
Time	Series	Analysis	of	Urban	Liveability
2023	Joint	Urban	Remote	Sensing	Event,	JURSE	2023
Levering,	Alex;	Marcos,	Diego;	Tuia,	Devis
https://doi.org/10.1109/JURSE57346.2023.10144221

This	publication	is	made	publicly	available	in	the	institutional	repository	of	Wageningen	University
and	Research,	under	the	terms	of	article	25fa	of	the	Dutch	Copyright	Act,	also	known	as	the
Amendment	Taverne.

Article	25fa	states	that	the	author	of	a	short	scientific	work	funded	either	wholly	or	partially	by
Dutch	public	funds	is	entitled	to	make	that	work	publicly	available	for	no	consideration	following	a
reasonable	period	of	time	after	the	work	was	first	published,	provided	that	clear	reference	is	made	to
the	source	of	the	first	publication	of	the	work.

This	publication	is	distributed	using	the	principles	as	determined	in	the	Association	of	Universities	in
the	Netherlands	(VSNU)	'Article	25fa	implementation'	project.	According	to	these	principles	research
outputs	of	researchers	employed	by	Dutch	Universities	that	comply	with	the	legal	requirements	of
Article	25fa	of	the	Dutch	Copyright	Act	are	distributed	online	and	free	of	cost	or	other	barriers	in
institutional	repositories.	Research	outputs	are	distributed	six	months	after	their	first	online
publication	in	the	original	published	version	and	with	proper	attribution	to	the	source	of	the	original
publication.

You	are	permitted	to	download	and	use	the	publication	for	personal	purposes.	All	rights	remain	with
the	author(s)	and	/	or	copyright	owner(s)	of	this	work.	Any	use	of	the	publication	or	parts	of	it	other
than	authorised	under	article	25fa	of	the	Dutch	Copyright	act	is	prohibited.	Wageningen	University	&
Research	and	the	author(s)	of	this	publication	shall	not	be	held	responsible	or	liable	for	any	damages
resulting	from	your	(re)use	of	this	publication.

For	questions	regarding	the	public	availability	of	this	publication	please	contact
openaccess.library@wur.nl

https://doi.org/10.1109/JURSE57346.2023.10144221
mailto:openaccess.library@wur.nl


Time Series Analysis of Urban Liveability
Alex Levering

Wageningen University & Research
the Netherlands

alex.levering@wur.nl

Diego Marcos
Inria

Montpellier, France
diego.marcos@inria.fr

Devis Tuia
EPFL

Sion, Switzerland
devis.tuia@epfl.ch

Abstract—In this paper we explore deep learning models to
monitor longitudinal liveability changes in Dutch cities at the
neighbourhood level. Our liveability reference data is defined by a
country-wise yearly survey based on a set of indicators combined
into a liveability score, the Leefbaarometer. We pair this reference
data with yearly-available high-resolution aerial images, which
creates yearly timesteps at which liveability can be monitored. We
deploy a convolutional neural network trained on an aerial image
from 2016 and the Leefbaarometer score to predict liveability
at new timesteps 2012 and 2020. The results in a city used
for training (Amsterdam) and one never seen during training
(Eindhoven) show some trends which are difficult to interpret,
especially in light of the differences in image acquisitions at
the different time steps. This demonstrates the complexity of
liveability monitoring across time periods and the necessity for
more sophisticated methods compensating for changes unrelated
to liveability dynamics.

Index Terms—Liveability, Deep learning, Time series

I. INTRODUCTION

Cities are dynamic and complex entities with many different
and competing functions. One such function is the provision
of living space to its residents, which is commonly referred to
as the liveability of the city. It is commonly defined as ”the
degree to which its provisions and requirements fit with the
needs and capacities of its members” [1]. It therefore promotes
the human-centric design of cities such that they are made
into places where people want to live. A failure to provide
liveable environments can result in a variety of detrimental
health effects, such as higher mortality rates [2] and higher
morbidity rates [3]. As such, there is a vested interest from
policymakers to provide liveable environments for residents.

Measuring liveability is generally a costly and time-
consuming process as it is done through the surveying of
residents. Recent research has attempted to predict liveability
at a larger scale by means of remote sensing imagery [4], [5].
Such models are now delivering promising results which po-
tentially allow for monitoring without requiring the acquisition
of expensive reference data. The next step in operationalizing
liveability monitoring is to explore the potential for such
models to predict over multiple timesteps. If such models
can reliably forecast liveability, then data-constrained countries
may consider the adoption of remote sensing for monitoring
the liveability of the territory.

