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A B S T R A C T   

An international panel of experts was engaged to assess the cancer weight of evidence (WOE) for three lower 
acrylates: methyl acrylate, ethyl acrylate, and 2-ethylhexyl acrylate. The review was structured as a three-round, 
modified Delphi format, a systematic process for collecting independent and deliberative input from panel 
members, and it included procedural elements to reduce bias and groupthink. Based upon the available science, 
the panel concluded: (1) The MOA for point of contact tumors observed in rodent cancer bioassays that is best 
supported by available data involves increased cell replication by cytotoxicity and regenerative proliferation; (2) 
The WOE supports a cancer classification of “Not likely to be carcinogenic to humans” a conclusion that is more 
in line with an IARC classification of Group 3 rather than Group 2 B; (3) Quantitative cancer potency values 
based on rodent tumor data are not required for these chemicals; and (4) Human health risk assessment for these 
chemicals should instead rely on non-cancer, precursor endpoints observed at the point of contact (e.g., hy
perplasia). The degree of consensus (consensus scores of 0.84–0.91 out of a maximum score of 1) and degree of 
confidence (7.7–8.7 out of a maximum score of 10) in the WOE conclusions is considered high.   

1. Introduction 

Acrylates are esters of acrylic acid with carbon chains of varying 
length. As a group, acrylates are important industrial chemicals used in 
the synthesis of polymers that in turn are used in a variety of consumer 
products, including adhesives, cosmetics, paints and coatings, plastics, 
synthetic flavors, and textiles (IARC, 2019). Human populations can be 
exposed to acrylates by multiple pathways. These exposures are pri
marily via inhalation and dermal contact, while ingestion is generally 
considered negligible, and include occupational exposures and through 
use of consumer products that contain them. Occupational exposures to 
acrylates are generally low (<5 ppm), although peak measurements that 
exceed 10 ppm have been reported for specific tasks, which were 
accompanied by use of personal protective equipment by workers (Suh 
et al., 2018). Trace levels of some acrylates (e.g., ethyl acrylate<20 ppm; 
2-ethylhexylacrylate<100–1000 ppm) have been detected in co
polymers used for cosmetics. The potential for environmental exposures 

to these acrylates via air, water and soil are generally considered low. 
Natural sources of methyl and ethyl acrylates include certain fruits (e.g., 
pineapples) (Suh et al., 2018). Acrylates have strong odors with low 
odor thresholds thereby limiting occupational exposures (Suh et al., 
2018), and as reactive chemicals produce irritation and toxicity at the 
point of contact (Brüning et al., 2014). Once absorbed, acrylates are 
rapidly metabolized through two pathways: (1) hydrolysis via carbox
ylesterase to form acrylic acid and an alcohol corresponding to the 
carbon side chain; and (2) conjugation with glutathione (Suh et al., 
2018; IARC, 2019). Metabolism of acrylates is considered to be detoxi
fying, and due to its rapid nature (several minutes), systemic doses of 
acrylates are generally expected to be much lower than those experi
enced at the point of contact. 

This assessment was defined to consider the cancer weight of evi
dence and most likely modes of action (MOA) for three lower molecular 
weight acrylates: (1) methyl acrylate (MA); (2) ethyl acrylate (EA); and 
(3) 2-ethylhexyl acrylate (2EHA). All three acrylates are generally 
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considered to be non-genotoxic (Suh et al., 2018). Although epidemi
ology data are largely lacking for this group of chemicals, a variety of 
well conducted toxicology studies are available on these acrylates. A 
summary of the chronic studies is provided in Table 1. Multiple rodent 
cancer bioassays have been conducted for lower acrylates, including 
those for MA by the inhalation route (Reininghaus et al., 1991; JBRC, 
2017), EA by the inhalation, oral, and dermal routes (DePass et al., 
1984; Miller et al., 1985; NTP, 1986; Ghanayem et al., 1994), and 2EHA 
by the dermal route (DePass et al., 1985; Wenzel-Hartung et al., 1989; 
Mellert et al., 1994). 

