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ABSTRACT

During the transition phase, dairy cows are sus-
ceptible to develop postpartum diseases. Cows that 
stay healthy or recover rapidly can be considered to 
be more resilient in comparison to those that develop 
postpartum diseases. An indication of loss of resilience 
will allow for early intervention with preventive and 
supportive measures before the onset of disease. We 
investigated which quantitative behavioral characteris-
tics during the dry period could be used as indicators 
of reduced resilience after calving, using noninvasive 
Smart Tag neck and Smart Tag leg sensors in dairy 
cows (Nedap N.V.). We followed 180 cows during 2 wk 
before until 6 wk after parturition at 4 farms in the 
Netherlands. Serving as proxy for loss of resilience, as 
defined by the duration and severity of disease, a clini-
cal assessment was performed twice weekly and blood 
samples were taken in the first and fifth week after 
parturition. For each cow, clinical and serum value 
deviations were aggregated into a total deficit score 
(TDS total). We also calculated TDS values relating 
to inflammation, locomotion, or metabolic problems, 
which were further divided into macro-mineral and 
liver-related deviations. Smart Tag neck and leg sen-
sors provided continuous behavioral activity signals 
of which we calculated the average, variance, and au-
tocorrelation during the dry period. Diurnal patterns 
in the behavioral activity signals were derived by fast 
Fourier transformation and the calculation of the non-
periodicity. To select significant predictors of resilience, 
we first performed a univariate analysis with TDS as 
dependent variable and the behavioral characteristics 
that were measured during the dry period, as potential 
predictors with cow as experimental unit. We included 
parity group as fixed effect and farm as random effect. 

Next, we performed multivariable analysis with only 
significant predictors, followed by a variable selection 
procedure to obtain a final linear mixed model with an 
optimal subset of predictors with parity group as fixed 
effect and farm as random effect. The TDS total was 
best predicted by average inactive time, nonperiodicity 
ruminating, nonperiodicity of bouts standing up and 
fast Fourier transformation stand still. Average inac-
tive time was negatively correlated with average eating 
time, and these 2 predictors could be exchanged with 
only little difference in model performance. Our best 
performing model predicted TDS total at a cutoff level 
of 60 points, with a sensitivity of 79.5% and a specific-
ity of 73.2% with a positive predicted value of 0.69 and 
a negative predicted value of 0.83. The models to pre-
dict the other TDS categories showed a lower predictive 
performance as compared with the TDS total model, 
which could be related to the limited sample size and 
therefore, low occurrence of problems within a specific 
TDS category. Furthermore, more resilient dairy cows 
are characterized by high averages of eating time with 
high regularity in rumination and low averages of in-
active time. They reveal high regularity in standing 
time and transitions from lying to standing, in the dry 
period. These behaviors can be used as indicators of re-
silience and allow for preventive intervention during the 
dry period in vulnerable dairy cattle. However, further 
examination is still required to find clues for adequate 
intervention strategies.
Key words: transition period, resilience, postpartum 
disease, sensor data

INTRODUCTION

Around the time of calving 30 to 50% of dairy cows 
are affected by some form of postpartum disorder 
(LeBlanc, 2010; Wisnieski et al., 2019). During this 
transition phase, dairy cows face metabolic and physi-
ological changes in preparation for calving and milk 
production. Failure to adequately adapt and cope can 
lead to metabolic stress, which increases the risk for 
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postpartum disorders (LeBlanc et al., 2006; Belaid et 
al., 2021). As a consequence, postpartum disorders may 
occur, including ketosis, a fatty liver, digestive issues, 
macro-mineral imbalance and inflammatory complica-
tions, or more frequently, a combination of these (Sor-
dillo and Mavangira, 2014; Sundrum, 2015; Wankhade 
et al., 2017).

Resilience is defined for animals as the capacity to 
remain healthy, or respond minimally and recover rap-
idly in response to challenges (Ge et al., 2016; Scheffer 
et al., 2018; Wright et al., 2019; Friggens et al., 2022). 
These challenges might be intrinsically driven, such 
as pregnancy, parturition, or milk production, or may 
be generated externally by factors such as pathogens 
or stress due to regrouping, overcrowding, inadequate 
housing, or farm management. During the transition 
phase of dairy cows, both internal and external chal-
lenges can occur simultaneously. Cows that do not 
develop postpartum disorders or recover rapidly can be 
considered as highly resilient animals. The variation in 
clinical manifestation of impaired health in terms of se-
verity, duration and recovery of postpartum disease can 
therefore be used as a measure or deviation of resilience 
during the periparturient period in the life of a dairy 
cow (van Dixhoorn et al., 2018). An indication of a 
cow’s lack of resilience before the lactation period even 
starts, may allow for early intervention with preventive 
or supportive measures.

At present, it remains debatable which indicators, or 
combinations thereof, reflect the capacity to adequately 
cope with the transition period. Metabolic stress bio-
markers and other indicators associated with oxidative 
stress or inflammation have been described as predic-
tors of postpartum disease, but may require invasive 
blood sampling (LeBlanc, 2010; Ospina et al., 2010; 
Huzzey et al., 2011; Wisnieski et al., 2019). In addition, 
the time of measurement might influence the outcome, 
and a multitude of sampling time points are required to 
assess dynamic patterns. When using noninvasive ac-
celerometers in dairy cows, specific behavioral activity 
signals can be obtained recording their lying, walking, 
standing, eating, or even ruminating motions. More-
over, activity patterns that span multiple days, as well 
as deviations from these patterns, can be quantified. 
Variance and autocorrelation (AC) can be calculated 
from the longitudinal data and the data can also be 
converted into individual spectral components, which 
provide frequency information about the respective 
signals. Variance, autocorrelation, the skewness of de-
viations, the slope of a reaction norm and circadian 
rhythm patterns derived from behavioral measure-
ments, have previously been proposed as potential 
dynamic indicators of resilience (DIOR) in individual 
animals (Scheffer et al., 2018; van Dixhoorn et al., 

2018; Berghof et al., 2019; van der Zande et al., 2020; 
Poppe et al., 2022).

In this paper we aimed to investigate if behavioral 
characteristics during the dry period could be used as 
indicators of resilience using noninvasive Smart Tag 
Neck and Smart Tag Leg sensors (Nedap N.V.) in dairy 
cows. We tested the hypothesis that behavioral activity 
signals measured in the dry period can be used as pre-
dictors for disease severity after calving. We designed 
a statistical model and evaluated various potential 
sensor-based behavioral variables that were measured 
during the dry period as predictors for decreased re-
silience in terms of disease severity and duration after 
parturition. Subsequently, we tested the reliability of 
the detection method in terms of true and false positive 
rates.

MATERIALS AND METHODS

The established principles of laboratory animal use 
and Dutch laws related to animal experiments were 
adhered to in this study. The Wageningen University 
Animal Care and Use Committee (Lelystad Depart-
ment) approved the experiment under protocol number 
AVD401002016749 with samples size of 170 cows based 
on a prediction of a total deficit score (TDS) value 
with sensor data.

Animals, Housing, and Diet

The present study was conducted between July 2017 
and September 2018 at 4 commercial dairy farms locat-
ed in the Netherlands. A total of 180 Holstein-Friesian 
dairy cows were monitored from 2 wk before expected 
parturition until 6 wk after parturition. Cows enrolled 
in the study once based on the expected day of parturi-
tion. Cows were used in the analysis when they showed 
no clinical signs of illness before parturition and when 
a complete data set until 6 wk after calving was avail-
able, resulting in 173 cows (37 primiparous, 43 parity 2, 
38 parity 3, and 55 parity 4 and higher). At all 4 farms 
dry and lactating cows were housed in cubicles in the 
same building in which a straw bedded maternity pen 
also was present. Cows were moved to the maternity 
pen with the first signs of parturition and they stayed 
there until 1 to 3 d after calving. Thereafter they were 
introduced into pens with lactating cows. Thus, group 
size and composition changed due to (re)introduction 
but cows remained in the same group after calving un-
til the next dry period. Postpartum cows were milked 
twice daily and water was provided ad libitum on all 
farms.

Farm 1 had 125 cows with an average production of 
9,050 kg of milk per year (with 4.35% fat and 3.71% 
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protein). Cows were milked twice daily at 7:00 a.m. and 
6:15 p.m. and fed TMR once per day at 9:30 a.m. and 
this was pushed to the feeding fence at 8:30 p.m. and 
10:15 p.m. Feed residues were removed from the fed 
bunk before each new TMR delivery. Lights were on at 
6:30 a.m. and off at 11:00 p.m.

Farm 2 had 100 cows with an average production of 
9,430 kg of milk per year (with 4.35% fat and 3.55% 
protein). Cows were milked twice daily at 6:00 a.m. and 
5:45 p.m. and fed TMR once per day at 8:30 a.m. and 
this was pushed to the feeding fence at 5:30 p.m. Feed 
residues were removed from the fed bunk before each 
new TMR delivery. Lights were on at 5:15 a.m. and off 
at 10:15 p.m.

