et al., 2017), where the latter has a more direct
impact on the vegetation performance.

Regardless, remotely sensed data were deemed the most suitable for this study due to
the long time period and large spatial scale of the analysis, and the unavailability of root zone
soil moisture measurements on such scales. Existing large scale root zone soil moisture
datasets are either inferred from surface soil moisture using land surface models (e.g.
Beaudoing et al., 2017; Crow and Tobin, 2018; Houborg et al., 2012) or using water
balance models (e.g. Bauer-Marschallinger et al., 2018; Crow, 2012; Owe et al., 2008).
For a comparison between the performance of modelled soil moisture and satellite soil
moisture products, we refer to Beck et al. (2021).

As we used the surface soil moisture rather than the root zone soil moisture, the possi-
bility exists that we overestimated any observed asynchrony between the water content
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and vegetation. This will be accounted for in the discussion of our results. The monthly
precipitation data were collected from the NASA GPM IMERG final precipitation L3 dataset
with a 0.1° spatial resolution (Huffman et al., 2020; Huffman et al., 2019) from June 2000
until February 2020.

The monthly NDVI data were gathered from the Moderate-resolution Imaging Spectro-
radiometer (MODIS) dataset on a monthly timescale with a 0.05° resolution, spanning
February 2000 to December 2018 (MODIS MOD13C2) (Didan, 2015; Tucker, 1979).
Although MODIS vegetation indices are available on a 16-day resolution, we opted for
a monthly mean rather than a temporal composite, to have a more consistent sensing date
throughout the dataset.

In addition to the NDVI – a measure for the amount of live green vegetation and, thus,
the crop health (Ji and Peters, 2003) – numerous other products exist that reflect the veg-
etation water status and/or productivity. These include other indices based on optical
imagery (e.g., NIRv and EVI) or on microwave data (e.g., VOD). Though each of these
different indices might produce slightly different results in this analysis, their application
should not affect the fundamentally different response of the soil moisture and vegetation
to meteorological drought.

SM and NDVI data were spatially and temporally resampled to the lowest spatiotemporal
resolution and shortest time span of both datasets, resulting in data with a monthly 0.25°
resolution ranging from 2000 to 2018. These were then cropped to our European study area
(11°W–45°E, 35–72°N). On this monthly time scale, we assumed that large-scale patterns
in both the soil moisture and vegetation would remain similar, although lags between
the surface soil moisture and vegetation patterns were expected due to travel time toward
the root zone (Crow et al., 2012a). The main vegetation evolution occurs on a monthly
timescale, not on a day-to-day basis, as near-surface soil moisture does. For comparison
purposes, the monthly timescale, which is common in drought analyses, is thus more
appropriate.

Both the SM and NDVI datasets were then masked to only include grid cells where at least
80% of the area was covered by agricultural activities, to ensure any ambiguity based on
land cover was removed from the equation. The 80th percentile was chosen as a trade-off
between sufficient agricultural areas and a sufficient number of grid cells in the resulting
mask. The 2018 ESA CCI land cover map (ESA, 2017) was used as the basis of the mask.
The categories included in the present analysis are rainfed, irrigated, and mosaic cropland
and grassland (IDs 10, 11, 12, 20, 30, and 130), resulting in the mask shown in Fig. A6.
All of the used datasets have been extensively validated (e.g. Beck et al., 2021; Lahoz
et al., 2018; Lange et al., 2017; Navarro et al., 2019; Reinhart et al., 2021); so a validation
was not conducted here.
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2.2.2 Drought event selection

To study the relation between negative soil moisture and vegetation anomalies, growing sea-
sons where significant precipitation deficits occurred were selected based on the 6 month
aggregated SPI (McKee et al., 1993). The SPI6 was computed from the precipitation data
contained in our reference period (2000–2018) using a Gamma distribution. The SPI6
in September of each year was compared, as that reflects the integrated precipitation
deficit over a typical growing season (Apr–Sep).

A fixed growing season was chosen for the drought event selection, though we are aware
that differences exist in the onset of the growing season, when high and low latitudes
are compared. This will be accounted for in the discussion of the results. Intercon-
nected grid cells over relatively large areas with a moderate to extreme precipitation
deficit (SPI6 < −1, Lloyd-Hughes and Saunders, 2002) were chosen, resulting in the six
selected seasons/areas as indicated in Fig. 2.2: the 2002 precipitation deficit over the Baltic
states and north-western Russia (Rimkus et al., 2017), the 2005 event on the Iberian Penin-
sula (Sepulcre-Canto et al., 2012) and the infamous 2003, 2015, and 2018 events over
central Europe (Buras et al., 2020; Hanel et al., 2018; Ionita et al., 2017). Due to the large
north–south extent of the 2018 event, this event was split into two parts (hereafter referred
to as "2018N" and "2018S"). Grid cells in these selected areas were then used for further
analysis as discussed below.
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Figure 2.2: Properties of the selected summer droughts. Left: the location and spatial ex-
tent, right: SPI6 over the selected growing season (red), compared to the distribution of SPI6
in the remaining growing seasons for the same region.
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2.2.3 Analysis

To allow for a fair comparison between anomalies of different variables, and to remove
seasonal variations from the drought definition, the data were normalised by subtracting
the long-term monthly mean from the SM/NDVI at each time step in a grid-wise manner,
and subsequently dividing by the long-term (2000–2018) monthly standard deviation,
following Eq. 2.1:

z =
Xij − μi

σi
(2.1)

where Xij is soil moisture in a specific month and year, μi and σi are the mean and standard
deviation in the same month in the reference period. This resulted in z-scores between
approximately −3 and +3, indicating negative and positive anomalies, respectively. These
anomalies can be compared with SPI6 directly.

Other indices, such as the ESSMI for soil moisture data (Carrão et al., 2016), or the VCI for
NDVI data (Kogan, 1990), are available and comparable to normalisation; however, a more
general approach was adopted here to increase the comparability of two different variables.
We recognised anomalies in SM (SMA) and anomalies in NDVI (NDVIA) below −1 as grid
cells in soil moisture drought and vegetation drought, respectively, to include moderate,
severe, and extreme droughts in the analysis (Lloyd-Hughes and Saunders, 2002). To ac-
count for seasonality in the variables, data for each month of the year were taken separately,
and grid cells with less than seven data points were removed from the analysis.

After the data normalisation, for agricultural grid cells belonging to each event, the per-
centage of the selected grid cells in drought was determined for each variable. Then,
for each selected grid cell in each event and time step, the Pearson correlation between
SMA and NDVIA was quantified. While correlation is useful for an overview of the sim-
ilarity between two variables, it is not sensitive to bias or scale errors (Brier and Allen,
1951; Murphy and Epstein, 1989). Skill scores, on the other hand, provide a more in-
depth and well-rounded view on the use of soil moisture as a predictor for agricultural
impact.

As soil moisture indices are often used as a proxy for vegetation drought (e.g. Bolten
et al., 2010; Carrão et al., 2016; Martínez-Fernández et al., 2016; Sridhar et al., 2008),
predictions using soil moisture drought are implicitly assumed to be skilful. Therefore,
the number of Hits (H), Misses (M), Correct Rejections (CR), and False Alarms (FA) were
determined for a case where the soil moisture drought (SMA < −1) was used to predict
the vegetation drought (NDVIA < −1). These were used to compute five different skill
scores, each highlighting a different aspect of the prediction accuracy. First, the Frequency
Bias (FB) is given by:

FB = H + FA
H + M (2.2)
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and expresses the difference between the mean drought frequencies. Next, the Frequency
of Hits (FOH) is a measure of discrimination that shows the fraction of forecasted vegetation
droughts that were correct, which is given by:

FOH = H
H + FA

(2.3)

The Frequency of Misses (FOM) is given by:

FOM = M
H + M (2.4)

and expresses the fraction of observed vegetation droughts that are incorrectly forecasted by
the soil moisture drought. The Hanssen–Kuipers score (HK) (Hanssen and Kuipers, 1965)
measures the ability of the soil moisture drought to discriminate between (or correctly
classify) vegetation drought events and non-events:

HK = H
H + M −

FA
FA + CR

. (2.5)

Lastly, the Odds Ratio (OR) (Stephenson, 2000) is used to measure the strength of the as-
sociation between soil moisture and vegetation drought:

OR = H · CR
FA ·M . (2.6)

We refer to Hogan and Mason (2011) for an overview of these skill scores as well as their
advantages and disadvantages.

2.3 Results

A general check of the full data time series, including all land cover types, revealed that,
during each event, asynchronies between the spatial patterns in the soil moisture and veg-
etation anomalies were widespread. Fig. 2.3 shows the spread of different drought types
during the 2015 growing season and serves as an illustration for these asynchronies, which
occur in all green and purple grid cells (See Figs. A1–A5 for other events).

Regionally more humid areas, such as mountain ranges and high latitude regions, can be
easily distinguished by their relatively low Pearson correlations between the soil moisture
and NDVI anomalies (Fig. A7), in line with our hypothesis where we suggest that low
correlations could be found in energy-limited regions, though other factors may play a role
in this correlation, such as high local heterogeneity in the topography, soil moisture,
and other vegetation types, as compared to the remaining region. Furthermore, correlations
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Figure 2.3: Synchrony between the soil moisture and vegetation droughts during the 2015
growing season in the agricultural grid cells. Note the asynchronous development of soil moisture
and vegetation drought, with soil moisture drought dominating in May–June, and vegetation
in April and September. Similar figures for the other drought events are included in the Appendix
(Figs. A1–A5).

between the anomalies were low in April and generally increased toward September;
however, in some areas, the correlations peaked in August.

Not all of the six studied events were equally affected by deficits in SM and/or NDVI.
A comparison between drought extents using the fractions of the area affected by a soil
moisture and/or vegetation drought is provided in Fig. 2.4. The 2002, 2015, and both 2018
events are characterised by a clear overlap between the "NDVI" and "Both" lines, indicating
that an area affected by a vegetation drought also has a soil moisture drought. Interestingly,
in 2003 and 2005, some vegetation droughts occurred in the absence of a soil moisture
drought.

Fig. 2.5 shows the severity of each drought event for both the vegetation and soil moisture
and the Pearson correlation between NDVIA and SMA. Asynchrony between the two vari-
ables is visible in the irregular shape of the arrows and the deviation of the linear regression
from the 1:1 line. Generally, a delay can be distinguished between the negative SMA
and NDVIA values. This delay was expected as discussed in Section 2.2.1.

Interestingly, positive anomalies were more common in NDVIA than in SMA, showing that
soil moisture droughts do not always negatively affect vegetation, and can sometimes even
coincide with the opposite, i.e., positive, impacts in vegetation. High monthly correlations
between SMA and NDVIA generally occurred later in the growing season as shown by
yellow colours in Fig. 2.5. For example, in the 2002 event, the NDVIA–SMA correlation
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Figure 2.4: The growing season evolution of the percentage of area in soil moisture and/or
vegetation drought in the selected agricultural grid cells in each studied meteorological drought
event. Panels show the six events, where the vegetation (NDVI, green) and soil moisture (SM,
purple) grid cells in drought (defined as an anomaly < −1) are shown separately, as well as
the percentage of grid cells affected by droughts in both variables simultaneously (orange).

increased from −0.45 in May to 0.68 in July, and correlations in the 2003 (2005, 2015,
2018N, and 2018S) event peaked in September (Sep, Aug, Sep, and Jul), at 0.51 (0.49,
0.68, 0.77, and 0.71).

Given the clear asynchrony and discrepancy in the soil moisture and vegetation under
water-limited conditions, it is relevant to question how well soil moisture-based indices,
such as the widely-used SSMI and PDSI, perform when targeting to quantify vegetation
drought. The skill scores of the agricultural drought impacts, as reflected in NDVIA < −1
and as predicted using SMA < −1, are shown in Fig. 2.6. From the low density of lines
in the parts of the skill score plots shaded green, it is clear that the overall skill was rather
low.

Similar to the Pearson correlation, the skill scores generally increased in August. Over-
forecasting, i.e., when more droughts were forecasted using soil moisture than there were
droughts observed in vegetation, as seen in a FB > 1, generally occurred in the beginning of
the growing season, whereas underforecasting (FB < 1) occurred near the end of the grow-
ing season. The respective increase and decrease in FOH and FOM show the result of
the changing frequency bias.

The HK, showing the accuracy of events minus the accuracy of non-events, was rather
stable throughout the growing season although it peaked in the second half as did the OR,
which showed the number of correct forecasts. None of the drought events stood out in all
of the skill scores. A sensitivity analysis showed that different thresholds for the drought
selection and skill scores did not substantially change the results.
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Figure 2.5: The relations between anomalies in the soil moisture (SM) and vegetation (NDVI).
Panels show the six drought events, with both soil moisture and vegetation drought defined when
the anomaly < −1. The point density in the background indicates the number of grid cells with
a certain combination of anomalies in soil moisture and vegetation. The centroids of each month
are chronologically connected with an arrow and shaded by the Pearson correlation in that month
if p ≤ 0.05.
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2.4 Discussion

2.4.1 Soil moisture regimes

Our results showed that, in some cases, most notably during the 2003 and 2005 me-
teorological droughts, vegetation growth was not obviously limited by the current water
content but possibly by other factors, such as the energy, heat stress, antecedent low
soil moisture conditions, or pests and diseases. Since these events were located further
south than most other selected events, energy limitations could be ruled out. Heat stress
could well have been the limiting factor for vegetation, as well as antecedent soil moisture
(Figs. A8–A11).

Additionally, we showed, using a correlation analysis, that a general pattern in which
NDVI remains largely unaffected by small anomalies in the SM content when vegetation is
energy limited as is often the case at the start of the growing season. Under water-limited
conditions, which are more likely to occur near the end of the growing season, higher
correlations were found, consistent with the results of Jolly et al. (2005). The southernmost
2005 event is the only event in which correlations peaked early in the season, which can be
related to the water-limited conditions that are likely to occur earlier in the Mediterranean
than in the geographic locations of the other events.

The extremely low correlations in the beginning of the 2002 event might also have been
caused by the low temperatures that can occur early in the year in these latitudes, under
which soil moisture estimates are highly uncertain (Scanlon et al., 2020; van der Vliet
et al., 2020), and the growing season might not have started. Finally, the skill scores were
generally found to improve in the second half of the growing season; however, we expect
the usefulness of end-of-season NDVIA prediction to be limited for agricultural purposes.
These results do confirm our hypothesis that there is a more direct link between the soil
moisture and vegetation state under water-limited conditions, i.e., when the available
water content is below the critical soil moisture, although this is only the case at the end
of summer, instead of solely being related to geographical location.

2.4.2 Data

The complexity of agricultural droughts is not a local or regional issue but a global one
and, thus, should be considered that way. While this study was performed over the Eu-
ropean continent, it covers a range of climates found around the globe, from arid regions
in the Mediterranean to boreal regions in northern Scandinavia. It is therefore expected
that the behaviour will be similarly asynchronous in other regions. The limitations of this
approach are on a local scale, rather than a global scale, due to the low spatial resolution
of the analysis. Even though each dataset was carefully selected based on the length,
spatial resolution, and validation results over Europe, resulting in a selection of datasets
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best suited for this analysis, uncertainties are inherent to any type of data, and the results
should, therefore, be interpreted with care.