Low-to-moderate increases in tumor incidences have been noted in 
some cancer bioassays (Table 1). Point of contact tumors, including 
nasal tumors following inhalation (JBRC, 2017), forestomach tumors 
following oral gavage administration (NTP, 1986; but not via drinking 
water exposure; Borzelleca et al., 1964), and skin tumors following 
dermal contact (DePass et al., 1985), are noted in some studies. How
ever, there are also multiple studies reporting no increase in point of 
contact tumors following chronic exposures to acrylates (JBRC, 2017; 
Reininghaus et al., 1991; Miller et al., 1985; Mellert et al., 1994). Several 
studies have reported weak increases in the incidence in systemic tu
mors, including combined soft tissue sarcomas (male rats; Reininghaus 
et al., 1991), combined hematopoietic/lymphoid cancers (male rats; 
Reininghaus et al., 1991), pituitary adenoma (female rats; Reininghaus 
et al., 1991), adrenal pheochromocytoma (female rats; JBRC, 2017), and 
thyroid follicular cell adenoma (female mice and male rats; Miller et al., 
1985). These reports of systemic tumors are generally limited to a single 
study in one sex and rodent species/strain, with weak or non-monotonic 
dose-response relationships, are not statistically significant (e.g., p >
0.05) when incidence is not combined across tissue sites (e.g., soft tissue 

sarcomas), and/or the reported incidences are within or near historical 
control ranges. Furthermore, due to the rapid and extensive metabolism 
of acrylates (as reviewed in Suh et al., 2018), appreciable systemic doses 
of the parent chemicals are not expected to arise that could result in 
systemic tumor increases. Several of these tumor types have been 
evaluated more extensively in the published literature.  

• Rat Nasal tumors Produced by MA - Wibbertmann et al. (2021) 
concluded that, based on the effects observed in the subchronic and 
chronic toxicity studies (JBRC, 2017), the highest test concentration 
of MA tested in rats of 160 ppm exceeded the maximum tolerated 
concentration (MTC). For this reason, the nasal tumors results 
observed at this concentration are of questionable relevance to 
human health risk assessment. Given that these exposure levels are 
much higher than would be tolerated by humans, the author 
concluded that the potential to pose a substantial cancer risk is 
implausible.  

• Mouse and Rat Forestomach Tumors Produced by EA - Proctor et al. 
(2018) developed an adverse outcome pathway (AOP) for 
EA-induced forestomach tumors in rodents. Based on available evi
dence for EA, a sustained glutathione depletion is defined as a 
pre-molecular initiating event, epithelial cytotoxicity is defined as 
the critical initiating event, with supporting key events identified as 
increased cell proliferation resulting in sustained hyperplasia, ulti
mately resulting in the adverse outcome of forestomach tumors. 
Thompson et al. (2018) concluded that the weight of evidence sup
porting the MOA combined with the lack of a human tissue homo
logue makes it highly unlikely that EA exposure poses a cancer risk to 
human populations. 

Table 1 
Summary of rodent cancer bioassays for three lower acrylates.  

Acrylate Route of 
Exposure 

Exposure regimen Species/ 
Strain/Sex 

Tumor sites of interest (Incidence in parentheses)a Reference 

Point of Contact 
Tissues 

Systemic Tissues 

Methyl 
acrylate 

Inhalation 6 h/d, 5 d/wk for ~88–91 
wks to 0, 2.5, 10, 40 ppm 

Mouse/ 
B6D2F1/M 

None None JBRC (2017) 

Mouse/ 
B6D2F1/F 

None None JBRC (2017) 

6 h/day, 5 days/week for 2 
years to 0, 15, 45, or 135 ppm 

Rat/SD/M None Combined Soft tissue sarcoma (0/86, 4/ 
86, 0/86, 6/86) 

Reininghaus et al., 
1991 

Combined Hematopoietic and lymphatic 
cancers (0/86, 3/86, 7/86, 0/86) 

Rat/SD/F None Pituitary adenoma (10/86, 21/86, 23/ 
86, 9/86) 

Reininghaus et al., 
1991 

6 h/d, 5 d/wk for 2 yr to 0, 
10, 40, 160 ppm 

Rat/F344/M Nasal (0/50, 0/50, 1/ 
50, 6/50) 

None JBRC (2017) 

Rat/F344/F Nasal (0/50, 0/50, 0/ 
50, 2/50) 

Adrenal pheochromocytoma (1/50, 1/ 
50, 1/50, 4/50) 

JBRC (2017) 

Ethyl acrylate Inhalation 6 h/d, 5 d/wk for 6–27 mo to 
0, 25, 75, 225 ppm; 0 or 5 
ppm 

Mouse/ 
B6C3F1/M 

None Thyroid (2/121, 1/75, 0/76, 7/69) Miller et al., (1985) 

Mouse/ 
B6C3F1/F 

None None Miller et al., (1985) 

