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Abstract 

Research that accurately tracks specific individuals within fish cultivated groups is an 

emerging concern in modern aquaculture. The combination of deep learning models 

and computer vision methods presents the potential for fish farming to make informed 

decisions based on image data. Some studies have demonstrated the effectiveness of 

using pre-trained deep learning models to identify individuals by using distinctive 

patterns or facial features observed in these animals within the same species. However, 

methods for addressing individual fish recognition are still worthwhile to investigate in 

the current scenario. In this project, we investigated the feasibility of utilizing a pre-

trained VGG19 deep learning model to identify individual Yellowtail Kingfish(Seriola 

lalandi) from whole-fish photographs. The image dataset comprised 803 individual fish 

and spanned a growth period of four months. This dataset was used as input for training 

and testing the pre-trained VGG19 model. Additionally, we investigated the influence 

of time longitudinal data on the model's performance. Finally, we investigated the 

interest region of manual identification. Our findings not only shed light on the 

limitations of the pre-trained VGG19 model in accurately identifying individual fish 

from whole-fish images, but also underscore the significance of considering temporal 

changes in fish appearance for robust individual identification. Particularly, as the time 

span increased, the model faced greater challenges in distinguishing between individual 

fish. This study emphasizes the need for further research into tailored approaches for 

precise and consistent individual fish recognition. 

 

Keywords — Yellowtail Kingfish, Individual Identification, Deep learning model, 

VGG-19, CNNs 
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1. Introduction 

1.1 Background 

The recognition of individual specimens has become an important issue in fish 

studies. Whether in zoological experiments or in the breeding industry, stable and 

accurate long-term recognition are the prerequisite for obtaining behavioral information, 

habitat or breeding environment preferences, distribution, population structure, and 

growth rate information1,2,3. In the aquaculture industry, accurate fish measurement, 

especially measuring at the individual level, is critical for fish breeders to assess the 

quality and economic benefits of specific fish4. Therefore, this puts forward diverse 

requisites for identification technology to achieve heightened accuracy, reduced costs, 

and minimal impact on measured animals. 

A traditional approach frequently used in aquaculture to identify individual fish is 

tagging. Commonly used marking techniques are usually invasive, such as 

subcutaneous chemical markings, amputations, insertion of transponders and tattoos5,6. 

These methods often pose risks to animal health or survival, and raise animal welfare 

concerns7. Even non-invasive tagging methods such as external stains, labels, collars, 

can lead to issues like behavioral changes, reduced fitness, or loss of tags over time8,9. 

An alternative approach is to identify individuals based on natural markings, such as 

coloration, spots, or stripes. Recording these natural markings with image data not only 

avoids physical marking and reduces animal stress, but also retains image database that 

can be compiled in careful identification process. And this has led to extensive research 

on photo-identification technique, although this approach was initially predominantly 

applied to large terrestrial vertebrates10,11. However, an increasing number of research 

indicates that image recognition can not only be applied to some large terrestrial 

vertebrates, but also be feasible in some fishes. For example, Eurasian perch can be 

distinguished by the stripes on the body12, Permanent melanocytic speckle pattern in 

Salmo salar with long-term stability, providing a strong reference for long-term 

individual recognition13.  

Deep learning(DL) approaches is a state-of-art method used in image analysis and 

computer vision(CV) domains, which have produced impressive results since it was 

combined. In contrast to manual image recognition, CV approaches which combined 

deep learning models can effectively address a multitude of recognition tasks, thus 

mitigating the issue of inefficiency and insufficient characteristics derived from human 

experience14. Recently, the bulk of solutions for fish identification make use of deep 

neural network(DNN) that are built on the framework for fish recognition. This 

framework consists of three processes: fish object detection, fish feature extraction, and 

fish feature comparison14. Convolutional neural network(CNN) is a class of DNN, 

mostly applied to visual analyses. CNN and its variants have the key advantage of 

automatically extracting and learning image features15. Moreover, a distinctive feature 
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of CNNs is that they can be fine-tuned for new datasets, such as fish datasets, after they 

have been trained on general objects datasets16. This adaptability of transferring their 

acquired features and knowledge across various datasets lends CNNs exhibit a robust 

capability when dealing with small-scale datasets.  As a result, the  good recognition 

performance and transfer learning capabilities of CNNs model have make us interest in 

whether they can address identification issues in fish studies.  

 

1.2 Related Works 

1.2.1 Different species identification in Fish 

The computer vision approach, combined with the deep learning model, achieved 

a significant reduction in the error rate on the classification of different species of fish 

using images. By using a pre-trained convolutional neural network as a cross-layer 

pooling algorithm for generalized feature detectors, an accuracy of 94.3% was achieved 

in the fine-grained fish classification problem17. Another example is to construct a new 

deep learning algorithm framework that trained by independent datasets, fine-tuning is 

conducted for different species, assigning classification scores to each class in each 

image. Reducing the species misclassification rates from 22% to 2.98% after post-

processing using this framework18. Furthermore, a study proposed a novel CNN 

consisting of three branches for classifying fish at the species, family, and order in a 

taxonomy. This approach aimed to enhance recognition accuracy for different species 

with similar features, which achieved an increase in accuracy from 0.86 to 0.9619.  

 

1.2.2 Individual identification in Fish 

 The classification of the same species of fish is more difficult to deal with than the 

classification of different fish. The classification problem of different species of fish 

can usually be solved by visual cues used in the classification, commonly used such as 

key points, color, texture, shape, etc. These features can be refined into a set of up to 

47 features20. In the same species, most of the characteristics cannot be distinguished 

because of the phenotypic similarity. Studies have proved that long-term and stable 

pigmentation or pattern composed of scales is an important feature of individual 

recognition. Take an example, a study demonstrated that the scales of C. carpio vary 

greatly in number, size and combination, which allows these characteristics to be used 

for individual identification21. Moreover, an automated method for the identification of 

Lake Malawi cichlids using computer vision and geometric morphometry was 

presented. By extracting color and stripe features from photographic images, the model 

can classify various images belonging to 12 different classes in an average accuracy of 
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78%22. A recent development is to use skin dot patterns to enhance recognition through 

the images of Atlantic salmon (Salmo salar) scales23, and the identification accuracy 

was 100% for 30 fish based on out of water images. These above researches indicates 

that individual recognition within the same species necessitates specific features among 

individuals to possess quantifiable or comparable differences, which form the 

foundation for achieving individual recognition. 