In this paper we discuss the potential for deep learning on
aerial images to monitor the liveability of cities across multiple
time steps. We discuss the creation of a liveability monitoring

dataset over The Netherlands and test the applicability of pre-
trained models for liveability estimation to demonstrate the
need for more sophisticated time-series modelling approaches
accounting for domain shifts related to different acquisition
conditions, camera, etc. We study multi-temporal liveability
estimation in two Dutch cities and use the Leefbaarometer, a
Dutch project providing longitudinal studies for liveability in
the Netherlands, as reference data to evaluate our strategy.

II. LIVEABILITY MONITORING DATA

Assessing the liveability of cities has been an actively
studied topic over the years, with more recent literature
focusing on predictive modeling. Recent work has made use of
advances in deep learning models to predict liveability factors
directly from overhead imagery, proving that liveability factors
can be accurately predicted with remote sensing [4], [6].
However, liveability monitoring requires multiple timesteps
of both the reference data for neighbourhoods and the aerial
images, and for this reason there have thus far been limited
research efforts which attempt to monitor liveability dynamics
(i.e. longitudinally over time) from overhead images. In the
following, we detail our two sources of data, which we used
for monitoring at three time steps: 2012, 2016 (data used to
train the model) and 2020.

A. Reference data: the Leefbaarometer.

The Netherlands is a notable exception to the lack of
reference data. The Dutch government has monitored the
liveability of residents for many years through a project known
as the Leefbaarometer (LBM). In the LBM project, researchers
attempt to model the opinion of residents on their liveability
as a function of various publicly available datasources which
can be grouped as liveability domains. These domains encom-
pass factors which affect liveability, such as socio-economic
variables, housing quality, and access to amenities. The LBM
project therefore measures both how liveable a neighbourhood
is, as well as how various domains contribute to that liveability.
The 3.0 version of the LBM project released in 2022 reaches
an R2 of 0.75 in the reproduction of the residents responses
with the five selected domains (center column of Fig. 1).
Furthermore, the LBM is verified to be accurate by policy
makers. In this version, the LBM model is calculated yearly
from 2012 until 2020, and is due to be updated for the recent
and coming years. In this work we use the liveability scores
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provided by LBM for each 100 m × 100 m inhabited cell
across the Netherlands.

B. Aerial data.

We use very high resolution aerial imagery to predict the
liveability scores. Since 2016, the government of Netherlands
releases a yearly cloud-free winter aerial image with a uniform
sensor and 25cm pixel resolution across the entire country.
Further yearly images are available before this timestep as
well, with a lower resolution and fewer timesteps. The contin-
ued availability of both data sources means that the amount of
data for this monitoring task will continue to increase over the
years. Fig. 1 illustrates a set of image patches, together with
the Liveability score and their intermediate domain scores. To
encourage the use of the dataset, we provide scripts and links
to the data to prepare it in the following Github repository:
https://github.com/ahlevering/LBMOverheadMonitor.

III. MONITORING USING PRE-TRAINED MODELS

We developed a machine learning model to predict live-
ability, as well as the domain scores, in [5] and we use
that model as a starting point to study the complexity of
monitoring multiple timesteps. For this purpose we use a
pre-trained model to predict the liveability at new timesteps.
Our model is trained on an aerial image from 2016 (details
in [5]) and we apply it without modifications to aerial images
from 2012 and 2020. For both timesteps, we compare the
overall liveability score with the ground truth provided by
the LBM 3.0 project. While our model is trained on the 2.0
version of the LBM project, there is compatibility with the
3.0 version as they both measure liveability as the deviation
to the national average. However, to maintain compatibility,
we resize the image to 500x500 pixels, rather than 600x600.
For this paper we do not consider the intermediate sub-scores
as the definition of the sub-scores changed between versions
2.0 and 3.0. We assess neighbourhood shifts relative to one
another by analyzing their relative ranking within the city.
If one neighbourhood improves then, by comparison, another
neighbourhood may seem less attractive. This also makes the
prediction case less sensitive to mean shifts when predicting
on new images. We use the reference data from the LBM 3.0
to determine if the model picks up on measured shifts in the
liveability of neighbourhoods.

We consider two cities for our experiment chosen for
their contrasting qualities, namely Amsterdam and Eindhoven.
Amsterdam is the biggest conurbation of The Netherlands. It
has a long history and it is unique in its design compared
to other cities in the country. Eindhoven is an industrial city
which urbanized only since the industrial revolution. Further, it
important to note that Amsterdam was included in the training
cities in used to build the model of [5], while Eindhoven
was included in its test set and was never seen during model
training.

TABLE I
KENDALL’S τ OF THE PREDICTIONS COMPARED TO THE LBM 3.0

REFERENCE SCORES. WE ALSO INCLUDE THE COMPARISON TO 2016,
WHICH IS THE YEAR ON WHICH THE MODEL WAS TRAINED.