In complex landscapes, high-resolution information can sometimes reveal a range of anoma-
lies, even containing contrasting signs that are not visible at a coarser scale (Buitink et al.,
2019). The normalising of the soil moisture data in this study can be criticised, because soil
moisture data can show bimodality (Teuling et al., 2005; Vilasa et al., 2017). In addition,
a dataset length of 18 years can be considered short when compared to the traditional
30-year reference period as recommended by the WMO (WMO, 2017).

On the other hand, uncertainties due to areal properties are decreased, because the grid
cell values are compared to other values of the exact same grid cell, while the resulting
anomalies can easily be compared to other grid cell values. This, next to the possibility to
fairly compare different variables, led to the decision to use a standard normalisation for
both the vegetation and soil moisture data, regardless of the method’s limitations.

In this research, we used available long-term satellite records of soil moisture and NDVI.
Whereas current satellite soil moisture products are limited to the soil surface, a soil
moisture drought assessment is ideally based on observations over the entire root zone.
However, such observations are currently only available in several regional-scale observa-
tion networks (Mittelbach et al., 2011). By opting for surface soil moisture estimates rather
than root zone soil moisture data, we performed this study using observations only.

On the other hand, the asynchrony between the surface soil moisture and vegetation index
is likely larger than the asynchrony between the root zone soil moisture and vegetation,
and thus asynchronies found here might be overestimated. For that reason, a skill score
analysis was performed with a one month lag in the surface soil moisture (to account
for the travel time to the root zone), which did not show large differences compared to
the analysis presented in this paper (Fig. A12).

2.4.3 Separating soil moisture and vegetation droughts

The inherently complex and nonlinear relation between soil moisture and vegetation status
has important implications for drought monitoring where a distinction is traditionally made
between meteorological, agricultural, and hydrological drought events. Though it might
seem to be a logical step, based on our results, to redefine agricultural droughts from
the traditional definition as a soil moisture drought, to be identical to vegetation droughts,
this would disregard any information contained in the soil moisture anomalies.

For instance, it would be unclear whether any negative vegetation anomalies are caused
by water stress, or by other factors, such as diseases or heat stress. We, therefore, ar-
gue that a distinction is necessary between soil moisture drought (reflecting water status)
and vegetation drought (reflecting the impact of the drought on vegetation). This is par-
ticularly true when evaluating droughts across climate zones. The distinction between
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soil moisture drought and vegetation drought is important because shorter soil moisture
droughts can even have a positive rather than negative impact on productivity, thus, risking
the misclassification of drought events and false drought alarms.

2.5 Conclusions and outlook

Agricultural droughts are generally quantified using anomalies in soil moisture; how-
ever, our results show that a clear asynchrony and discrepancies existed between the surface
soil moisture drought and the impact of these droughts on vegetation. Occasionally, soil
moisture droughts even coincided with positive anomalies in the vegetation. In some of
the studied events, a vegetation drought could not be attributed to a soil moisture drought
alone.

While the asynchrony of soil moisture and vegetation droughts is not a novel finding (e.g.
Crow et al., 2012a), the term agricultural drought is still being used as a synonym for soil
moisture drought (e.g. Chakrabarti et al., 2014; Hao and AghaKouchak, 2013; Martínez-
Fernández et al., 2015; Martínez-Fernández et al., 2016; Sridhar et al., 2008). To overcome
this duality in the definition of agricultural droughts and to prevent false drought alarms,
drought monitoring and prediction may benefit from a move away from the combined term
agricultural drought (which can lead to confusion between soil moisture and vegetation
effects) toward two separate terms: soil moisture drought and vegetation drought, each
with their own indices and use in drought monitoring and forecasting.
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Abstract

The accuracy of soil moisture estimated from Synthetic Aperture Radar backscatter data at
high resolution is limited by speckle. Common practice to mitigate speckle is to multilook
the data prior to retrieving soil moisture. While multilooking indeed reduces speckle, it also
decreases the spatial resolution and removes possibly useful high resolution information
from the data. We therefore hypothesised that using higher resolution backscatter data
for soil moisture retrieval would lead to higher retrieval accuracies. A high-resolution field
study combined with a synthetic experiment showed that calculating soil moisture prior
to multilooking to the final target resolution (calculate-then-average, CtA) has substantial
advantages over the average-then-calculate (AtC) approach. Currently, the AtC strategy
is most often applied in soil moisture studies, mainly due to its computational advantage
compared to the CtA approach. We show that by making use of a higher source resolution
backscatter data than the target resolution, we could improve the soil moisture retrieval
over an agricultural field.
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3.1 Introduction

Soil moisture strongly influences meteorology, climate and hydrology via its direct impact
on evapotranspiration (Seneviratne et al., 2010). Soil moisture conditions influence drought
events (van Loon, 2015) and flash flood magnitude (Grillakis et al., 2016). Observations of
soil moisture are therefore imperative to monitoring and predicting extreme hydrological
events. Unfortunately, large scale in situ soil moisture observations are scarce, because
they are labour-intensive and made at point scale. Large scale soil moisture observations
are thus best made using satellites (Brocca et al., 2017; Li et al., 2021) equipped with an
instrument like an optical sensor, radiometer, scatterometer, or Synthetic Aperture Radar
(SAR).

Space-borne SAR sensors emit microwaves and measure the fraction of radiation scattered
back by the Earth’s surface. This backscatter intensity can be used to retrieve soil moisture
with a forward model. ESA’s Sentinel-1 constellation currently provides high spatiotempo-
ral resolution SAR data with a ground-range resolution of 20 m and a six day revisit time
until the failure of the B satellite in December 2021. At these high spatial resolutions, SAR
backscatter accuracy is limited by speckle that is inherent to the data. Speckle causes varia-
tions in the backscatter intensity that do not necessarily relate to variations in soil moisture.
Multilooking the data reduces the speckle and for that reason, soil moisture products are
often presented at relatively low resolutions (500–1000 m) (Bauer-Marschallinger et al.,
2019; Pulvirenti et al., 2018; Zappa et al., 2021).

Multilooking is generally performed on the backscatter data (e.g. Das et al., 2019), rather
than multilooking soil moisture data after its inversion (e.g. Balenzano et al., 2021). This
choice has the advantage of higher computational efficiency. However, applying a multi-
look means assuming that the mean of the surrounding pixels is equal to the central pixel of
interest (Mansourpour et al., 2006). This assumption does not hold when there is a signif-
icant spatial variability in soil moisture or other soil parameters that influence backscatter
intensity (Teuling and Troch, 2005). Over such heterogeneous surfaces, multilooking of
the backscatter not only averages speckle and soil moisture conditions, but also other
types of information that are contained in the backscatter signal (land cover, vegetation
water content, roughness), and in turn, they cannot be easily removed from the signal as
the information on individual pixels is now lost.

Ma et al. (2020) have briefly compared the use of high resolution backscatter data to the use
of multilooked backscatter data for soil moisture estimation. Two strategies were applied
and compared (Fig. 3.1): the Average-then-Calculate (AtC) strategy and the Calculate-
then-Average (CtA) strategy. The AtC strategy consists of multilooking backscatter data
to the target resolution and then converting it to soil moisture, whereas the CtA strategy
consists of computing soil moisture from high resolution backscatter data, and then mul-
tilooking it to the target resolution. Ma et al. (2020) found that the CtA strategy showed
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Figure 3.1: An illustration of the terms used in this manuscript: the average-then-calculate (top)
and calculate-then-average (bottom) strategies, and native, source and target resolution. Purple
represents backscatter intensity, and blue represents soil moisture.

significantly better results than the AtC strategy, at a spatial resolution of about 125,000 m.
In a related study, Satalino et al. (2004) use a synthetic dataset to show that increased
accuracy of the CtA strategy occurs especially when model errors are expected to be large.
To the best of our knowledge, the difference between the two aggregation strategies has
not been tested on a sub-field scale, even though the processes underlying the effects of
multilooking (e.g. heterogeneity) change with changing spatial resolution. The strategies
have also not yet been tested with in situ soil moisture data.

We hypothesise that a substantial loss of information occurs in the AtC strategy compared
to the CtA strategy. Hence, reducing the spatial source resolution (i.e. resolution of
data going into the retrieval algorithm) to mitigate the speckle, especially at high target
resolutions, can negatively impact soil moisture retrieval accuracy. To test this hypothesis,
we performed a synthetic experiment with increasing variation in soil moisture content and
roughness and applied the two strategies on these data. The experiment was duplicated
using in situ data to determine whether the results from the synthetic experiment could be
confirmed in a field in southeastern Luxembourg.

3.2 Data and methods

3.2.1 In situ soil moisture data

We focused our study on a non-irrigated agricultural field (∼110 by 250 m) in South-eastern
Luxembourg (Fig. 3.2). Luxembourg is located in Central Western Europe and marked by
its moderate climate. The field’s soil can be classified as a moderately gleyic clay on
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a calcareous substrate, according to the Luxembourgish Geoportal. Their high spatial
resolution elevation data shows a slight slope in the field from the northern to the southern
corner (∼9 m elevation difference, Fig. B1).

In situ SM data were gathered in the field between March 2020 and June 2021 (with a gap in
between April and September 2020, Fig. 4.1), on all days coinciding with S1 overpasses and
under varying SM and weather conditions. On each campaign day, five SM measurements
were taken at each location on a 12×6 grid, with a grid spacing of approximately 20
meters (Fig. 3.2). SM was measured with a FieldScout Time Domain Reflectivity (TDR)
350 with 3.8 cm metal pins. These short pins were used to have a similarly superficial
measurement depth as the S1 retrieved SM estimates. Prior to the analyses, the five
TDR measurements at each sampling location were averaged to obtain a single value per
location. Additionally, on some of the field days, 12 volumetric soil samples were taken at
random TDR sampling locations. The soil samples were then weighed, oven-dried for 24
hours, and weighed again to determine the soil bulk density and the SM. These SM values
were used to calibrate the TDR measurements (Fig. 3.3). A linear relationship existed
between the two measurement types, so that a linear transformation could be applied to all
raw TDR data: TDR=0.098+0.97·rawTDR. The analyses described here were performed
with these calibrated TDR data.

Finally, on field days, vegetation height was determined at various locations in the field to
be compared with NDVI data. No roughness measurements were performed.

Figure 3.2: Location of the study area and the sampling points for the reference dataset (centre at
6.31774°E, 49.51109°N). At each of the 72 sampling points, five TDR measurements were taken,
of which an example lay-out is given in the circular inset. In total, 360 TDR measurements were
thus taken per measurement day.
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Figure 3.3: A comparison of the two in situ measurement approaches. The x-axis shows the SM
content as measured by the TDR device, and the y-axis the SM content as derived from the soil
samples. The dashed line shows the linear regression model and the solid line follows the 1:1
line.

3.2.2 Satellite soil moisture data

Satellite soil moisture was retrieved from descending S1 Interferometric Wide swath (IW)
ground-range detected (GRD) backscatter intensity (σ0) data. The data were preprocessed
with ENVI SARscape. The precise orbit files were applied, thermal noise was removed,
and data were radiometrically calibrated, multi-looked (4 pixels in the range direction) and
geocoded using the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM) on the WGS 84 / UTM zone 32N coordinate system to finally obtain a square
pixel of 20×20 m2. The Local Incidence Angle (LIA) and the slope over the study area
were also extracted using the SARscape tool. Soil moisture data were then retrieved using
the MUltitemporal LEast Square Moisture Estimator (MULESME) algorithm (Pulvirenti et al.,
2018), a multitemporal physically-based algorithm.

MULESME has been evaluated previously and has been shown to accurately estimate SM
on a pixel-by-pixel basis (Pulvirenti et al., 2018). The inversion of SM content and surface
roughness is performed in each pixel using an least-square-errors approach. The algorithm
assumes that SM content changes considerably faster than surface roughness, and in doing
so reduces the ill-posedness of the soil moisture retrieval problem (Pierdicca et al., 2014).
If only one image was used, there would be two unknown values (soil moisture and rough-
ness) and one known value (backscatter) per pixel. By using five images over a period with
constant roughness, the number of knowns increases to five, but the number of unknowns
only increases to six. Over shorter periods, the constant roughness assumption is more
likely to be valid. Over longer periods, the estimation accuracy is higher but computation
time increases dramatically. The use of five images is thus a compromise between accu-
racy and efficiency (Pierdicca et al., 2014). For more information on the algorithm and its
underlying theory, we refer to Pierdicca et al. (2014) and Pulvirenti et al. (2018).
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In comparison to other retrieval algorithms, the first advantage of the MULESME algorithm
is that it is versatile in its application since it can be run at a varying spatial resolution
"on demand". Secondly, the algorithm does not require a calibration for every pixel since
the underlying empirical equations have been calibrated. This pixel-by-pixel calibration
is required for other methods relying on the availability of a long record of backscatter
data (Bauer-Marschallinger et al., 2019). Thirdly, MULESME implements a multitemporal
approach which enables us to mitigate the uncertainty caused by roughness.

The MULESME algorithm first resamples all input data (LIA, σ0, NDVI, slope, land cover)
to the specified spatial resolution. Then, each σ0 pixel is corrected for the influence
of vegetation. Any σ0 values higher than −2 dB or lower than −18 dB after vegetation
correction are masked out, since these values lie outside of the range of backscatter values
under which soil moisture can be accurately retrieved (Pulvirenti et al., 2018). SM and
surface roughness are finally inverted, making use of a Look Up Table (LUT) that contains
7956 unique combinations of backscatter, SM, roughness and LIA based on the Oh forward
model using a least-squares minimisation approach. The use of a LUT is considerably faster
than computing the forward model repeatedly (Pulvirenti et al., 2018).

One MULESME run finally results in five S1 SM maps, and a unique roughness map.
The algorithm was run with a temporally moving window of five σ0 images: for each new
run, one new σ0 image was added and the eldest one was removed from the computation
(Fig. 3.4).

Figure 3.4: Graphical illustration of the moving window approach

3.2.3 Field experiment

For the field experiment, SM maps were retrieved with MULESME from backscatter intensity
data at six different resolutions (20, 40, 60, 80, 100, and 120 m) following the two strategies
depicted in Fig. 3.1. For both strategies, backscatter images were preprocessed to a square
20 m pixel. For the AtC strategy, these images were then multilooked into the five lower
resolutions, and finally the SM was retrieved for all six resolutions. Alternatively, for the CtA
strategy, the SM was retrieved at the 20 m resolution, and subsequently multilooked into
the different target resolutions.
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Table 3.1: Data variability in the three synthetic experiments

Exp. 1 2 3

SM Space constant varying varying
Time varying varying varying

Roughness Space constant constant varying
Time constant constant constant

Speckle Space varying varying varying
Time varying varying varying

3.2.4 Synthetic experiments

Three synthetic experiments with increasing data variability were set up to study how
the computation strategy impacts SM retrieval accuracy. A square region of 18×18 km (or
360,000 pixels at a 20 m resolution) was used for the synthetic experiments. Synthetic data
for the experiments consisted of 15 days of soil moisture, roughness, NDVI, land cover, LIA
and backscatter intensity data. In all three experiments, speckle was added to the synthetic
backscatter data, since speckle is inherent to SAR data and does not contain relevant
information for the soil moisture retrieval. SM and roughness were varied in time and/or
space as presented in Table 3.1. In experiment 1, SM varied only in time and roughness
was constant in time and space. Any multilooking therefore only removed speckle, and no
information on SM or roughness was lost. In experiment 2, spatial SM variation was added,
so that during multilooking some information on SM was lost since the resulting aggregated
backscatter is an average of different values of SM. In experiment 3, roughness also varied
in space, thereby losing even more information during the multilooking. The synthetic data
were used as input data for the MULESME algorithm and processed according to the two
different strategies as outlined in Section 3.2.3.