 

In this project, the research animal is the yellowtail kingfish(Seriola lalandi). As a 

kind of new aquaculture fish with broad economic value and consumer market, the 

yellowtail kingfish has garnered significant attention from research area such as 

important economic traits24, bioenergetic growth model25, and health conditions under 

specific aquaculture conditions26. However, in Netherlands, there is currently no 

research on the individual identification of yellowtail kingfish. Therefore, a stable and 

long-term individual recognition system can greatly assist both researchers and fish 

breeders in gaining more detailed information about individual fish, helping them to 

make more accurate assessments.   

The main goal of this project is to investigate the performance of pre-trained CNN 

models in addressing the yellowtail kingfish individual identification issues. The 

project is to adopt a pre-trained VGG-19 model trained by large-scale image dataset 

and to construct the preliminary fish individual identification models with whole-fish 

images from more than 800 fish at four different time point. Transfer learning methods 

are beneficial when the available training data is not large enough (as in this project), 

or when there are few examples of different variables17. The VGG-19 model is chosen 

as its capability have been proved in a wide range of applications in both fish species 

classification and individual recognition27,28. We also explored the potential for 

individual recognition within specific regions of whole-fish images in the yellowtail 

kingfish due to whole-fish model’s limitation.  
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2. Material and Methods 

2.1 Data collection and Raw data 

The experimental animal in this study is Yellowtail kingfish (Seriola lalandi). A 

total of 803 farmed yellowtail kingfish were invasive tagged in the experiment, with an 

initial average weight of 157 grams and an initial average length of 10 cm. The fish 

were tagged with TROVAN’s microchip ID-00C for stable and long-term data 

collection. A total of four data collections were performed over a four-month period 

with one-month intervals. During each session, the out of water images of the fish were 

collected. The fish was caught and placed horizontally on a conveyor belt, then the fish 

was transported to the photographing area along with the conveyor belt. The photo area 

consists of a blue platform, and two shooting cameras. These two cameras capture the 

images of fish’s head, and the images of fish side body. After scanning the microchip 

inside the fish to obtain its ID, the experimenter promptly operates the camera to capture 

photographs of the individual(as shown in the Figure 1.1 below), and generated two 

types of data, RGB images and depth images. After data collection was completed, all 

fish were returned to the tanks.  

 

In Figure 1.2, it shows the RBG side images of one individual fish which collected 

at four time points, and the resolution of each image is 1280 x 720 pixels. 

 

 

Figure 1.1: Example of images from data collection. Left image was collected from front 

camera, and right image was collected from top camera. 
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Figure 1.2: RBG profile images of individual fish that collected at four time points. Top 

left: February, top right: March, bottom left: April, bottom right: May. Resolution of each 

image is 1280 x 720 pixels. 

 

 The raw data generated after data collection includes RGB information and depth 

information of the head image for each fish among first two time points and side image 

for each fish among four time points. Typically, image data was recorded only once per 

fish per time point. The third and fourth data collections also included the image data 

of untagged fish, as shown in Figure 2. From April 2022, a very large number of image 

data of untagged individuals had been collected. And as time went by, as the fish died 

and the collected data was lost happened through the data collection process, the final 

long-term and stable image datasets have fewer than 803 fish individuals. 

  
Figure 2: Visualization of the number of IDs distribution among four months.  
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2.2 Data Pre-processing 

In this part, a comprehensive image pre-processing process was conducted to 

prepare the datasets for individual fish identification. The following steps are: removing 

irrelevant images; categorizing and integrating images from different time points based 

on their matched IDs; identifying fish subjects within the images and subsequently 

conducting automatic segmentation. Through these procedures, the raw datasets were 

transformed into a smaller, less noisy dataset that is conducive for recognition purposes. 

The overview of this process could be seen in Figure 3. 

 

2.2.1 Images Removal and IDs matching 

Three types of images that were not relevant to our identification task were 

removed. These images were: 

◼ Depth Images: This project focuses on the identification of individual fish using 

visible RGB images. The depth image provides information about the distance of 

the object from the camera and is often used to represent the object’s volume. 

Therefore, all depth images were discarded from the dataset. 

◼ Front-side Images: Upon observing the images captured from the frontal view of 

the fish, it was noted that these images exhibited features such as the contour of 

the fish's head and mouth (Figure 1.1). Nevertheless, given their absence of 

essential distinguishing features for identification and the potential to introduce 

computational burden during model training, these images were also excluded. 

◼ No IDs fish's Images: Images where the fish's identity was not clearly established, 

were removed from the dataset. As these images do not participate in the training 

process of the model in this project. 

 

A Python script was written to deal with files containing image names and 

corresponding ID information. Integrated images from different time points based on 

their respective ID. Ultimately, each image was associated with its corresponding time 

point and ID. 

 

2.2.2 Image Segmentation 

Segmentation has been applied to enhance the image which aim at reducing the 

image size and filtering out noise. Edge detection is a tool which makes the process of 

image segmentation and pattern recognition more comfortable29, as it offers significant 

feature parameters for recognition targets and interpretation from images. The 

OpenCV30 package was used to achieve image segmentation, and the Canny algorithm 

was mainly applied for edge detection. 
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The below section outlines the core steps undertaken in this process: 

1. Image crop and object identification:  

The position of the cameras and the edge of the platform is fixed in all side images. 

This means that through the specified pixel coordinates, the camera and area out of 

platform can initially be removed from raw image. 