Farm 3 had 75 cows with an average production of 
8,900 kg of milk per year (with 4.53% fat and 3.52% 
protein). Cows were milked twice daily at 5:45 a.m. 
and 5:00 p.m. and fed TMR once per day at 1:30 p.m., 
and this was pushed to the feeding fence at 5:40 a.m., 
4:55 p.m., 8:00 p.m., and 10:30 p.m. Feed residues were 
removed from the fed bunk before each new TMR de-
livery. Lights were on at 5:45 a.m., and nightlights were 
switched on at 10:30 p.m.

Farm 4 had 150 cows with an average production of 
8,900 kg of milk per year (with 4.34% fat and 3.59% 
protein). Cows were milked twice daily at 5:30 a.m. and 
4:30 p.m. and fed TMR once per day at 4:30 p.m., and 
this was pushed to the feeding fence at 8:30 a.m. and 
10:30 p.m. Feed residues were removed from the fed 
bunk before each new TMR delivery. Nightlights were 
switched on based on a dusk sensor.

Clinical Examination and Blood Sampling

Cows were scored clinically by 4 veterinarians twice 
weekly until 6 wk after parturition. The veterinarians 
scored 19 different clinical signs (Table 1) of the cows 
and they estimated overall condition according to 
measurements and cutoff values as earlier described by 
Hajer et al. (2011) in which clinical examination accord-
ing to a fixed format is described as well as normal and 
deviating clinical values per organ system. The follow-
ing aspects were scored: heart rate (beats per minute), 
breathing rate (breaths per minute), rectal temperature 
(°C), rumination (chews per minute), BCS according 
to Edmonson et al. (1989), and locomotion score and 
lameness according to Hulsen (2012). Udder condition 
was scored per quarter in terms of skin temperature 
(too warm, too cold, or normal), color (red, abnormal, 
normal), painful during palpation (yes or no), swollen 
(yes or no), and teat condition was scored in terms of 
flexibility (yes or no), color (red, normal, abnormal), 
and painful during palpation (yes or no). Retained pla-
centa was scored if it was protruding from the vulva 

after more than 24 h after calving. Uterus condition 
and excretion were scored by rectal palpation, the size 
was estimated and assigned as normal or abnormal ac-
cording to the expected involution. The color and smell 
of vaginal discharge and the amount of mucus or pus 
was estimated. The consistency and digestion of the 
manure was scored according to Hulsen (2012). Other 
specific clinical diagnoses consisted of hypocalcemia, 
or a displaced abomasum, confirmed by auscultation. 
Interobserver variation between the trained veterinar-
ians was verified every 4 mo. The veterinarians were 
blinded to scores of other veterinarians and the indi-
vidual cow treatments. Blood samples were collected 
from the coccygeal vein into 10-mL sterile serum tubes 
(Vacutainer, Becton Dickinson) in the first (1.8 ± 1.2 
d) and fifth week (29.8 ± 1.6 d) after calving. Samples 
were submitted to the routine veterinary laboratory of 
Royal GD (Deventer, the Netherlands). This laboratory 
performed all analyses and works according to a quality 
management system meeting NEN-EN-ISO 9001:2015 
requirements and Clinical-chemical parameters were as-
sessed using UniCel DxC 600 Synchron Clinical System 
(Beckman Coulter). Test procedures for all parameters 
(except for calcium, magnesium, IL6, and haptoglobin) 
were NEN-EN-ISO/IEC 17025:2017 accredited by the 
Dutch Accreditation Council (2023). Colorimetric 
methods were used to analyze serum calcium, phospho-
rus (ammonium-molybdate method), magnesium, total 
bilirubin, (dimethylsulphoxide method), haptoglobin, 
total protein (TP; Biuret method) and albumin con-
centrations (Bromocresol Green method). The globulins 
were calculated by subtraction: TP − albumins (g/L). 
Enzymatic methods were used to analyze serum urea 
(urease method), nonesterified fatty acids (NEFA) 
and β-hydroxybutyric acid (BHBA) concentrations. 
Aspartate aminotransferase (AST) and gamma-glu-
tamyl transferase concentrations were analyzed using 
enzymatic methods according to the International Fed-
eration of Clinical Chemistry reference procedures for 
the measurement of catalytic activity concentrations of 
enzymes at 37°C. Interleukin-6 concentrations in serum 
were analyzed using an AlphaLISA Bovine IL-6 Detec-
tion Kit (PerkinElmer Inc.) following the kit’s instruc-
tions. The interassay coefficient of variation was below 
10% for all methods.

Postpartum TDS

As measure for disease severity was calculated as pre-
viously described by van Dixhoorn et al. (2018) and was 
referred to as TDS. Briefly, all aberrant clinical findings 
were used to calculate TDS. Table 1 lists which clinical 
values were assigned to metabolic stress, inflammation, 
and locomotion. This resulted in 4 different TDS scores: 
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TDS total, TDS inflammation, TDS locomotion, and 
TDS metabolic. In addition, serum values contributed 
to TDS when they were below or above specific thresh-
olds (Table 2). Based on specific serum values, TDS 
metabolic was subdivided into scores related to liver 
function (TDS liver) and macro-mineral shortage (TDS 
macro-minerals). The points assigned to the different 
TDS categories are shown in Table 1 and 2. Subopti-
mal clinical findings were counted as one point of the 
TDS (dimensionless) per sampling moment during the 
6-wk period after calving. When the veterinarian di-
agnosed a specific disease (retained placenta, metritis, 
mastitis, lameness, displaced abomasum, respiratory 
infection, milk fever, diarrhea), the specific diagnosis 
was reported and 2 points were assigned to the respec-
tive TDS. In addition, related treatments received 2 
points. Each corresponding deviating serum value at 
the 2 sampling moments (wk 1 and 5 after parturition) 
received 6 TDS points. As a consequence, healthy cows 
showed low TDS values in contrast to cows with high 
TDS values, suffering more health-related issues during 
the 6-wk study period.

Cutoff values for serum value parameters were based 
on the upper and or lower limit of the reference in-
tervals for the corresponding parameters as provided 

by veterinary laboratory of Royal GD (Deventer, the 
Netherlands), except for BHBA, NEFA, and calcium. 
The cutoff value for BHBA was chosen based on the 
threshold for subclinical ketosis (Duffield et al., 2009), 
whereas the for NEFA was chosen based on the thresh-
old for an increased risk of early-lactation culling, and 
clinical diseases (Ospina et al., 2010; Roberts et al., 
2012; Ospina et al., 2013). The cutoff value for cal-
cium was chosen based on the thresholds for clinical 
hypocalcemia as described by Kimura et al. (2006) and 
Martinez et al. (2012).

Predictive Behavioral Variables

Behavioral activity data were obtained during the 
2 wk before calving using the Smart Tag neck and leg 
sensors manufactured by Nedap N.V. The sensors were 
previously validated for accuracy by Borchers et al. 
(2021). The neck sensor provided 4 activity features 
per cow: eating, ruminating, inactive, or active [time 
spent (min/h), Table 3]. We aggregated the basic data 
into hourly data by aggregating the minutes per clock 
hour. In addition, the neck sensor provided an overall 
activity level per 15 min, which was registered as a 
dimensionless measure provided by the manufacturer. 
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Table 1. Overview of the clinical observations that were assessed twice per week by trained veterinarians on 4 selected farms (in total, 180 cows 
enrolled in the study from 2 wk before expected parturition day until 6 wk after parturition)1 

Clinical observation  Points  TDS

Ears cold  1 if yes  Inflammation, Metabolic, Total
Secretion from nose visible  1 if yes  Inflammation, Total
Jugular pulse visible above mid neck region  1 if yes  Inflammation, Total
Rectal temperature  1 if >39.2  Inflammation, Total

 2 if >40  
Breathing abnormal (>30 breaths/min)  1 if yes  Inflammation, Total
BCS2  1 if difference between BCS in dry period >1  Metabolic, Total
Rumen visible when standing behind cow  1 if no  Metabolic, Total
Rumen fill weak  1 if yes  Metabolic, Total
Rumen score2  0 if score 3–5; 2 if score = 0; 1 if score = 1  Metabolic, Total
Udder edema palpable  1 if yes  Total
Udder score per quarter     
Firm LF, RF, LB, RB3  0.5 if yes per quarter  Inflammation, Total
Red LF, RF, LB, RB3  0.5 if yes per quarter  Inflammation, Total
Abnormal uterus fill, excreta  1 if yes  Inflammation, Total
Manure score2  2 if score = 1, 1 if score is 2 and 5, 0 if score is 3 to 4  Metabolic, Total
Abnormal digestion visible in manure  1 if yes  Metabolic, Total
Locomotion score2  0 if score 1 or 2; 1 if score = 3–5  Locomotion, Total
Lame LB, LF, RB, RF3  1 if yes per leg  Locomotion, Total
Cow is diagnosed with a disease  2 if yes  Assigned to specific TDS 

depending on disease
Treatment  2 if yes  Assigned to specific TDS 

depending on disease
1The values assigned to the total deficit score (TDS) categories per deviating clinical observation, are presented. The TDS categories consisted 
of total, inflammation, locomotion, and metabolic. Each suboptimal clinical value (according to the references values) was scored with 0.5, 1, 
or 2 points.
2References used for interpretation of observations and score systems for BCS, manure score, locomotion, and rumen score according to Royal 
GD, Deventer, the Netherlands (Gezondheidsdienst, Hajer et al., 2011).
3LF: left front, RF: right front, LB: left back, RB: right back. Diseases that could be diagnosed were mastitis, metritis, displaced abomasum, 
milk fever, lameness, respiratory disease, diarrhea.
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Overall activity level was aggregated in an activity 
level (dimensionless) per hour. The leg sensor recorded 
3 behaviors per cow per 15 min (Table 3): lying, stand-
ing still, and walking. These behavioral durations were 
expressed in full minutes. During each 15-min time seg-
ment, the leg sensor provided a count of steps and a 
count of transitions from lying to standing or walking. 
We computed this basic data into hourly data by ag-
gregating the 4 hourly time slots with starting times at 
each clock hour. The leg sensor revealed the partition 

or count per cow per hour as follows: time spent lying, 
standing still, walking, not lying (standing still + walk-
ing, min/h), counts of steps, and counts of transitions 
from lying to standing (bouts standing up).

