
Journal of Food Composition and Analysis 123 (2023) 105595

Available online 8 August 2023
0889-1575/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Moisture content and water activity relations in honey: A Bayesian 
multilevel meta-analysis☆ 

M.A.J.S. van Boekel 
Food Quality & Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Honey 
Water activity 
Moisture content 
Geographic origin 
Sugar composition 
Variability 
Model prediction 
Bayesian 
Multilevel modeling 

A B S T R A C T   

Research objectives were to investigate i) linear moisture content (m) - water activity (aw) relations in honeys, ii) 
quantify variability due to geographical origin, iii) prediction of aw from m using this quantified variability. 
Bayesian multilevel modeling was used to reach these objectives using thirty literature data sets. The rate of 
change in aw as function of m (the slope) was identical per origin, whereas actual values of aw at the same m 
(intercepts) differed. Geographic variation characterized by multilevel modeling (partial pooling) was quantified 
and compared to single-level modeling with all data pooled (complete pooling) and single-level modeling for 
each origin (no-pooling). Multilevel modeling results in an overall slope and intercept at the population level but 
also in individual intercepts per origin, hence variation is characterized at two levels. The obtained multilevel 
population parameters predicted almost exactly the relation between aw and m of glucose-fructose solutions 
resembling honey, confirming that aw-m relations in honeys are determined by glucose/fructose but not the 
actual aw-values themselves. Multilevel modelling, a compromise between over- and underfitting, gives the best 
prediction of aw of honeys from m including origin variability. The applied procedure is a blueprint to charac
terize variation in all types of food.   

1. Introduction 

Honey is a product that is known and used all over the world. The 
basic components of honey are water, glucose and fructose, but its 
composition is very complex and contains many other components in 
minor quantities: disaccharides like sucrose and maltose, salts, organic 
acids. Thus, from a chemical and physical perspective, one could 
consider it a highly concentrated sugar solution but non-sugar minor 
components do have an effect on product characteristics as well. Two 
general reviews on honey composition and characteristics can be found 
in Machado De-Melo et al. (2018) and Wang et al. (2023). 

With a low enough water activity (aw) honey is microbial stable. 
However, there is a critical limit of aw around 0.6, above which espe
cially yeasts can grow. Water activity is therefore a critical quality 
characteristic and many papers have established a statistical (linear) 
relationship between water activity aw and moisture content m (usually 
expressed in g water/100 g honey). It is striking that such relationships 
appear to have the same slope but quite often a different intercept (Chen, 
2019). Obviously, as natural products, honeys from different regions can 
be quite variable in composition and characteristics. In food science in 

general, it is important to take this variability into account in a quan
titative way. 

Chen (2019) analysed six available honey data sets using ‘modern 
regression analysis’ with categorical F-tests and ANOVA. Another 
modern upcoming statistical technique is multilevel modeling that al
lows to quantify variability according to categories or clusters of data. 
Continuing on the work of Chen (2019), it was investigated whether or 
not multilevel modeling can be applied to the aw and m relationships 
found in literature. Moreover, the data set was extended from 6 to 30 
cases. Multilevel modeling can be applied in the frequentist framework 
as well as in the Bayesian framework (the differences are briefly 
explained below). 

While the current application is on honey data, the approach can be 
applied to many other data sets that are subject to variability. The paper 
therefore attempts to show the possibilities of multilevel modeling also 
in a broader sense. 
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2. Background and objectives 

2.1. Statistical approach 

The two philosophies in statistics comprise the frequentist and the 
Bayesian approach. During the past 100 years, the frequentist approach 
has become the dominant one where probabilities are based upon fre
quencies of events. In the frequentist framework, parameters are 
considered as fixed (i.e, have no variability) while data are considered 
variable: they are considered to represent an overarching population of 
all possible data. It leads to null-hypothesis testing, p-values, ANOVA 
and confidence intervals. While there is nothing wrong with this 
approach, interpretation of frequentist statistical results is not that 
straightforward. It is not always realized that frequentist statements are 
about data as in Eq. 1, it is not about hypotheses or parameters. 

P(D|H) (1) 

This is a so-called conditional probability statement: what is the 
probability to observe data D given a hypothesis H. It is not uncommon 
that statistical results obtained in the frequentist way are actually 
interpreted in the Bayesian way because that is more the natural way 
people tend to think. In the Bayesian philosophy, then, parameters are 
considered variable and data fixed (once obtained), and the resulting 
statements are about the probability of parameters (or hypotheses) 
given the data, as in Eq. 2: 

P(H|D) (2) 

Parameters are considered variables that cannot be observed but can 
be inferred. In the Bayesian framework, a probability statement can be 
made about a parameter, for instance, that there is 95% probability to lie 
between some specified values. This is not possible in the frequentist 
approach because a parameter has no variability by definition. So, a 
frequentist confidence interval for a parameter is not a statement about 
probability but about how frequent a parameter will be in, or out, a 
certain interval if the experiment or observation is made an infinite 
number of times. To make that distinction, the equivalent of a confi
dence interval in the Bayesian framework is called a credible interval, or 
as recently suggested by McElreath (2020), a compatibility interval (i.e., 
compatible with the observed data and proposed hypothesis). Numeri
cally, the results obtained in the frequentist and Bayesian way are usu
ally close but interpretation is different. The reason it is called a 
Bayesian approach is because of the application of Bayes’ theorem, as 
summarized in Eq. 3: 

P(H|D) =
P(D|H)⋅(P(H)

P(D)
(3) 

This theorem makes it possible to convert probabilities about data 
P(D|H) (where the frequentist approach leaves it) into probabilities of 
hypotheses or parameters P(H|D) given the data. P(H|D) is called the 
posterior probability. P(H) is called the prior probability (the expecta
tion for a parameter or hypothesis before the data are taken into ac
count). P(D), the likelihood averaged over the parameters and weighted 
by their priors, is just a number. 

The Bayesian approach expresses uncertainty quantitatively in the 
form of probability distributions for parameters or hypotheses (the 
narrower, the more certainty), whereas the frequentist approach results 
only in point estimates of parameters. Though the frequentist way has 
become the dominant approach the past 100 years, the Bayesian 
approach is actually older, but computationally more complex and could 
therefore, until recently, only be applied to relatively simple problems. 
The computational problem is in P(D) that can contain complex in
tegrals. But with the advent of computer power this problem can be 
circumvented by sampling and very complex modeling problems can 
now be approached in the Bayesian way via Markov Chain Monte Carlo 
(MCMC) techniques. The reader interested in how MCMC works is 

referred to background literature (e.g., McElreath, 2020; Lambert, 2018; 
Kruschke, 2015; Gelman et al., 2013). Software for MCMC calculations 
is available; the current state-of-the-art software is called Stan (Gelman 
et al., 2015; Carpenter et al. 2017) and is used in this paper. 