The hue-saturation-lightness(HSL) color space is utilized to extract the saturation 

channel. A gaussian blur is applied to the saturation channel, followed by thresholding 

and edge detection using the Canny algorithm. The largest contour was selected as the 

contour of interest. After that, the ‘boundingRect’ function30 was applied to this largest 

contour, which generated a rectangle close to this contour area and returned both the 

pixel coordinates of the top-left corner and the length and width of this rectangle.  

 

2. Resizing and Relocating:  

Background noise during model training can enhance the model's robustness31. 

Additionally, maintaining consistent aspect ratios for all images is desired. Thus, in this 

step, we introduced a fixed margin of 30 pixels to the rectangle generated previously 

and set a fixed aspect ratio of 2:1 for the final cropping rectangle. Based on the pixel 

coordinates of the top-left corner and the dimensions of the bounding rectangle returned 

by the ‘boundingRect’ function in the previous step, we calculated the new top-left 

corner coordinates and pixel dimensions of the final cropping rectangle. This ensures 

that the segmented image includes the entire fish side body along with a portion of the 

blue background. 

 

 

Figure 3: Block diagram of the pre-processing system. 
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Upon completion of these steps, the original data has transformed to retain only the 

RGB images of individual fish at four different time points, each associated with a 

unique identification (ID). These images were of reduced size, ensuring the 

preservation of the focal subject while incorporating a certain amount of blue 

background, thus forming a training image dataset containing both informative signal 

and noise.  

 

 

 

2.3 VGG-19 Convolutional Neural Network Construction 

2.3.1 Structure of VGG-19 model 

Constructing a CNN model from scratch demands a substantial volume of data, a 

requirement that proves nearly unattainable in this project. Instead, an exceedingly 

promising approach is to use pre-trained models on extensive datasets such as VGG 

model. In this endeavor, we opted for the VGG-19 model. The pre-trained VGG-19 

model encompasses approximately 143 million parameters, which were acquired 

through learning from the ImageNet dataset32. By invoking these parameters, our 

objective is to facilitate transfer learning of the model across diverse datasets. 

As shown in Figure 4 below, VGG-19 encompasses 19 trainable layers, comprising 

convolutional, fully connected max-pooling and dropout layers. In our devised solution, 

we capitalized on the pre-trained convolutional base and tailor the classification 

component to our context, including a densely connected classifier and dropout layers 

for regularization. In this model configuration, most convolutional layers within 

VGG19 were frozen, and additional fully connected layers were trained on top of the 

model. A fully connected layer with 512 hidden units and ReLU activation function was 

introduced, followed by an output layer with ‘Softmax’ activation function at the top, 

catering to the multi-class classification task. 

 

Figure 4: Overview of the VGG-19 network architecture with description of layers. 
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2.3.2 Image Resizing 

 To facilitate compatibility with the pre-trained VGG19 model, all the segmented 

images were resized to a standardized format of 224 x 224 pixels. This resizing ensured 

uniformity and consistency in the dataset, as VGG19 requires inputs of this specific 

size for accurate feature extraction and recognition. 

2.3.3 Data Split Strategy 

To effectively train and evaluate the model, three specific recognition tasks were 

performed using the recorded datasets as below: 

 

 

Figure 5: Block diagram of the data split strategy base on three specific identification 

tasks. The meanings of blocks of different colors can be seen from the right legend. 

 

a. Short-term Models: 

The first focus was on testing the uniqueness in whole-fish images for individual 

identification, referred to as the short-term pattern. In this mode, the dataset from four 

time points was divided into two groups with a one-month interval: February and March; 

April and May. The dataset of February and April were used as the training dataset, 

while the image data from the subsequent month served as the validation dataset. This 

approach aimed to enable the model to capture short-term variations and trends in whole 

fish image. 

 

b. Long-term Model: 

The long-term model aims at exploring potential patterns that are stable throughout 

the 4 months period within whole-fish images. The image data collected at the longest 

intervals, specifically those from February and May, are utilized for the construction 

and training of this model. Through such design, we expect to test whether the model 

can overcome the time longitudinal variations present in the dataset due to fish growth 
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over three months. By training on images of different individuals at the same time point 

and validating on matching ID images three months later. This enables it to learn 

underlying stable features inherent in these images. Furthermore, this approach serves 

to evaluate the model's ability to generalize over an extended period. 

 

c. Full Time Points Model: 

The third mode utilizes a dataset encompassing all time points, ensuring 

comprehensive training and evaluation across the entire dataset. The images from May 

were designated as the testing dataset, while those from February to April were 

employed for training and validation. For those images which collected from February 

to April, one time point was randomly chosen, and the image matched to that time point 

was used as part of validation dataset in model construction. And the images which 

collected in the rest two time points were employed for training. This strategy was 

implemented to ensure the training and validation dataset coverage across the first three 

time points.  

 

2.3.4 Data Augmentation 

Due to the limited size of the original dataset, data augmentation was crucial to 

enhance the model's performance and generalization capability. Data augmentation 

involves creating more training samples by applying various transformations to the 

existing images.  

In this project, data augmentation was implemented using various techniques as 

below: 

◼ Rotation: A random group of images were rotated at a random angle in the 

range of 0 to 40 degrees, to simulate different views and orientations of the 

fish.  

◼ Width and Height Shift: The images were randomly shifted horizontally and 

vertically based on the 10% fraction of total width to introduce small 

displacements in the fish's position. 

◼ Zooming: The images were randomly enlarged or zoomed out by 20% to 

simulate variations in the fish's size and scale. 

◼ Horizontal Flip: The images were horizontally flipped. 

◼ Brightness Changing: A random group of images were selected to adjusted 

darken or lighten to simulate varying lighting conditions. 

◼ Rescale: By this process, the pixel values in images were converted from the 

[0, 255] range to the [0, 1] range. This process is to avoid high pixel range 

images have a large weight in model training. 