Next, we calculated average, variance, autocorrela-
tion (with lag τ = 1 h), nonperiodicity and fast Fou-
rier transformation (FFT) for each variable using the 
hourly data per cow for the dry period, starting 15 d 
before calving up to and including the day before calv-
ing. The variance describes the distribution of the data 
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Table 2. Overview of the serum parameters that were taken from 180 cows on 4 farms in wk 1 and 5 after calving; the cutoff values per serum 
parameter are specified for wk 1 and wk 5 separately, and the total deficit score (TDS) categories to which the points were assigned are given1 

Parameter2  Unit  TDS Wk 1 Wk 5

Total protein  g/L  Inf, Total >85 >85
Total protein  g/L  Met, Total <55 <55
Albumin  g/L  Met, Total <31 <31
Urea  mmol/L  Met, Total <3.3 <3.3
Urea  mmol/L  Met, Total >6.6 >6.6
NEFA3  mmol/L  Met, Total >0.8 >0.4
BHBA4  mmol/L  Met, Total >1.2 >1.2
Calcium  mmol/L  Macro, Met, Total <2.00 (d 0–1) <2.20

  <2.20 (d 2–7)
Magnesium  mmol/L  Macro, Met, Total <0.78 <0.78
Phosphorus  mmol/L  Macro, Met, Total <0.9 <1.1
AST5  IU/L  Liver, Met, Total >115 >115
GGT6  IU/L  Liver, Met, Total >34 >34
Total bilirubin  µmol/L  Liver, Met, Total >7 >7
Haptoglobin  g/L  Inf, Total >0.6 >0.3
IL-6  ng/mL  Inf, Total >10 —
Globulins (TP7-albumin)  g/L  Inf, Total >49 and TP <85 and 

albumin >31
>49 and TP <85 and albumin >31

1The TDS categories consisted of TDS total, TDS inflammation (Inf), and TDS metabolic (Met), with TDS metabolic subdivided into TDS 
scores related to liver function (Liver) and macro-mineral shortage (Macro). Per sampling point (wk 1 and wk 5), a level exceeding the values 
as indicated in the last 2 columns counted as 6 points in the TDS.
2Cut-off values of serum metabolites parameters were based on the upper and or lower limit of the reference intervals for the corresponding 
parameters as provided by veterinary laboratory of Royal GD (Deventer, the Netherlands; Gezondheidsdienst voor Dieren, 2023), except for 
BHBA, NEFA, and calcium. The cutoff value for BHBA was chosen based on the threshold for subclinical ketosis (Duffield et al., 2009), whereas 
the cutoff value for NEFA was chosen based on the threshold for an increased risk of early-lactation culling and clinical diseases (Ospina et al., 
2010, 2013; Roberts et al., 2012). The threshold for calcium was based on Kimura et al. (2006) and Martinez et al. (2012). The average DIM of 
blood sample collection were 1.8 ± 1.2 d and 29.8 ± 1.6 d for the sampling time points at the first and fifth weeks, respectively.
3NEFA = nonesterified fatty acids.
4BHBA = β-hydroxybutyric acid.
5AST = aspartate aminotransferase.
6GGT = gamma-glutamyl transferase.
7TP = total protein.

Table 3. Predictive behavioral explanations of the measurements recorded by the Smart Tag neck and Smart 
Tag leg sensors (Nedap N.V.)

Sensor  Measurement  Explanation

Neck  Eating time  Time spent eating, min/h
 Ruminating time  Time spent ruminating, min/h
 Active time  Time spent active, min/h
 Inactive time  Time spent inactive, min/h
 Activity level  Overall activity level per 15 min

Leg  Count of steps  Count of steps per 15 min
 Count of bouts standing up  Count of transitions from lying to standing per 15 min
 Lying time  Time spent lying, min/h
 Walking time  Time spent walking, min/h
 Standing still time  Time spent standing still, min/h
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around the average and the autocorrelation describes 
the correlation (at lag 1) between successive values of 
hourly data of the sensor variable, thus the similarity 
between successive values. Nonperiodicity was defined 
as the mean squared difference of a correlogram with 
a sinusoid with a 24-h cycle and an amplitude of 0.25, 
where the correlogram is a plot of the autocorrelation 
for a range of time lags as visualized by van Dixhoorn 
et al. (2018). The lags were based on hourly intervals 
with the exception of active time and the count of 
bouts standing up where a 6-h period was used instead 
as hourly data were often zero. Thus, the nonperiodic-
ity was used as a measure for the regularity in daily 
pattern of the sensor data. The Fourier analysis was 
used as the conversion from the time domain to a rep-
resentation in the frequency domain. This was done to 
identify prominent frequencies that may be present in 
the sensor data, because cows have a daily pattern in 
their eating and lying behavior. Patterns in the sensor 
data will then become visible as frequencies with high 
peaks. This conversion from the time to the frequency 
domain was done using the FFT algorithm (Chatfield 
and Xing, 2019). For our application, FFT was defined 
as the sum of the peak heights at 1, 2, 3, and 4 in the 
amplitude spectrum of the variable determined with a 
FFT. This was interpreted as a measure of the regular-
ity of behavior occurring once, twice, 3 or 4 times per 
day. Hence, the outcome of FFT indicated the extent 
to which cows display circadian (i.e., once every 24 h) 
to ultradian rhythms (several cycles of behavior within 
a day).

Statistical Analysis

Descriptive statistics (range, average, median, and 
standard error of the mean) were calculated for the 
different TDS categories per farm and per parity group. 
Differences in the average of TDS level per TDS cat-
egory between farms and parity groups were tested us-
ing a general linear model. Correlation coefficients (r) 
were calculated between the different TDS categories 
as well as between all behavioral variables. For statisti-
cal analysis R was used (RCoreTeam, 2020), with the 
packages lmerTest, emmeans, MuMin, ROCR, and car 
(Sing et al., 2005; Kuznetsova et al., 2017; Fox and 
Weisberg, 2019; Barton, 2020; Lenth, 2021). Due to 
the large number of behavioral predictors, we narrowed 
down the number of these variables first by a univari-
ate analysis. Cow was the experimental unit and the 
different TDS categories (TDS total, TDS inflamma-
tion, TDS locomotion, TDS metabolic, TDS liver, TDS 
macro-minerals) were analyzed as dependent variables 
with parity group as fixed effect and farm as random 
effect. Three parity groups were chosen: group 1 with 

first parity only, group 2 with parity 2 and 3 and group 
3 with parities 4 and higher. The TDS was transformed 
to ln (TDS + 0.5) for the analysis to comply with the 
model assumptions. If P ≤ 0.2 in the univariate analy-
sis, the predictive behavioral variables were selected 
for the multivariable approach. For the multivariable 
approach we used the selected predictors as described 
above and applied backward selection to obtain optimal 
subset of predictors for a linear mixed model with par-
ity group as fixed effect and farm as random effect. All 
models were built according to the following formula in 
which the linear mixed model assumptions were met:

Ln (TDS + 0.5) ~Parity group  

+ (activity descriptors) + random (Farm).

First, we investigated models with only Smart Tag 
leg or only Smart Tag neck variables. Subsequently, 
combinations of Smart Tag neck and leg variables were 
included in the selection of variables. We retrained 3 
candidate models per TDS based on backward selec-
tion. Additionally, an all possible subset selection pro-
cedure was performed to test if additional candidate 
models were proposed among the best performing mod-
els based on Akaike information criterion (AIC). Of all 
candidate models resulting from the backward selec-
tion and all possible subset selection procedures, the 
marginal R2 (variance explained by the fixed effects) 
and the conditional R2 (including random farm effect, 
variance explained by the entire model) as described 
by Barton (2020) were calculated. A small difference 
between marginal and conditional R2 indicates that the 
additional degree of variation in the TDS values by 
type of farm is small. Best performing models with the 
highest marginal and conditional R2 as well as smallest 
difference between marginal and conditional R2 were 
then selected and the predictive behavioral variables of 
these best performing models per TDS were calculated. 
In this paper we aimed to elucidate animal related in-
dicators of resilience that were farm independent, and 
models were not further examined when differences 
between marginal and conditional R2 were large.