Important to know is that in the Bayesian approach a likelihood 
function (P(D|H) in Eq. 3) and a prior probability statement about pa
rameters (P(H) in Eq. 3) need to be specified by the researcher in order to 
be able to apply Bayes’ theorem. This practice forces scientists to state 
the assumptions in the open and make them debatable. Other re
searchers may have different opinions and may come to other conclu
sions with the same data. This is perfectly fine, though some people may 
argue that this makes the Bayesian approach subjective and consider 
that not scientific. However, assumptions are also made in the fre
quentist approach but they are often not stated. Without diving in this 
debate, it can be stated that the Bayesian approach has by now become a 
well-accepted approach that is used more and more in many branches of 
science. However, not so much yet in food science with a few exceptions 
(Van Boekel, 2020, 2021a, 2021b; Garre et al., 2020; Garre et al., 2022). 
The present paper is a further attempt to show how the Bayesian 
approach can be used in food science. 

2.2. Multilevel modeling 

Variability is a natural phenomenon when studying biological ma
terials like foods. Instead of hiding variability by calculating averages 
(loss of information), it is important to quantify variability explicitly and 
multilevel modeling offers that opportunity. The Bayesian approach 
appears to be very suitable to use in this respect because it allows 
variability in parameters (though it is also attempted in the frequentist 
approach via likelihood methods). Modeling has basically two functions: 
i) to scientifically understand relations between variables, ii) to be able 
to make predictions. The two do not necessarily go together: it is 
perfectly feasible to make predictions for relations that are not under
stood but only established empirically by some mathematical relation. 
However, it is obvious that predictions based on scientific, mechanistic 
insight will be more reliable in principle, which is attempted in this 
paper. Being able to not only predict values of variables but also the 
uncertainty in those predicted values is of great practical significance. 

What happens often with sampling in practice is that measurements 
or observations are somehow connected (are correlated in statistical 
terms). For instance, honeys collected from a certain region, of from a 
specific bee species, have something in common. However, standard 
regression procedures assume that data are independent and not con
nected. Multilevel modeling takes these dependencies into account and 
may therefore lead to better, unbiased estimates, as well as that it gives 
better insight in variability. 

Perhaps, the principle is best illustrated, in relation to the current 
topic, with a simple schematic picture about variability of water activity 
in honey: see Fig. 1. Starting with common single-level modeling 
(Fig. 1A), there will be variation around a central value (like the mean or 
the median). The variation is quantified by residuals (difference be
tween individual values and the mean) and summarized in a residual 
variance; this is the simplest model one can apply. Single level modeling 
can be turned into multilevel modeling if data can be grouped into 
clusters: see Figure1B. In the case of honey, clusters could arise based on 
a certain geographic origin. Now, one can calculate a mean and residuals 
for each cluster (first level) as well as an overall mean and residuals at 
the second level (difference between cluster means and the overall 
mean). The actual measurements are always at the first level, second and 
higher levels arise because of clustering. There can be more than two 
levels, obviously. For instance, for honeys, clustering could be done for 
types of bees, for different regions in a country, for different countries. 

Referring to Fig. 1A, the variance obtained with single level 
modeling for n data with residuals ri is calculated as in Eq. 4: 
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var(ri) = σ2
r =

r2
1 + r2

2 + ...r2
i

n
(4) 

In the case of two-level modeling (Fig. 1B) there are now two vari
ances for i samples with residuals rij and j clusters with residuals bj, as in 
Eq. 5: 

var
(
rij
)
= σ2

r =
r2

11 + r2
12...+ r2

21 + r2
22 + ...r2

ij

n
(i = 1..n, j = 1..k)

var
(
bj
)
= σ2

b =
b2

1 + b2
2 + ...b2

j

k
(j = 1..k)

(5) 

While Fig. 1 refers to a very simple modeling case with only means 
and variances, the principle can also be applied to more complicated 
linear and nonlinear models with intercepts and slopes and other pa
rameters, as will be illustrated below. 

Further introductions to the Bayesian approach as well as multilevel 
modeling can be found in Johnson et al. (2022) (also available as free 
e-book BayesRules!) and McElreath (2020). 

2.3. Relation between water activity and moisture content 

As indicated in the previous section, understanding the science 
behind relations is very helpful in establishing models. The relation 
between water activity and moisture content is of a thermodynamic 
nature, and therefore relates to equilibrium conditions. Water activity is 
defined as in Eq. 6: 

aw =
p
p0

(6)  

where p is the pressure above an aqueous solution and p0 the pressure of 
pure water. Clearly, 0 ≤ aw ≤ 1, so aw = 1 means pure water is present 
and aw = 0 means absence of water. Solutes will alter water activity and 
the relation cannot be predicted in theory except for ideal solutions 
(where no interactions occur between solutes and solvent and between 
solutes themselves). In an ideal solution, water activity (aid

w ) changes 
with the molality of a solute independent of its nature according to Eq. 7: 

lnaid
w = lnXw = ln

(
1

1 + miMw

)

= − ln(1+miMw) = − Mwmi (7) 

Xw represents the mole fraction of water, Mw the molar mass of water 
(0.018 kg mol− 1) and mi the molality of solute i (moles per kg solvent). 

However, foods, including honey are all but ideal solutions. Conse
quently, at the same water mole fraction Xw, water activity aw can be 
quite different, depending on which solutes are present. Nonideal 
behaviour is accounted for by transforming Eq. 6 into Eq. 8: 

aw =
p
p0

= γwXw (8) 

The water activity coefficient γw accounts for nonideality (activity 
coefficients depend on the scale, so this one is for the mole fraction 
scale). Since theoretical relations are hard to establish, many empirical 
relations have been developed. Fortunately, water activity can be 
measured quite accurately from colligative properties such as boiling 
point elevation, osmotic pressure, freezing point depression. Subbiah 
et al. (2020) reviewed and analyzed the water activity of sugar solutions 
and model honeys. They used the concept of hydration numbers as the 
average number of water molecules that are bound to each solute 
molecule so that they do not contribute to water activity. Based on the 
parameters given in Subbiah et al. (2020) (their Fig. 2), the calculated 
relation between water activity and moisture content for glucose solu
tions is reproduced in Fig. 2, where the practical range of honey mois
ture contents is indicated by the dashed red lines. This analysis shows 
that, over this range, the relation is approximately linear, as reported in 
literature (e.g., Cavia et al., 2004; Chirife et al., 2006; Costa et al., 2013). 
Of course, honey is much more complicated than a simple glucose so
lution. While Fig. 2 is not a blue print for the relation in honey, it serves 
to show the general trend to be expected for the relation between water 
activity and moisture content and the range where a linear approxi
mation might hold. 