We expected this process to increase the dataset size and diversity. And enables the 

model to learn from a more diverse set of images, leading to improved performance on 

unseen data.  
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2.3.5 Model Training 

 The proposed and describe VGG-19 model took 224 × 224 pixel preprocessed RGB 

images as inputs and generated predicted accuracy indicating individual fish.  

For multi-class classification problem, the categorical cross-entropy loss function, 

also referred to as ‘Softmax’ loss33 has been applied. The ‘Softmax’ formula and Cross-

Entropy formula are given by Figure 6.1. Figure 6.2 demonstrates the specific stages at 

which these formulas are applied. The number in Figure 6.2 are only shown as example 

for better explanation. 

 

Figure 6.1: The ‘Softmax’ formula and ‘Cross-Entropy Loss’ formula. 

C: number of classes. 

si: input vector to a ‘Softmax’ function which consist of C elements for C classes. 

sj: scores inferred by the net for each class in C. 

ti: ground truth vector. 

 

 

Figure 6.2: The application of ‘Softmax’ formula and ‘Cross-Entropy Loss’ formula. 

As shown in Figure 6.2, the fully connected layer of the CNN produces a logits 

vector L, also is si in figure 6.1, which is then transformed into probabilities through 

the ‘Softmax’ formula. The Cross-Entropy takes the output probabilities (P) for each 

class and measures the distance from the truth value. Finally, calculate the accumulation 

of cross-entropy values for all classes to generate one of the values for assessing model 

performance: the loss value.  

The training process commenced with predefined settings, including various 

parameters such as learning rate(0.0001), batch size(32), and number of epochs(100). 
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2.4 Manual recognition of specific features 

After exploring and testing models trained on whole-fish images based on three 

strategies, the potential features for manual identification were further considered and 

the specific regions indicated by these features were extracted. It is necessary to select 

features that persist for a sufficiently long period of time (i.e. usually the entire life of 

the fish). In this process, three features of yellowtail kingfish, lateral line, shape, and 

the yellowish region located in the middle of the body, were selected as specific features 

for identification. As shown in Figure 7, the manual recognition of three features is 

performed on the image data collected at the time point of May 2022 as an example. 

Represented by a red-highlighted curve in the top image of Figure 7, the lateral line 

is a prominent black line extending along the midsection of the fish, starting from the 

gill cover and continuing towards the tail. Its distinctive curvature and shape make it a 

significant characteristic for individual differentiation. The shape of the fish is 

highlighted by the yellow line as shown in the middle part of Figure 7. In this project, 

this outline is the outermost shape of the fish, including the shape of dorsal fin, caudal 

fin, anal fin and pelvic fin. The above-mentioned part is also commonly used as the 

characteristics to identify individual fish20. This makes the outline’s shape become a 

characteristic we are interested in, and we speculate different individuals can be 

distinguished by it. Finally, the green frame shown in the bottom of Figure 7 circles a 

yellowish band from the snout to near the upper region of the caudal peduncle. As one 

of the most recognizable features of the yellowtail kingfish, the individual recognition 

performance of this feature was also explored in this project. 

 

  

 



 

 

13 

 

 

Figure 7: Display of the selected three features in the image. Top: Lateral Line. Middle: 

Shape. Bottom: Yellowish Band. 

 

Traditional manual recognition only relies on human eyes for photo comparison, 

which is inefficient. Many studies have proved that the accuracy of computer-aided 

visual recognition is improved34 compare to that of manual identification. In this 

process, we used manual identify and highlighting approach for fish lateral line and 

utilized image processing technology from OpenCV package to highlight the remaining 

two features to optimize the process of manual recognition. 

 

2.4.1 Lateral Line 

The lateral line enables fish to detect motion and pressure gradients in the water, 

and always could be seen from fish body’s side. The manually identified recognition 

region was defined on the upper half of the fish's body. The distinct black scale regions 

visible on the fish's lateral side was delineated. Upon zooming in on these regions, the 

continuous or intermittent black scales were accurately recognized and highlighted in 

red. The resulting curved lines with distinctive curvature were considered and 

compared as features for distinguishing different fish individual. 

 

2.4.2 Shape 

The image processing package OpenCV was used in this step to automatically 

extract the outer contour of the fish from the image. The input RGB image was 

transformed into the hue-saturation-lightness (HSL) color space. The saturation channel, 

known for its ability to emphasize object boundaries, was isolated from the HSL image. 

A gaussian blur was applied to the Saturation channel to reduce noise, followed by the 

utilization of the Canny edge detection algorithm. This produces an edge map 

highlighting the boundaries of the main object. By employing the ‘findContours’ 

function, a series of contours were extracted from the edge map, and they were colored 

as green. Among these contours, the one with the biggest area was identified as the 

outer contour of the main object, which is the fish shape. 
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2.4.3 Yellowish Band 

Within the HSL color space, the Hue channel encapsulates color information, 

making it instrumental in distinguishing specific color ranges. The extracted Hue 

channel was visualized, aiding in the interpretation of color distribution. By 

thresholding the Hue channel within a predefined yellow color range, the yellow 

regions on the fish's body were isolated. These regions correspond to the distinct yellow 

areas of interest. 

 

 

 

In the final comparative analysis, two IDs were randomly selected from the data 

sets, and two times were randomly selected from the four time points. Four images 

corresponding to these selected IDs and time points were retrieved. Visual 

enhancements were applied to the three types of features mentioned above in the images. 

Subsequently, a image map was generated to visually showcase the variations among 

different fish individuals in these three manual identification features. 
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3. Results 

3.1 Dataset Curation 

3.1.1 IDs matching and image segmentation 

As shown in Table 1, the table presents the retained number of IDs and the 

corresponding count of images at the four time points after removing not relevant 

images and images without identifiable IDs from the original dataset. The table reveals 

that the total number of images exceeds the number of IDs, indicating that there is at 

least one available side-view RGB image of a fish for each ID at every time point. 