Next, the best performing models were further 
evaluated to select the final model. The variables in 
the models were tested for significance and co-linearity 
was tested by calculating the variance inflation factor 
(VIF) as earlier described by Fox and Monette (1992). 
When the VIF was higher than 5, marginal and condi-
tional R2 were investigated for models where one of the 
correlating variables was left out. The final models per 
TDS included significant variables only, met all linear 
mixed model assumptions and were best in comparison 
with the other candidate models and in terms of hav-
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ing little difference between marginal and conditional 
R2. Subsequently we investigated if interaction of the 
variables with parity group was significant (P < 0.05). 
Models with and without the significant interactions 
were compared and tested for robustness and predictive 
performance. Robustness was tested with a 10-fold cross 
validation. The root mean squared error (RMSE) was 
calculated and the estimated coefficients were moni-
tored. We split the data randomly into 10 equally sized 
parts and used 90% of the data to train the model and 
continued to test it on the remaining 10% of the data.

We calculated the sum of squares to get insight in the 
contribution of each variable to the explained variation 
in the final model and created receiver operating char-
acteristic (ROC) curves of the final models to estimate 
sensitivity and specificity for the optimal cutoff values 
per TDS. These optimal cutoff values were chosen 
based on highest area under curve (AUC) and positive 
and negative predictive values were assessed from the 
ROC curves per model.

RESULTS

Total Deficit Score Distribution  
and Descriptive Statistics

Our final data set included 173 cows, of which 136 
were multiparous and 37 were primiparous. The average 
DIM of blood sample collection were 1.8 ± 1.2 d and 
29.8 ± 1.6 d for the sampling time points in the first 
and fifth weeks, respectively. Summary statistics of the 
TDS values of all cows studied are shown in Table 4. 
The TDS values per farm are visualized with boxplots 
in Figure 1. The TDS total, inflammation, and locomo-
tion scores were affected by farm (P < 0.05). The de-
scriptive statistics and pairwise differences are added in 
Supplemental Table S1.1 (van Dixhoorn, 2023; https: / / 
doi .org/ 10 .6084/ m9 .figshare .21696293 .v1). Farm 3 had 
remarkably high TDS locomotion compared with the 
other 3 farms. The TDS metabolic, liver, and macro-
minerals scores did not differ between farms.

The TDS values per parity group are visualized with 
boxplots in Figure 2. For all TDS categories, except for 
TDS macro-minerals, an effect of parity group was seen. 
Post hoc comparison showed that TDS total and TDS 
locomotion values were higher for cows in the parity 4 
and higher group as compared with the younger parity 
groups (P < 0.05). The parity 4 and higher group had 
higher TDS metabolic and TDS liver values than parity 
1 cows, with the group cows of parity 2 or 3 in between 
(P < 0.05). For TDS inflammation, values were higher 
for the parity 4 and higher group as compared with 
the parity 2 or 3 group, with the first parity group in 
between (P < 0.05, Figure 2). The descriptive statistics 

and pairwise differences are included in Supplemental 
Table S1.2 (van Dixhoorn, 2023; https: / / doi .org/ 10 
.6084/ m9 .figshare .21696293 .v1).

Individual TDS total calculations are shown in Figure 
3. A gradual linear increased TDS value was observed 
until TDS total reached a level of 75 points (140 cows 
with TDS <75). Above 75 (36 cows), TDS total values 
increased exponentially from 75 with a maximum TDS 
of 179 (Figure 1). The TDS inflammation values ranged 
from 3 to 61 with an average of ± 13 (SD).

Significant correlation coefficients (P < 0.05) were 
found between all different TDS categories and TDS 
total (TDS total with TDS inflammation: 0.82, with 
TDS locomotion: 0.68, with TDS metabolic: 0.74, with 
TDS liver: 0.66, and with TDS macro-minerals: 0.66). 
Significant correlations were seen between TDS liver, 
TDS macro-minerals and TDS metabolic (all 3 with 
an r >0.80). Between TDS locomotion and the other 
TDS categories r was low (<0.20) and not significant 
except for the correlation with TDS inflammation (r = 
0.47). A significant correlation was found between TDS 
inflammation and TDS metabolic (r = 0.40).

Correlations Between Behavioral  
Predictive Variables

Significant correlations coefficients (P < 0.05) above 
0.6 were not found for the nonperiodicities of inactive 
time and count of standing up and FFT calculations of 
inactive, standing still and eating time. All calculations 
of walking time and count of steps were highly cor-
related. The AC of steps and walking were positively 
correlated with FFT count of steps and walking, and in 
addition, nonperiodicities for walking time and count 
of steps were negatively correlated with FFT of these 
variables. Nonperiodicity and FFT calculation of ru-
mination were also correlated. A significant correlation 
was found between average time ruminating and eating 
with variance of eating time and a negative correlation 
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Table 4. Descriptive statistics per total disease score (TDS) category 
of 173 cows at 4 farms; TDS was calculated by summing aberrant 
clinical findings and deviating serum values that were assessed during 
6 wk after calving1 

TDS Range Median Average SEM

TDS total 12–172 55 60 32
TDS inflammation 03–61 21 23 13
TDS locomotion 00–74 8 12 13
TDS metabolic 03–114 20 24 15
TDS liver 00–84 12 14 12
TDS macro-minerals 00–84 15 17 12
1The range, median, average, and SEM are given. The TDS total in-
cludes TDS inflammation, TDS locomotion, and TDS metabolic. TDS 
metabolic includes TDS macro-minerals and TDS liver.

https://doi.org/10.6084/m9.figshare.21696293.v1
https://doi.org/10.6084/m9.figshare.21696293.v1
https://doi.org/10.6084/m9.figshare.21696293.v1
https://doi.org/10.6084/m9.figshare.21696293.v1
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was found between these 3 variables and average of 
inactive time.

Average of eating time was also positively correlated 
with average of count of steps and walking time, and 
in addition, AC eating time was correlated with AC 
walking time and count of steps, which was also the 
case for the nonperiodicities of walking time and count 
of steps and eating. Nonperiodicity of eating and walk-
ing were also correlated. The nonperiodicities of eating 
and walking for 2 cows are visualized in Figure 4. One 
cow with high nonperiodicities and one cow with low 
nonperiodicities for eating and walking are presented. 
Variance of lying time was correlated with variance of 
standing still time, and autocorrelation of lying time 
with autocorrelation standing still time.

Selected Behavioral Variables

The selection of single predictive behavioral variables 
per sensor recorded before calving are shown in Table 

5. Predictors with P ≤ 0.2 were included in the multi-
variable steps. The direction of the effect is indicated 
per variable as positive (higher value of the variable 
relates to a higher TDS) or negative (higher value of 
the variable relates to a lower TDS). Ten variables 
were selected for TDS total, 7 for TDS inflamma-
tion,13 for TDS metabolic, 11 for TDS locomotion, 
24 for TDS liver, and 12 for TDS macro-minerals. For 
TDS inflammation, only variables measured with the 
Smart Tag neck sensor were selected. Averages for eat-
ing, active and inactive time, activity scores, count of 
steps, and lying, walking, and standing still time were 
all included in the multivariable approach. Averages 
of scores for ruminating and bouts standing up were 
excluded. Autocorrelations of all measurements except 
for active time were included. Variances of behaviors 
were all included except for inactive time and bouts 
standing up. Most FFT and nonperiodicity calculations 
were included except nonperiodicity of eating, lying 
and standing still. Autocorrelation calculations were 

van Dixhoorn et al.: DAIRY COW BEHAVIOR AS AN INDICATOR OF RESILIENCE

Figure 1. Boxplots of the observed total deficit score (TDS) values per farm. From top left to bottom right, the TDS total, TDS inflamma-
tion, TDS locomotion, TDS metabolic, TDS liver, and TDS macro-minerals are shown. The number of cows per farm were 19 for farm 1, 20 for 
farm 2, 75 for farm 3, and 59 for farm 4. The bottom and top of each box are the 25th and 75th percentiles, respectively. The distance between 
the bottom and top of each box is the interquartile range. The red line in the middle of each box is the median. The outliers are marked as red 
+ sign and are the values that are more than 1.5 times the interquartile range away from the bottom or top of the box. The whiskers go from 
the end of the interquartile range to the furthest observation (minimum and maximum values). An overall farm effect was seen for TDS total, 
TDS inflammation, and TDS locomotion, but not for TDS metabolic, TDS liver and TDS macro-minerals. Letters a and b indicate significant 
difference (P < 0.05), with a being the lower value as compared with b.
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always positively related to TDS scores except for AC 
ruminating. Nonperiodicity of bouts standing up had a 
positive effect on TDS liver but negative on TDS total 
and TDS locomotion.