Rat/F344/M None Thyroid (1/120, 5/76, 2/75, 3/71) Miller et al., (1985) 
Rat/F344/M None None Miller et al., (1985) 

Oral gavage 5 d/wk for 103 wk to 0, 100, 
200 mg/kg-d 

Mouse/ 
B6C3F1/M 

Forestomach (0/48, 
5/47, 12/50) 

None NTP (1986) 

Mouse/ 
B6C3F1/F 

Forestomach (1/50, 
5/49, 7/48) 

None NTP (1986) 

Rat/F344/M Forestomach (1/50, 
18/50, 36/50) 

None NTP (1986) 

Rat/F344/F Forestomach (1/50, 
6/50, 11/50) 

None NTP (1986) 

2-Ethylhexyl 
acrylate 

Dermal 3x/wk for lifetime to 0 or 20 
mg 

Mouse/C3H/ 
HeJ/M 

Skin (0/80, 4/40) None DePass et al., (1985) 

3x/wk for lifetime to 0, 2.5%, 
21%, 86.5% 

Mouse/C3H/ 
HeJ/M 

Skin carcinoma (0/ 
160, 0/80, 20/80) 

None Wenzel-Hartung 
et al., (1989) 

3x/wk for 2 yr to 0, 21.5%, 
43%, 85% 

Mouse/ 
NMRIBR/M 

None None Mellert et al., (1994)  

a Shading used to indicate the strength of the dose-response trend; light shading = weak (incidence increases of ~10% or less, and/or in a non-monotonic manner); 
medium shading (incidence increases 10–25% in a monotonic manner). 
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• Mouse and Rat Thyroid Tumors Produced by EA - Rosol and Witorsch 
(2021) assessed the data for thyroid tumors in mice and rats exposed 
to EA. The authors noted that the increased incidences while statis
tically significant (p < 0.05), were small and within the range of 
historical controls, and did not exhibit a consistent dose-response 
trend. Based on these observations, along with the fact that most of 
the thyroid tumors were benign, the authors concluded that these 
tumors were most likely random observations that were of ques
tionable relevance to humans.  

• Mouse Skin Tumors Produced by 2EHA – Elmets and Yusuf (2020) 
reviewed the carcinogenicity data for 2EHA reported that there are 
no reports of cancer in humans exposed to 2EHA. Furthermore, the 
authors concluded that the evidence from one strain of mouse 
(C3H/HeJ; DePass et al., 1984) was of questionable relevance for 
several reasons: (1) this strain of mouse has a mutation in Toll-like 
receptor 4 (TLR4) that impairs its immune responses; (2) there was 
a lack of rigorous histopathologic characterization of tumors that 
developed; (3) the doses of 2EHA tested in the study were high (i.e., 
above the maximum tolerated dose); and (4) the results of this study 
were not observed when in a second mouse strain (Mellert et al., 
1994). Additionally, 2EHA was found to be not mutagenic in Chinese 
hamster V79 cells and did not induce micronuclei in human lym
phocytes (Murphy et al., 2018). 

Studies on the potential genotoxicity for these three acrylates are 
generally negative (as summarized in IARC, 2019; Suh et al., 2018), with 
limited positive findings that are associated with cytotoxic test 
concentrations. 

The cancer weight of evidence based on the rodent cancer bioassay 
data for these three acrylates has been considered by several regulatory 
and health agencies (Table 2). IARC now considers all three acrylates to 
be “possibly carcinogenic to humans” (IARC, 2019). In contrast, NTP 
initially considered EA to be “reasonably anticipated to be a carcinogen” 
but was delisted in 1998 because (1) the forestomach tumors were seen 
only at high gavage doses that caused local irritation and subsequent 
cellular proliferation, (2) chronic human exposures to high concentra
tions are unlikely, and (3) no other tumors or systemic effects were 
observed (NTP, 1998). USEPA considered MA to be “not classifiable as to 
human carcinogenicity” (USEPA, 1990), and EA provisionally as “not 
likely to be carcinogenic to humans”, but has not evaluated 2EHA with 
respect to its carcinogenicity (USEPA, 2014). These conclusions gener
ally mirror those made by other agencies (e.g., ACGIH, 2023; Health 
Canada, 2011; European Chemicals Bureau, 2005). 

This article presents the results of an expert panel-based review of 
the cancer WOE for three lower acrylates. The recommendations from 
this panel will be used to support quantitative risk assessment decisions. 
The methods and results of this expert panel engagement are described 
below. 