February, serving as the initial time point for image collection, retains the highest 

number of available images and IDs. As time progresses, the number of collected IDs 

gradually decreases. Among these, the month of March has the least collected IDs and 

image data. This reduction may potentially be attributed to data collection oversights 

rather than loss of data due to fish mortality.  

 

 

Table1:The available IDs and available images retained at four time points. 

Time Point February March April May 

IDs Num 803 560 621 570 

Images Num 830 576 661 578 

 

 

Figure 8 provides a more intuitive depiction of the overlap of these IDs across the 

four different time points. The Venn diagram vividly illustrates that a total of 496 fish 

have been consistently and longitudinally captured in available images over the four 

months. Among these, 169 fish, for which image data were collected in February, are 

absent from image collection in the subsequent three months. Additionally, image data 

for over 70 fish appear to be overlooked or lost during the month of March, as the image 

data for these fish reappear in April and May.  
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Figure 8: Venn diagram of ID overlaps situation among four-time stamps. 

The sequential visualization outcomes of the automated image segmentation 

process are presented in Figure 9. The leftmost image within the figure depicts the 

original image. The yellow dashed rectangle delineates the region chosen based on 

fixed pixel coordinates, excluding the white sensor and blue platform. The green dashed 

rectangle illustrates the region proximate to the maximum contour, which obtained 

through the ‘findContours’ function automated extraction of the primary contour within 

the image. The red solid-line rectangle is derived from the green dashed rectangle, 

incorporating a fixed 30-pixel margin, and adhering to a 2:1 aspect ratio in length and 

wide for the rectangle. This final segmented image comprises both the main object and 

part of background noise. Taking this image data as an example, the automated 

segmentation process transforms the image size from its original 2.63MB to a reduced 

598KB. 

 

Figure 9: Visualization of automated cropping of image. Yellow dashed box: initial cropping 

result with fixed pixel coordinates. Green dashed box: rectangle generated through 

‘findContours’ function applied to maximum contour. Red line box: final cropping rectangle. 
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Following these steps, the final dataset used for model construction was 

significantly refined compared to the initial dataset, resulting in a reduction in the 

number of images from 28,992 to 2,645 and a decrease in data size from 62GB to 1GB. 

This reduction in dataset size not only contributes to mitigating the training time 

required for the VGG-19 model but also has implications for optimizing computational 

resources and enhancing the efficiency of both model training and prediction processes. 

 

 

 

 

 

3.2 Models Training and Performance 

3.2.1 Data Augmentation visualization 

As shown in Figure10, a 4x4 augmented image map is presented, displaying sixteen 

images generated through data augmentation using a generator applied to an image 

from the training dataset. From the images, it is evident that the original image 

undergoes a series of modifications, including rotations, flips, cropping, scaling, and 

changes in brightness. These alterations give rise to new versions of the image, each 

exhibiting subtle variations from the original.  

 

Figure 10: Visualization of image augmentation. 
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3.2.2 Learning curve for short-term models 

Figures 11.1 and 11.2 depict the learning curves of two separate short-term models 

trained for 100 epochs each, based on loss and accuracy metrics. Figure 11.1 presents 

the learning curve of a model trained on February image data and validated using March 

image data. Notably, both the training loss and validation loss exhibit an amplifier-

shaped divergence, starting from approximately the same loss value and gradually 

expanding with increasing epochs. This trend indicates that as the model learns from 

the February image data, it becomes more prone to errors when validating against the 

March image data. While the training accuracy of this model improves with epoch 

progression, the validation accuracy demonstrates minimal observable growth when the 

trained model is applied to the validation dataset. This lack of improvement in 

validation accuracy aligns with the consistent rise in validation loss, indicating 

persistent misclassifications of the trained model on the validation dataset. The learning 

curve shows that the model exhibits overfitting on the training dataset.  

 

Figure 11.1: Learning curve which shows short-term model that trained by February time 

point dataset and validated by March time point dataset. 

 

Similar trends are observed in the other short-term model. In Figure 11.2, both the 

training loss and validation loss similarly diverge with increasing epochs. However, by 

comparing the gap between the train loss and validation loss of these two short-term 

models, we observed that although the gap of both models increased with the growth 

of epochs, the model constructed using the April and May datasets exhibited a lower 

gap compared to the other short-term model. This indicates a reduced accumulation of 

errors. It must be pointed out that the training loss has a huge drop in this model, almost 

down to close to 0. Additionally, for this model, the training accuracy experiences a 

more rapid improvement as epochs progress after being trained on April image data. 

Notably, when this trained model is applied to validate against May image data, there 

is a subtle improvement in validation accuracy compared to the complete absence of 

change observed in the accuracy curve of the other short-term model.  
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Figure 11.2: Learning curve which shows short-term model that trained by April time 

point dataset and validated by May time point dataset. 

 

3.2.3 Long-term Model 

Through Figure 12, it can be observed that when the model was trained using the 

image data from February and validated using the image data from May, the learning 

curve of the model reflected suboptimal performance. As evident from the graph, with 

increasing epochs, the gap between training loss and validation loss widened, indicating 

that the model experienced overfitting on the training dataset. Additionally, it can be 

noted that while the training accuracy of the model increased with epochs, the trained 

model was unable to make meaningful predictions on the validation dataset. This 

suggests that the model trained with February data exhibited poor generalization 

performance on the May dataset.  

 
Figure 12: Learning curve which shows long-term model that trained by February time point 

dataset and validated by May time point dataset. 
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3.2.4 Full-time Model 

 In the final model, datasets from all time points were utilized. On one hand, this 

approach expanded the model's learning data, while on the other hand, it enhanced the 

model's ability to generalize to time longitudinal datasets. As shown in Figure 13, the 

learning curve provides insights into the similarities and differences between the full-

time model, short-term model, and long-term model. Firstly, it can be observed that the 

training process of the full-time model is more challenging in the same 100-epoch 

training period, as indicated by the relatively smaller decrease in training loss and 

smaller increase in validation loss compared to the other models. Correspondingly, the 

accuracy of this model fluctuates within a relatively smaller range, with more noticeable 

fluctuations.  