2012 τ 2016 τ 2020 τ
Amsterdam 0.316 0.656 0.337
Eindhoven 0.487 0.537 0.478

IV. RESULTS AND DISCUSSION

A. Liveability rankings

In this section we discuss how our model predicted the
liveability rankings in Amsterdam and Eindhoven for two new
timesteps unseen during training. Firstly we present Kendall’s
τ for both 2012 and 2020 in table I. τ is a coefficient
calculating correlations between in two lists using ranking
of indices rather than the actual values of such indices.
The sharp decrease in performance on the new timesteps in
Amsterdam suggests that model has overfitted to this region
during training. However, the minor decrease in accuracy
over Eindhoven suggests that liveability prediction models
can remain stable when predicting new timesteps, even in
geographical regions not seen during training. In Fig. 2 we
show the predicted scores, the LBM 3.0 reference values, and
the changes between 2012 and 2020. We discuss the patterns
for each city separately.

Amsterdam
The predictions at different timesteps for Amsterdam show

some correct change patterns, but a closer inspection yields
various issues. At timestep 2012, the model predicts the
overall trends correctly, but with some notable exceptions: it
especially mispredicts the liveability of the peripheral areas.
Most notably, the model ranks Amstelveen (south-western
peripheral city) among the worst areas to live. In turn, it
considers areas in the north of Amsterdam to be more liveable
than the reference data. The model’s predictions for the 2020
reference data are even more unexpected. Firstly, the model is
better able to predict the liveability of the periphery where it
follows the overall trend better. However, in turn it severely
underpredicts the liveability of the city center of Amsterdam.
As a whole, the 2020 prediction shows swings in liveability
which are unrealistic given the time difference to the year
in which the original model was trained (2016). This result
reveals that the predictive qualities of liveability prediction
models can break down when introduced with new time series
data. Our results corroborate previous research which suggest
that liveability factors of culturally distinct cities are more
difficult to generalize [6]. Moreover, improving predictions for
the center of Amsterdam through normalization experiments
resulted in the degradation of predictions in other cities, which
indicates that there is a domain shift problem which needs to
be studied in more detail.

Eindhoven
For the city of Eindhoven the results are less erratic over the

years. Eindhoven is part of the test set in our original study [5],
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Fig. 1. Data construction process for the liveability time series monitoring task. For each year there is a grid with liveability reference data available, which
can be used to match the yearly aerial images to the neighbourhood liveability data. Each grid cell also has liveability domain score information available,
which is the contribution of each domain to the liveability of a neighbourhood. As it is zero-centered, the overall score of 0.23 indicates that this patch is
above averagely liveable.

so it is surprising that the model has more stable ranking
predictions here compared to Amsterdam. For both timesteps,
the model predicts fewer strong swings in liveability, and
generally predicts changes in the same areas as the reference
data. However, the changes it predicts in some places trend
in the wrong direction. For instance, near Veldhoven, which is
the bottom left block of grid cells, it correctly predicts that the
north of the village has a positive development trend. However,
the model does not predict an overall improvement in the entire
area, as it considers the south of the village to be less liveable
in 2020. It is an encouraging result that the model is able to
provide stable ranking predictions which fluctuate in the same
areas as the reference data, but more research is needed to
provide models which can more accurately correctly predict
the direction of these changing trends.

B. Liveability monitoring

With the release of the third version of the LBM and the
availability of aerial images both at yearly resolution (2012
onwards), it is now possible to approach this problem as
a time series prediction problem. The results above show
some pointers to inspire future research efforts in liveability
modeling with deep learning. First, our results suggest that
such a task is not trivial, and will likely require a more
sophisticated approach. Approaches rooted in deep domain
adaptation [7] seem to be necessary, for example to reduce the
gap in the image space between the different years acquisitions
for example proposing image normalisation strategies that
would align the years: fine-tuning on the specific year data,
projective methods [8], [9] or adversarial approaches [10]

are potential options to be explored, to be sure that the
discrepancies between monitoring years are due to changes
in liveability, rather than differences in acquisition conditions
of the images.

V. CONCLUSIONS

In this paper we have studied the task of liveability monitor-
ing from aerial imagery over the entirety of The Netherlands
and focused on the examples of the cities of Amsterdam
and Eindhoven. We created and made available a dataset
from the yearly liveability reference data and aerial images,
which opens up the potential for long-term monitoring of
liveability. We have also tested the applicability for pre-trained
liveability prediction models to predict over new timesteps,
which has shown promising results for the general trends, but
also highlighted the necessity for more advanced methods for
this task able to account for domain differences and provide
accurate liveability maps out of the training domain.
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