Synthetic data were sampled from either a normal or a uniform distribution, with their
parameters derived from in situ (Section 3.2.1) and satellite (Section 3.2.3) field data. Both
sets of experiments (i.e. "normal" and "uniform") were performed, because using a uniform
distribution leads to increased spatial variability in soil moisture compared to the normal
distribution. However, the uniform distribution is less comparable to a ground truth sce-
nario, where neighbouring soil moisture pixel values are usually similar. Hence, the results
from the "normal" analysis were compared to the in situ data, and the results from the "uni-
form" analysis were used to demonstrate a more extreme case. Since random sampling
was used, the entire experiment was carried out 15 times with different random values to
reduce the chance that the presented results are merely the result of a stochastic artefact.
The random sampling is described for every variable in the following subsections.
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Soil moisture

For the synthetic SM dataset based on normal distributions, data were sampled from two
truncated normal distributions, one for the temporal and one for the spatial variation.
The mean of both distributions was set to the spatiotemporal average of the S1 retrieved
SM data over the studied field (i.e. 0.19 m3m−3) and the distribution was truncated at the 5th

and 95th percentile of the S1 retrieved SM data (i.e. 0.08 and 0.29 m3m−3). The standard
deviation for the spatial variation was taken to be the same as the spatial standard deviation
in the in situ SM data, and for the temporal variation it was taken to be the same as
the temporal standard deviation in the in situ SM data. For the uniform distributions,
the lower and upper limits were set to the same as for the normal distribution: 0.08 m3m−3

and 0.29 m3m−3.

Roughness

In the experiments with a constant value for roughness, the spatiotemporal field average
roughness was taken from the MULESME runs that were performed for the field study
(1.2 cm). In the case of spatially variable roughness, the data were sampled from a
normal distribution, based on the same mean, and supplemented with the standard de-
viation (0.48 cm) and 5th and 95th percentiles (0.50, 3.8 cm) of the MULESME output.
For the uniform distribution, the same percentiles were used as lower and upper limits,
respectively.

NDVI, land cover and LIA

The synthetic NDVI, land cover and LIA data were set to be constant in both space and
time. NDVI was set at 0.15 to mimic near-bare soil conditions, optimal for soil moisture
retrieval. The land cover was set to class 211 (non-irrigated arable land in Corine Land
Cover (CLC)), which is the same classification as the field in the in situ study. LIA was set
to the field average from the 37 orbit (33.5°).

Backscatter intensity

The Oh forward model was then used to infer synthetic VV and VH backscatter from
the sampled values of SM, roughness, and LIA. Noise was added to all three experiments,
based on the noise in the real S1 backscatter data over the field. By inferring the noise
from real data, we accounted not only for speckle multiplicative noise, but also for thermal
noise (Palmisano et al., 2021).

Noise was added to the synthetic data by multiplying the synthetic linear backscatter at
20 m resolution by a random sample from a truncated normal distribution with a mean of
one and a minimum of zero. The standard deviation of the distribution was derived from
backscatter data over pixels that showed homogeneous soil moisture conditions: in that
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case, any remaining variation in backscatter is most likely caused by speckle. Homogeneous
pixels were identified by first selecting days where in situ SM data had a spatial standard
deviation lower than 0.03 m3m−3. Second, the 30% pixels where the in situ SM was closest
to the field average were selected. Satellite backscatter was then extracted over the selected
pixels and their spatial standard deviation was computed. Finally, the median of these
standard deviations was used as the standard deviation of the speckle distribution.

3.2.5 Analysis

For both the synthetic and the field experiment, two performance metrics were used to
compare observed and retrieved soil moisture: the Pearson correlation (r), and the unbiased
Root Mean Square Error (ubRMSE) (Entekhabi et al., 2010). The analysis was performed
for both retrieval strategies.

In the results section, r is not shown for the "uniform" synthetic data. In those cases,
when moving to lower spatial resolutions, the soil moisture values in the field converge
towards the mean of the uniform distribution. Hence, variation in the data decreases
with coarser resolutions and the resulting r cannot be fairly compared between different
resolutions.

3.3 Results and discussion

The analysis performed on the "normal" synthetic data (Fig. 3.5a, top two rows) shows
that for all source resolutions and experiments, r increases and ubRMSE decreases with a
coarser target resolution. Differences in performance were found in the results of the two
computation strategies CtA (circles) and AtC (triangles). For every target resolution, the CtA
strategy outperforms the AtC strategy. This indicates that retrieving soil moisture at fine
resolutions prior to multilooking results in higher retrieval performance at both fine and
coarse target resolutions. The CtA performance is especially good when the difference
between source resolution and target resolution increases, and peaks at the lowest target
resolution.

When moving from experiment 1 to 3, i.e. with increasing spatial variability in the data,
the performance variations between the different source resolutions grow (Fig. 3.6). A gen-
eral decrease in performance is visible, especially in r. The difference between performance
of the two strategies also increases. In experiment 1, no spatial variation in soil moisture
and roughness was simulated. We hypothesised that under these conditions, the difference
between the performance of the two strategies would be minimal as any spatial variation
in backscatter is only due to speckle, and multilooking to mitigate speckle thus indeed
only reduces speckle without losing any other type of information. The results confirm our
hypothesis, with small but consistent differences in performance between different resolu-
tions and between the AtC and CtA strategies. In experiment 2, where spatial variation in
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Figure 3.5: Resolution- and strategy-dependent accuracy of soil moisture retrieval performance.
(a) shows the mean results and their 95% confidence interval of the 15 synthetic experiments
with a normal distribution in the top two rows and of the 15 synthetic experiments with a uniform
distribution in the bottom row; (b) shows the results of the two different strategies applied on
the field data. In panels where confidence intervals are not visible, their lines are smaller than
the diameter of the circles.

SM was added, the performance metrics deteriorated compared to experiment 1. Further-
more, the difference between the two strategies as well as the difference between the six
source resolutions increased. In this second experiment, multilooking not only averages
the speckle but also different values of SM. This trend continued when spatial variation in
soil roughness was added to the simulation in experiment 3: the difference in performance
further increased, as hypothesised.

Even stronger patterns were found in the "uniform" synthetic data (Fig. 3.5a, bottom rows).
Again, for all source resolutions and experiments, ubRMSE decreases with coarser target
resolution, and for each target resolution, the best performance is found for data with high
source resolutions. In comparison with the normal distribution, the performance differ-
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Figure 3.6: Impact of increasing spatial variation in the different synthetic experiments. Dif-
ferences between results from synthetic experiments 1 and 2 are shown in the left panels and
between 1 and 3 in the right panels, with a normal distribution in the top two rows and a uniform
distribution in the bottom row.

ences between the two strategies are larger, as well as the performance differences between
the first two experiments. Interestingly though, the difference between the first and third
experiment is smaller than the difference between the first and second experiment, contrary
to the experiments based on synthetic data with a normal distribution (Fig. 3.6).

In this idealised synthetic scenario, it is possible that speckle has a smaller effect on the re-
sults than in a field experiment. An analysis based on the field experiment (Fig. 3.5b)
confirms this. However, the patterns found in the synthetic data are still visible in the field
experiment data. The best SM accuracy on any target resolution is obtained when the cal-
culation is performed with backscatter data with a finer source resolution. At the same
time, this does not mean that at any target resolution, the highest possible source res-
olution should be used: at resolutions of 80 m or lower, the data with a 40 m source
resolution shows better performance than data with a 20 m resolution. This could indi-
cate that at 20 m resolutions, the soil moisture signal in the backscatter data was still too
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weak compared to the speckle to produce consistent soil moisture estimates over the field,
and a performance improvement at lower target resolutions was possible by aggregating
the source data to 40 m before calculating soil moisture. At high target resolutions (20 or
40 m), using the highest possible source resolution remains the best choice.

In summary, the results from the synthetic and field experiments confirm our hypothesis:
the CtA strategy leads to better retrieval performance than the AtC strategy. Moreover,
we saw that in general, when more information is contained in the backscatter data,
more information is lost in multilooking and the resulting performance difference between
the two computation strategies increases. The exception to this was found in data derived
from uniform distributions. In those data the CtA–AtC performance difference was more
pronounced in experiment 2 than in experiment 3, indicating that the added spatial variation
in roughness does not have as big of an impact on the results as the added spatial variation
in soil moisture content, although it could also have been caused by the numerical set-up
of the synthetic experiment.

3.4 Conclusions

We performed a synthetic experiment using Sentinel-1 C-band SAR data to test the perfor-
mance of two retrieval strategies: calculate-then-average (CtA) and average-then-calculate
(AtC). We hypothesised that the AtC strategy leads to the loss of important information
on soil moisture conditions, which would mean that applying the CtA strategy would lead
to higher accuracies over the area of interest. Our results showed that, indeed, applying
the CtA strategy to native resolution (20 m) Sentinel-1 data led to a smaller ubRMSE and
a higher r on all tested target resolutions (20–120 m). The results from the synthetic ex-
periment were confirmed in a 2.5 ha field in Southeastern Luxembourg that was intensively
sampled for in situ soil moisture conditions. Since in both the synthetic and the field
experiment an increase in performance was found even at small resolution gaps between
source and target data, we expect that the presented results are also relevant for coarser
resolutions and for soil moisture applications on larger scales.
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Abstract

Soil moisture datasets at high spatial resolutions are beneficial for a wide range of appli-
cations, such as monitoring and prediction of hydrological extremes, numerical weather
prediction, and precision agriculture. For large scale applications in particular, remotely
sensed soil moisture has advantages over in situ data because it provides gridded estimates
and because it is less labour-intensive. However, until present, active microwave SM
data have not been presented at their native spatial resolution, since the quality of these
data is limited by speckle. We explored the potential and limits of high spatial resolution
of active microwave soil moisture observations. We used a Sentinel-1 C-band SAR soil
moisture dataset at six spatial resolutions ranging from 20 to 120 m. This was compared
to a closely spaced (20 m) in situ dataset collected on a non-irrigated agricultural field
(∼2.5 ha) in the Southeast of Luxembourg. A comparison of the field and satellite datasets
demonstrated how Sentinel-1 data with a high spatial resolution can be used to quantify
temporal within-field soil moisture variability. Soil moisture was accurately estimated at
spatial resolutions of 60 m and coarser, where the temporal correlation was found to be
0.67 and sub-field variations in soil moisture were still detected. Spatial correlation was
limited by the absence of soil moisture variability within the field. These results indicate
that high spatial resolution soil moisture estimates from Sentinel-1 data can be valuable for
monitoring temporal soil moisture variations within agricultural fields.
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4.1 Introduction

Soil moisture (SM) is an important variable in the water cycle as it controls the exchange
of both water and energy between the land surface and the atmosphere (Seneviratne et
al., 2010; Vereecken et al., 2014), in particular during droughts and heatwaves (Miralles
et al., 2019; Teuling, 2018). SM observations at high spatiotemporal resolutions can
improve numerical weather prediction (Lagasio et al., 2019a; Lagasio et al., 2019b), serve
applications such as precision agriculture (Vereecken et al., 2014), and enhance monitoring
and prediction of hydro-meteorological disasters (Bierkens et al., 2015; Peng et al., 2021;
Vergopolan et al., 2021; Wood et al., 2011).

In situ SM observations, though accurate, are still scarce because of costs and time involved
in acquisition, installation, and maintenance of sensors. Furthermore, observations are
effectively made at point scale and thus lack spatial representativeness and spatial coverage
(Babaeian et al., 2019; Crow et al., 2012b; Peng et al., 2021; Seneviratne et al., 2010;
Teuling et al., 2006b). Remotely sensed SM products, on the other hand, are less labour
intensive and provide a gridded estimate of SM with a large spatial coverage. Consequently,
these data can be assimilated in hydro-meteorological models directly (Hostache et al.,
2020).

Several global or continental gridded SM datasets are currently available (Peng et al., 2021),
such as ESA CCI soil moisture (Gruber et al., 2020), NASA USDA Global Soil Moisture Data,
and Copernicus Global Land service Surface Soil Moisture (CSM). These open data can be
very useful for modelling studies thanks to their large-scale coverage. However, their
spatial resolutions (0.25°, 0.25°, 1km, respectively) do not yet allow for SM monitoring at
the scale of individual fields or even at the sub-field scale that is most relevant for (precision)
agriculture.

SM can be observed at sub-field scales with the use of active microwave data, as provided
for instance by the S1 satellites. Active microwave sensing has the benefits of a high
native spatial resolution, and can be performed day and night and under all weather
conditions (Babaeian et al., 2019). On the other hand, SM retrieval accuracy is hampered
by uncertainties caused by speckle, surface roughness, the presence of vegetation, water
bodies, and frozen soils. These uncertainties have to be accounted for in the SM retrieval
and might limit the effective spatial resolution at which SM can be inferred.

An integral part of any SM retrieval is the forward model that predicts the backscatter for
given surface conditions. Multiple forward models exist, such as the physical Advanced
Integral Equation Model (Fung et al., 1992), the Water Cloud Model (Attema and Ulaby,
1978), and the semi-empirical Oh model (Oh, 2004). The Oh model has been applied
successfully in many SM retrieval studies (e.g. Choker et al., 2017; Ezzahar et al., 2020;
Pulvirenti et al., 2018; Wang et al., 2018). Retrieval algorithms are even more numerous,
with different underlying methods to account for uncertainties, such as change detection
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(e.g. Balenzano et al., 2011; Bauer-Marschallinger et al., 2019; Wagner et al., 1999), artifi-
cial neural network (Del Frate et al., 2003; El Hajj et al., 2017; Elshorbagy and Parasuraman,
2008; Hachani et al., 2019), or multiple least squares (Kim et al., 2014; Mattia et al., 2009;
Pierdicca et al., 2014; Zhu et al., 2019) methods.

In addition to the retrieval process, evaluating the accuracy of SM retrievals with high
spatial resolutions poses it own challenges (Gruber et al., 2020). Since in situ SM data
lack spatial representativeness, the reference in situ point dataset must be of sufficient
spatial density (i.e. small spacing, Western and Bloschl, 1999) and account for sampling
uncertainty. Big efforts have been made to monitor SM and to make these datasets publicly
available, such as in the International Soil Moisture Network (ISMN) (Dorigo et al., 2021)
or during numerous ground validation experiments (SGP97, NAFE’06, SMAPVEX12, 16,
SMAP Cal/Val, Colliander et al., 2017; Colliander et al., 2019; Colliander et al., 2015).
Unfortunately, currently available in situ datasets like these do not have sufficiently small
spacing and/or their measurement period does not overlap with S1 acquisitions. Dedicated
field experiments using robust and intensive spatiotemporal sampling are required for a fair
analysis of a satellite dataset on multiple high spatial resolutions: the pixel-average in situ
SM must be known at all of the studied resolutions. For that reason, a field campaign
with small spacing was set up in Luxembourg, where topography is limited and a strong
seasonality in surface SM exists (Matgen et al., 2012).