2. Methods and materials 

2.1. Panel engagement 

An expert panel was recruited and engaged utilizing the methods 
described in Kirman et al. (2019) as modified in Appendix A, with 
specific roles defined for the review sponsor, review manager (SciPin
ion; authors CRK, SMH), and independent expert panel members. Mul
tiple design elements were included in this review to minimize potential 
sources of bias and groupthink, and to improve transparency of the re
view. These elements include the following: (1) a hybrid-blinding pro
cess, between single- and double-blinded was adopted for panel 
recruitment and engagement to minimize potential participation bias 
(2) the identities of experts were masked (e.g., labeled as Expert 1, 
Expert 2, etc.) during all online deliberations, (3) a multi-round, modi
fied Delphi format was adopted to collect both independent and delib
erative input from the topic experts in an effort to minimize potential 

groupthink; (4) panelists were specifically asked if there were any issues 
in the review material that warranted attention and discussion by the 
panel, in an attempt to minimize potential scope bias associated with 
charge questions that are too narrowly focused; (5) individual responses 
and comments from the panelists were recorded and are provided in 
their entirety (Appendix B) to provide precise measurements for the 
degree of consensus, ensure transparency, and minimize potential 
reporting bias; and (6) although individual responses are provided, they 
are attributed to panelists’ anonymous display names (e.g., to Expert 1, 
Expert 2, etc.) rather than to specific panelist identities in an effort to 
provide psychological safety (i.e., scientists should feel free to express 
their scientific opinions without fear of negative repercussions). Based 
on the robustness of the SciPinion review process, it was recently used to 
support a cancer weight of evidence decision by USEPA for an unrelated 
chemical (1,3-dichloropropene; USEPA, 1990). 

Review material was defined by the review manager to include 
several recent reviews/publications as primary review material (IARC, 
2019; Suh et al., 2018; Wiench et al., 2022), as well as underlying cancer 
bioassays and supporting material for the selected acrylates for the panel 
to consult as needed. Panelists were also given the opportunity to 
request access to additional publications/reports to support their review 
as needed. 

Table 2 
Cancer classifications for three lower acrylates.  

Agency Methyl Acrylate Ethyl Acrylate 2-Ethylhexyl Acrylate 

IARC (1987, 
1999, 
2019) 

IARC, 1999: Not 
classifiable as to its 
carcinogenicity to 
humans (Group 3) 

IARC, 1987: 
Possibly 
carcinogenic to 
humans (Group 2 
B) 

IARC, 1999: Not 
classifiable as to its 
carcinogenicity to 
humans (Group 3) 

2019: Upgraded to 
possibly 
carcinogenic to 
humans (Group 2 B) 

1999: No change 
from 1987 
classification 

IARC, 2019: 
Upgraded to possibly 
carcinogenic to 
humans (Group 2 B) 2019: No change 

from 1987 
classification 

OEHHA 
(2023) 

2021: Included on 
Prop 65 list 

1989: Included on 
Prop 65 list 

OEHHA, 2021: 
Included on Prop 65 
list 

NTP (1998) – 1989: Reasonably 
anticipated to be 
a carcinogen 

– 

1998: Delisted 
USEPA 

(1990, 
2014) 

1990: Not 
classifiable as to 
human 
carcinogenicity 

2014: Not likely 
to be carcinogenic 
to humans 
(provisional) 

– 

ACGIH 
(2023) 

A4: Not classifiable 
as a human 
carcinogen 

A4: Not 
classifiable as a 
human 
carcinogen  

Health 
Canada 
(2011)  

2011: Does not 
meet any of the 
criteria set out in 
section 64 of 
CEPA 1999 

2018: Does not meet 
any of the criteria set 
out in section 64 of 
CEPA 1999 

European 
Chemicals 
Bureau 
(2005)   

2005: No conclusion 
could be drawn about 
the carcinogenic 
potential of 2-EHA. 
However, taking into 
account other 
information (e.g., 
lack of carcinogenic 
potential for 
metabolites acrylic 
acid, 2-ethylhexanol) 
there are no reasons 
to assume that 2-EHA 
should be considered 
as a carcinogenic 
substance  
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2.2. Cancer weight of evidence framework 

Multiple cancer weight of evidence classification frameworks are 
available from regulatory and health agencies (e.g., IARC, NIOSH, NTP, 
UN, USEPA), as summarized in ATSDR (2020). For this review, USEPA’s 
Guidelines for Carcinogen Risk Assessment (USEPA, 2014) was adopted 
as the primary framework as this work is intended to support follow-up 
work on quantitative dose-response assessments within the United 
States. USEPA’s guidance includes five possible weight of evidence 
classification descriptors.  