Crystallization can easily occur in honey as it is a highly concentrated 
solution; if that happens, water activity increases because of the release 
of water, resulting in a higher activity of water. However, supersatura
tion can easily occur also, so it is hard to predict what will happen. For 
the remainder of this paper, it will be assumed that the relation between 
water activity and moisture content in honey is approximately linear, as 

Fig. 1. A: Schematic example of single level model of i = 1..n honey samples (here: n = 10) with one type of residual (ri). B: Multilevel model with i = 1..n samples 
(here: n=5) in j=1..k clusters (here: k=3) resulting in two types of residuals rij and bj (after Sommet and Morselli, 2021). 

Fig. 2. Calculated relation between water activity aw and moisture content m 
for aqueous glucose solutions according to the analysis of Subbiah et al. (2020). 
The dotted red lines indicate the region where a linear approximation over the 
practical moisture range for honey might hold (12% < m < 28%). 
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is done in the used literature sources. 

2.4. Objectives 

The first objective of this paper is to investigate and establish the 
relation between water activity and moisture content of honeys from 
different geographical origin. The hypothesis (based on existing litera
ture) is that this relation can be described by a linear model, y = a + bx, 
where the slope b is the same for all honeys whereas the intercept a 
varies depending on the region of the honey. A Bayesian multilevel 
approach will be applied to investigate this hypothesis. The second 
objective is to investigate how a Bayesian multilevel approach can be 
used to characterize variability in honeys (and foods in general). The 
third objective is to investigate the type of predictions that can be made 
based on established relations between variables (water activity and 
moisture content in the particular case of honeys). 

3. Material and methods 

3.1. Material 

Data were obtained from literature, either directly read from 
Tables or extracted from graphs using the freely available software 
WebPlotDigitizer. The data were coded according to their origin as 
shown in Table 1. All in all, 29 different suitable data sets were found for 
regression analysis, with a total of 1144 data points. A few data sets 
found in literature were not used because of exceptionally high moisture 
content and water activity values; as shown in Fig. 2, a linear relation is 
then no longer realistic. This concerned data from Lavinas et al. (2023) 
from the Atlantic Forest and Caatinga regions in Brazil; however, their 
data about the Cerrado region in Brazil with ‘normal’ ranges were 
included. Another excluded data set with unusual high moisture and 
water content was from Mokaya et al. (2022) for Kenyan samples, and 
yet another one from Ávila et al. (2019) for Brazilian honey. The unusual 
high values (up to 40% moisture content and aw values up to 0.9) were 
also noted by the authors; interestingly, the data sets with these extreme 

values were all about stingless bee honeys. Another data set not used in 
regression analysis was that from Beckh et al. (2004) because those data 
were not from one specific origin but mixtures from all over the world. 
However, this data set was used in relation to validation so that thirty 
data sets were used in total. 

3.2. Methods 

R version 4.2.2 was used as software (R Core Team, 2020) using 
RStudio version 2022.12.0 (RStudio Team, 2020) and Quarto for literate 
programming (https://www.quarto.org). Data handling was done in the 
tidyverse ecosystem (https://www.tidyverse.org). For Bayesian regres
sion the R package brms version 2.17.0 (Bürkner 2017, 2018) was used; 
this package uses the probabilistic software program Stan (Gelman et al., 
2015, Carpenter et al., 2017) in the background. Graphs were produced 
using the R package ggplot (Wickham, 2016). For an overview of the R 
packages used, see the Supplement. 

Bayesian regression is done via MCMC sampling in Stan and it always 
needs to be checked whether convergence did happen. There are several 
ways to do that (Kruschke, 2021). For all the results given in this paper it 
was checked that convergence was in order but the diagnostic results are 
not reported here to save space. Some diagnostic results are given in the 
Supplement. 

Other necessary actions in the Bayesian framework are prior and 
posterior predictive checks. A prior predictive check implies that the 
model is tested based on the proposed priors without invoking the data 
yet. Because Bayesian models are generative, such predictions can be 
made. It should be checked that the prior allows a wide range of pre
dictions but should prevent impossible values. Comparison of the pro
posed prior with the resulting posterior is also useful. A posterior 
predictive check implies that predictions are made from the posterior (i. 
e., based on model and data) and the check is whether or not these 
predictions overlap with the actual data. This can be done in various 
ways. Some examples are given in the Supplement. 

The R code as well as the data sets used in this paper are freely 
available on the author’s GitHub page https://github.com/tinyvanboe
kel/honey. 

4. Results 

4.1. Exploratory data analysis (EDA) 

An overview of all the available data used for regression is given as a 
scatterplot in Fig. 3 (Supplement Fig. S1 shows the same data plotted per 
origin). Fig. 3 shows that: i) there is quite some variability between the 
various origins, ii) the relation between water activity aw and moisture 
content m seems more or less linear, as anticipated. These two obser
vations make it appropriate to apply i) multilevel modeling and ii) linear 
regression to find out how aw and m are related. 

4.2. A null model 

The most basic model that can be applied to the data is a so-called 
null model, or an intercept-only model, or an unconditional model 
(unconditional because there is no conditioning on a predictor variable); 
such a null model results effectively in estimates of the mean and 
standard deviation of the sampled population. For the present study, a 
null model can be achieved in three ways: i) with all data pooled, ii) 
separately for every origin cluster (no-pooling) and iii) by partial pool
ing (multilevel modeling). Since Bayesian regression is applied, likeli
hood and priors must be proposed for the data and parameters, 
respectively, as in Eq. 9: 

aw ∼ N (μ, σ)
μ ∼ N (0.55, 0.1)

σ ∼ exponential(1)
(9) 

Table 1 
Overview of the origin of the honey data sets (random order).  