We hypothesise that even S1 data at its native spatial resolution contains relevant informa-
tion on sub-field moisture conditions and aim to find the minimal spatial resolution at which
speckle still allows for accurate SM estimates. For this purpose, we use a multitemporal
pixel-based algorithm introduced by Pulvirenti et al. (2018) to retrieve SM at different high
spatial resolutions (20–120 m). The S1 retrieved SM dataset was then evaluated against an
in situ dataset whose spacing matches the S1 native spatial resolution. This dataset resulted
from a field campaign on a non-irrigated agricultural field of ∼2.5 ha in the Southeast of Lux-
embourg during 2020 and 2021. The evaluation for the entire time period is supplemented
with a case study, entailing a short period with strongly varying SM conditions. We then
discuss benefits and limitations of SM monitoring at these high spatial resolutions.

4.2 Study area and data

4.2.1 Study area

A field experiment was performed on a ∼2.5 ha non-irrigated agricultural field in south-
eastern Luxembourg (Fig. 3.2). This specific field was chosen for its close proximity to
a permanent meteorological station, and because of its availability for in situ measure-
ments over a long time period. The long time period was necessary in order to obtain
measurements at a large range of moisture conditions. Vegetation state in the field varied
throughout the measurement period (Fig. C1): during the 2020 growing season maize
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covered the field, and winter wheat was sown in the fall of 2020. The winter wheat grew
to a few cm before low temperatures stagnated their growth, hence a slight coverage of
vegetation was present in the 2020–2021 winter season. Growth then continued from
March onward.

4.2.2 In situ data

In situ soil moisture data were collected and calibrated as described in Section 3.2.1 on
the days indicated in Fig. 4.1. Additionally, at a nearby permanent meteorological station
(6.32893°E, 49.49475°N), hydrometeorological variables such as SM (at 10, 20, 40, 60 cm
depth), air temperature, and precipitation are measured continuously. These data were
used in the analysis, where meteorological conditions in the field were assumed to be
similar to conditions at the station.
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Figure 4.1: Overview of the timing of S1 (RO37, RO139), S2, and in situ data acquisitions.

4.2.3 Satellite data

Amongst the presently available active microwave sensors (see e.g. Babaeian et al., 2019),
S1 data is the most promising: ESA freely provides S1 data at a 20×22 m2 resolution
(ESA Sentinel Online, 2023), keeps the satellites under a strict acquisition scenario, and is
expected to continue these observations for the next few decades (Bauer-Marschallinger
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et al., 2019; Peng et al., 2021). Every S1 orbit provides backscatter data with a revisit time
of 6 days. Data from two different descending orbits (RO37 and RO139) were retrieved,
with an average LIA of respectively 33.5° and 42.1° over the study area. S1 data were
downloaded in Level-1 high resolution IW GRD format in VV polarisation for the days
indicated in Fig. 4.1.

As an indication of vegetation state over the study area, NDVI data were used. These
data were derived from Sentinel-2 (S2) Level-2 optical data. Although each S2 orbit has
a five day revisit frequency, fewer data were available for this study because only images
that are cloud-free over the study area were used. Moreover, only data from the 108 orbit
were used. Data were finally retrieved on days shown in green in Fig. 4.1.

The 100 m resolution CLC map 2018 was used as land cover input data for the soil moisture
retrieval algorithm. Although this is at a lower spatial resolution than the other input data,
the results of the present study are not affected since the studied field is characterised
under the same land cover type. Finally, the DEM over the study area was extracted from
the SRTM (EROS, 2017).

4.3 Methods

4.3.1 Pre-processing

S1 GRD backscatter intensity data (σ0) were preprocessed with ENVI SARscape. The pre-
cise orbit files were applied, thermal noise was removed, and data were radiometrically
calibrated, multi-looked (4 pixels in the range direction) and geocoded using the SRTM
DEM on the WGS 84 / UTM zone 32N coordinate system to finally obtain a square pixel of
20 m. The LIA and the slope over the study area were also extracted using the SARscape
tool.

S2 optical data were converted to NDVI data with ESA’s Sentinel Application Platform
(SNAP) 7.0 tool.

4.3.2 Soil moisture retrieval

The retrieval algorithm

Soil moisture was retrieved following the methods discussed in Section 3.2 for all S1
images indicated in Fig. 4.1. The two different orbits were processed separately to ensure
constant geometrical acquisition conditions (i.e. the same incidence angle) between the five
consecutive backscatter images. Then, the SM maps were further processed (Section
4.3.3) and the roughness maps could be analysed immediately. Although no site-specific
calibration was performed, estimated roughness conditions did approach their boundary
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conditions (Fig. 4.2) and their temporal dynamics were as expected, with large changes
occurring only during sowing and harvesting of the crops (Bousbih et al., 2017).
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Figure 4.2: Illustration of the temporal dynamics of inferred roughness during the field campaign,
provided in root mean square surface height [cm]. Boxplots with their minimum, 25th quartile,
median, 75th quartile, maximum, and outliers as dots, are provided for every overpass day.
The left panel shows results for RO37 and the right panel for RO139.

Minimising retrieval uncertainties

Several uncertainties in the retrieval have to be accounted for in the analysis, most notably
speckle, surface roughness, frozen soils and the presence of vegetation.

Speckle in the σ0 image is caused by inhomogeneities in the scattering natural target and
results in grainy backscatter images (Lee, 1986). Speckle is generally reduced with spatial
aggregation (e.g. Attarzadeh et al., 2018; Tripathi and Tiwari, 2020) or dedicated speckle
filtering (e.g. Schonbrodt-Stitt et al., 2021). In this case, we only multi-looked the image
four times in the range direction because we aimed to catch SM variation at a high spatial
resolution. Applying a more rigorous speckle filter could hamper this since variations in
backscatter could be interpreted as speckle rather than SM variation.

Surface roughness influences the scattering of microwaves and is corrected by assum-
ing that moisture conditions change faster than roughness conditions (Pulvirenti et al.,
2018).

Frozen soils decrease dielectric constant of the soil substantially (Hallikainen et al., 1985;
de Rosnay et al., 2006) and are therefore flagged and removed after retrieval. Images
acquired at a time when air temperatures at the meteorological station dropped below 2 °C
were excluded from the computation of the temporal performance metrics. They were
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included in the spatial analysis because in that case the data show how frozen soils affect
the retrieval, but do not influence performance metrics for the entire time period.

Vegetation water content influences the scattering of the microwave signal and is often
corrected in the retrieval as a dynamic parameter that changes in time, as does MULESME.
It uses NDVI as a proxy for Plant Water Content (PWC), which is used to correct the σ0

images for signal scattering by vegetation following Section 2.3 in Pulvirenti et al. (2018).
PWC is derived from the NDVI images with an empirical equation that depends on the land
cover of the pixel. The studied field is located in an area classified as agricultural, and as
such, the conversion follows Eq. 4.1 (Chan et al., 2011).

PWC = (1.9134 · NDVI2 − 0.3215 · NDVI) + 3.5 · (NDVI − 0.1)
0.9

(4.1)

σ0 is corrected for the vegetation signal if 0.25 kg/m2 < PWC ≤ 5 kg/m2. When PWC >
5 kg/m2, the pixel is masked from the backscatter image.

Backscatter pixels that are higher than −2 dB or lower than −18 dB after vegetation correc-
tion are masked out, since these values lie outside of the range of backscatter values under
which soil moisture can be accurately retrieved (Pulvirenti et al., 2018).

4.3.3 Post-processing

During post-processing, any MULESME runs that included a known roughness change (e.g.
due to ploughing in Oct 2020, Fig. C1) were removed from the analysis. Moreover, SM
images were averaged to create a single ensemble mean per overpass day (Fig. 3.4, Lee
et al., 2021; Zhu et al., 2020). A combination of a moving window and this averaging has
two advantages. First, a moving window allows us to work with a shorter set of images so
the hypothesis of constant roughness is more reasonable. Second, the averaging reduces
the uncertainty in the SM estimate by exploiting more backscatter measurements.

Then, lower spatial resolution SM maps were created (i.e. 40, 60, 80, 100, 120 m) by
multi-looking the retrieved 20 m SM map. Although multi-looking before SM retrieval
is a more common approach to reduce speckle, this approach leads to the mixing of
pixels that potentially have different SM, vegetation and roughness conditions. This could
hamper SM retrieval, especially at high spatial resolutions. By retrieving SM first, and
multi-looking second (CtA), different conditions are accounted for in the retrieval. Both
this approach and the inverse (i.e. retrieving after multilooking, AtC) have been tested
in a synthetic experiment and over the study area, of which the results are presented in
Chapter 3. Those experiments showed that multi-looking after retrieval results in higher
retrieval accuracy.



4

4.3 Methods 53

4.3.4 Data analysis

The accuracy of the SM images was evaluated by comparing the S1 retrieved SM maps to
the in situ reference data at all six derived spatial resolutions. To that end, the in situ SM
data were converted from point to raster data by averaging all TDR estimates located in
the overlying pixel. Then, S1 retrieved and in situ SM images were compared to analyse
the satellite’s ability to capture the spatial SM variability.

We also computed two performance metrics to quantify the accuracy and error of the SM
retrieval at the six different spatial resolutions: spatial and temporal r (Eq. 4.2) and spatial
and temporal ubRMSE (Eq. 4.3). The RMSE quadratically penalises any deviation from
in situ observations, but is sensitive to any bias in the data. The ubRMSE removes that
from the equation and is thus useful for SM datasets, since in their application, an accurate
estimate of the temporal SM variation is more relevant than its exact value (Entekhabi et al.,
2010; Reichle et al., 2007). The Pearson correlation is a useful addition as it quantifies
the agreement in space or time between the satellite dataset and the in situ dataset.

r =
∑n

i=1 (yi − y)(xi − x)√∑n
i=1(yi − y)2

√∑n
i=1(xi − x)2

(4.2)

ubRMSE =

√√
1
n

n∑
i=1

((yi −ME) − xi)2 (4.3)

ME = 1
n

n∑
i=1

yi − xi (4.4)

In Equations 4.2 – 4.4, y stands for the estimated SM, x for the in situ observed SM, n for
the number of samples and i for each individual pair of observations.

4.3.5 Comparison with Copernicus surface soil moisture

To confirm the suitability of the MULESME algorithm for SM retrieval, we not only include
a comparison of MULESME SM to a field study, but also to results of the more widely used
TU Wien Change Detection model (Bauer-Marschallinger et al., 2019). This model has
been used by the Copernicus Global Land Service to operationally retrieve global SM from
S1 at a 1 km resolution (CSM dataset, https://land.copernicus.eu/global/products/ssm).
Whereas MULESME retrieves absolute SM based on the forward Oh model, the TU Wien
model interprets changes in backscatter as changes in SM and thus ends up with a relative
estimate of SM in % saturation.

We performed a comparison with MULESME SM aggregated to the same spatial resolution
and with average field in situ values. All three datasets were filtered for frozen soils and
adverse vegetation conditions. We hypothesised that MULESME SM trends align with
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TU Wien SM trends, and assume that will be the same on higher spatial resolutions.
Conclusions drawn in applying this method will therefore likely be transferable to the use
of a different algorithm.

4.4 Results

4.4.1 Soil moisture conditions during field campaign

SM conditions in the field are provided for each day in Appendix C (Figs. C2 and C3). A
temporal average (Fig. 4.3) shows that SM was not homogeneous in the field, but that
spatial variability within the field was considerably smaller than temporal variability. On
days coinciding with the 139 overpass (RO139), the field was slightly wetter than on days
coinciding with the 37 overpass (RO37). A wetness gradient in the field from northwest
to southeast is visible in the high resolution satellite images (i.e. 20, 40, 60 m), but it can
no longer be detected in the images with a larger pixel size. The gradient is comparable
between the in situ and satellite data and between the RO37 and RO139 data. However,
a clear bias exists in the results: the temporally averaged TDR values range from 0.30 to
0.40, whereas the satellite values range from 0.16 to 0.26.
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Figure 4.3: Temporal average of SM content throughout the field measurement campaign.
The first column shows the in situ TDR data, and the remaining columns show the S1 SM
data on six different spatial resolutions. Upper and lower panels show data for the two different
orbits, and thus for different days in the measurement period (Fig. 4.1). This figure excludes days
when temperatures were below 2°C, when standing water was observed and when vegetation
hampered the SM retrieval (Section 4.4.2).

4.4.2 Temporal metrics

The bias in average SM conditions is also apparent in the temporal SM dynamics (for
the complete dataset we refer to the appendix: Figs. C2 and C3). The centre panel
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Figure 4.4: Illustration of the temporal SM dynamics during the field campaign. The centre
panel shows TDR (purple) and S1 (green, orange) time series through the 2020–2021 winter and
beginning of the 2021 growing season, with error bars indicating the standard deviation, and
meteorological conditions: daily precipitation in blue and air temperature at the time of overpass
in red. Subplots a, b, c, d, e, and f zoom in on periods that are discussed in the text.
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in Fig. 4.4 shows the S1 retrieved SM time series, as well as air temperature and daily
precipitation at the permanent station at the time of the satellite overpass. The time series
show that the bias between satellite and in situ data is slightly more severe in the RO37
data than in the RO139 data. At the same time, the temporal evolution is generally well
described in the satellite data: The impact of the presence and absence of precipitation can
be seen in increasing and decreasing SM conditions, in satellite as well as in situ data.

Differences in performance can be observed for different field conditions. Some examples
are highlighted in Fig. 4.4. In periods highlighted in green (Fig. 4.4a, b, c, e), the S1 SM
estimates follow the in situ temporal dynamics rather well. The photos taken in the field
during these periods show that soils were bare or covered with only minimal amounts of
vegetation. Moreover, the meteorological conditions were moderately wet and moderately
warm, with temperatures rarely dropping below 2°C. A bias in the results still persists,
albeit less so in October 2020 (Fig. 4.4b). In that period, temperatures stayed above 5 °C
and precipitation occurred almost daily.

In contrast, January 2021 (Fig. 4.4d) showed especially challenging conditions for SM
retrieval. Air temperatures were very low (<2°C) for the first half of the month. This led to
frozen soils in mid January, when satellite estimates of SM dropped to values of around 0.1,
a clear underestimation of actual moisture conditions. At the end of the month, frozen soils
made way for standing water on the field. This caused specular reflection that decreased
the backscatter intensity and again led to an underestimation of SM conditions.

In April–May 2021 (Fig. 4.4f), vegetation hampered accurate SM retrievals. S1 SM estimates
dropped to extremely low values rapidly before in situ conditions reflected this drop. S1
SM estimates did also not reflect the expected signal after precipitation in the beginning of
May. The reduction in estimation accuracy in this period coincides with a period of large
uncertainty in roughness estimates (Fig. 4.2), that are suddenly extremely low starting from
mid April 2021, likely due to the presence of vegetation. The vegetation attenuates the σ0

signal, and the algorithm is unable to distinguish this attenuation from surface scattering.
Hence, the backscatter is low not because of low SM, but because of the small part of
the signal that reaches the surface in the first place.

Based on this analysis, several conditions that affect the performance of S1 SM retrieval
were filtered out before computing the temporal metrics:

• days where air temperatures dropped below 2°C;

• days where standing water was observed; and

• days during the height of the growing season (after 2021-04-15).