• Inadequate Information to Assess Carcinogenic Potential  
• Not Likely to Be Carcinogenic to Humans  
• Suggestive Evidence of Carcinogenic Potential  
• Likely to Be Carcinogenic to Humans  
• Carcinogenic to Humans 

In addition, the panelists were asked to consider a 2nd classification 
framework, United Nations’ Globally Harmonized System for Classification 
and Labelling of Chemicals (UN 2011), which yielded similar conclusions 
of “carcinogen labeling not required” (see Appendix B). 

2.3. Consensus analysis 

For charge questions on cancer weight of evidence classification, the 
degree of consensus among reviewers was assessed with precision using 
the consensus metrics of Tastle and Wierman (2007): 

Consensus= 1 +
∑n

i=1
pi log2

(

1 −
|Xi − μx|

dx

)

where p is the probability (frequency) for the answer option i, μx is the 
mean index value, Xi is an index for graded or Likert answer option i (e. 
g., “inadequate evidence” = 0, “not likely carcinogenic” = 1, “suggestive 
evidence” = 2, “likely carcinogenic” = 3, “carcinogenic” = 4), dx is the 
width of the index values (Xmax–Xmin), n is the number of answer options. 
The value for the consensus metric can range from a value of “0” when 
there is a complete lack of consensus (i.e., when equal numbers of 
panelists select the two extreme answer options) to a value of “1” when 
there is complete consensus (all panel members select the same answer 
option). All summary statistics, calculations, and figures were prepared 
using Microsoft Excel (version 15.67). 

3. Results 

3.1. Panel composition 

The panel consisted of seven scientists with expertise in cancer bio
assays, mode of action, risk assessment, and weight of evidence. De
mographics, affiliations, and expertise metrics for this panel are as 
follows. 

•Advanced Degrees: PhD (7), MD (1) 
•Mean years of experience: 41 ± 4 years 
•Mean number of publications: 138 ± 97 
•Country of residence: Canada (1), Germany (1), Netherlands (1), 
United States (4) 

• Current sector of employment: Academia (2), Consulting (2), In
dustry (1), Retired/Government (1), Retired/Industry (1) 

3.2. Mode of action 

Mode of action (MOA) information is important to key decisions 
made in cancer risk assessment including those related to human rele
vance including identification of potentially susceptible populations, 
calculation of chemical specific adjustment factors/dose measures, and 

low-dose extrapolation methods used to estimate cancer potency 
(USEPA, 2014). For the three lower acrylates, confidence in the weight 
of evidence for potential cancer MOAs was rated on a scale of “-5” (i.e., 
there is strong refuting evidence) to “0” (i.e., evidence is equivocal) to 
“+5” (i.e., there is strong supporting evidence) (Fig. 1). 

Overall, panel confidence was highest for an MOA involving 
“Increased cell replication by cytotoxicity” (mean confidence scores 
ranging from +2.3 to +3.0, reflecting a moderate degree of support). 
These results reflect the strong evidence of non-neoplastic effects (e.g., 
irritation, inflammation, hyperplasia, metaplasia) occurring at the point 
of contact for all three routes of exposure. These non-neoplastic local 
lesions were found to occur at lower (and similar) concentrations than 
were the observed tumors (Wibbertmann et al., 2021; Wenzel-Hartung 
et al., 1989). In addition, observations of reversibility of non-neoplastic 
effects and lack of tumor response in stop-exposure studies (Miller et al., 
1985; Wenzel-Hartung et al., 1989; Ghanayem et al., 1994) were noted 
as an important consideration. Confidence in the other MOAs ranged 
from equivocal to strongly refuted, with the following relative ranking of 
mean scores. An MOA involving “Indirect genotoxicity” (mean scores of 
− 1.0 to − 0.8) was noted as being at least biologically plausible given the 
ability of the acrylates to deplete tissue glutathione at high concentra
tions. Evidence supporting either “Other” (mean scores of − 2.0 to +0.3), 
“Immune system mediated” (mean scores of − 2.8 to − 1.7), and 
“Increased cell replication by receptor binding” (mean scores of − 3.5 to 
− 2.4) are generally negative although based on limited data (e.g., high 
throughput screening assays). Because of their toxicological profiles, 
chemical properties, as well as, biological plausibility, the relative 
weight of evidence for the cytotoxicity/regenerative MOA is considered 
with more certainty to explain the primary effects of the acrylates. Direct 
genotoxicity (mean scores of − 3.9 to − 4.1) is considered 
moderately-to-strongly refuted by the panelists based on largely nega
tive results obtained for genotoxicity studies, with limited positive re
sults associated with cytotoxic test concentrations, or non-relevant 
exposure routes (e.g., injection). It is recognized that this categorization 
of individual MOAs here represents a simplification of the underlying 
biology as they may not be independent of one another, may operate in 
combination, and/or operate in different tissue sites and/or dose levels. 
The reader is referred to Appendix B for explanatory text provided by the 
panelists for charge questions on MOA. 