Origin Code Reference 

Slovenian (flower honey)  1 Abramovič et al. (2008) 
Slovenian (honeydew)  2 Abramovič et al. (2008) 
German (flower)  3 Gleiter, Horn, and Isengard (2006) 
German (honeydew)  4 Gleiter, Horn, and Isengard (2006) 
Spanish (mixed honeys)  5 Cavia et al. (2004) 
La Palma  6 Sanjuan et al. (1997) 
Argentinian  7 Chirife, Zamora, and Motto (2006) 
Turkish (flower honey)  8 Serin, Turhan, and Turhan (2018) 
Indian  9 Saxena, Gautam, and Sharma (2010) 
Brazilian  10 Silva et al. (2013) 
Tunesian  11 Boussaid et al. (2018) 
Mexican  12 Viuda-Martos et al. (2010) 
Colombian  13 Giraldo, Acosta, and Gallego (2013) 
Mexican  14 Mondragón-Cortez et al. (2013) 
Spanish  15 Sanz et al. (1995) 
Brazilian  16 Da Silva et al. (2016) 
Greek  17 Lazaridou et al. (2004) 
Turkish  18 Bayram et al. (2021) 
Moroccan  19 Bouhlali et al. (2019) 
Tenerife  20 Bentabol Manzanares et al. (2011) 
Slovakian  21 Kacaniova et al. (2012) 
Polish  22 Kacaniova et al. (2012) 
Argentinian  23 Acquarone, Buera, and Elizalde (2007) 
Czech  24 Vorlová et al. (2005) 
Turkish  25 Kayacier and Karaman (2008) 
Cerrado region Brazil  26 Lavinas et al. (2023) 
Moroccan  27 Bouddine et al. (2022) 
Tenerife  28 Bentabol Manzanares et al. (2014) 
Brazilian  29 Costa et al. (2013) 
Worldwide  30 Beckh, Wessel, and Lullmann (2004)  
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The proposed likelihood for the data aw is thus that they are normally 
distributed (symbol N ), while the suggested prior for the mean μ is also 
supposed to be normally distributed with a value of 0.55 (it is known 
from literature that the mean is approximately that value, i.e., this is 
prior knowledge) and a standard deviation of 0.1 (expressing the un
certainty about the actual value of the mean). Standard deviation σ is 
proposed to be exponentially distributed since it cannot be negative 
(actually, also the mean cannot be negative but with the parameter 
values proposed, N (0.55,0.1), that will not be the case). Note that the 
standard deviation σ is used rather than the variance σ2 because the Stan 
software works with standard deviations. 

4.2.1. Complete pooling with the null model 
Bayesian regression with completely pooled data resulted in the es

timate aw with mean value 0.547 (standard error 0.001, expressing the 
uncertainty in the estimate) while σ was estimated as 0.05 (standard 
error 0.001). The complete parameter posterior distributions can be 
found in the Supplement (Fig. S2), along with some diagnostic checks 
(Figs. S2-S6). The posteriors will be compared later on with other 
regression results. Supplement Fig. S5 provides a comparison of the 
proposed prior and the resulting posterior, showing that the posterior is 
much narrower than the prior. This indicates that the posterior is 
dominated by the data and that the prior acts as weakly regularizing 
(McElreath, 2020). Supplement Fig. S6 shows that posterior predictions 
match well with the observed data. 

4.2.2. No-pooling with the null model 
Analyzing every data set separately per origin yields 29 different 

estimates, using the same priors and likelihood as in Eq. 9. Considerable 
variation can be seen in the means indicated in Fig. 4 (closed black 
markers); this variation is of course also obvious from Fig. 3 but is now 
quantified. While the problem with complete pooling is underfitting (not 
all information in the data is used), no-pooling results in overfitting (too 
much trust in each data set, the result of one regression is not connected 
in any way to the next or previous regression). This is where partial 
pooling comes to the rescue as an alternative. 

4.2.3. Partial pooling with the null model 
Partial pooling via multilevel modeling acknowledges that the data 

do have something in common, while allowing also differences in the 
data. It is now assumed that the mean μj for each origin j varies around 
the global mean. This requires an extra parameter, namely the standard 
deviation σb that takes variation around the global mean (level 2) into 
account (i.e., the between-group variability): see Eq. 10. The assumption 
made in Eq. 10 is that the μj are normally distributed around the global 
mean μ. Parameter bj (can be positive or negative) is the offset for each 
cluster from the global mean μ. Note that the overall σ is partitioned over 
two standard deviations σb (level 2) and σr (level 1). 

Fig. 3. Scatterplot of the 29 honey data sets used for regression (water activity 
aw versus moisture content m) coloured per origin. Data sources are reported 
in Table 1. 

Fig. 4. Comparison of mean water activity estimates resulting from no-pooling (closed black markers) and partial pooling (open blue markers with 50 (thick line) 
and 95% credible interval (thin line)). The dotted horizontal line represents the overall population mean aw = 0.58 resulting from partial pooling. 
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aw ∼ N
(
μj, σr

)

μj = μ + bj
bj ∼ N (0, σb)

μ ∼ N (0.55, 0.1)
σb ∼ exponential(1)
σr ∼ exponential(1)

(10) 

Posterior predictive checks can be found in the Supplement (Fig. S6) 
and were found to be OK. If parameter estimates differ from the overall 
mean, a phenomenon called shrinkage may be observed. It implies that 
parameter estimates shrink from their individual values towards the 
overall mean due to partial pooling. This may particularly happen for 
data sets with few data points. Fig. 4 compares parameter estimates 
resulting from partial pooling and no-pooling. Several data sets show 
such shrinkage effect, most clearly origins 9, 10, 13, 20, 25, 26, 29. Some 
data sets do not show visible shrinkage, meaning that there is no notable 
difference between the means obtained via individual regression and via 
multilevel modeling. 

A graphic illustration of the null-model results can be found in Fig. 5, 
where the posterior distributions are compared resulting from complete 
pooling and partial pooling regression for the two parameters of the null 
model, the mean and the standard deviation. In Fig. 5A, two effects of 
partial pooling are visible: i) the estimate of the mean has shifted, and ii) 
the width (i.e., the uncertainty) of the estimate is much larger for partial 
pooling. While this latter effect seems to have worsen the situation, it is 
actually showing that the result of complete pooling gives a false 
impression of the uncertainty of the estimate. This is so because the 
effect of clustering is ignored, leading to underfitting: it is assumed that 
there is no variation between origins but this is clearly wrong. In Fig. 5B, 
the effects of partial pooling on the estimates of the population standard 
deviations are shown. As mentioned before, the total variance is now 
partitioned over the clusters and the remaining residual variance within 

the clusters, as a result of which the remaining variance of level 1 is 
much reduced while the variance due to clustering is seen to be quite 
high and moreover much wider (which indicates the uncertainty in this 
estimate). In passing, note that this shows the power of the Bayesian 
approach in visualizing parameter behaviour via posterior distributions, 
it gives much more insight than point estimates. 