After filtering, 22 days with TDR measurements remained, 12 for the RO37 data and 10 for
RO139.
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The temporal metrics for the two different orbits are visualised in Fig. 4.5a. The smaller
amount of in situ data for RO139 leads to non-significant correlations more often than for
RO37: only at resolutions lower than 80 m, the majority of pixels has a significant Pearson
correlation (P<0.05). For the RO37 data, this is already the case at 40 m. The temporal
r (Fig. 4.5a) is higher in the RO37 data for high spatial resolutions, but for low spatial
resolutions, the RO139 data perform better. The RO37 20 m resolution has a spatially
averaged temporal r with the in situ data of 0.39 (or 0.66 for significant pixels). At 40 m
resolution, the average correlation already improves to 0.59 (or 0.68). The improvement
in r stagnates after 60 m with a value of 0.67 (0.69) and does not get higher than 0.69 at a
100 m resolution. In the RO139 data, r improves until a lower resolution, peaking at 0.76 at
a 100 m resolution. Comparing the different pixels within each resolution, spatial variation
is limited for the RO37, except on the 20 m resolution. For the 139 orbit, a higher spatial
variation exists, with higher correlations occurring in the northern part of the field.

The temporal ubRMSE gives an indication how different the S1 SM estimates are from
the in situ SM observations (Fig. 4.5b). At lower spatial resolutions, the value decreases
slightly from 0.09 to 0.05 (RO37) or 0.04 (RO139). Spatial variation in the ubRMSE is
especially apparent in the 20 m resolution images and is more pronounced in the 139 than
the 37 orbit. In both cases, spatial variability decreases as spatial resolution decreases.

4.4.3 Spatial metrics

Spatial metrics were computed for the entire field campaign, hence including the days that
were characterised by unfavourable retrieval conditions. They are shown in Fig. 4.6 for each
day on which field data were collected, together with their averages over the entire time
period. To distinguish between favourable and less favourable conditions, temperature and
vegetation conditions are indicated in different shapes and colours in the plot, respectively.
Spatial metrics could not be computed for the 120 m resolution because there was only
one pixel at this size that had more than 50% of its area located in the field (see Fig. 4.5).
It should also be noted that at lower spatial resolutions, fewer pixels can be analysed and
so the chances of finding a significant correlation decrease.

The average spatial r (printed in grey in Fig. 4.6) over the field is low. In the case of RO37
(upper panels), r increases as the spatial resolution decreases, with its maximum at 0.232
at 100 m resolution. For RO139 (lower panels), no clear trend exists between the average
r and spatial resolution. The highest r does occur at the lowest spatial resolution, with a
value of 0.062. In contrast, the average ubRMSE clearly improves with increasing spatial
resolution for both orbits. For both orbits ubRMSE drops below 0.04 at 60 m resolution,
further decreasing to their respective minima at 100 m (RO139: 0.016; RO37: 0.017).
Differences in performance between the orbits are mostly visible at high resolutions (up to
60 m), where RO37 outperforms RO139.
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Figure 4.5: Temporal performance metrics between S1 SM and in situ data, for all six differ-
ent spatial resolutions studied here. Pixels with non-significant correlation values are dashed.
The grey text shows the metric averaged over the entire field, and the correlation for the sig-
nificant correlations only are given between brackets. Data were removed from the analysis
when temperatures were below 2°C, when standing water was observed on the field and when
vegetation hampered the SM retrieval (Section 4.4.2).
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Figure 4.6: Spatial correlation and unbiased RMSE on each day of the field campaign, for different
spatial resolutions (m). Colours show the value for field-averaged NDVI on that measurement
day. Filled shapes indicate that the correlation was significant (P<0.05) and shapes indicate
the temperature range at the time of overpass. The text in grey shows the average r and ubRMSE.
At a 120 m resolution, only one pixel is present in the field, so no values for spatial correlation
exist and ubRMSE equals zero by definition.

The separate shapes in Fig. 4.6 show the spatial performance metrics for each day on which
data were collected. The low average r discussed earlier is clearly not caused by outliers,
since on most days the correlation is rather low, especially at high spatial resolutions.
Moreover, in only a handful of cases the correlation was found to be significant (P<0.05),
shown by the filled shapes. In RO37, a significant correlation was found on only two or
three days for all studied spatial resolutions. In most cases, these significant correlations
were found to be positive. Negative significant correlations only occur for temperatures
below 2°C, as shown by squares in the figure. For the RO139 on the other hand, in
all cases where correlation is significant, it is negative. Both orbits show an increasing
variability of r at decreasing spatial resolutions, shown by the spreading of values over
the x-axis. Interestingly, the ubRMSE shows an opposite trend in RO37: spread in the y-
direction decreases at lower resolutions. This trend is not visible in RO139. For both
orbits, the ubRMSE is lower than 0.05 for most days in 60, 80 and 100 m resolutions, but
generally higher in 20 and 40 m resolutions.

Only one clear high ubRMSE outlier in the data exists at the 80 m resolution for orbit
37. Low outliers are visible in the 20 and 40 m resolutions at RO37, interestingly on
days with high NDVI values. Judging from the temporal analysis in Section 4.4.2, this
seems to be a coincidence rather than a result with a physical basis: both increased
vegetation and decreasing water content result in the same change in backscatter and
occurred simultaneously in the early summer of 2021. In terms of temperature, correlations
are often negative when temperatures were below 2°C (squares in Fig. 4.6). No substantial
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difference was found between the spatial metrics on days where temperature was between
2 and 4°C (triangles) and days where temperature was higher than 4°C (circles).

4.4.4 Case study

Both the temporal and spatial analysis indicated that differences in retrieval accuracy exist
between individual days. Even though spatial correlations are generally low due to the low
variability in the field, we expect that under favourable field conditions, MULESME is able
to capture temporal dynamics at a high spatial resolution. In this case study, we zoom in
to a period with favourable field conditions and a clear temporal variation in SM (Fig. 4.4):
February–March 2021. This analysis is performed for the RO37 data only, since higher
performances were found at higher spatial resolutions compared to the RO139 data.

Fig. 4.7 shows that the first two studied days are drier than the last two days. The biggest
change in SM is observed between the 5th and the 11th of March. Temporal in situ SM
trends are accurately represented in S1 SM conditions: wetter in situ conditions correspond
with wetter S1 SM conditions and vice versa. This is not true for all spatial resolutions. At
a 20 m resolution, the satellite retrieval shows spatially varying SM in the field that is not
present in the in situ data. At lower spatial resolutions, the agreement between different
pixels in space improves, and patterns in in situ data are better represented in the satellite
data. However, the earlier identified bias is still visible.
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Figure 4.7: Spatiotemporal SM dynamics in the field in February–March, 2021 at a 20, 40, and
60 m spatial resolution. The S1 SM is shown as pixels in the back and the TDR measurements are
plotted as points on top. *Due to a lack of TDR data on 2021-02-27, TDR data from 2021-02-26
are shown.

To further test whether temporal trends are accurately represented in the MULESME output,
we plotted the temporal variation in SM content in the field for the 20, 40, and 60 m
resolution (Fig. 4.8). The satellite data does bear a distinct resemblance to the in situ data.
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The daily variations show that trends found in spatially aggregated in situ data are well
visible in satellite data with high a spatial resolution. This is especially true for the centre
date pair, when SM levels increased substantially. At comparatively stable SM conditions,
such as in the March 17th–11th pair, the satellite retrieval is less accurate. Even at the 60 m
resolution, large S1 SM changes are visible on the studied field whereas no substantial
change showed in the in situ data.
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Figure 4.8: Temporal difference between SM on subsequent field days in February and March
2021, at 20 m, 40 m, and 60 m resolution. Histograms show the distribution of values, with a
vertical line at zero and tick marks at every 0.1. *Due to a lack of in situ data on 2021-02-27,
in situ data from 2021-02-26 are shown.

4.4.5 Copernicus data

To be able to put the MULESME analysis into context, we include an analysis of the CSM
dataset over our field (Fig. 4.9). The CSM dataset has a spatial resolution of 1×1 km.
Since our S1 retrieved SM data has a higher spatial resolution, we spatially aggregated
the MULESME dataset to the same resolution and normalised them both to their minimum
and maximum values. The top part of Fig. 4.9 shows the agreement between the two
datasets in the 1×1 km pixel overlaying the field. This shows a good agreement and a
strong temporal correlation (0.803) between both datasets. The bottom part of Fig. 4.9
shows the agreement between the Copernicus SM and the field average in situ SM mea-
surements. These also showed a good agreement, with a temporal correlation of 0.778,
compared to 0.583 between the 1×1 km MULESME and the field average. This is lower
than the MULESME estimates at higher resolutions (Fig. 4.5a), indicating that further mul-
tilooking the data to lower resolutions reduces retrieval accuracies.
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Figure 4.9: A comparison between MULESME RO37 and Copernicus SM data at a 1×1 km scale
(left) and in situ and Copernicus SM data (right) over the field.

4.5 Discussion

We compared a SM dataset retrieved from S1 data with a high spatial resolution with a
high spatial resolution field dataset with extended temporal coverage. This comparison
showed that temporal SM variability was well reflected in the satellite data, although
performance increased with decreasing spatial resolution (Fig. 4.5). Spatial performance
behaved similarly, but r was generally low and ubRMSE was generally high (Fig. 4.6). Taking
into account differences in performance dependent on field conditions, the optimal retrieval
accuracy was finally identified at a 60 m resolution using the RO37 data (i.e. the equivalent
of 36 looks of native S1 data). At that resolution, a good average temporal correlation (0.67,
or 0.69 only taking into account significant r values) was found and sub-field SM variation
could still be distinguished.

Performance of the satellite dataset depended on the satellite orbit and on field conditions
(Fig. 4.4), most notably on temperature, vegetation and wetness. The performance differ-
ence between the orbits could be caused by their different incidence angles (Palmisano
et al., 2021). Frozen soils caused negative spatial correlation (Fig. 4.6) due to the in-
verse relationship between backscatter and SM under these conditions as compared to
"normal" conditions (Hallikainen et al., 1985; de Rosnay et al., 2006). The presence of
vegetation increased the bias of the S1 SM retrievals (Fig. 4.4), as previously found by for
instance Bindlish and Barros (2001), Yadav et al. (2020), and Zhang et al. (2021). However,
the spatial correlation was barely affected by increased NDVI values, and the ubRMSE was
even lower at higher NDVI values (Fig. 4.6). Based on the sudden decrease in estimated
roughness during the same period (Fig. 4.2), it seems that the increase in performance is
coincidental. Wheat attenuates backscatter especially at high incidence angles due to its
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geometry (Mattia et al., 2003), as does a decreasing moisture content that occurs simul-
taneously. Decreasing backscatter and hence decreasing moisture estimates are therefore
likely caused by vegetation growth rather than decreasing moisture conditions, indicating
that S1 SM estimates were unreliable in that period.

The case study showed that temporal variability could be described better when clear
variations in SM existed. Unfortunately, since the study area was not irrigated, spatial
variation in SM was limited (Fig. 4.3). Meanwhile, a large spatial variability existed in S1
SM, especially in images with a high spatial resolution. This indicates that the sub-field
variation in SM is smaller than the spatial variation in the backscatter data. This high spatial
variation is not caused by the retrieval algorithm, because the algorithm is pixel-based
and so SM values do not depend on neighbouring pixels. The spatial variations in S1 SM
were thus caused by speckle, indicating that at high spatial resolutions, the spatial signal
is smaller than the noise. Speckle introduces spatially uncorrelated fluctuation, whereas it
is quite correlated in time due to the small orbital tube of S1 (Torres et al., 2012). Hence,
temporal variation in speckle is limited. This explains why temporal performance was better
than the spatial performance. High spatial resolution S1 data thus contain information on
temporal variability of SM that could be further exploited.

While speckle did influence SM retrievals at a high spatial resolution, a correlation with
reference data as high as 1 is near to impossible because in situ data have their own
uncertainties. Uncertainties in SM observations are a common issue: due to small-scale
variations in SM caused by for instance local topography, heterogeneous soil properties
and plant water uptake, point scale SM can be different from gridded SM (e.g. Babaeian
et al., 2019; Famiglietti et al., 2008; Teuling et al., 2006b; Vereecken et al., 2008; Western
and Bloschl, 1999). The uncertainty of in situ SM observations makes it difficult to relate
the in situ SM to the ground truth. Therefore the uncertainty was limited as much as
possible by taking five measurements at each sampling location and by calibrating the data
with volumetric soil samples.

The MULESME algorithm assumes that roughness in each pixel remains constant over
the five considered backscatter images. The assumption of constant roughness always
is a major part of a multitemporal algorithm, but the way this assumption is handled
depends on the algorithm. Results from a second multitemporal algorithm (TU Wien)
were therefore also compared to the in situ data. This analysis showed that the TU Wien
algorithm results in higher temporal correlations than the MULESME dataset. At the same
time, the MULESME dataset was able to accurately depict temporal SM variations at a much
higher spatial resolution. In light of the high temporal correlation between the two products
at a 1×1 km resolution, we believe that the use of a different SM retrieval algorithm for
the present study would not have considerably affected the results.

The measurements presented in this paper were made in a moderate climate under varying
moisture, meteorological and vegetation conditions. Since the entire range of valid SM
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conditions was observed, the chosen location for the field campaign had sufficient sea-
sonality in moisture conditions, as well as sufficient different meteorological conditions
and vegetation states. Finally, the studied field is a "normal" agricultural field by European
standards in terms of size, slope and soil type. Because of these wide ranging conditions,
conclusions from this study are expected to be valid under most conditions and perhaps
even in other climatic zones.

4.6 Conclusion and outlook

A high spatial resolution SM dataset resulting from S1 backscatter data was used to explore
the limits in spatial resolution of active microwave SM measurements. The performance of
this six-day dataset was evaluated with a closely spaced in situ SM data that was collected
in a dedicated field campaign in Southeastern Luxembourg. This comparison showed that
the optimal retrieval accuracy could be found at a 60 m resolution, equivalent to 36 looks
at a native S1 spatial resolution: a good average temporal correlation was found and spatial
variation could still be distinguished. Spatial correlation, on the other hand, was low, likely
due to the limited spatial variability over the field. A case study under favourable field
conditions did show that short-term SM variability could be captured at a 60 m resolution
regardless of the low spatial correlation.