3.3. Use of available tumor datasets in risk assessment 

As discussed above (see Introduction) there are multiple data sets 
that could potentially be used to support human health risk assessment 
for the three lower acrylates (Table 1). Information on MOA can be used 
to inform how these data should be used (e.g., qualitatively, quantita
tively, or not at all). The panelists’ conclusions on this topic are sum
marized in Table 3. 

For most tumor data sets, a majority of the panelists indicated that 
they should either not be used in human health risk assessment or should 
only be used qualitatively. Factors that influenced this decision include.  

1. There is no human tissue counterpart (e.g., rodent forestomach).  
2. Toxicokinetic factors, such as gavage exposures that yield tissue dose 

rates that are much greater than expected for drinking water or other 
exposures. This difference may explain the lack of forestomach tu
mors in rats exposed to methyl methacrylate or ethyl acrylate via 
drinking water (Borzelleca et al., 1964). In addition, longer residence 
times are expected for chemicals in rodent forestomach compared to 
human esophagus.  

3. The dose-response relationships for forestomach tumors exhibited 
non-monotonic behaviors and/or within historical control ranges for 
common rodent tumors.  

4. The magnitude of the dose/concentration (e.g., exceeding the 
maximum tolerated dose) was also a factor considered for human 
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relevance. Some panelists felt this factor should be considered 
separately from human relevance determination. 

The only tumor data sets that garnered minimal support (e.g., from a 
single panel member) for use in quantitative potency estimates was for 
data sets that reported no increase in tumors at the highest dose tested. 
Review of the explanatory text for pertinent charge questions (1.4, 2.4, 
and 3.4 in Appendix B) revealed a strong preference by many panel 
members to rely upon data sets for non-neoplastic endpoints/precursor 
lesions to support quantitative, human health risk assessment for the 
three acrylates. 

3.4. Cancer weight of evidence 

Panelists were asked to classify the cancer weight of evidence for the 
three lower acrylates as well as indicate their degree of confidence in 
their conclusion (Fig. 2). 

For all three chemicals, a majority of the panelists concluded that the 
WOE supported a classification of “Not likely to be carcinogenic to 
humans”. The basis for this conclusion includes: (1) observations for 
irritation effects specifically at the point of entry; (2) evidence sup
porting a non-genotoxic MOA consistent with cytotoxicity/regenerative 
proliferation; (3) observations of concentration-dependent responses 
consistent with a nonlinear/threshold dose-response relationship; and 
(4) expectations that humans would not be exposed to the levels causing 
chronic inflammation and cytotoxicity. Specific rationales from indi
vidual panel members for supporting this conclusion are provided in 
Appendix B. The degree of consensus was high, with consensus scores 
ranging from 0.84 to 0.91 (out of a maximum score of 1), as was the 
degree of confidence in this classification (mean confidence scores 
ranging from 7.7 to 8.7 out of a maximum score of 10). Consensus and 

confidence scores were slightly higher for EA compared to correspond
ing values for the other two acrylates. A panelist in the minority who 
indicated “Suggestive evidence of carcinogenic potential” noted that this 
classification should possibly include the qualifier “at high doses” in one 
case. In another case a panelist felt that the increases in systemic tumors 
(Table 1) could not be completely rejected. A similar cancer WOE 
classification (i.e., carcinogen labeling not required) was obtained when 
the panelists were asked to consider an alternative framework (United 
Nations’ Globally Harmonized System for Classification and Labelling of 
Chemicals, UN 2011; see Appendix B). 

3.5. Need for cancer potency estimation 

One of the goals of this work was to collect input from the panel to 
support decisions made in quantitative human health risk assessments 
for the lower acrylates (in prep). Along these lines, the panelists were 
asked whether cancer potency estimates/safety values should be derived 
for the three lower acrylates (Fig. 3). 