A summary of the posterior distributions resulting from partial 
pooling can be found in Table 2. σb is a quantitative measure for how the 
individual means bounce around a central value for each origin data set 
(the actual numerical offsets from the population mean (parameters bj) 
are reported per origin in the Supplement, Table S1). When compared to 
complete pooling, the estimate for the intercept (i.e., the mean) has 
shifted from 0.55 to 0.58 while the standard deviation σ = 0.05 
decreased because of partitioning over two levels. From σb and σr 
another interesting parameter called ICC (intra-class correlation coeffi
cient) can be calculated as the proportion of the between-cluster vari
ance and the total variance (see Eq. 11): 

ICC =
σ2

b

σ2
b + σ2

r
(11) 

ICC = 0 implies no variation between clusters, in other words, 

Fig. 5. Comparison of posterior parameter distributions (A: means, B: standard deviations) resulting from pooled and partially pooled regression with the null model. 
The width of the distributions indicates the uncertainties of the estimates. 

Table 2 
Results of Bayesian regression of the honey data using partial pooling with the 
null model. SE = standard error, lower and upper bound indicate 95% credible 
intervals.  

parameter mean SE lower bound upper bound 

µ  0.578  0.008  0.562  0.594 
σb  0.045  0.007  0.034  0.061 
σr  0.024  0.001  0.023  0.025  
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measurement results do not depend on a specific cluster membership. 
ICC = 1 indicates that all variance is explained by clustering the data, 
measurement results completely depend on the cluster they belong to. 
ICCs = 0.01,0.05,0.2 are considered as small, intermediate and large 
indicators, respectively, of cluster dependence (Sommet and Morselli, 
2021). The ICC for this honey case is 0.78, meaning that 78% of the 
variance is explained by clustering the data in origins and therefore it 
can be concluded that mean water activity strongly depends on the 
origin of the honey. Multilevel modeling is therefore very appropriate. 

Of course, the results so far only concerned a null model and the next 
step is to add a predictor, namely water content. 

4.3. Regression with moisture content as predictor 

As is clear from literature and also obvious from Fig. 3, moisture 
content of honey can act as a linear predictor of water activity over the 
practical ranges considered for honey. However, when doing linear 
regression with the raw data, the intercept will be estimated at m = 0 
and this estimate should be 0 from a physical point of view, because by 
definition aw = 0 at m = 0. Because the curvature in the relation dis
played in Fig. 2 is ignored by assuming a linear relation, the intercept 
will not be zero if linear regression is applied. So, such an intercept value 
has no physical meaning. Therefore, it is better to center the predictor 
variable m. The additional benefit is that this will virtually eliminate 
parameter correlation between slope and intercept (McElreath, 2020), 
which is beneficial for parameter estimation. Centering is simply ach
ieved by subtracting the mean of the predictor variable from the pre
dictor variable itself. 

4.3.1. Complete pooling with predictor variable 
The first attempt is, once again, to ignore the clusters in the data and 

to pool all data. So, the model proposed is as in Eq. 12 where the 
centered moisture content is indicated as mc: 

aw = β0 + β1⋅mc (12) 

Again, a likelihood function for the data and priors for the parame
ters need to be given, as suggested in Eq. 13: 

aw ∼ N (μi, σr)

μi = β0 + β1⋅mc,i
β0 ∼ N (0.58, 0.1)

β1 ∼ N (0.05, 0.01)
σr ∼ exponential(1)

(13) 

Note the subtle difference in parameter μi, it is no longer μ referring 
to the overall mean of the whole population as in Eq. 9. Instead, μi refers 
to the expected value at each data point i with standard deviation σr 

referring to the spread around this mean value (σr is supposed to be the 
same for each data point). Furthermore, prior normal distributions are 
proposed for parameters β0, β1 and, as before, a prior exponential dis
tribution for σr. Since the predictor variable is centered, the intercept 
will be around the mean (estimated to be 0.58 from the null model, with 
standard deviation 0.1), while the slope parameter is given an expected 
value of 0.05 with a standard deviation of 0.01. With these prior set
tings, a prior predictive check showed that a wide range of possible 
values is obtained without producing impossible values (Supplement 
Fig. S7). 

Supplement Fig. S8 compares posterior distributions, pair plots and 
correlation coefficients for regression with non-centered (Fig. S8A) and 
centered predictor variable (Fig. S8B). It shows clearly that centering 
indeed removes strong parameter correlation between slope and inter
cept. Moreover, the intercept does have a physical interpretation upon 
centering, namely the mean aw at the mean moisture content. Therefore, 
for the remainder of the article, centered moisture content mc is used as 
predictor. 

The resulting regression line is displayed in Fig. 6A. Obviously, the 
regression line cannot account for all data because of the large scatter 
due to honey origin. And there is another effect that disturbs the picture, 
perhaps less visible in Fig. 6A but becoming very clear when only part of 
the data (origin 1–8) is used in the regression: see Fig. 6B. This regres
sion line does not seem to make sense at all. This is a consequence of a 
statistical phenomenon called Simpson’s paradox and is the result of 
neglecting the fact that the observations are not independent but clus
tered. As shown, this can be very misleading; in the case of Fig. 6 B, the 
many data from origin 8 draw the regression line downwards, which 
completely disturbs the picture. While the many more data in Fig. 6A 
show less of this Simpson paradox, it still can be a lurking phenomenon, 
as shown below. A numerical summary of the posterior is shown in  

Fig. 6. Regression plot of all, completely pooled honey data (A) and of a subset (B, origin 1–8) to show the effect of Simpson’s paradox using centered moisture 
content mc as predictor. 
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Table 3. 

4.3.2. No pooling with predictor variable 
No-pooling regression was done with the same priors and likelihood 

as for complete pooling (Eq. 13). While complete pooling does not 
acknowledge the fact that the data are clustered, no-pooling ignores the 
fact that the data have something in common, as already discussed 
above for the null model, leading to 29 different slopes and intercepts, 
displayed as dots-and-whisker plots in Supplement Fig. S9. The resulting 

Table 3 
Numerical summary of Bayesian regression of the completely pooled honey data 
with centered predictor. SE = standard error, lower and upper bound indicate 
95% credible intervals.   