Though high spatial resolution SM data have been presented before, to the best of our
knowledge, this is the first time that they were compared to an extensive in situ dataset
whose spacing matches the S1 native spatial resolution. We demonstrated that high
resolution backscatter intensity images can contain temporal information on SM at a spatial
scale smaller than the field scale, and future research should focus on further exploiting
this merit. Another path to explore would be an analysis on a larger scale, with larger
spatial variability in SM, thereby also including other land cover types, soil types and soil
textures. It would be interesting to study how large scale SM monitoring on high resolutions
would compare to a similar analysis on lower resolutions. Sub-field variations might be
of significant importance for the evolution of SM droughts and can thus be of interest for
the drought community, as well as for precision agriculture applications.
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Abstract

Recent advances in satellite soil moisture retrievals now allow for satellite soil moisture
retrievals at sub-field scale. Their relevance for drought monitoring remains to be studied.
We take the opportunity of the unique availability of three high resolution (60 m, 100 m,
1 km) soil moisture datasets over Luxembourg for an intercomparison between drought
data. Monthly anomalies of satellite retrieved soil moisture were evaluated with those of
reference in situ soil moisture and precipitation (SPI). An analysis on the national scale
showed that the 1 km data most often correctly identifies a drought observed in the in situ
data. Compared to SPI, the 60 m dataset also performs well, while the 100 m data shows a
poorer performance. On smaller scales, both the 1 km and 100 m datasets show little spatial
variability in their soil moisture anomalies. Only the 60 m dataset is able to distinguish
between local variations in soil moisture. Hence, while 1 km data allowed for soil moisture
drought monitoring on the national scale, higher resolution data is needed to adequately
monitor droughts on (sub-)field scales.
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5.1 Introduction

A drought is, in principal, a natural phenomenon that is defined as a period with below-
normal water availability (Tallaksen and van Lanen, 2004), that can occur in any part
of the water cycle. A soil moisture deficit can thus be called a soil moisture drought
when levels are considered to be below-normal. To monitor the biophysical, climate and
socio-economic impact of soil moisture droughts, remotely sensed soil moisture at coarse
spatial resolutions (i.e. 0.25°) plays an increasingly important role (Denissen et al., 2020;
Miralles et al., 2014; Nicolai-Shaw et al., 2017; Vroege et al., 2021). However, these coarse
resolutions do not provide relevant information on the agricultural field scale. Hence, for
drought management and agricultural purposes higher spatial resolutions (i.e. 1 km and
finer) are required. At spatial resolutions of 100 m and smaller, soil moisture data could
even help improve irrigation efficiency to optimise water use (Corbari and Mancini, 2023)
and, in turn, alleviate drought impacts.

Accurate soil moisture drought monitoring at sub-field scales comes with challenges: in situ
soil moisture data are sparsely and irregularly spaced point data and thus do not provide
the required support, spacing and extent (Crow et al., 2022; Western and Bloschl, 1999).
Models can provide high resolution soil moisture estimates at a large extent (Vergopolan
et al., 2022; Vergopolan et al., 2021), but these estimates are often based on simplified
assumptions such as hydrological similarity. Satellite observations of soil moisture are
a more direct estimate of hydrological conditions in the field and could provide soil moisture
data anywhere, including data-sparse regions (West et al., 2019).

At spatial resolutions of 1 km and larger, satellite soil moisture data have already been
used successfully for drought monitoring (Fang et al., 2021; Liu et al., 2019; Vroege et
al., 2021). At higher spatial resolutions, these techniques have not yet reached the same
maturity. However, recent advances in satellite soil moisture retrievals now allow for soil
moisture retrievals at sub-field scales (De Jeu et al., 2017, Chapters 3 and 4). The availability
of such high resolution soil moisture datasets enables an assessment of the use of high
resolution soil moisture data for drought monitoring.

We take the opportunity of the unique availability three high (60 m, 100 m, 1 km) resolution
soil moisture datasets over Luxembourg, a region where various in situ soil moisture
datasets are also available. These datasets together represent the academic and commercial
state-of-the-art and allow for an intercomparison between drought data retrieved from
three soil moisture products at different high resolutions. This analysis is supplemented
by a comparison with reference in situ datasets of soil moisture and precipitation to test
the accuracy of the different products in drought monitoring on monthly timescales. We
then discuss the advantages and disadvantages of the use of these products.
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5.2 Data and methods

5.2.1 Data

The data used for this study consisted of satellite datasets of soil moisture and in situ datasets
of soil moisture and precipitation. They are summarised in Table 5.1. The individual in situ
datasets were combined in one large dataset with 162 unique locations within the borders
of Luxembourg (Fig. 5.1). Because the temporal coverage differed per in situ dataset,
the amount of locations with data in any given month ranged from 2 to 85. The satellite
datasets MULESME surface soil moisture (MUL), vanderSat surface soil moisture (VDS)
and Copernicus Global Land service Surface Soil Moisture (CSM) were each processed
separately, because of their different spatial resolutions.

The MULESME dataset is largely the same as the dataset used in Chapter 4, although some
slight changes were made to the processing chain. To obtain cloud-free estimates of NDVI
over the entire territory of Luxembourg, a monthly cloud-free S2 NDVI composite was
computed with Google Earth Engine. This composite was used to perform the vegetation
correction in the MULESME algorithm (Pulvirenti et al., 2018). Moreover, an exclusion
map where soil moisture could not be retrieved accurately was created for the backscatter
images following Zhao et al. (2021). This was used to mask pixels prior to soil moisture
retrieval in MULESME. The other two satellite datasets were readily available online and
did not require additional preprocessing other than that discussed in Section 5.2.2.

Table 5.1: Overview of the data used in this study.

Spatial / temporal
resolution Coverage Satellite Algorithm Citations URL Units

In situ
precipitation

LIST,
ASTA,
MeteoLux

point daily 01-01-2002
31-12-2022

LIST-HOST, 2022
ASTA, 2022
MeteoLux, 2022

https://envdata.private.list.lu/ [mm]

In situ
soil moisture

LIST,
ASTA point daily 30-04-2012

17-11-2022
LIST-HOST, 2022
ASTA, 2022 https://envdata.private.list.lu/ [m3/m3]

van Hateren point1 6-daily 04-03-2020
03-06-2021 van Hateren et al., 2023a [m3/m3]

Foets point1 monthly 05-12-2017
21-11-2018 Foets et al., 2020 [m3/m3]

Blume & Weiler point daily 01-03-2012
25-04-2018 [m3/m3]

Satellite
soil moisture

MULESME 60 m 6-daily 01-01-2016
31-12-2022 Sentinel-1 MULESME Pulvirenti et al., 2018

van Hateren et al., 2023a [m3/m3]

VanderSat’s
C-band
soil moisture

100 m daily 15-06-2002
05-09-2022

AMSR-E,
AMSR2 Planet https://data.public.lu/en/datasets/soil-

humidity-in-luxembourg-2002-2022/ [m3/m3]

Copernicus 1 km daily 10-2014
present Sentinel-1 TU Wien Bauer-Marschallinger et al., 2018 https://land.copernicus.eu/global/

products/ssm [% sat.]

5.2.2 Preprocessing

The VDS data contained some images with unrealistic patterns of soil moisture, where
for instance half of Luxembourg was covered with a value of 0 m3/m3. Those images
were removed from the analysis, since they had a large impact on the monthly average

1average of multiple independent samples
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soil moisture values. Then, all satellite data were filtered spatially to only consider pixels
where at least 80% of the underlying land was covered by agricultural area according to
the vectorised CCI land cover 2018 dataset (https://data.public.lu/en/datasets/corine-land-
cover-2018/). The remaining data were converted to monthly mean soil moisture and
monthly precipitation sums. Missing values were ignored so that monthly values were
obtained when at least one of the days of that month had data. Monthly soil moisture
anomalies (SMA) were computed using Eq. 2.1 (e.g. Cammalleri et al., 2015), using a
reference period from 2015 to 2022. Monthly precipitation sums were standardised using
the SPI (McKee et al., 1993). Similar to soil moisture, SPI was computed on a one-month
timescale (SPI1).

To allow for a comparison with gridded satellite datasets, the point-scale in situ data were
also converted to gridded data. Precipitation is spatially rather homogeneous compared to
soil moisture. Available precipitation data were therefore considered to be representative
for the entire country. To convert these precipitation point data into gridded data, they were
first interpolated to values for the entire study area with Thiessen polygons. These polygons
were then rasterised to a gridded dataset with a 10 km spatial resolution, to obtain a total of
58 pixels over the study area, similar to the number of precipitation stations (Fig. 5.1).

Soil moisture is more heterogeneous in nature than precipitation and was converted to
gridded data differently. For each pixel in the satellite SM datasets, the available in situ SM
was spatially averaged. A correlation between satellite and in situ SM therefore indicates
how well satellite data can describe soil moisture dynamics on a pixel scale, rather than on
a point scale.

The satellite soil moisture datasets were resampled to all of the other spatial resolutions
that were studied. For instance, the CSM dataset (1 km) was resampled to the spatial
resolutions of the MUL (60 m) and VDS (100 m) datasets using the nearest neighbour
method, and spatially averaged to the resolution of the precipitation dataset (10 km).

5.2.3 Analysis

After preprocessing the available data, the satellite soil moisture datasets were compared
to each other, as well as to the reference datasets consisting of in situ soil moisture and
precipitation data. Soil moisture data were compared at each spatial resolution. For
example, 60 m resolution MUL data were compared to the 1 km resolution CSM data at a
60 m, 100 m, 1 km and 10 km spatial resolution. The Pearson correlation (r) was used as
the performance metric, and only computed when a minimum of four pairs of observations
were present. Temporal correlations were computed for the SMA to test their performance
during anomalous conditions. Spatial correlations, on the other hand, were computed for
monthly SM averages.
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Figure 5.1: Map of the study region and location of in situ stations.

The second part of the analysis focused solely on drought conditions. Drought years were
identified in the SPI1 data and the most recent drought over Luxembourg, 2022, was chosen
to compare spatial and temporal accuracy of the different soil moisture datasets. Droughts
were identified starting when average SPI1 values dropped below −1 and ending when
they returned to positive values (e.g. Brito et al., 2018; McKee et al., 1993; Spinoni et al.,
2014). This way, drought onset, duration and intensity, as well as hit rates and misses,
could be determined for all the different datasets and compared to those of the reference
data, even though the characteristics of drought in surface soil moisture might differ slightly
from the meteorological drought as reflected in SPI1.
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5.3 Results

5.3.1 Temporal variation

Fig. 5.2 shows time series of satellite and in situ SMA and SPI1. The SPI1 and in situ
SMA are taken to be the reference value for drought conditions. The SPI1 shows that
the longest drought in the studied period occurred from Dec 2016 up until Jun 2017. This
was also the period with the highest spatially averaged drought intensity in SPI1: −2.3 in
April 2017. All other droughts identified in the SPI1 data were short-lived, with a maximum
duration of two months. The In Situ (IS) data had fewer droughts over the entire studied
period, although they were longer in duration. Three droughts were identified, of which
the longest took place between Oct 2016 and Jul 2017. The most intense drought in IS
was in Nov 2018 with an intensity of −1.6.

The MUL SMA data only identified one drought, from Oct to Dec 2018, with a minimum
of −1.4 in Oct. The drought in 2022 that was identified in other datasets was only just not
severe enough in the MUL data (−0.98) to become part of the analysis. Four droughts were
identified in the VDS data, of which the longest took place in 2021–2022, lasting a full year
between Sep 2021 and Aug 2022. The most intense drought month was in Nov 2020, as
part of a four-month drought in winter. The CSM SMA dataset showed seven droughts over
the studied period, of which the longest took place in 2022, between March and August.
The most intense drought was in Dec 2016, with a minimum of −2.0.

When identified droughts in satellite SMA data are compared to those in the reference data
in Fig. 5.2, it seems that the CSM most often correctly identifies a drought. The hit- and
false alarm rates in the data (Tab. D1) confirm the good performance of the CSM data on
this national scale. This dataset has the highest hit rate for both the SPI and the IS reference
data. The CSM does have higher false alarm rates than the MUL data, due to the low
number of identified droughts in the MUL data. The VDS data has higher false alarm rates
than hit rates for both reference datasets.

Of course, the timeseries in Fig. 5.2 only identify a drought when the average values in
the country do so. In datasets with more spatial variation (indicated by the shaded area),
the mean value drops below −1 less often. The MUL dataset indeed only identifies a
drought on this national scale in three months during the entire studied period. It is
possible that a drought could in fact have been identified in a smaller spatial subset, even
though the national SMA average is not low enough for this timeseries analysis to show a
drought. For this reason, we discuss smaller spatial subsets in Section 5.3.3.

5.3.2 Spatial and temporal correlation

After a general comparison of temporal variation in the different datasets, here we add
quantitative detail on their agreement. Fig. 5.3 shows the temporal (top, monthly anoma-
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Figure 5.2: Temporal evolution of standardised drought indices. Monthly anomaly timeseries
of the satellite SM datasets (MUL, VDS, CSM), precipitation (SPI), and in situ SM dataset (IS).
Lines and shaded areas show the spatial average and spatial standard deviation over Luxembourg.
The horizontal lines at the bottom indicate whether or not a drought was identified in each dataset.

lies) and spatial (bottom, monthly averages) correlation between the different satellite soil
moisture and reference datasets.

Fig. 5.3 a and d indicate the correlation between the monthly satellite and in situ SM
datasets. The temporal r with in situ data improves for all the datasets with a coarser
spatial resolution, except for the VDS dataset that shows its highest r at the 1 km resolution
(median of 0.42). The highest temporal correlations are found for the CSM dataset at
the 10 km resolution, with a median r of 0.67. That is also the dataset with the smallest
spread in temporal correlations. Unlike the temporal correlations, the spatial correlations
of monthly average SM with in situ data are lowest at the 10 km resolution. The dataset
with the highest spatial r is the VDS SM dataset at a 1 km resolution, with a median of
0.45.

The middle panels in Fig. 5.3 compare the different satellite SMA (b) and SM (e) datasets
to the SPI1 reference dataset. The patterns are similar in the temporal and the spatial
correlation: both the MUL and CSM dataset show comparably high correlations (0.49 and
0.56, respectively) and the VDS dataset has a lower median correlation (0.36).

Finally, panels c and f show a comparison between the different satellite soil moisture
datasets. The temporal correlation between VDS and CSM SMA is constant moving from
fine to coarse resolutions with a median ranging between 0.49 and 0.50. The other two
pairs show higher temporal correlations at coarser resolutions than at fine resolutions.
The highest temporal correlations were found between the CSM and VDS SMA datasets
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Figure 5.3: Comparison between the various datasets over the study area. Temporal correlations
are shown for monthly satellite soil moisture anomalies (SMA, a,b,c) and spatial correlations for
monthly soil moisture averages (SM, d,e,f). Soil moisture datasets were compared to in situ soil
moisture (a,d), SPI1 (b,e) and other soil moisture datasets (c,f).

at a 10 km resolution (0.50), and the lowest temporal correlations between the MUL and
VDS SMA datasets at a 60 m resolution (0.21).

For the spatial correlation, again the VDS–CSM comparison shows a rather constant trend
with coarsening resolution. The correlation between monthly SM averages in MUL and
CSM increases to a median of 0.38 at a 1 km resolution and is lower again at a 10 km
resolution. Interestingly, the correlation between MUL and VDS decreases with coarsening
resolution. Highest spatial correlations are found between MUL and CSM at a 1 km
resolution, and lowest between MUL and VDS at a 10 km resolution (−0.16).

5.3.3 Spatial subsets

Although the time series and the performance metrics give an adequate view on the average
performance over the entirety of the study area, they do not show how drought conditions
vary in space. Here, we focus on three spatial subregions during the summer of 2022, when
two out of three satellite SMA datasets identified a drought on a national scale (Fig. 5.2). Our
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focus here is on a summer drought, rather than a winter drought, since these droughts have
a more direct and severe impact on agricultural vegetation (Stagge et al., 2015). The three
regions (Fig. 5.4) for this analysis were chosen because of their differences in geology
and land use. The northern subset is located in the Eisleck region that is characterised
by schists. The eastern subset on the other hand is located in Gutland, characterised
by sandstones. The western subset is located on the border between the two geological
regions and contains one of the in situ stations that had data over this summer.

Fig. 5.4 shows the three spatial subsets, with their respective timeseries of SMA and SPI dur-
ing the summer of 2022. Differences between the regions are identified in both the drought
duration and the drought intensity. Some similarities are also visible in the different re-
gions: all of them have their minima in March and August, and experienced a wet month
in September. Moreover, even though on a national scale the 2022 drought was identified
in only two of the satellite soil moisture datasets, on a local scale, throughout the three
locations, a drought was identified in all of them.