A clear majority of panelists (71–86%) do not feel a cancer potency/ 
safety value is required for these acrylates. These conclusions generally 
mirror those from the panel for cancer weight of evidence classification 
(i.e., if a conclusion of “Not likely to be carcinogenic to humans” is 
reached, then a cancer value is not needed). 

4. Discussion and conclusions 

An expert panel was engaged to evaluate the cancer WOE for three 
lower acrylates, MA, EA, and 2EHA. Genotoxicity studies for this group 
of chemicals are generally negative, with limited positive associated 
with cytotoxicity. Per OECD guidelines (OECD, 2015), the highest test 
concentration should not exceed 55 ± 5%, and care should be taken in 

Fig. 1. Panel Confidence in Potential MOAs for the Carcinogenic Effects of Three Lower Acrylates in Rodent Studies (bars indicate arithmetic mean, error bars 
indicate standard deviation; This refers to questions 1.3, 2.3, 3.3 in Appendix B). 
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interpreting positive results only found in the higher end of this 55 ± 5% 
cytotoxicity range. Observations for carcinogenicity from rodent cancer 
bioassays are limited. Weak increases in systemic tumors (Table 1) may 
not be treatment related and appear to be of questionable relevance to 
human health. Increases in tumors observed at the point of contact in 
some studies (Table 1), while clearly treatment related, also appear to be 
of questionable relevance to human health based on MOA consider
ations. The overall conclusions of this expert panel can be summarized 
as follows.  

(1) The MOA for point of contact tumors observed in rodent cancer 
bioassays that is best supported by available data involves 
increased cell replication by cytotoxicity and regenerative 
proliferation;  

(2) The WOE supports a cancer classification of “Not likely to be 
carcinogenic to humans” based upon USEPA (2014) classification 
framework, and that carcinogen labeling is not required under 
the UN Global Harmonization System (UN 2011);  

(3) A quantitative estimate of cancer potency based on rodent tumor 
data is not required for these chemicals; and  

(4) Human health risk assessment for these chemicals should instead 
rely on non-cancer, precursor endpoints at the point of contact (e. 
g., hyperplasia). 

The degree of consensus across panel members in these conclusions 

is considered high. The relevance of some tumor types to human health 
e.g., rodent forestomach tumors, adrenal pheochromocytomas) was 
questioned by some panel members, a conclusion that is supported by 
other researcher (Proctor et al., 2007; Adams et al., 2008). A similar 
conclusion has been reached in the published literature for rodent ad
renal pheochromocytoma (Greim et al., 2009), although this issue was 
not specifically discussed by the panel. 

The evidence for each of the three structurally similar acrylates 
considered individually is strengthened when the totality of the evi
dence is considered as a group, which is consistent with read-across 
approaches (OECD, 2014). Read-across is considered appropriate for 
these acrylates since they share common metabolic pathways (i.e., 
extensive and rapid carboxylesterase hydrolysis to a common metabo
lite, acrylate that is not considered to be carcinogenic), and mode of 
action (i.e., increased cell replication due to cytotoxicity). In addition to 
conclusions on WOE and MOA for these chemicals, the panelists iden
tified potential data needs (charge questions 1.7, 2.7, and 3.7 in Ap
pendix B), which could be used to increase confidence in their 
assessments. For example, one panel member suggested that additional 
studies to provide data that could be used to address modified 
Bradford-Hill criteria (e.g., essentiality/reversibility, dose-response 
concordance, biological coherence, biological plausibility, strength of 
association, temporal concordance, analogy) for hypothesized key 
events could improve confidence in the proposed MOA. Panelists noted 
some inconsistencies in the evidence for the role of GSH depletion. 

Table 3 
Recommendations for use of tumor data sets for several lower acrylates (questions 1.4, 2.4, 3.4 in Appendix B)a.  