 

 

Figure 13: Learning curve which shows Full-time model. 
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3.3 Manual Identification 

3.3.1 Manual features selection 

Figure 14.1 presents the visual identification of the lateral line, a linear arrangement 

of black scales located in the middle section of the fish's side. To facilitate recognition, 

these regions were outlined and subsequently magnified for a clearer view of the black 

line contours. Although variations exist among different individuals, in most cases, the 

lateral line in these two regions, near the head and tail, is distinctly visible.  

 
Figure 14.1: Display of the lateral line manual identification. 

In Figure 14.2, the results of computer vision techniques enhancing the shape of 

the fish's lateral profile are displayed. The fish's outline is highlighted with fluorescent 

green lines. While the computer-aided method for shape recognition and enhancement 

can occasionally result in confusion in darker or shaded areas, as seen in the case of the 

fish's tail in this example, overall, the highlighted contour accurately encapsulates the 

outermost shape of the fish's lateral profile.  

 
Figure 14.2: Display of the fish shape manual identification. 
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 By extracting the hue channel from the image to transform the light yellow region 

into a darker one, the enhanced image result of the yellowish band region is displayed 

in Figure 14.3. The distinct yellowish band on the yellowtail kingfish's body, which is 

typically discerned from other parts of the lateral profile only by vague boundaries in 

human recognition, is strongly differentiated from the rest of the body using the hue 

channel approach. However, it is noteworthy that this image enhancement method also 

incorporates the pectoral fin into the yellow stripe region.  

 

 

Figure 14.3: Display of the fish yellowish band region manual identification. 

 

 

 

 

3.3.2 Comparison 

 As shown in Figure 15, the top row showcases four images of two distinct fish at 

different time points. The fish ID and time point are shown in the top of the Figure. 

Moving down from the top row, the corresponding image data have undergone 

enhancement through manual identification and computer vision techniques for three 

specific features: lateral line, fish shape, and yellowish band region. In this set of images, 

it is evident to the human eye that the left two columns represent image data from 

different time points of the same fish, and the same applies to the right two columns.  

Notably, a significant distinction arises from the enhancement of the yellowish 

band region through hue channel manipulation. Through this enhancement, the distinct 

patterns of the fish's lateral markings become pronounced, revealing the trajectory of 

its side profile markings. Moreover, the fish's overall contour exhibits variations, with 

the comparative analysis in Figure 15 highlighting more prominent discrepancies in the 

curvature of the upper dorsal region and the shape of the dorsal fin. Conversely, 

differences in the lateral line are subtler, making it easier to miscalculate in shape and 

specific curvature recognition by human eye.  
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Figure 15: The enhanced features of distinct fish at different time points, highlighting the 

lateral line, fish shape, and yellowish band region. 
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4.Discussion 

 In this project, we investigated the application of state-of-the-art computer vision 

image recognition methods on yellowtail kingfish. This study represents the first 

utilization of the pre-trained VGG19 model for individual yellowtail kingfish 

recognition in a scenario where there is a small size of dataset. Three different whole-

fish image recognition models were trained based on the characteristics of the dataset. 

And the potential of using manual identification to recognize three specific feature 

regions was explored in cases where the model's results were limited. In this section, 

we begin by discussing the performance of the three models and the potential impact 

of time longitudinal data present in the dataset. We then delve into the disparities 

between the full-fish image recognition models and manual identification, as well as 

the limitations of the dataset, to explore avenues for experiment refinement and future 

prospects.  

4.1 Short-term recognition 

 Comparing the two models trained under short-term recognition patterns, it can be 

initially inferred that the pre-trained VGG-19 model performs better in recognizing 

individual fish based on the last two time points: April and May. The short-term models 

trained and validated in February and March data suggest that these models have 

difficulty to achieve accurate predictions on data from these two time points. However, 

models constructed using the April and May datasets exhibit better performance in the 

recognition process compared to those constructed using the February and March 

datasets.  

This discrepancy at least indicates that yellowtail kingfish is better suited for 

individual recognition image acquisition during the later stages of growth, when their 

bodily features are more stable. Conducting individual recognition studies based on 

image data collected during the later growth stages could potentially yield superior 

results. Alternatively, we could consider more frequent image capture for fish in their 

early growth stages to reduce the morphological variations between each time point. 

We hypothesize that this phenomenon might be attributed to the relatively rapid growth 

rate of yellowtail kingfish during their initial stages, leading to more pronounced 

changes in their physical characteristics. Consequently, the application of computer 

vision methods during the early growth phases may not yield optimal performance. This 

conjecture is further corroborated by findings from growth model studies related to 

yellowtail kingfish25. 
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4.2 Long-term model and Full-time point model 

 To observe the whole-fish images of yellowtail kingfish at four time points, it  

reveals both similarities and variations in images of the same individual across different 

time periods. These disparities encompass variations in body size, stretching and 

deformation generated by growth in different regions, and shifts in the position of fish 

scales resulting in differences in body pattern images. These variations are most likely 

to impact the features extracted by deep learning models from the images, which 

presents a major challenge for models when dealing with datasets containing time 

longitudinal aspects. By comparing the learning curves of the long-term model and full-

time model, it becomes apparent, that the full-term model exhibits smaller disparities 

through the comparison of the differences in train loss and validation loss. This 

phenomenon is attributed, on one hand, to the increased dataset size providing the 

model with more learning material, and on the other hand, to the incorporation of 

additional time points in the dataset, thereby enhancing dataset generalization. 

 

 

4.3 Future research 

 Irrespective of the specific task, individual fish recognition studies of the same 

species are significantly constrained by the quantity and availability of training data. 