In the western subregion (left column in Fig. 5.4), SMA in the MUL dataset has an almost
identical temporal variation as SPI, but the in situ SMA are considerably different from
both the satellite SMA and the SPI, especially in the beginning of the growing season. In
the eastern subregion (right column) it is CSM that follows SPI most closely. In the northern
subregion (central column), both CSM and MUL SMA follow the reference SPI rather well.
Together, these images show that it depends on the region which satellite soil moisture
dataset most accurately describes drought conditions. This is confirmed in the hit- and
false alarm rates (Table D1) and in Figs. D1 and D2, that show for each 10 km pixel during
the 2022 growing season which satellite SMA dataset has the highest temporal correlation
with in situ and SPI data, respectively. Figs. D3 and D4 show the same analysis, but for
the full time period (2015–2022).

The spatial images in Fig. 5.4 depict local spatial variation in drought conditions in August
2022. Both CSM and VDS show a spatially constant SMA. These smooth appearances are
also visible in the low values for spatial standard deviation in the timeseries of Figs. 5.2
and 5.4. The MUL dataset, on the other hand, shows more spatial variation and even
contains pixels with a wet soil moisture anomaly. For the western and northern region,
these wet pixels are concentrated around the borders of more vegetated regions visible
in the RGB image, which could indicate that the influence of vegetation is not sufficiently
masked out. It could also indicate that these transition zones are in fact less impacted by
drought conditions. These transition zone are more shaded and sheltered than agricultural
fields and hence have lower temperatures and less evaporation, directly impacting surface
soil moisture. The southeastern region does not seem to be impacted by these transition
zones: wet pixels are more spatially distributed over the image.
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Figure 5.4: Illustration of spatial variation in satellite SMA and SM during the summer of 2022 for
three subregions. The timeseries show spatial mean and standard deviation over the three regions
shown in the map at the bottom of the figure. Horizontal lines in the timeseries show whether
or not a drought was identified in each of the datasets. Spatial plots are shown the western (left),
northern (middle) and eastern (right) subset for August, the driest month of that summer for most
satellite SMA (middle) and SM (bottom) datasets. RGB images are cloudless composites and thus
do not necessarily provide information on field conditions in August 2022.
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5.4 Discussion

In our analysis, we showed the performance of different hyper- and high resolution sur-
face soil moisture datasets in depicting drought conditions. We compared monthly val-
ues and monthly anomalies to those of in situ soil moisture and precipitation reference
datasets.

A temporal analysis (Fig. 5.2) showed that, on a national scale, the Copernicus surface soil
moisture (CSM) dataset most accurately identified droughts that occurred in the reference
datasets. The vanderSat (VDS) dataset had the most false alarms, and the MULESME (MUL)
dataset had a high hit rate but at the same time missed most droughts that were identified
in the reference datasets. The CSM dataset also showed highest temporal correlations
with in situ soil moisture data (Fig. 5.3). Compared with the SPI, both the CSM and MUL
datasets had a higher temporal and spatial correlation than the VDS dataset. A spatial
analysis on a regional scale showed a high performance of both MUL and CSM compared
to SPI data. Droughts in the in situ reference data were not always adequately represented
in the different satellite datasets. Out of the three satellite soil moisture anomaly datasets,
the MUL data showed the largest spatial variation. The VDS data, even though it had a high
spatial resolution, only showed a limited spatial variation. Variation was larger in the CSM
data, despite its coarser spatial resolution.

A comparison between the different soil moisture datasets showed that temporal corre-
lations between VDS and CSM were the highest. That is interesting, because CSM and
MUL are both based on S1 data, whereas VDS is based on Advanced Microwave Scanning
Radiometer (AMSR)2 data. The comparatively low correlation between two datasets based
on the same satellite data is likely related to the difference in their respective correction for
frozen soils. While CSM data are flagged and removed for extremely low values, likely re-
lating to frozen soils, MUL data were removed whenever temperatures dropped below 2°C,
as in Chapter 4. This results in a smaller range of SM values to compute correlations, hence
reducing the correlation value. Fig. D5 shows a comparison between the datasets where
MUL data hasn’t been filtered for temperatures, and does indicate a higher correlation for
the two datasets that are based on S1 data.

Although this analysis showed that the higher spatial resolution of MUL and VDS data do
currently not lead to higher temporal or spatial correlations than data at coarser resolutions
(Fig. 5.2), these fine resolution data can show added value at local scales in depicting local
variations in soil moisture drought (Fig. 5.4). In fact, at a 10 km spatial resolution, the MUL
data shows similar temporal and higher spatial correlations as the CSM data, that had
the highest performance at its own spatial resolution. That means that the MUL data does
accurately reflect soil moisture conditions on the large scale. A reason that these good
performances at large scales do not translate to those at smaller scales could be that small
scale variations in soil moisture are not accurately reflected in reference data.
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In most cases, the satellite soil moisture data reflected the SPI reference data more accu-
rately than the in situ reference data. Two factors play a role here. First, in situ data were
collected at depths of 5 and 10 cm, deeper than the penetration depth of the satellite signal.
This means that there is some lagging and dampening of the soil moisture temporal varia-
tion in the in situ data as compared to satellite soil moisture, which describes surface soil
moisture only. For a more accurate reflection of soil moisture variations deeper in the soil,
a longer satellite wavelength and/or a coupling with land surface model is required (Liu
et al., 2016). Second, the in situ data are point measurements, that could be different from
the gridded soil moisture data that are presented by the satellite products (e.g. Babaeian
et al., 2019; Chen et al., 2019). The SPI data reflect precipitation, which has a smaller spa-
tial variability than soil moisture, especially on the fine resolutions studied here, possibly
explaining the higher correlation with the gridded satellite soil moisture products.

In this study, we computed soil moisture anomalies based on a short reference period
(i.e., 8 years), because only the VDS dataset had a record longer than this: the Sentinel-1
data that underlies the CSM and MUL datasets was available from 2015 onwards. As
recommended by the World Meteorological Organization (WMO), droughts are generally
identified based on a reference period of 30 years. Such a long record of satellite soil
moisture data does exist, for instance in the 0.25° CCI soil moisture data. Unfortunately,
that spatial resolution does not allow for an analysis on high resolutions. The droughts
identified in our data have however also been identified in studies where reference data
with a larger time span was used (e.g. Bakke et al., 2020; García-Herrera et al., 2019;
Rakovec et al., 2022; Toreti et al., 2022).

5.5 Conclusion

Making use of three satellite soil moisture datasets with spatial resolutions ranging from
60 m to 1 km, we showed how these can be used to monitor droughts on local as well as
national scales. At large scales, the Copernicus soil moisture dataset at a 1 km resolution
showed highest drought monitoring accuracies compared to in situ soil moisture data as
well as in situ precipitation data. At smaller scales, the Copernicus dataset still performed
well, but local variations in drought conditions could not be distinguished. For some
regions, the high resolution (i.e. 60 m, MULESME) soil moisture dataset performed better
in comparison with the reference drought dataset. A spatial analysis of the best performing
datasets per 10 km pixel did not reveal what caused this difference in performance. Future
research should focus on analysing the causes of this discrepancy so that the most suitable
soil moisture dataset could be chosen based on local conditions, taking into account that
high resolution data could provide more information on the sub-field scale.
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6.1 This thesis

Under future warming and increased pressure on the hydrological system, accurate drought
monitoring systems are needed to limit the negative impacts of these drought events. Large
scale drought monitoring systems should include accurate soil moisture observations,
because soil moisture plays a central role in the water cycle (Fig. 1.1). Although large scale
soil moisture data exist, they are limited by their coarse resolution. At high resolutions,
soil moisture data can additionally be used to alleviate drought impacts on a local scale.
That is why this thesis discussed soil moisture drought monitoring on both low and high
resolutions, and the impacts of soil moisture droughts on vegetation. Here I synthesise
the main findings of this thesis, interpret their combined strengths and weaknesses, and
put the conclusions into context of scientific challenges and opportunities.

6.2 Main findings

Soil moisture droughts are often referred to as agricultural droughts because of their large
impact on vegetation. However, drought impacts on vegetation are not always negative
because these drought events often coincide with increased solar energy. Hence, the term
agricultural drought could be ambiguous. Chapter 2 compared soil moisture and vegetation
patterns during major European drought events in the past two decades to test the ambiguity
of the term agricultural drought. A clear asynchrony was found between the surface soil
moisture drought and the impact of these droughts on vegetation. This was especially true
in energy-limited regions, such as mountain ranges and high latitude regions. In general,
negative anomalies in vegetation occurred with a delay compared to negative anomalies in
soil moisture. Occasionally, soil moisture droughts coincided with positive anomalies in
vegetation. Negative vegetation anomalies were also found in some of the events, even
though no soil moisture drought was observed. Overforecasting, i.e., when more droughts
are forecasted using soil moisture than there are droughts observed in vegetation, generally
occurred in the beginning of the growing season, whereas underforecasting occurred near
the end of the growing season.

For the monitoring of small-scale variations in soil moisture droughts, high resolution
soil moisture data are needed. The next two chapters therefore focused on retrieving
high resolution soil moisture data and on testing their potential over an agricultural field in
southeastern Luxembourg. Chapter 3 discussed two strategies for retrieving high resolution
soil moisture data from native Sentinel-1 backscatter data: the Calculate-then-Average (CtA)
and Average-then-Calculate (AtC) strategies. Both were tested in a synthetic and a field
experiment with spatial resolutions ranging from 20 to 120 m, to determine the strategy
with the most accurate results. The CtA strategy applied to native resolution (20 m)
Sentinel-1 data led to a higher performance on all tested target resolutions (20–120 m). CtA
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works especially well when the difference between source resolution and target resolution
increases, and performance peaks at the lowest target resolution. With an increasing
spatial variability in the data, the performance variations between the different strategies
increased. This indicated that when more information is contained in the backscatter data,
more information relevant to soil moisture retrieval is lost during the averaging.

In Chapter 4 the CtA strategy was applied in a field experiment to explore the limits in
spatial resolution of active microwave soil moisture retrievals. Under bare soil conditions,
in situ soil moisture variability was captured well by the satellite estimates, albeit with
a bias. During periods with substantial vegetation, frozen soils, or standing water on
the field, the performance of satellite estimates was much lower. At a 60 m resolution,
an average temporal correlation of 0.67 was found and spatial variation could still be
distinguished. Spatial correlation remained low, likely due to the limited spatial variability
over the field. A case study under favourable field conditions did show that short-term soil
moisture variability could be captured at a 60 m resolution regardless of the low spatial
correlation.

This 60 m resolution satellite soil moisture dataset was then used in Chapter 5 for a study
over a larger scale. The aim was to determine the value of high resolution soil moisture
data for drought monitoring. The 60 m dataset was used together with two other high
spatial resolution datasets (100 m, 1 km). These three satellite datasets were compared to
in situ soil moisture and precipitation anomalies on local and regional scales. Local scale
monitoring allows for drought monitoring on the agricultural field scale, while regional
scale monitoring can provide a general quantification of drought conditions that can be
relevant for policy makers. At both these scales, the 1 km resolution soil moisture data
showed the highest drought monitoring accuracy compared to reference drought data. At
local scales, the added benefit of higher resolution data became clear. Those data allowed
for monitoring local scale soil moisture drought variations, whereas the 1 km resolution
data did not show local variations in drought conditions.

6.3 Conclusions

This thesis had two main objectives. First, to obtain accurate satellite soil moisture obser-
vations at a high resolution (Chapters 3 and 4), and second, to determine the relevance of
state-of-the-art soil moisture data for drought monitoring (Chapters 2 and 5). Together,
these objectives enabled the answering of the research questions posed in Chapter 1.

What is the value of state-of-the-art satellite soil moisture products for drought monitor-
ing?

Based on the asynchrony between soil moisture droughts and vegetation droughts derived
from state-of-the-art Earth observation data, it was suggested to move away from the com-
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bined term agricultural drought, which can lead to confusion between soil moisture and
vegetation effects. Instead, it was recommended to use two separate terms: soil moisture
drought and vegetation drought, each with their own indices and use in drought monitoring
and forecasting. This can prevent false drought alarms, and may benefit accurate drought
monitoring and prediction. State-of-the-art satellite soil moisture products can thus not be
used for vegetation drought monitoring, but they can be used for soil moisture drought
monitoring on large scales. That means that, at their present state, soil moisture products
are useful for policy makers to derive large scale strategies. They can however not yet be
used to provide information on the (sub-)plot scale to inform farmers on water-saving or
yield-saving strategies.

What is the highest spatial resolution at which soil moisture can be accurately retrieved from
satellite data?

Important information on soil moisture conditions is lost when the AtC strategy is applied
on high resolution data. Using the CtA strategy can retain this information and results
in higher retrieval performance. Hence, retrieving soil moisture at fine resolutions prior
to multilooking, results in higher retrieval performance at both fine and coarse target
resolutions. This CtA strategy was applied on native backscatter data to retrieve soil
moisture at six different resolutions ranging from 20 to 120 m. The coarsest of these
resolutions did not allow for an analysis of sub-field soil moisture variability, while the finest
did not result in sufficiently high retrieval performance. The highest spatial resolution at
which soil moisture could be accurately retrieved was found to be 60 m.

Can high resolution satellite soil moisture data be used for large scale drought monitor-
ing?

On large scales, state-of-the-art soil moisture products of 1 km currently perform better than
products with a higher spatial resolution, compared to in situ and precipitation reference
drought data. However, based on the results from chapters 4 and 5, high resolution
soil moisture data do show promising results for drought monitoring at higher spatial
resolutions. To further improve performance of the high resolution soil moisture products,
retrieval limitations will need to be addressed in future research.

6.4 Limitations of satellite soil moisture observations

The relatively low performance of the high resolution satellite soil moisture dataset pre-
sented here does not stand on its own. Previous comparisons between satellite and in situ
data have also not always led to high correlations. For instance Zheng et al. (2022) com-
pared 24 active, passive and merged satellite as well as modelled soil moisture datasets
with an in situ dataset. Spatial resolutions ranged from 0.1° to 36 km, and the highest
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Figure 6.1: Factors influencing the backscatter signal: vegetation (a), roughness (b), frost and
snow (c) and standing water (d).

correlation with in situ data was found to be 0.666 for a modelled soil moisture product.
This is very similar to the correlation that was found with the 60 m satellite soil moisture
dataset over the field in southeastern Luxembourg (0.67).

Considering the limited correlation found in this thesis, the accuracy of satellite soil mois-
ture products (and especially that of high resolution products) should be improved. Un-
certainties from three sources need to be addressed: the backscatter signal, the retrieval
algorithm, and the in situ observations.

Backscatter signal

The backscatter signal is influenced not only by soil moisture, but also by speckle (Chapter 5)
and field conditions such as dense vegetation, soil roughness, frozen soils, or standing water
(Fig. 6.1, Baghdadi et al., 2018). These limitations in field conditions were confirmed by
the results in Chapter 4, where they played a substantial role in the experimental field
(Fig. 4.4).