Mean SE Lower bound Upper bound 

intercept β0  0.547  0.001  0.54  0.55 
slope β1  0.010  0.001  0.01  0.01 
σr  0.042  0.001  0.04  0.04  

Fig. 7. Regression lines resulting from individual regressions (no pooling) of the honey data according to origin using centered moisture content mc as predictor. The 
lightblue ribbons represent the 95% prediction intervals. 
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fits are shown in Fig. 7. While the individual fits are not bad, there are 
remarkable differences, note also the sometimes very wide prediction 
intervals. Regression results from some origins deviate quite strongly, 
notably origin 9, 10, 11, 21, 25 (the slopes for origins 10 and 25 are even 
negative). Most importantly, it is not possible to generalize using no- 
pooling results beyond the cases that were sampled, and for individual 
cases the predictive capacity is wildly different for each individual case 
as shown in Fig. 7. 

4.3.3. Partial pooling with predictor variable 
Since it is clear from literature as well as the results discussed above 

that variation is especially in the intercepts and hardly in the slopes, 
multilevel regression is attempted with varying intercepts only. This 
requires different priors and likelihood: see Eq. 14. b0j is the offset for 
each origin j from the global intercept β0 while β1 is the global slope 
shared by all origins. σr describes the within-origin variation and σb the 
between-origin variation. 

aw ∼ N
(
μij, σr

)

μij =
(
β0 + b0j

)
+ β1⋅mc,ij

b0j ∼ N (0, σb)

β0 ∼ N (0.55, 0.1)
β1 ∼ N (0.05, 0.01)
σb ∼ exponential(1)
σr ∼ exponential(1)

(14) 

Posterior predictive checks were done and found to be OK: see 
Supplement Fig. S10, the posterior predictions match well with the 
actual data. As with the null model (Fig. 5), comparison of complete 

pooling and partial pooling can be done for the model with predictor via 
posterior parameter distributions: see Fig. 8. Partial pooling leads to 
larger, more realistic uncertainty for the overall intercept but to less 
uncertainty for the overall slope because the regressions have “informed 
each other”. Also, it leads to substantially different estimate values. 

A kind of posterior prediction check is to see in how far regression 
lines are able to match with the data upon which the model is based. 
McElreath (2020) calls this ‘retrodiction’, as opposed to prediction, 
because it shows in how far the model based on data match in retrospect. 
The regression line resulting from partial pooling with varying intercept 
is shown in Fig. 9 next to the one from complete pooling. The difference 
is not to be missed: partial pooling takes clustering into account while 
complete pooling does not and is subject to the effect of Simpson’s 
paradox, as explained above. The regression line in Fig. 9 is plotted 
according to the overall population estimates for slope and intercept. 
The varying intercepts resulting from partial pooling are shown in  
Fig. 10. When compared to the ones in Fig. 4 for the null model, 
considerable variation is still seen between origins but less so than in 
Fig. 4; this is the result of shrinkage. 

Fig. 11 shows fits for the separate data sets in three ways: i) fit at the 
population level obtained from partial pooling (same line for each data 
set), ii) fit at the group level obtained from partial pooling (different 
regression line for each group), iii) fit at the individual level obtained 
from individual regression (no pooling). Note that all data sets are well 
described by the same slope, implying that water activity varies with 
moisture content in the same way for all data sets, regardless of their 
origin. Obviously, fits at the population level are not always good at the 
individual level because it is a compromise between over- and 

Fig. 8. Comparison of posterior parameter distributions resulting from regression with centered predictor for complete pooling and partial pooling. A: intercept, B: 
slope, C: standard deviations. 
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underfitting. But this regression line will give the best result in pre
dicting overall results. On the other hand, the fits at the group level are 
generally very good. Even though the rate of change in water activity 
with moisture content is the same for all honeys regardless of origin, the 
actual water activity values are strikingly different and do depend on 
geographical origin, which is accounted for by varying intercepts. This 
variation must be a consequence of the fact that the origin of honey has 
an effect on composition: it can be due to different type of sugars, salts 
and other components that have an effect on water activity. 

As mentioned, the fits at the individual level from partial pooling are 
generally good, but especially for origins 5, 9, 10, 11, 15, 17, 18, 21, 25, 
26, 27 one can see the power of multilevel modeling in Fig. 11. While the 
no-pooling results from individual regressions show a rather different 
regression line for these cases, the partial pooling results for these 
honeys follow the general trend of the other data sets. This is because the 
regressions are connected, they share information and “borrow strength 
from each other” (McElreath, 2020). 

The numerical summary of the posterior distribution resulting from 
partial pooling is shown in Table 4. The actual offsets b0j from the global 
parameter β0 for each origin can be found in the Supplement Table S2. 
Compared to complete pooling summarized in Table 3, the population 
estimate for the intercept has shifted from 0.55 (complete pooling) to 

0.57 (partial pooling), while parameter σr = 0.042 (complete pooling) 
has decreased to 0.016 because of partitioning of variance towards σb. In 
other words, most of the variance is attributed to between-cluster vari
ance. This is also indicated by the ICC parameter, which now has two 
values, an adjusted ICC = 0.79 that only takes varying effects into ac
count, and an unadjusted ICC = 0.51 that takes both varying and pop
ulation effects into account. Both parameters still show convincingly a 
very strong effect of variance partitioning due to clustering of the data, 
so multilevel modeling is really appropriate. 

5. Discussion: multilevel posterior predictions 

As already mentioned above, fits to data on which regression is based 
are not predictions but rather retrodictions. Real prediction is to 
compare model outcomes with data that were not used to build a model. 
The question to be discussed now is how to make predictions from 
multilevel modeling. The answer is that it depends on the goal. An 
important benefit of multilevel modeling is that it prevents over- and 
underfitting (McElreath, 2020). If the goal is to make predictions at the 
overall population level (“the average honey”), then the population 
parameter estimates should be used. In statistical multilevel jargon, 
these are marginal effects: what is the effect of a variable (here: moisture 
content) across clusters on the response variable (here: water activity). If 
the goal is to make predictions at existing origin levels, then the group 
parameter estimates should be used. It is also possible to make pre
dictions for new clusters that are not yet investigated. All the informa
tion to do such calculations is present in the joint parameter posterior 
distribution. 

5.1. Global predictions and model honey 

To predict the relation for an “average honey”, the global estimates 
from partial pooling must be used. Two types of prediction can then be 
made: i) for the expected mean, and ii) for new not yet observed sam
ples. To predict the range where the mean can be expected, the uncer
tainty in parameters β0 and β1 must be used. This is shown in Fig. 12A as 
the dark blue ribbon. To predict the range where new samples may be 
expected, also the sampling variability represented by σr must be taken 
into account, leading to a wider interval. This is shown in Fig. 12A as the 
light-blue ribbon. To validate these predictions, data from model honey 

Fig. 9. Regression line resulting from partial pooling (solid line) and complete 
pooling (dashed line) for all 29 honey data sets. 