Multivariable Regression Results per TDS

Total Deficit Score Total Model. The backward 
and all possible subset selection procedures identified 
4 best candidate models based on best AIC, R2 mar-
ginal, and R2 conditional calculations. Assumptions for 
the mixed models were met and VIF of the models 
were low, so no effect of collinearity was expected. The 
predictive behavioral variables of the 4 candidate mod-
els with highest R2 values are shown in Table 6. Two 
models included only Smart Tag neck variables (models 
1 and 3, Table 6), one model included only Smart Tag 
leg variables (model 2, Table 6) and 2 models included 
both Smart Tag neck and leg variables (models 4 and 
4a, Table 6). The following 4 behavioral predictors 

were present: average minutes inactive, nonperiodicity 
of frequency of standing up and FFT standing still. 
The positive effects of average minutes inactive per day 
indicate that the more inactive the cows, the higher the 
TDS value. The positive effects of the nonperiodicities 
of ruminating and frequency of standing up bouts on 
TDS total indicate that reduced regularity results in in-
creased TDS total. The negative relation of TDS total 
with FFT of minutes standing indicates that high regu-
larity is associated with low TDS total. High regularity 
in standing still behavior relates to a low TDS total.

Model 4 had lowest AIC, highest R2, and smallest 
difference between R2 marginal and R2 conditional and 
was the final model. Model 4a was similar to model 4 
but also included the parity-FFT standing still inter-
action. For models 4 and 4a the cross validation was 
performed and ROC curves were calculated. Variation 
in RMSE after 10-fold cross validation was limited, 
but somewhat larger in the model with the interac-
tion as compared with model without the interaction. 
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Figure 2. Boxplots of the observed total deficit score (TDS) values per parity group. From top left to bottom right, the TDS total, TDS 
inflammation, TDS locomotion, TDS metabolic, TDS liver, and TDS macro-minerals are shown. The number of cows per parity group: 37 with 
parity 1, 81 with parity 2 or 3, and 55 with parity 4 or higher. The bottom and top of each box are the 25th and 75th percentiles, respectively. 
The distance between the bottom and top of each box is the interquartile range. The red line in the middle of each box is the median. The outli-
ers are marked as red + sign and are the values that are more than 1.5 times the interquartile range away from the bottom or top of the box. 
The whiskers go from the end of the interquartile range to the furthest observation (minimum and maximum value). An overall parity group 
effect was seen for TDS total, TDS inflammation, TDS locomotion, TDS metabolic, and TDS liver, but not for TDS macro-minerals. Letters a 
and b indicate significant difference (P < 0.05), with a being the lower value as compared with b.
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Variation calculated for the estimate coefficients in the 
model was limited for all estimates in both models, in-
dicating good model stability independent of input. R2 
marginal and R2 conditional improved to 0.37 and 0.37 
in model 4a as compared with model 4 (R2 marginal 
and R2 conditional of 0.33 and 0.35, respectively).

We calculated the AUC of the ROC curves for both 
models 4 and 4a [Table 6, 0.78 and 0.80 respectively, 
with an optimal threshold of TDS of 60 (lnTDS of 4.1)]. 
For model 4 this corresponded to a sensitivity of 79.5% 
and a specificity of 63.9% with a positive predicted 
value of 0.62 and a negative predicted value 0.81. For 
model 4a this corresponded to a sensitivity of 79.5% 
and specificity of 73.2% with a positive predicted value 
of 0.69 and a negative predicted value 0.83. The parity 
× FFT standing still interaction improved the model, 
rendering model 4a best performing and its equation 
is added in the supplementary materials. The sum of 
squares of the effects, the model sum of squares as well 
as the variance components for the random effects for 
models 4 and 4a are included in Table 6. The trans-
formed values from the model prediction for model 4a 
were back-transformed to a TDS value and plotted 
against the original TDS value in Figure 5.

Total Deficit Score Inflammation Model. 
The backward selection procedure and all possible 
subset procedures identified 2 candidate models with 
only Smart Tag neck variables as selected indicators 
after evaluation. For these 2 models the assumptions 

required for mixed models were met. The predictive 
behavioral variables of these 2 candidate models are 
shown in Table 7. The VIF of the model with 2 vari-
ables (model 2 in Table 7) was low, so no collinear-
ity was expected. Only 2 behavioral predictors were 
present in the models: average minutes eating and 
nonperiodicity ruminating. The negative relation of 
average minutes eating indicates that eating more in 
the dry period results in lower TDS inflammation. The 
positive relation of nonperiodicity ruminating indicates 
that the more regular the behavior of ruminating (low 
nonperiodicity), the lower the TDS inflammation value 
will be. The variable nonperiodicity ruminating was not 
significant, hence model 1 was chosen as the final model 
(Table 7). The interaction of minutes eating and parity 
was not significant and was therefore not included in 
the model. The AUC was 0.78 with an optimal thresh-
old of TDS inflammation of 22 (lnTDS of 3.11) which 
corresponded to a sensitivity of 79.7% and a specificity 
of 67.0% with a positive predicted value of 0.68 and a 
negative predicted value of 0.79. We calculated the sum 
of squares of the effects and these were 5.47 for parity 
and 3.67 for the average minutes eating (Table 7). The 
equation for the final model (model 1) is added in the 
supplemental materials (van Dixhoorn, 2023; https: / / 
doi .org/ 10 .6084/ m9 .figshare .21696293 .v1).

Total Deficit Score Metabolic Model. The 
backward and all possible subset selection procedures 
identified 3 candidate models based on best AIC, R2 
marginal, and R2 conditional calculations. The predic-
tive behavioral variables of the candidate models 1, 2, 
and 3 are shown in Table 8. These models included 
both Smart Tag neck and leg variables. The following 
behavioral predictors were present: nonperiodicity inac-
tive time, nonperiodicity ruminating, nonperiodicity of 
count of steps, AC activity, AC count of steps, FFT 
inactive time, variance lying time, and variance stand 
still, all shown in Table 8. Nonperiodicities of inactive 
time, of ruminating, and of count of steps influenced 
TDS in a positive direction, indicating that the higher 
the nonperiodicity (the less regular in the respective 
behavior), the higher TDS metabolic values will be and 
the more regularity in lying behavior, the lower the 
TDS metabolic will be.

Assumptions for the mixed models for TDS meta-
bolic were met except for collinearity in model 3. Vari-
ance of lying and variance of standing still were highly 
correlated, leading to a high VIF in model 3. Therefore, 
we left out one of the 2 correlated variables and tested 
the model performance. No difference was found in 
model performance where we left out “variance lying” 
or “variance stand still,” indicating that these variables 
can be exchanged. We therefore only show the results 
of model that included “variance lying” only (model 
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Figure 3. Observed total deficit score (TDS) values per cow in 
which all clinically detected deficits and deviating serum values are 
combined into one TDS total value, which is dimensionless, indicated 
as (−). On the x-axis, the cows are plotted in ascending TDS total 
order, and on the y-axis the TDS total value of each cow is given. 
The horizontal line indicates the TDS value of 75 at which TDS value 
changes from a gradual increase to an exponential increase of TDS 
value.

https://doi.org/10.6084/m9.figshare.21696293.v1
https://doi.org/10.6084/m9.figshare.21696293.v1
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4). Marginal and conditional R2 both decreased to 0.12 
in model 4 as compared with model 3 with marginal 
and conditional R2 of 0.15. We tested the significance 
of the parity × variance lying interaction leading to 
model 4a which was similar to model 4 but with the 
significant parity × variance lying interaction and the 
marginal and conditional R2 increased to 0.18 and 0.18, 
respectively (model 4a).

For models 3, 4, and 4a, the cross validation was 
performed and ROC curves were made. Variation in 
RMSE after 10-fold cross validation was limited in all 
tested models as was the variation calculated for all 
estimated coefficients, indicating good model stability 

independent of input. We calculated the AUC of the 
ROC curves with an optimal threshold of TDS meta-
bolic of 25 (lnTDS metabolic of 3.24). The AUC, as well 
as the sensitivity and specificity, were higher in model 4 
with an AUC of 0.67, a sensitivity of 80%, a specificity 
of 49% with a positive predicted value of 0.44 and a 
negative predicted value of 0.83, as compared with the 
model 3 with an AUC of 0.54, a sensitivity of 80%, a 
specificity of 24%, with a positive predicted value of 
0.35 and a negative predicted value of 0.70. Including 
the parity × variance lying interaction in the model im-
proved predicative performance with an AUC of 0.72, a 
sensitivity of 80%, a specificity of 57%, with a positive 
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Figure 4. Visualization of the nonperiodicity of eating time and walking time as metric of the regularity in the daily pattern of 2 different 
cows. Correlograms are made of hourly data assessed during the dry period (from 14 d before parturition until parturition). Eating time and 
walking time correlograms of cow no. 506 (second parity) are depicted in panels A and B and of cow no. 23 (first parity) in panels C and D. 
The correlogram of eating time assessed with Smart Tag neck sensor (Nedap N.V.) is depicted on the left (A and C), and the correlogram of 
walking time assessed with the Smart Tag leg sensor (Nedap N.V.) is depicted on the right (B and D). Nonperiodicity is the calculation of the 
mean squared error (MSE) of the correlogram (blue line) with a sinusoid with a 24-h cycle and an amplitude of 0.25 (dotted line). Cow no. 506 
showed more regularity (low nonperiodicity) with an MSE for eating time of 0.0173 (A) and walking time of 0.0158 (B) as compared with cow 
no. 23, with an MSE for eating time of 0.0361 (C) and walking time of 0.0412 (D).
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predicted value of 0.48 and a negative predicted value 
of 0.85 in model 4a, rendering model 4a best performing 
and its equation is added in the supplementary materi-
als. We calculated the sum of squares of the effects and 
these were added in Table 8.