Deep models require substantial data, and in our experiment, while we considered 

hundreds of fish images from four time points, the number of images captures for 

individual fish at each time point is extremely limited, with only one capture per fish. 

Given these constraints, employing a transfer learning strategy with pre-trained models 

is a reasonable approach. However, a limitation of pre-trained models compared to task-

specific models is their better performance on smaller datasets with larger variations. 

Additionally, considering that our project used whole-fish images for re-training rather 

than specific feature areas, the model may be more inclined to learn similarities in 

image data, potentially leading to errors during the identification process.  

 

a. Potential of manual identification 

By exploring three features during the manual recognition phase, we demonstrated 

that human eyes can preliminarily differentiate feature variations among individual fish 

of the same species. Since the principles underlying the resolution of individual 

recognition problems through computer vision and deep learning models essentially 

simulate the human visual recognition process, we can consider utilizing the results of 

manual recognition to identify specific regions within the whole fish image. 

Alternatively, we can also construct CNN models to identify informative feature 

regions. Some studies have proposed schemes based on Mask R-CNN for fish image 

segmentation and measurement of fish morphological features, thus achieving the 

automatic extraction of fish morphological indicators35. Subsequently, CNN models 
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can be trained on these specific regions, and the predictions from these specialized 

feature recognition models can be combined to produce the final prediction outcome. 

 

 

b. Exploration of other models 

The considerations of dataset limitations and model performance invite a broader 

discussion on whether improving the dataset through increased data collection or 

enhancing model architectures would lead to more significant advancements in 

individual fish recognition. Further research is needed to assess the balance between 

these two avenues and identify the optimal approach for enhancing recognition 

accuracy and robustness. 

 If the limitation of image dataset will always exist, an alternative strategy based on 

the performance of the pre-trained VGG-19 model in this project would use other type 

of model, such as One-shot learning. One-shot learning for computer vision tasks 

involves a unique type of CNNs known as Siamese neural networks (SNNs)36. Siamese 

neural networks have the capability to learn from a minimal amount of data (only one 

to two images per class). This model and has been demonstrated to outperform other 

types of neural networks in terms of speed and accuracy, particularly in identifying 

images, faces, and other highly similar objects37. Moreover, this model can achieve 

superior generalization performance, especially when dealing with similar but distinct 

objects38. The drawback of this model primarily lies in its increased computational 

resource consumption when building the model with an equivalent-sized dataset. 
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5.Conclusion 

 This project has broadened the horizons of individual identification research for 

yellowtail kingfish. The outcomes of the project reveal the limitations of the VGG19 

model in addressing the specific challenges of recognizing multiple classes (individuals) 

and low-data fish identification within the same species. Furthermore, we have 

demonstrated that, for yellowtail kingfish, utilizing images from time points where the 

individuals exhibit more stable growth and pronounced feature differences can enhance 

the model's recognition accuracy. We also explored the effectiveness of the specific 

regions identified through manual recognition, namely the lateral line, fish shape, and 

yellowish band region, in addressing the individual identification problem. 

The experiments conducted in this project come with certain limitations that need 

to be addressed in future research endeavors. These limitations include the choice of 

CNN model and the imperfect criteria for assessing the effectiveness of manual 

recognition. We opted for the pre-trained VGG-19 model due to the scarcity of data, 

without selecting a model specifically tailored for extremely limited datasets. In 

summary, this project marks a valuable step towards refining and advancing individual 

fish identification methods within the same species. Despite the current limitations, the 

investigation into deep learning models, data augmentation techniques, and innovative 

data collection methods holds promising avenues for the research on yellowtail kingfish 

and the future progress of aquaculture industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

28 

 

Reference: 

1. Beaudouin, R. et al. An Individual-Based Model of Zebrafish Population 

Dynamics Accounting for Energy Dynamics. PLoS One 10, e0125841 (2015). 

2. Heupel, M. R. & Simpfendorfer, C. A. Using Acoustic Monitoring to Evaluate 

MPAs for Shark Nursery Areas: The Importance of Long-term Data. Mar. 

Technol. Soc. J. 39, 10–18 (2005). 

3. Radinger, J. et al. Effective monitoring of freshwater fish. Fish Fish. 20, 729–

747 (2019). 

4. Føre, M. et al. Precision fish farming: A new framework to improve production 

in aquaculture. Biosyst. Eng. 173, 176–193 (2018). 

5. Wright, D. W., Stien, L. H., Dempster, T. & Oppedal, F. Differential effects of 

internal tagging depending on depth treatment in Atlantic salmon: a cautionary 

tale for aquatic animal tag use. Curr. Zool. 65, 665–673 (2019). 

6. Nova J. Silvy, Roel R.Lopez,  and M. J. P. Techniques for marking wildlife. 25 

(2012). 

7. Cooke, S. J. et al. To Tag or not to Tag: Animal Welfare, Conservation, and 

Stakeholder Considerations in Fish Tracking Studies That Use Electronic Tags. 

https://doi.org/10.1080/13880292.2013.805075 16, 352–374 (2013). 

8. Thorstad, E. B., ØKland, F. & Heggberget, T. G. Are long term negative 

effects from external tags underestimated? Fouling of an externally attached 

telemetry transmitter. J. Fish Biol. 59, 1092–1094 (2001). 

9. Jepsen, N., Thorstad, E. B., Havn, T. & Lucas, M. C. The use of external 

electronic tags on fish: An evaluation of tag retention and tagging effects. 

Anim. Biotelemetry 3, 1–23 (2015). 

10. He, Q. et al. Distinguishing individual red pandas from their faces. Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics) 11858 LNCS, 714–724 (2019). 

11. Shen, W. et al. Individual identification of dairy cows based on convolutional 

neural networks. Multimed. Tools Appl. 79, 14711–14724 (2020). 

12. Hirsch, P. E. & Eckmann, R. Individual identification of Eurasian perch Perca 

fluviatilis by means of their stripe patterns. Limnologica 54, 1–4 (2015). 