Fig. 10. Coefficient plot of the intercepts for each origin resulting from partial pooling with centered moisture content as predictor. The dots indicate the mean, the 
thick band the 50% and the small band the 95% credible interval. 
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Fig. 11. Regression lines for the individual honey data sets. Solid blue line: group level (fit from partial pooling), dashed red lines: population level (fit from partial 
pooling, same for each data set), black dotted lines: individual regression (fit from no pooling). 
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will be used, as discussed next. 
It has been stated repeatedly in literature (e.g., Zamora et al. (2006) 

that the relation between water activity and moisture content is mainly 
determined by sugar content and composition (mainly glucose and 
fructose and to a lesser extent by disaccharides as sucrose and maltose). 
Such a relation has been investigated experimentally by Ruegg and 
Blanc (1981) (using mixtures of glucose, fructose, maltose and sucrose), 
Zamora et al., 2006 (mixtures of glucose and fructose) and Subbiah 
et al., 2020 (same mixtures as Ruegg and Blanc, 1981). Fig. 12A com
pares the prediction from the partially pooled regression at the popu
lation level (with centered moisture content as predictor) with these 
model mixtures. The model honey data appear by and large to coincide 
with the regression line obtained from multilevel modeling (predicted at 
the population level, so ignoring cluster effects) over the moisture range 
valid for honeys; they are close to or within the 95% credible interval 
(the range where the mean can be expected with 95% probability) and 
completely within the 95% prediction interval (the range where all 
future values may be expected with 95% probability). This is real pre
diction because the model honey data were not involved in building the 
model, and so the prediction is actually amazingly good. To compare the 
model honey data with real honey data, Fig. 12B compares them (with 
moisture content as predictor) and the model honey data indeed seem to 
represent “average honey”. 

Thus, Fig. 12A confirms that the rate of change of water activity with 
moisture content is largely determined by glucose and fructose. Clearly, 
this is true at the overall population level but the present analysis also 
makes clear that there are considerable differences in actual water ac
tivity values according to the origin of honey (as shown quantitatively in 
Fig. 10). Reasons for these differences must be due to minor components 
such as salts and saccharides other than glucose and fructose. According 
to Subbiah et al. (2020), the main effect of salt, for instance, is to lower 
the mole fraction of water rather than water activity and they concluded 

that for a food system with multiple sugars and electrolytes the data is 
best represented by mole fraction of water rather than by moisture 
content. Unfortunately, for the data sets considered here, data about full 
composition are lacking and so it is not possible to calculate mole 
fractions of water. These are hard to predict beforehand, of course, when 
it is not known what the composition is in terms of minor components. 
However, the present multilevel analysis has shown that the slope of the 
linear water activity - moisture content relation can be considered 
generally valid, while it also makes it possible to quantify the deviations 
in actual water activity values in terms of varying intercepts. A word of 
caution, however, extrapolation beyond the practical range of moisture 
contents is dangerous because the linear approximation will no longer 
hold (a hint of this is also suggested by the experimental model honey 
data in Fig. 12B), while this may also be questionable for higher mois
ture contents, see also Fig. 2. 

5.2. Prediction for honey from existing origins 

If the interest is in predicting the aw - mc relation for honeys from an 
origin that was included in the model building, then those specific pa
rameters can be used to predict the range where new data may be ex
pected for that specific origin. In statistical multilevel jargon, these are 
conditional effects, the effect of a variable (here: moisture content) on 
the average outcome aw for a typical sampled cluster. A 95% prediction 
band is shown in Fig. 13 as the red ribbon for a typical honey on average 
(origin 29 was used for illustration because its individual regression line 
coincides with the population regression line, see Fig. 11). 

5.3. Prediction for honey from unknown origins 

A multilevel model can also be used to make predictions for new 
clusters that have not yet been sampled. In contrast to existing samples, 
no specific information is available for new origins, obviously, but 
nevertheless estimates can be made because there is general information 
about the global population of honey samples due to multilevel 
modeling and the variation around the global mean. Simulations can be 
made from the posterior, which requires three sources of variability:  

• within-group sampling variability  
• between-group sampling variability  
• variability in the global parameters 

Table 4 
Results of Bayesian regression of water activity versus centered moisture content 
using partial pooling. SE = standard error, lower and upper bound indicate 95% 
credible intervals.  

parameter mean SE lower bound upper bound 

intercept β0  0.568  0.006  0.556  0.580 
slope β1  0.014  0.000  0.014  0.015 
σb  0.033  0.005  0.025  0.044 
σr  0.016  0.000  0.015  0.017  

Fig. 12. A: Prediction of “average honey” using 
global regression parameters from partial 
pooling with centered predictor. Black line: 
regression line, dark-blue ribbon: 95% credible 
interval, light-blue ribbon: 95% prediction in
terval. Model honey data compiled from Ruegg 
and Blanc (1981), Zamora et al. (2006) and 
Subbiah et al. (2020) (closed black symbols) are 
shown for comparison. B: Comparison of water 
activity of honey data (coloured open markers) 
with those of model honey data (closed black 
markers) as a function of moisture content.   
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Fig. 13 shows the 95% prediction interval as a lightblue ribbon for a 
new, not yet sampled origin. Obviously, the prediction interval for un
known origins is (much) wider than for existing ones but nevertheless 
informative. The fact that such predictions can be made is a big 
advantage of multilevel modeling. As mentioned above, a large data set 
is available from Beckh et al. (2004) with samples from all over the 
world. This data set was not used in the model building, so it is inter
esting to see in how far model predictions cover these observed data; the 
data set is therefore plotted in Fig. 13. Even though the regression line 
seems to underfit somewhat, the data appear to be almost completely 
contained within the 95% prediction band. Zamora et al. (2006) com
mented on the dispersion in the data set from Beckh et al. (2004): “we 
are inclined to believe that a lack of accurate measurements of water 
activity may have been a reason for the poor goodness of fit observed in 
some cases”. Whatever the reason, with the current analysis it seems that 
the data from Beckh et al. (2004) still fall within the overall population 
trend. 