Total Deficit Score Liver Model. All possible 
subset selection was not possible with too many avail-
able input variables when both Smart Tag neck and leg 
sensor variables were included. The predictive behav-
ioral variables of the best performing candidate models 
are shown in Table 9. Variance of minutes eating was 
present in both models which included Smart Tag neck 

variables. Variance in minutes standing still and AC 
of minutes lying were present in both models, which 
included Smart Tag leg variables. Nonperiodicity of 
frequency of standing up was included in the model 
with only Smart Tag leg variables. The negative ef-
fects of variance of minutes eating and standing still 
per day indicate that the more variance the cows show 
in eating and standing still behavior, the lower the TDS 
liver. High nonperiodicity of bouts standing up reflects 
low regularity, which was related to higher TDS liver. 
This was also the case for high autocorrelation of lying 
time related to high TDS liver score. The VIF was low 
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Table 5. Overview of the selection of the single predictive behavioral activity variables; sensor data were recorded during the 14 d before calving 
using Smart Tag neck and leg sensors (Nedap N.V.) that were attached to 173 cows at 4 different farms1

Sensor  Measurement  Calculation  Direction  TDS

Neck  Eating  Average  Negative  Inflammation
   Autocorrelation  Positive  Locomotion, Metabolic, Total
   Variance  Negative  Inflammation
   FFT  Positive  Locomotion
 Ruminating  Autocorrelation  Negative  Inflammation
   Variance  Negative  Metabolic, Macro
   Nonperiodicity  Positive  Inflammation, Metabolic, Macro-minerals, Total
   FFT  Negative  Inflammation, Macro-minerals, Liver
 Active time  Average  Negative  Inflammation, Locomotion
   Variance  Negative  Locomotion, Total
   Nonperiodicity  Negative  Liver
   FFT  Positive  Liver
 Inactive time  Average  Positive  Inflammation
   Autocorrelation  Positive  Liver, Total
   Nonperiodicity  Negative  Metabolic, Macro-minerals, Liver
   FFT  Positive  Metabolic
 Activity score  Average  Negative  Locomotion
   Autocorrelation  Positive  Metabolic, Macro-minerals, Liver
   Variance  Negative  Locomotion, Total
   Nonperiodicity  Negative  Liver
   FFT  Positive  Liver

Leg  Count of steps  Average  Positive  Liver
   Autocorrelation  Positive  Metabolic, Macro-minerals, Liver, Total
   Variance  Positive  Liver
   Nonperiodicity  Negative  Locomotion, Metabolic, Macro-minerals
   FFT  Positive  Locomotion
 Bouts standing up  Autocorrelation  Positive  Liver
   Nonperiodicity  Negative  Locomotion, Total
   Nonperiodicity  Positive  Liver
   FFT  Positive  Liver
 Lying  Average  Negative  Metabolic, Macro-minerals, Liver
   Autocorrelation  Positive  Macro, Liver
   Variance  Positive  Metabolic, Liver
   FFT  Positive  Liver
 Walking  Average  Positive  Liver
   Autocorrelation  Positive  Metabolic, Macro-minerals, Liver, Total
   Variance  Positive  Liver
   Nonperiodicity  Negative  Locomotion
   FFT  Positive  Locomotion
 Standing still  Average  Positive  Metabolic, Macro-minerals, Liver
   Autocorrelation  Positive  Macro-minerals, Liver
   Variance  Positive  Metabolic, Liver, Total
   FFT  Negative  Total

1Average, variance, autocorrelation, nonperiodicity, and fast Fourier transformation (FFT) were calculated per activity measurement and re-
lated to total deficit score (TDS) categories (total, locomotion, and metabolic, with metabolic subdivided into TDS scores for liver and macro-
minerals), and that were assessed during 6 wk after calving. Only predictors with P ≤ 0.20 in the univariate step to predict a TDS category are 
shown. The direction (positive or negative) indicates how the predictive variable increases or decreases TDS, respectively.
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for the models 1, 2, and 3, so no risk for collinearity 
existed. The other assumptions for the mixed models 
for TDS liver were also met.

Model 3 performed best yielding the lowest AIC, 
highest R2, and smallest difference between R2 mar-
ginal and R2 conditional (Table 9). Model 3a was simi-
lar to model 3 but also included the parity × variance 
minutes eating interaction. For models 3 and 3a, the 
cross validation was performed and ROC curves were 
calculated. Variation in RMSE after 10-fold cross vali-
dation was limited, but somewhat larger in the model 
including the interaction as compared with the model 
without the interaction. Variation calculated for the 
estimate coefficients in the model was limited for all es-
timates in both models, indicating good model stability 
independent of input. The marginal and conditional R2 
both improved to 0.20 and 0.20, respectively in model 
3a as compared with model 3 with a marginal and con-
ditional R2 of 0.16 and 0.16, respectively.

We calculated the AUC of the ROC curves for mod-
els 3 and 3a (Table 9) and these were 0.68 and 0.70, 
respectively with an optimal threshold of TDS of 11 
(lnTDS of 2.44). For model 3 this corresponded to a 
sensitivity of 79.5% and a specificity of 41.5%, with 
a positive predicted value of 0.59 and a negative pre-
dicted value of 0.65. For model 3a this corresponded 
to a sensitivity of 79.5% and specificity of 47.6%, with 
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Table 6. Predictors and model performance of the candidate models to predict total deficit score (TDS) total using a data set of 173 cows 
originating from 4 farms1 

Sensor  Predictor

Model2

 
Effect on TDS 
total1 2 3 4 4 Ssq 4a 4a Ssq

  Parity Y Y Y Y 3.44 Y 0.44  
Smart Tag neck  Average min inactive Y N Y Y 1.26 Y 1.78 Positive
Smart Tag neck  Nonperiodicity ruminating N N Y N  N  Positive
Smart Tag leg  Nonperiodicity of bouts  

standing up N Y N Y
1.19

Y
1.23 Positive

Smart Tag leg  FFT3 stand still N Y N Y 1.31 Y 1.43 Negative
  Parity × FFT stand still N N N N  Y 0.63  
Model sum of squares       7.20  5.51  
Model performance           
R2 marginal   0.26 0.29 0.26  0.33  0.37  
R2 conditional   0.30 0.33 0.31  0.35  0.37  
Variance components  
 residuals

      0.18  0.18  

Variance component  
 farm

      0.006  0.002  

AUC4       0.78  0.80  
Sensitivity %       79.5  79.5  
Specificity %       63.9  73.2  
1The effect of the behavioral predictors on TDS is indicated as positive (a higher value of the predictor increases TDS) or negative (a higher 
value of the predictor reduces TDS). The behavioral predictors were calculated from data that were measured during the 14 d before calving 
using Smart Tag neck and leg sensors (Nedap N.V.).
2Included predictors per model are indicated as Y = yes, predictor is present in the model, or N = no, predictor is not present in the model. 
Ssq = sum of squares of the effects for models 4 and 4a.
3Fast Fourier transformation.
4Area under curve.

Figure 5. Scatter plot of the observed versus predicted values 
of total deficit score (TDS) of 173 cows, using the variables average 
minutes inactive, nonperiodicity ruminating, nonperiodicity of bouts 
standing up, FFT stand still, and the interaction parity × FFT stand 
still. The transformed values from the model prediction were back-
transformed to a TDS value and plotted against the original TDS val-
ue. The model is based on the transformation of ln (TDS + 0.5). This 
figure visualizes what the model means in terms of actual TDS value 
at cutoff value of 60. FFT = fast Fourier transformation calculation.
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a positive predicted value of 0.62 and a negative pre-
dicted value of 0.68. Including the parity × variance 
minutes eating interaction improved the model, making 
model 3a the best performing model. We calculated the 
sum of squares of the effects and these were added in 
Table 9. The equation for model 3a is provided in the 
supplementary materials.

Total Deficit Score Locomotion Model. For all 
candidate models, R2 marginal with values between 
0.16 and 0.18 and an R2 conditional with values be-
tween 0.32 and 0.33 were found. The candidate models 
that included FFT walking and FFT count of steps 
showed a high VIF, indicating collinearity. Apart from 
the variables FFT walking and FFT count of steps, 
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Table 7. Predictors and model performance of the candidate models to predict total deficit score (TDS) inflammation using a data set of 173 
cows originating from 4 farms1 

Sensor  Predictor

Model

Effect on TDS inflammation1 1 Ssq2 2

  Parity Y 5.47 Y  
Smart Tag neck  Average min eating Y 3.67 Y Negative
Smart Tag neck  Nonperiodicity ruminating N  Y Positive
Model sum of squares    9.14   
Model performance 
  
  
  
 

 R2 marginal  0.20 0.19  
 R2 conditional  0.23 0.23  
 AUC3  0.78   
 Sensitivity %  79.7   
 Specificity %  67.0   

1Included predictors per model are indicated as Y = yes, predictor is present in the model, or n = no, predictor is not present in the model. The 
effect of the behavioral predictors on TDS is indicated as positive (a higher value of the predictor increases TDS) or negative (a higher value 
of the predictor reduces TDS). The behavioral predictors were calculated from data that were measured during the 14 d before calving using 
Smart Tag neck and leg sensors (Nedap N.V.).
2Sum of squares of the effects for model 1.
3Area under curve.