Acrylate Data Set Percent of Panelists (n = 7)a 

Not used (e.g., not 
relevant to human health) 

Used qualitatively only (e.g., 
cancer classification) 

Used qualitatively and 
quantitatively (e.g., estimate 
potency) 

Other 

MA No increase in tumors in male mice (JBRC, 2017)  71% 14% 14% 
No increase in tumors in female mice (JBRC, 2017)  71% 14% 14% 
Point-of-contact tumors (nasal cavity) in male rats ( 
JBRC, 2017) 

57% 29%  14% 

Point-of-contact tumors (nasal cavity) in female rats ( 
JBRC, 2017) 

71% 14%  14% 

Systemic tumors (soft tissue sarcoma) in male rats ( 
Reininghaus et al., 1991) 

43% 29%  29% 

Systemic tumors (lymphohematopoietic cancers) in 
male rats (Reininghaus et al., 1991) 

43% 29%  29% 

Systemic tumors (pituitary gland adenomas) in female 
rats (Reininghaus et al., 1991) 

43% 29%  29% 

Systemic tumors (adrenal pheochromocytomas) in 
female rats (JBRC, 2017) 

57% 14%  29% 

Other (please specify)    29% 

EA No increase in tumors in female rats (Miller et al., 
1985)  

71% 14% 14% 

Point-of-contact tumors (forestomach) in male mice ( 
NTP, 1986) 

57% 14% 14% 14% 

Point-of-contact tumors (forestomach) in female mice 
(NTP, 1986) 

57% 29%  14% 

Point-of-contact tumors (forestomach) in male rats ( 
Ghanayem et al., 1994) 

57% 29%  14% 

Point-of-contact tumors (forestomach) in female rats ( 
Ghanayem et al., 1994) 

43% 14%  43% 

Systemic tumors (thyroid) in male mice (Miller et al., 
1985) 

43% 29%  29% 

Systemic tumors (thyroid) in male rats (Miller et al., 
1985) 

43% 29%  29% 

Other (please specify) 14%   29% 

2EHA No increase in skin tumors in male mice (Mellert et al., 
1994) 

14% 71% 14%  

Point-of-contact tumors (skin) in male mice (Depass 
et al., 1985) 

57% 29%  14% 

Point-of-contact tumors (skin) in male mice ( 
Wenzel-Hartung et al., 1989) 

57% 43%   

Other (please specify) 14%   14%  

a Shading indicates the relative proportion of panelists selecting a response. 
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Although these data are not considered essential for their conclusions on 
MOA, additional data on the role of GSH depletion in the point of contact 
effects and resolution of potential inconsistencies could improve MOA 
confidence. Additional toxicokinetic data and modeling of the residual 
levels of acrylates reaching systemic tissues (i.e., surviving first-pass 
metabolism at the point of contact) would be helpful for interpreting 
the biological plausibility of systemic tumor formation. There was some 
discussion among panelists on the use of exposure information in human 
relevance and cancer weight of evidence classification decisions. USE
PA’s guidelines do specifically permit consideration for exposure in
formation in classification determinations in stating that “convincing 
evidence that carcinogenic effects are not likely below a defined dose range 
can be considered for the classification Not likely to be carcinogenic to 
humans” (USEPA, 2014, p.2-58). While limited information indicates 
that human exposures to acrylates (Suh et al., 2018; IARC, 2019) are 
well below those eliciting a tumor response in the cancer bioassays, 
updated data on the magnitude of human exposures (occupational and 
in the general population) would serve to bolster this conclusion. 

Although the size of the panel (n = 7) does not permit a rigorous 
statistical analysis, some limited comparisons can be made across panel 
subgroups. For example, WOE indices averaged across the three acry
lates can be compared across panel subgroups (note, a higher mean 
index value would reflect a shift to the right in Fig. 2 when compared to 
lower values). Based on this comparison, no significant differences were 

noted between U.S. panelists (n = 4; mean = 1.2 ± 0.4) vs. non-U.S. 
panelists (n = 3; mean = 1.1 ± 0.4), or between panelists with cur
rent/past industry employment (n = 3; mean = 1.2 ± 0.4) vs. panelists 
with no industry employment (n = 4; mean = 1.1 ± 0.5). The latter 
observation is consistent with those of Kirman et al. (2019), which did 
not find a significant difference in panelist responses when stratified by 
sector of employment. 

The goal of this work is to provide an independent assessment of the 
cancer weight of evidence data available for three lower acrylates. A 
panel of topic experts was engaged in reviewing summary material, 
consulting primary studies as needed, and providing their conclusions 
and recommendations. The panel’s conclusions are in sharp contrast to 
those of IARC, and are more in line with a classification of Group 3 (Not 
classifiable as to its carcinogenicity to humans) for these acrylates. The 
panel’s conclusions are consistent with those made previously by other 
agencies (USEPA, 1990; NTP, 1998; ACGIH, 2023; Health Canada, 2011; 
European Chemicals Bureau, 2005; Table 2). Confidence in the panel 
conclusions is considered high, and will serve as valuable input to de
cisions made in the quantitative dose-response assessments for these 
chemicals. 
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