5.4. Research options for multilevel modeling 

The possibility of doing multilevel modeling depends obviously on 
how samples were collected. In the present study, data from specific 
geographic origins were available and so two-level modeling could be 
applied. Further differentiation could be obtained within a specific re
gion and with different bee species but such data were not available to 
the best of author’s knowledge. For further research it could be inter
esting to have a sampling strategy that accounts for clustering the data. 
In principle, three or four level modeling could easily be applied with 
the proposed modeling procedure. 

While the case study was about honey, multilevel modeling should 
be equally beneficial for investigating other foods, as they are inherently 
variable in composition and characteristics. The technique allows to 
quantify this variability, which is of great practical significance. For the 
case of honey, a model with varying intercepts and a fixed slope was found 
to be applicable. However, multilevel modeling also allows to handle 
cases where both slopes AND intercepts are variable in linear models, or 
for varying parameters in nonlinear models (e.g., Van Boekel, 2021a; 
Van Boekel, 2021b; Van Boekel, 2022; Garre et al., 2022). In fact, ac
cording to McElreath (2020), multilevel regression should be the stan
dard rather than the hitherto commonly applied single level regression. 

6. Conclusion 

Multilevel modeling has confirmed the linear relation between water 
activity and moisture content (over the practical range of moisture 

content of honey from 12% to 27% or so) (first objective). The slope of 
this linear relation can be considered constant across geographical ori
gins while the intercepts (reflecting the actual water activity values) are 
dependent on the origin of honeys. The extent to which they vary has 
been quantified now. So, multilevel modeling allows to get insight in the 
broader population of honeys (second objective). It is also beneficial for 
statistical reasons because it takes interdependence of data into account. 
Consequently, more realistic impressions of variability have become 
available than the ones obtained from -hitherto- single level modeling. 
Pooling of data, as well as individual regressions according to origin can 
be quite misleading in terms of estimates as well as in uncertainty es
timates. Multilevel modeling through partial pooling gives the best 
compromise between over- and underfitting. Thus, this modeling tech
nique allows prediction at the overall population level as well as at the 
level of clusters according to origin (third objective). 

The current paper has shown that there is much to gain by applying 
multilevel modeling because it gives much more insight in data and their 
variability and counteracts statistical artefacts. Moreover, the Bayesian 
approach gives more insight into parameter behaviour than the classical 
frequentist approach. It makes parameters visible via probability dis
tributions, it quantifies uncertainty about hypotheses and parameters 
and is much more geared towards prediction than the frequentist 
approach. Thus, it is concluded that the combination of multilevel 
modeling and the Bayesian approach leads to better predictive capacity 
of models to describe food characteristics. 

Supplemental material 

The Supplement contains additional graphs and tables, regression 
diagnostics as well as a complete list of the R packages used. The R code 
used for analysis as well as the raw data can be found at the author’s 
Github page (https://github.com/TinyvanBoekel/honey). 
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region of México. CYTA - J. Food 11 (1), 7–13. https://doi.org/10.1080/ 
19476337.2012.673175. 

R Core Team, 2020. R: A language and environment for statistical computing. R. Found. 
Stat. Comput., Vienna, Austria. 〈https://www.r-project.org/〉. 

RStudio Team, 2020. “RStudio: Integrated Development for R. Desktop V. 1.4.869 "Wax 
Begonia". PBC, Boston MA. 〈http://www.rstudio.com/〉.  

Ruegg, M., Blanc, B., 1981. The water activity of honey and related sugar solutions. 
Lebensm. Wiss. Technol. 14 (10), 1–6. 

Sanjuan, E., Estupman, S., Millan, R., Castelo, M., Penedo, J.C., Cardona, A., 1997. 
Contribution to the quality evaluation and the Water Activity Prediction of La Palma 
Island Honey. J. Food Qual. 20 (1997), 225–234. 

Sanz, S., Gradillas, G., Jimeno, F., Perez, C., Juan, T., 1995. Fermentation problem in 
spanish north-coast honey. J. Food Prot. 58 (5), 515–518. https://doi.org/10.4315/ 
0362-028x-58.5.515. 

Saxena, S., Gautam, S., Sharma, A., 2010. Physical, biochemical and antioxidant 
properties of some Indian honeys. Food Chem. 118 (2), 391–397. https://doi.org/ 
10.1016/j.foodchem.2009.05.001. 

Serin, S., Turhan, K.N., Turhan, M., 2018. Correlation between water activity and 
moisture content of Turkish flower and pine honeys. Food Sci. Technol. 38 (2), 
238–243. https://doi.org/10.1590/1678-457X.31716. 

Silva, T.M.S., dos Santos, F.P., Evangelista-Rodrigues, A., da Silva, E.M.S., da Silva, G.S., 
de Novais, J.S., dos Santos, F.A.R., Camara, C.A., 2013. Phenolic compounds, 
melissopalynological, physicochemical analysis and antioxidant activity of jandaíra 
(Melipona subnitida) honey. J. Food Compos. Anal. 29 (1), 10–18. https://doi.org/ 
10.1016/j.jfca.2012.08.010. 

Sommet, N., Morselli, D., 2021. Keep calm and learn multilevel linear modeling: a three- 
step procedure using SPSS, Stata, R, and Mplus. Int. Rev. Soc. Psychol. 34 (1), 1–19. 
https://doi.org/10.5334/irsp.555. 

Subbiah, B., Blank, U.K.M., Morison, K.R., 2020. A review, analysis and extension of 
water activity data of sugars and model honey solutions. Food Chem. 326 (May), 
126981 https://doi.org/10.1016/j.foodchem.2020.126981. 

Van Boekel, M.A.J.S., 2020. On the pros and cons of Bayesian kinetic modeling in food 
science. Trends Food Sci. Technol. 99, 181–193. https://doi.org/10.1016/j. 
tifs.2020.02.027. 

Van Boekel, M.A.J.S., 2021a. Kinetics of heat-induced changes in foods: a workflow 
proposal. J. Food Eng. 306 (April), 110634 https://doi.org/10.1016/j. 
jfoodeng.2021.110634. 

Van Boekel, M.A.J.S., 2021b. To pool or not to pool: that is the question in microbial 
kinetics. Int. J. Food Microbiol., 109283 https://doi.org/10.1016/j. 
ijfoodmicro.2021.109283. 

Van Boekel, M.A.J.S., 2022. Kinetics of heat-induced changes in dairy products: 
developments in data analysis and modelling techniques. Int. Dairy J. 9, 105187. 
https://doi.org/10.1016/j.idairyj.2021.105187. 

Viuda-Martos, M., Ruiz-Navajas, Y., Zaldivar-Cruz, J.M., Kuri, V., Fernández-López, J., 
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