Table 8. Predictors and model performance of the candidate models to predict total deficit score (TDS) metabolic using a data set of 173 cows 
originating from 4 farms1 

Sensor  Predictor

Model

Effect on TDS metabolic1 2 3 4 4a 4a Ssq2

  Parity Y Y Y Y Y 2.68  
Smart Tag neck  Nonperiodicity inactive Y Y N N N  Positive
Smart Tag neck  Nonperiodicity ruminating Y Y N N N  Positive
Smart Tag leg  Nonperiodicity n steps Y Y N N N  Positive
Smart Tag leg  AC3 activity N Y Y Y Y 1.82 Negative
Smart Tag leg  AC count of steps N N Y Y Y 1.08 Positive
Smart Tag neck  FFT4 inactive N N Y Y Y 1.26 Negative
Smart Tag leg  Variance lying N N Y Y Y 1.18 Positive
Smart Tag leg  Variance stand still N N Y N N  Negative
  Parity × variance lying N N N N Y 3.30  
Model sum of squares        11.32  
Model performance          
  R2 marginal 0.09 0.10 0.15 0.12  0.18  
  R2 conditional 0.09 0.10 0.15 0.12  0.18  
  AUC5   0.54 0.67  0.72  
  Sensitivity %   80 80  80  
  Specificity %   24 49  57  
1Included predictors per model are indicated as Y = yes, predictor is present in the model, or n = no, predictor is not present in the model. The 
effect of the behavioral predictors on TDS is indicated as positive (a higher value of the predictor increases TDS) or negative (a higher value 
of the predictor reduces TDS). The behavioral predictors were calculated from data that were measured during the 14 d before calving using 
Smart Tag neck and leg sensors (Nedap N.V.).
2Sum of squares of the effects for model 4a.
3Autocorrelation.
4Fast Fourier transformation.
5Area under curve.
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the candidate models included different combinations 
of nonperiodicities of walking, count of steps, and count 
of standing up. Nonperiodicity of count of steps and 
walking were also highly correlated, resulting in a high 
VIF. All locomotion models showed a low R2 marginal 
with values between 0.13 and 0.18 as compared with R2 
conditional with values between 0.32 and 0.38 indicat-
ing a large farm effect on TDS locomotion and were 
not further evaluated. The candidate models for the 
prediction of TDS locomotion and their performance 
are provided in the supplemental materials (Supple-
ment 2, van Dixhoorn, 2023; https: / / doi .org/ 10 .6084/ 
m9 .figshare .21696293 .v1).

Total Deficit Score Macro-Minerals. Three can-
didate models for TDS macro-minerals included Smart 
Tag neck variables only and 4 models included Smart 
Tag leg variables only. Three models were identical 
to the TDS metabolic models but the explained vari-
ance for TDS macro-minerals was lower with an R2 
marginal and R2 conditional of ≤0.10. Due to the low 
explained variance, no further analysis of these models 
was investigated. The candidate models for the predic-
tion of TDS macro-minerals and their performance are 
provided in the supplementary materials.

DISCUSSION

With this study we investigated which behavioral 
characteristics during the dry period could be used as 
indicators of resilience using noninvasive Smart Tag 

neck and Smart Tag leg sensors in dairy cows. We tested 
if behavioral activity signals and patterns measured in 
the dry period could be used as predictors for a total 
disease severity score and for scores related to specific 
diseases after calving. The data showed that cows with 
reduced resilience have higher average of inactive time, 
and lower regularity in bouts standing up and in time 
standing still during the dry period. As the variables 
of inactive time, eating, and ruminating were highly 
correlated, more resilient cows are more active, eat and 
ruminate more, with a larger variation during the day. 
These resilient cows reveal distinct active periods and 
alternate this with resting periods in regular diurnal 
patterns in contrast to the more vulnerable cows. These 
behavioral variables may therefore serve as indicators 
of a cow’s resilience and their daily activity patterns as 
DIOR, as earlier described by Scheffer et al. (2018) and 
van Dixhoorn et al. (2018). It can be noted that the 
combination of both Smart Tag leg and neck behavioral 
predictors increased model performance.

A remarkable aspect of this study was the gradual 
linear increase of TDS total points reaching a value of 
75 points, followed by an exponential increase up to 172 
points. This trajectory of points of TDS total values 
might reflect the “tipping point hypothesis” indicating 
that complex dynamic systems can absorb disturbances 
and continue to function up to a certain tipping point at 
which the ability to self-recover or absorb disturbances 
is lost (van Nes et al., 2016). Once this tipping point is 
surpassed, intrinsic processes inside the system form a 
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Table 9. Predictors and model performance of the candidate models to predict total deficit score (TDS) liver using a data set of 173 cows 
originating from 4 farms1 

Sensor  Predictor

Model

Effect on TDS liver1 2 3 3a 3a Ssq2

  Parity Y Y Y Y 2.22  
Smart Tag neck  Variance min eating Y N Y Y 6.09 Negative
Smart Tag leg  Variance min stand still N Y Y Y 1.20 Negative
Smart Tag leg  AC3 min lying N Y Y Y 2.40 Positive
Smart Tag leg  Nonperiodicity number of bouts 

standing up N Y N N
 Positive

  Parity × variance min eating N N N Y 3.78  
Model sum of squares       15.69  
Model performance         
 R2 marginal   0.13 0.14 0.16  0.20  
 R2 conditional   0.13 0.14 0.16  0.20  
 AUC4     0.68  0.70  
 Sensitivity %     79.5  79.5  
 Specificity %     41.5  47.6  
1Included predictors per model are indicated as Y = yes, predictor is present in the model, or n = no, predictor is not present in the model. The 
effect of the behavioral predictors on TDS is indicated as positive (a higher value of the predictor increases TDS) or negative (a higher value 
of the predictor reduces TDS). The behavioral predictors were calculated from data that were measured during the 14 d before calving using 
Smart Tag neck and leg sensors (Nedap N.V.).
2Sum of squares of the effects for model 3a.
3Autocorrelation.
4Area under curve.

https://doi.org/10.6084/m9.figshare.21696293.v1
https://doi.org/10.6084/m9.figshare.21696293.v1
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positive feedback loop, leading to an alternative state 
(van Nes et al., 2016). The hypothesis that cows are 
characterized by a self-propelled accelerating change 
(positive feedback loop) when they cannot adequately 
adapt to all requirements during the transition phase, 
leading to postpartum disease (as tipping point) was 
previously proposed (van Dixhoorn et al., 2018). This 
phenomenon of a self-accelerating positive feedback loop 
in cows can be initiated when physiological mechanisms 
are no longer able to effectively re-organize and adjust 
to all requirements of the transition phase. This can be 
caused by the gap between nutrient intake and demand, 
resulting in metabolic disorders, inducing other health 
issues, such as infections (Trevisi et al., 2012; Esposito 
et al., 2014; Sundrum, 2015). A subsequent reduced 
nutrient intake reinforces hampered metabolism poten-
tially affecting health status at other physiological sites 
(Mulligan and Doherty, 2008; Sundrum, 2015). This 
positive feedback loop can also be initiated by other 
disorders, such as lameness, difficult parturition or ce-
sarean section, retained placenta, reduced feed intake 
(due to e.g., overcrowding), or when resources, such 
as nutrients or resting and feeding areas, simply are 
limited. These destructive feedback loops were similarly 
described as the result of intertwined components of 
metabolic stress of altered nutrient metabolism, dys-
functional inflammatory responses, and oxidative stress 
(Sordillo and Mavangira, 2014). This justifies the use of 
a TDS total in our study approach, in which all postpar-
tum problems are included, signifying that postpartum 
related disorders should be approached as a complex 
disorder. Comorbidity after parturition in our study was 
confirmed by the high correlation coefficients between 
TDS metabolic and TDS inflammation. These 2 TDS 
categories were calculated by the sum of independent 
points derived from their respective clinical and serum 
values. However, the sample size and consequently low 
incidence of diseases in our study could have driven 
the correlation between TDS metabolic and TDS in-
flammation. The TDS locomotion correlated less with 
the other TDS categories with the exception of TDS 
inflammation. Locomotion problems are typically less 
related to the transition phase in contrast to metabolic 
and inflammation disorders (Daros et al., 2020). How-
ever, locomotion and cow comfort problems may cause 
discomfort and pain and give rise to reduced feed in-
take, intensifying postpartum diseases (LeBlanc et al., 
2006; Daros et al., 2020).

In line with our study, Wisnieski et al. (2019) also 
showed that prediction performance of models for 
combinations of early lactation diseases was better in 
comparison to a single disease approach when using 
biomarkers. The biomarkers related to inflammation, 
oxidative and nutrient stress in their study were as-

sessed at dry off, occurring approximately 48 d before 
parturition (Wisnieski et al., 2019). They identified 
candidate models for each metabolic stress component 
(nutrient metabolism, oxidative stress and inflamma-
tion) and for the combined model including all stress 
components. Prediction of specific postpartum diseases 
can thus be performed when variables are used relat-
ing directly to the particular disorder. The behavioral 
patterns that we used as predictors of resilience are not 
direct indicators of metabolic stress and inflammatory 
issues. However, specific behavior, reduced eating be-
havior for example, may lead to or reinforce metabolic 
stress, rendering cows vulnerable to other postpartum 
diseases as well. In addition, the variables were col-
lected noninvasively and thus easier to implement on a 
commercial setting. Although they may not be as ac-
curate as blood measurements, they are more practical.