13. Stien, L. H. et al. Consistent melanophore spot patterns allow long-term 

individual recognition of Atlantic salmon Salmo salar. J. Fish Biol. 91, 1699–

1712 (2017). 

14. Malik, H. et al. Multi-classification deep neural networks for identification of 

fish species using camera captured images. PLoS One 18, (2023). 

15. Rauf, H. T. et al. Visual features based automated identification of fish species 

using deep convolutional neural networks. Comput. Electron. Agric. 167, 

105075 (2019). 

16. Saleh, A., Sheaves, M. & Rahimi Azghadi, M. Computer vision and deep 

learning for fish classification in underwater habitats: A survey. Fish Fish. 23, 

977–999 (2022). 



 

 

29 

 

17. Siddiqui, S. A. et al. Automatic fish species classification in underwater 

videos: exploiting pre-trained deep neural network models to compensate for 

limited labelled data. ICES J. Mar. Sci. 75, 374–389 (2018). 

18. Villon, S. et al. A new method to control error rates in automated species 

identification with deep learning algorithms. Sci. Rep. 10, (2020). 

19. dos Santos, A. A. & Gonçalves, W. N. Improving Pantanal fish species 

recognition through taxonomic ranks in convolutional neural networks. Ecol. 

Inform. 53, 100977 (2019). 

20. Nery, M. et al. Determining the Appropriate Feature Set for Fish Classification 

Tasks Centro de Apoio a Pesquisas Sobre Televisão View project Serious game 

for old people View project Determining the appropriate feature set for fish 

classification tasks. doi:10.1109/SIBGRAPI.2005.25. 

21. Huntingford, F. A., Borçato, F. L. & Mesquita, F. O. Identifying individual 

common carp Cyprinus carpio using scale pattern. J. Fish Biol. 83, 1453–1458 

(2013). 

22. Joo, D. et al. Identification of Cichlid Fishes from Lake Malawi Using 

Computer Vision. PLoS One 8, e77686 (2013). 

23. Cisar, P., Bekkozhayeva, D., Movchan, O., Saberioon, M. & Schraml, R. 

Computer vision based individual fish identification using skin dot pattern. Sci. 

Reports 2021 111 11, 1–12 (2021). 

24. Whatmore, P. et al. Genetic parameters for economically important traits in 

yellowtail kingfish Seriola lalandi. Aquaculture 400–401, 77–84 (2013). 

25. Donohue, C. G., Partridge, G. J. & Sequeira, A. M. M. Bioenergetic growth 

model for the yellowtail kingfish (Seriola lalandi). Aquaculture 531, 735884 

(2021). 

26. Horlick, J., Booth, M. A. & Tetu, S. G. Alternative dietary protein and water 

temperature influence the skin and gut microbial communities of yellowtail 

kingfish (Seriola lalandi). PeerJ 2020, e8705 (2020). 

27. Aruna, S. K., Deepa, N. & Devi, T. Underwater Fish Identification in Real-

Time using Convolutional Neural Network. 586–591 (2023) 

doi:10.1109/ICICCS56967.2023.10142531. 

28. Banerjee, A. et al. Deep Learning Based Identification of Three Exotic Carps. 

Lect. Notes Networks Syst. 480 LNNS, 416–426 (2022). 

29. Tian, B. & Wei, W. Research Overview on Edge Detection Algorithms Based 

on Deep Learning and Image Fusion. Secur. Commun. Networks 2022, (2022). 

30. Learning OpenCV: Computer Vision with the OpenCV Library - Gary Bradski, 

Adrian Kaehler - Google 图书. https://books.google.co.uk/books?hl=zh-

CN&lr=&id=seAgiOfu2EIC&oi=fnd&pg=PR3&dq=computer+vision+opencv

&ots=hVM2amgATh&sig=fv3NavFLu0S3MF82kWkTu0YlJV8&redir_esc=y

#v=onepage&q=computer vision opencv&f=false. 

31. Bishop, C. M. Training with Noise is Equivalent to Tikhonov Regularization. 

Neural Comput. 7, 108–116 (1995). 

32. Deng, J. et al. ImageNet: A large-scale hierarchical image database. 248–255 



 

 

30 

 

(2010) doi:10.1109/CVPR.2009.5206848. 

33. Rubinstein, R. Y. & Kroese, D. P. The Cross-Entropy Method. (2004) 

doi:10.1007/978-1-4757-4321-0. 

34. dala Corte, R. B., Moschetta, J. B. & Becker, F. G. Photo-identification as a 

technique for recognition of individual fish: a test with the freshwater armored 

catfish Rineloricaria aequalicuspis Reis &amp; Cardoso, 2001 (Siluriformes: 

Loricariidae). Neotrop. Ichthyol. 14, e150074 (2016). 

35. Yu, C. et al. Segmentation and measurement scheme for fish morphological 

features based on Mask R-CNN. Inf. Process. Agric. 7, 523–534 (2020). 

36. Koch, G., Zemel, R. & Salakhutdinov, R. Siamese Neural Networks for One-

shot Image Recognition. 

37. Kumar, C. R., N, S., Priyadharshini, M., E, D. G. & M, K. R. Face recognition 

using CNN and siamese network. Meas. Sensors 27, 100800 (2023). 

38. Lee, K. & Lee, E. C. Siamese Architecture-Based 3D DenseNet with Person-

Specific Normalization Using Neutral Expression for Spontaneous and Posed 

Smile Classification. Sensors (Basel). 20, 1–19 (2020). 

 

 

Appendix: 

1. Data availability 

 Both the raw and processed datasets are stored in the Anunna High Performance 

Computer (HPC) at the Wageningen University & Research. Access permissions will 

be available upon request.  

 

2. Code availability 

 The source code for data processing and model construction is located at 

‘https://git.wur.nl/abg_rp/fish_individual_iden_yk’. Access permissions can be 

provided upon request.  
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