Vegetation

Vegetation influences the backscatter signal, via the water contained in the plant as well
as plant structure (Ulaby and Long, 2014). That makes it difficult to distinguish which part
of the backscatter signal is caused by vegetation and which part is caused by variations in
soil moisture. The MULESME algorithm, that was used in this thesis to derive soil moisture
content, only corrects for plant water content, not plant structure. This could be one of
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the reasons why the influence of vegetation on both the backscatter and the soil moisture
signal were still visible in Chapter 4. Ideally, field conditions are used to interpret the data,
so that uncertainties can be flagged where necessary. This is easier on small scales, where
local knowledge on field conditions can be used. On larger scales this is more difficult.
Field conditions then have to be derived from other types of available data such as optical
data that can provide information on vegetation greenness, photosynthetic activity, or leaf
area as an indicator for vegetation water content. These data do however still not provide
any information on plant structure.

Crop type information can be useful to derive plant structure, which in turn can be used
for improved correction of the backscatter signal. Moreover, different crops go through
growth stages in different climates and at different times of the year, and with it, the crop’s
sensitivity to drought (Stagge et al., 2015). It is vital that especially at the vegetation’s
most sensitive growth stages, soil moisture is measured accurately. In that case, drought
mitigation measures can be taken at the right time and place to most efficiently reduce
drought impact on the crops.

Roughness

Soil roughness influences the backscatter signal because the soil scatters the signal (Fig. 6.1).
However, compared to soil moisture, it varies only slowly. In multitemporal retrieval
algorithms roughness is therefore often assumed to be constant, reducing the ill-posedness
of the retrieval. The same is done in MULESME, where roughness is estimated together
with soil moisture. At the same time, while soil roughness varies more slowly than soil
moisture, it still varies as a result of precipitation and farming activity. Ideally, similarly
to vegetation, local knowledge is used to flag such conditions, as was done in Chapter 4.
On large scales this, again, is not possible. Unfortunately, unlike vegetation, no large scale
roughness products exist to help account for this uncertainty.

While the roughness interference with the microwave signal is inherent to the SAR signal,
the signal’s sensitivity to roughness does depend on the polarisation: VV is often found
to be less sensitive than VH and HH (Baghdadi et al., 2008). This is the polarisation that
was used in this thesis to retrieve soil moisture. Since soil roughness depends on soil type
as well as environmental variables, perhaps global soil type datasets could be used in soil
moisture retrieval algorithms to predict the fraction of the backscatter signal that is caused
by roughness to allow for a better soil moisture estimation.

Speckle

Image speckle has a large influence on the backscatter signal, especially at high resolution
approaches. To reduce speckle, the backscatter signal is generally multilooked before
the signal is transformed to soil moisture data. This leads to an information loss, that can
be minimised by retrieving soil moisture prior to the spatial average. The same concept
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holds in other speckle filters, and so the CtA strategy could be applied in combination with
other types of speckle filters to further improve soil moisture retrieval accuracy. Whether
this works should still be studied in future scientific work.

Retrieval algorithm

Differences between soil moisture retrieval algorithms lead to differences in soil mois-
ture products (Chapters 4 and 5). In this thesis, a comparison was performed between
MULESME and the TU Wien algorithm. Both use Sentinel-1 data as input. Differences were
found in spatial and temporal correlations for the experimental field as well as on larger
scales. These differences in performance can only result from differences in the retrieval
strategy, because both the MULESME and the TU Wien algorithm use the same input data
and because their respective outputs were compared to the same reference data.

There are several reasons why the results can differ between the two algorithms. First,
the retrieval approach is different: MULESME is a multitemporal algorithm while the TU
Wien algorithm is a change detection algorithm. This results in absolute soil moisture values
for the MULESME algorithm, and relative values for the TU Wien algorithm. Secondly, while
vegetation and roughness are corrected for in both algorithms, their methods are different.
Thirdly, the model parameters in the TU Wien algorithm are calibrated for each pixel using
a multi-year backscatter dataset while parameters in the MULESME algorithm are empirical
and do not require such a pixel-based calibration. It is difficult to say which of these could
have caused the difference in performance, but it is possible that both have their merits
under different conditions and at different locations (Fig. D2).

To further improve the algorithm, vegetation correction could be improved based on a more
direct vegetation water content estimation, rather than an empirical conversion from NDVI
to this water content, and an inclusion of vegetation structure. An automated temperature
flagging could be added, so that frozen soils can be masked out automatically, rather than
in the postprocessing phase. Chapter 5 also showed that the different tested datasets
(and hence algorithms) showed a spatial distribution in terms of which datasets performed
best. Ideally, I envision a high resolution soil moisture dataset where soil moisture is
retrieved from backscatter data with the algorithm that works best in that specific location,
under those specific conditions, and dependent on the needs and requirements of the end
users.

In situ data

Finally, uncertainties also exist in in situ observations, especially the spatial resolutions
relevant for satellite retrievals (Gruber et al., 2020). Since soil moisture has a large local
variability, individual in situ point observations are likely to be different from gridded soil
moisture (Babaeian et al., 2019; Famiglietti et al., 2008; Vereecken et al., 2008; Western
and Bloschl, 1999). In theory, this could mean that the satellites observe soil moisture
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accurately, but the in situ data does not adequately capture small-scale variations in soil
moisture, leading to low correlations between the two observations.

Once an accurate gridded in situ observation of soil moisture has been made, the next
challenge is to relate this to the satellite signal. The penetration depth of the SAR signal
depends on the signal wavelength, as well as on moisture conditions in the field (Baghdadi
et al., 2008; Ulaby and Long, 2014). C-band SAR signals have a penetration depth of about
1.5–3.5 cm. This is shallower than most in situ data, that are generally collected deeper in
the soil, because of the higher uncertainty in shallower measurements.

Using a retrieval algorithm, the C-band satellite signal can be transformed to a surface
soil moisture estimate. Ideally, the root zone soil moisture could be retrieved. That
would allow us to more accurately predict soil moisture drought impacts, and to directly
compare the data with less uncertain in situ soil moisture estimates. Because satellites can
not measure soil moisture at those depths, root zone soil moisture is often estimated by
combining satellite soil moisture data with a land surface model (e.g. Reichle et al., 2022;
Tobin et al., 2019). These are however not direct observations of field conditions, and this
additional conceptualisation comes with additional uncertainties.

6.5 Opportunities and outlook

Although the present state of high resolution satellite soil moisture retrieval for drought
monitoring still has its limitations, this thesis showed the potential of Sentinel-1 for drought
monitoring on the sub-field scale. The data can already be useful on bare soil fields for
drought monitoring and mitigation. Continued efforts to improve the data and future
microwave missions can make remotely sensed soil moisture data useful for a larger range
of field and climatic conditions.

Drought monitoring

Chapter 5 showed the applicability of high resolution satellite soil moisture for plot scale
drought monitoring. The data could follow temporal variations in soil moisture well on
the pixel scale. In regions with larger spatial variation in soil moisture, such as regions with
irrigated agriculture, spatial patterns might also be adequately captured. These regions can
also benefit most from accurate drought monitoring systems, because of a larger pressure
on the hydrological system.

Drought mitigation

Since the soil moisture data is available on the sub-field scale, it can be used for precision
agriculture purposes. Farmers could adapt their irrigation systems so that only dry pixels
in the field are irrigated. This leads to drought mitigation as well as drought prevention: on
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the one hand, drought conditions in the field are alleviated by irrigation, and on the other
hand, water use is restrained because only areas limited by water content are irrigated.
This is especially useful when soil moisture data is combined with other types of (remote
sensing) data that can provide information on vegetation functioning. For an efficient
drought mitigation strategy, all these data do have to be available to farmers in near-real
time.

Outlook

Future work can focus on further improving the signal filtering and data processing to
increase the accuracy of high resolution soil moisture products and to make the data
useful for a larger range of field and climatic conditions. Improved data can further help
local drought mitigation and alleviation strategies as well as regional to national water
management strategies. Besides, future satellite missions can have a large impact on data
quality and availability. These will in time replace the current satellites and sensors in orbit
and so influence future large scale soil moisture products.

The Sentinel-1 satellite constellation will be continued in the future by ESA. The C-satellite
is scheduled for launch at the end of 2023, and the fourth in the series (D) in 2024.
While the C-satellite will mostly replace the B-satellite that failed at the end of 2021,
the D-satellite could possible further improve the temporal resolution of the constellation,
dependent on the lifespan of Sentinel-1A. Such an improvement in temporal resolution
would not only directly improve the temporal resolution of soil moisture datasets, but also
likely improve their accuracy in two ways. Either the assumption of roughness is more
valid: the five used images are retrieved over a shorter window of time, or more images
are used for the retrieval, thereby decreasing the ill-posedness of the retrieval algorithm.
A continuation of the Sentinel-1 constellation will also help drought monitoring because
a longer data availability allows for a more accurate drought quantification: The 8 year
time span used in this thesis is somewhat short of the 30 year time span recommended by
WMO for climatic comparisons.

At L-band, ESA is currently planning the ROSE-L mission, of which the first satellite is
scheduled to launch in 2028 (Davidson et al., 2019). With a similar set-up as the Sentinel-1
mission, its aim is to complement Sentinel-1 C-band data. Due to its longer wavelength,
L-band data has two main advantages compared to C-band data: an increased accuracy
under vegetation cover, and a larger soil penetration depth. This will be extremely helpful
in increasing sensing accuracy during the growing season, as well as performing measure-
ments towards the root zone depth, thereby increasing the measurement’s relevance for
plant functioning.

The increasing number of private satellites could be an opportunity for drought monitoring
as well, dependent on the amount of openly available data that results from these efforts.
Currently, the large scale monitoring efforts by the large space agencies are still more
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interesting because of their longer time span and stricter acquisition schedules. Non-open
data lead to limited scientific and end-user usability of the data, who rely on governments
to buy these data. Not only open data availability important, but also its availability in
near-real time. While data with a longer latency can be useful for scientific purposes,
i.e. improving retrieval algorithms, for drought management and water management in
general, it is imperative that the data are made available shortly after they are retrieved so
that they can be used for drought mitigation and drought alleviation. In the end, scientific
findings need to be available to the public for its impact on society to be largest.
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Figure A1: Soil moisture and vegetation anomalies during the 2002 growing season, produced in
the same way as Figure 2.3.
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Figure A2: Soil moisture and vegetation anomalies during the 2003 growing season, produced in
the same way as Figure 2.3.
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Figure A3: Soil moisture and vegetation anomalies during the 2005 growing season, produced in
the same way as Figure 2.3.
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Figure A4: Soil moisture and vegetation anomalies during the 2018 growing season (northern
part of drought event), produced in the same way as Figure 2.3.
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Figure A5: Soil moisture and vegetation anomalies during the 2018 growing season (southern
part of drought event), produced in the same way as Figure 2.3.
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Figure A6: Percentages of agricultural area in the 0.25° grid cells in the study area. We opted
to use the 80% mask in the analysis to balance the number of used grid cells and an accurate
representation of the area.
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Figure A8: Average soil moisture anomalies in event areas prior to (black) and during (red) each
event.
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Figure A9: Average soil moisture in event areas prior to (black) and during (red) each event.
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Figure A10: Average NDVI anomalies in event areas prior to (black) and during (red) each event.
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Figure A11: Average NDVI in event areas prior to (black) and during (red) each event.
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Figure A12: Skill scores for soil moisture drought as a proxy for vegetation drought, with a 1
month lag between soil moisture and vegetation. Background colours indicate the quality of the
skill scores (see Methods for their description), and the lines show different drought events. The
Odds Ratios for June and July in the 2018N event are both infinity, due to zero False Alarms in
both cases, and are plotted at the top of the graph.
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Figure B1: DEM over the studied agricultural field, slowing a mild slope over the field.
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C Appendices to Chapter 4
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Figure C1: Time series of average NDVI in the studied agricultural field, where maize was grown
in the first growing season, and winter wheat in the second.
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Figure C2: All RO37 SM retrievals at 20 m resolution, overlain with in situ TDR data
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Figure C3: All RO139 SM retrievals at 20 m resolution, overlain with in situ TDR data
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Table D1: Hit rates (HR = H/(H+M)) and False Alarm rates (FA/(FA+CR)) for the spatial and
temporal extents described in Chapter 5. The subsets refer to the regions shown in Fig. 5.4.

Time period Full Mar - Sep 2022
Extent Luxembourg Western subset Central subset Eastern subset
ref. data SM data HR FAR HR FAR HR FAR HR FAR

SPI
MUL 0.06 0.00 1 0.17 1 0 0 0
VDS 0.24 0.28 1 0.83 1 0.80 1 1
CSM 0.76 0.12 1 1 1 0.20 0.75 1

IS
MUL 0.04 0 1 1
VDS 0.09 0.33 1 0.67
CSM 0.61 0.11 0.25 0.33
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CSM

Figure D1: Illustration showing which of the satellite soil moisture anomaly datasets have the
highest maximum temporal correlation with in situ data in each of the 10 km pixels in the period
between March and September 2022 (the same period as the one illustrated in Fig. 5.4
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Figure D2: Illustration showing which of the satellite soil moisture anomaly datasets have the
highest maximum temporal correlation with SPI data in each of the 10 km pixels in the period
between March and September 2022 (the same period as the one illustrated in Fig. 5.4).
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Figure D3: Illustration showing which of the satellite soil moisture anomaly datasets have the
highest maximum temporal correlation with in situ data in each of the 10 km pixels in the full
time period (2015–2022).
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Figure D4: Illustration showing which of the satellite soil moisture anomaly datasets have the
highest maximum temporal correlation with SPI data in each of the 10 km pixels in the full time
period (2015–2022).

Figure D5: Comparison between the various datasets over the study area. The figure shows
results as in Fig. 5.3, but without the temperature filtering applied to the MUL dataset. Temporal
correlations are shown for monthly satellite soil moisture anomalies (SMA, a,b,c) and spatial
correlations for monthly soil moisture averages (SM, d,e,f). Soil moisture datasets were compared
to in situ soil moisture (a,d), SPI1 (b,e) and other soil moisture datasets (c,f).
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Acronyms

r Pearson correlation

AMSR Advanced Microwave Scanning Radiometer

ASCAT Advanced SCATterometer

AtC Average-then-Calculate

CCI Climate Change Initiative

CLC Corine Land Cover

CR Correct Rejections

CSM Copernicus Global Land service Surface Soil Moisture

CtA Calculate-then-Average

DEM Digital Elevation Model

ESA European Space Agency

FA False Alarms

FB Frequency Bias

FOH Frequency of Hits

FOM Frequency of Misses

GRD ground-range detected

H Hits

HK Hanssen–Kuipers score
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IS In Situ

ISMN International Soil Moisture Network

IW Interferometric Wide swath

LIA Local Incidence Angle

LUT Look Up Table

M Misses

MODIS Moderate-resolution Imaging Spectroradiometer

MUL MULESME surface soil moisture

MULESME MUltitemporal LEast Square Moisture Estimator

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NDVIA anomalies in NDVI

OR Odds Ratio

PDSI Palmer Drought Severity Index

PWC Plant Water Content

S1 Sentinel-1

S2 Sentinel-2

SAR Synthetic Aperture Radar

SM soil moisture

SMA anomalies in SM

SNAP Sentinel Application Platform

SPI Standardized Precipitation Index

SRTM Shuttle Radar Topography Mission

TDR Time Domain Reflectivity

ubRMSE unbiased Root Mean Square Error
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USDA United States Department of Agriculture

VDS vanderSat surface soil moisture

WMO World Meteorological Organization
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