Prepartum behavior has been used by others to de-
tect cows at risk of postpartum diseases (Belaid et al., 
2021). In that study behavior was described as time 
spent at the feed bunk (min/d), frequency of meals 
(n/d), step count (n/d), count of lying bouts per day and 
lying time. Decreased eating time, increased lying, and 
decreased active time measured prepartum (described 
in min/d) were previously associated with postpartum 
related disorders (Kaufman et al., 2016; Piñeiro et al., 
2019a,b; Cattaneo et al., 2020; Menichetti et al., 2020; 
Hut et al., 2021; Hendriks et al., 2022), which is in line 
with our study. In addition, more lying bouts, fewer 
meals, and fewer steps taken were seen in cows with 
metritis or ketosis after calving (Belaid et al., 2021). 
Reduced rumination time was also previously found as 
a predictor for early detection of metritis, albeit not 
as adequate predictor for SCC (Cocco et al., 2021). 
Stangaferro et al. (2016a,b,c) used a combination of 
rumination and activity to timely detect postpartum 
diseases. All these studies focused on daily averages or 
total time spent on behaviors. Variance and autocorre-
lation of daily step count has also been calculated and 
tested as indicator trait for resilience by Poppe et al. 
(2022). They showed that mean and autocorrelation, 
as well as mean negative residuals, were candidates for 
resilience indicators based on heritability and genetic 
associations with health, fertility, and BCS. Heritabil-
ity and genetic associations of the nonperiodicities and 
FFT calculations might as well serve as new traits for 
cow resilience.

The farm effect in the prediction of locomotion-
related problems was larger as compared with that in 
the other TDS prediction models. This suggests that 
farm specific housing and management factors play a 
relatively large part in the development of locomotion-
related problems. This makes it more difficult to predict 
locomotion-related problems in the dry period based on 
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sensor data variables in the dry period alone. Sensor 
variables, however, have been proven to be of value 
to actually diagnose lameness (Rutten et al., 2013). In 
our study we focused on farm-independent prediction of 
loss of resilience. Risk factors at farm level are probably 
more indicative for the propensity to develop locomo-
tion problems.

Even with the low explained variance, the final TDS 
total model had an acceptable predictive ability, when 
using a cutoff value of Total TDS of 60, which makes it 
possible to identify cows at risk for postpartum diseases 
with sensor data alone during the dry period. With 
regards to the contribution of the individual effects to 
the total explained variance, it appeared that the of 
sum of squares was more less comparable, which indi-
cates equal importance in the final TDS total model. 
The variance component for the farm effect was smaller 
in the model without interaction, which suggests that 
some variation was captured in the interaction term. 
In the TDS inflammation and TDS metabolic model 
the sum of squares of the parity effect was larger as 
compared with the other effects. This indicates that 
the contribution of behavioral variables in these models 
was limited. In the TDS liver model the contribution 
of the variance of minutes eating was relatively high as 
compared with the other effects. To include standard 
deviation of eating time in monitoring models to detect 
cows with ketosis was previously suggested to be of 
value by González et al. (2008). However, the results of 
the specific TDS categories should be interpreted with 
caution due to the low incidence of problems within a 
specific TDS category.

The predictive capacity that we found for the TDS 
total is comparable to models using biomarkers as 
predictors for metabolic stress components (Wisnieski 
et al., 2019) and other predictions or early detection 
of diseases using sensor data only (Urton et al., 2005; 
Stangaferro et al., 2016a,b,c; Belaid et al., 2021). Indeed, 
combinations of metabolic components increase predic-
tive ability (up to a sensitivity of 88.2% and specificity 
of 87%; Wisnieski et al., 2019), which is superior to the 
predictive performance of our models. In our study, the 
use of noninvasive sensors is beneficial, in contrast to 
models that require invasive blood sampling.

The approach used in this research however has sev-
eral limitations. We were only able to reasonably predict 
TDS total, with rather low conditional and marginal 
R2. These values were even lower in the other models 
for predicting specific TDS categories and therefore we 
were not able to differentiate between specific diseases. 
This means that with our research approach, we were 
only able to detect cows at risk for some kind of post-

partum disease, without knowing the exact underlying 
primary cause. This will still require further individual 
examination to find clues for early intervention strate-
gies that might prevent or reduce postpartum diseases.

The low predictive value of sensor data for specific 
TDS categories could be related to the low number of 
disease cases per category, likely resulting in insuffi-
cient statistical power. Belaid et al. (2021) were able to 
identify metritis, displaced abomasum, and ketosis, but 
not mastitis and retained placenta, using differences 
in feeding behavior, but included a larger number of 
cows in their study (489 multiparous cows). The low 
sample size in our study is an important limitation of 
our study. Therefore, more research with larger sample 
sizes and more cases per disease category are needed 
to draw conclusions on the predictive value of sensor 
data for TDS related to specific diseases. This would 
also allow for a better assessment of the merit of using 
a TDS total score.

In the study of Belaid et al. (2021), the diseases di-
agnosed, with the exception of ketosis, were based on 
clinical cases, and the cows that were not diagnosed 
as diseased could have included subclinical cases. The 
merit of using the additive scoring system to calcu-
late the TDS values, including blood values, is that it 
includes subtle changes in health status. More subtle 
deficits, could relate to subclinical issues and when 
they are present for a longer period, this will lead to a 
higher TDS value. These subtle changes can be missed 
when diseases are assessed as absence or presence and 
not as a build-up score such as our TDS, inclusive of 
the severity and duration of the deviations in health 
status. A binary evaluation of a specific disease might 
miss subclinical issues. An option could be to lower the 
cutoff values in models with a binary outcome, which 
will increase the risk of false positives, reducing speci-
ficity of the models (Wisnieski et al., 2019). The lower 
specificity will identify a relatively large number of false 
positives, which may possibly lead to unessential in-
terventions. whereas we included blood values and the 
cows diagnosed implications: on one hand,

Models predicting cows at risk with low specificity 
might be more of value to detect shifts in the predicted 
percentage of cows at risk within the herd. An increased 
percentage of cows at risk requires preventive measures 
at herd level, which will be beneficial for the health of 
all cows. However, over-treating cows, may have nega-
tive effects to the economics and production efficiency 
(Salar et al., 2017). Intervention aims to reduce the 
percentage of cows at risk instead of the prevention of 
diseases in individual cows. In addition, these models 
could be used to evaluate management measures that 
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are intended to increase overall cow resilience within 
the herd. Effective interventions should result in a lower 
percentage of cows at risk within the herd.

By combining the sensor data using a general linear 
model, a prediction accuracy for TDS total of 73.2% 
was achieved with a cutoff value of 60 with 20.5% false 
positives and 26.8% of false negatives. Still, a large 
number of false positives and false negatives will be 
assigned. This cutoff is 15 points below the value of 75, 
which was indicated as a tipping point, as described 
above. The question is whether this margin of 15 points 
is sufficiently chosen to interfere and turn the tide at 
the individual cow level or if a lower cutoff value is nec-
essary, increasing the number of false positives. Some 
additional care for cows at a predicted TDS level of 
50 could be beneficial. The question remains if it is 
possible to increase predictive performance for loss of 
resilience in individual cows when using sensor data 
alone.

The uncertainty of unknown events influencing the 
outcome during the time-frame between measurement 
(sensor data acquisition) and the manifestation of dis-
eases will limit predictive performance in general. To 
assess cows at risk before diseases occur often while the 
animal is still healthy, is more challenging as compared 
with diagnosing diseases at the moment of occurrence 
as disease specific symptoms or other disease specific 
values are not present before the onset of disease. When 
the disease is already present, it is too late for preven-
tion, leaving treatment as the only solution left. Our 
predictive models of resilience in cows allow for timely 
implementation of interventions to prevent disease 
development after calving, although the exact nature 
of effective intervention strategies remains to be de-
termined. The behavioral patterns that are observed 
in cows at risk may provide clues for management 
adjustments, which may include improvement of envi-
ronmental and housing factors to improve cow comfort, 
nutrition, or dry cow treatments (LeBlanc et al., 2006).

CONCLUSIONS

The risk to develop some kind of postpartum dis-
ease can be predicted when using sensor data alone 
during the dry period when all clinical aberrations are 
integrated into one score. More resilient dairy cows eat 
more, are more active, and show high regularity in ru-
mination, standing time, and transitions from lying to 
standing as compared with vulnerable cows. These be-
haviors can be used as indicators of resilience and may 
allow for preventive intervention during the dry period 
in dairy cattle. However, additional examination of the 
cows at risk is still required to find clues for adequate 
intervention strategies. With our research strategy, 

the scores for specific disease categories could not be 
predicted accurately using sensor data, which could be 
related to the low number of cases per category.
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