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Abstract

This study presents an in-depth examination of the intersection between model-based approaches in

precision agriculture and low-code development platforms (LCDPs), two evolving and transformative

areas. LCDPs have the potential to expedite the software development process by reducing the need

for extensive coding skills, but their scalability in complex domains like precision agriculture remains a

challenge. Precision agriculture, on the other hand, is focused on improving crop health and productivity

by using IoT, data analytics, and advanced technologies. The integration of these technologies could be

simplified by LCDPs, provided farmer expertise and data scalability issues are properly addressed.

This research makes use of a systematic literature review (SLR) to outline the opportunities and

challenges of utilizing LCDPs in precision agriculture. It sheds light on the influence of citizen developers

and the impact of user experience on the adoption and success of LCDPs within this context. The study

also explores the motivations for integrating LCDPs into precision agriculture, possible applications,

and the criteria for selecting appropriate platforms. It outlines a detailed process for building low-code

systems and highlights the related challenges, paving the way for future research in this area.

In addition to the SLR, a comparative analysis was performed using Node-RED, a well-known LCDP,

and Python, a high-level programming language. An irrigation control system served as the focal point

for this comparison, which covered critical metrics like development time, resource utilization, reliability,

and maintainability. The results revealed that Node-RED is more accessible and efficient for simpler

tasks, while Python provides greater flexibility and strength for more intricate operations.

This multidimensional research underlines the importance of LCDPs in the sphere of model-based

approaches to precision agriculture, suggesting that the choice between low-code and high-level program-

ming depends on specific requirements, user abilities, and task complexity. By interweaving insights from

both the SLR and the comparative analysis, this study contributes significantly to the understanding

of software development best practices in precision agriculture, and sets the stage for future research

directions.



1 Introduction

1.1 Precision agriculture

Today, it’s hard to ignore the impact of precision agriculture. As the world’s population is quickly growing,

we’re facing the pressing need for escalated food production. But we must not forget our responsibility

to the environment. Here, precision agriculture plays a starring role. It’s a significant game-changer in

sustainable agronomy, helping us find a delicate balance between skyrocketing agricultural productivity

and the need to preserve ecological integrity Lal (1991).

What makes precision agriculture a matter of global concern? The answer lies in its unique capacity

to maximize resource utilization. This is achieved by using cutting-edge technology and automation to

manage resources down to the minutest details. The result? A remarkable reduction in waste and a spike

in efficiency. In essence, it allows us to tailor our efforts based on specific needs of different segments

within a field Dobermann et al. (2004).

Like most good things, the implementation of precision agriculture comes with its share of hurdles. It

can be seen among these, the substantial cost of technology and equipment. It’s not just about creating

sensors, GPS systems, automated machinery, and data analysis software. The real challenge lies in their

affordability, particularly for small-scale farmers, which can inhibit the widespread acceptance of precision

agriculture Ayaz et al. (2019).

Another obstacle in this journey is the constant need for skilled personnel. Precision agriculture

isn’t simply about running machines; it’s also about interpreting vast amounts of data to make informed

decisions about resource management. Unfortunately, the scarcity of skilled personnel can represent

significant barriers to implementing precision agriculture. This is even more pronounced in developing

countries, where educational and training resources are often scarce Dobermann et al. (2004).

Another significant concern is data management. In precision agriculture, sensors and other tech-

nologies produce an overwhelming volume of data. This data needs to be securely stored, processed, and

subsequently analyzed. All of these demand robust data management systems and advanced analytical

tools. However, their implementation can be complicated and costly, being yet another challenge Bhakta

et al. (2019).

Despite these obstacles, the potential benefits of precision agriculture are too significant to be over-

looked. By optimizing resource usage, precision agriculture could be our best shot at boosting agricultural

productivity while minimizing environmental repercussions. This assumes particular importance in light

of climate change, which poses daunting challenges to agricultural production. By managing resources

with precision, we can build resilience to climate change, thereby ensuring the sustainability of agricultural

production amid changing environmental conditions Lal (1991).

Although precision agriculture is full of considerable challenges, its importance in the current era, and

should not be overstated. It’s a lighthouse guiding us toward sustainable agronomy. As we confront and

overcome these challenges, we’re paving the way to fully harness the potential of precision agriculture,

striking a balance between escalating agricultural productivity and preserving our precious ecological

integrity.

1.2 Background delimitations

The rise of Low-Code Development Platforms (LCDPs) is creating quite interest in the sphere of software

development. it is useful to ask, what sets these platforms apart? The answer lies in their user-friendly,

model-based visual development environments that simplify application component development into a

mere activity of drag-and-drop. LCDPs are increasingly capturing the interest of the tech world for their
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impressive ability to streamline software development cycles, reduce the necessity for extensive coding

knowledge, and supercharge productivity Collomb & Hascoët (2008); Richardson & Rymer (2016a). But

like every other new tech solution, LCDPs have their fair share of challenges. One of the pressing issues is

the scalability of applications and handling their complexity when built using these model-based platforms

Kolovos, Paige, & Polack (n.d.); Kolovos, Rose, et al. (n.d.).

By taking a look into precision agriculture, an intriguing domain where model-based approaches

are making a substantial impact. Envisioning this as a futuristic form of farming where data-driven

insights guide the way we manage crops and soil Ahmed et al. (2018); Y. Zhang (2019). In this high-

tech agricultural landscape, the Internet of Things (IoT), primarily based on model-based systems, takes

center stage by enabling real-time tracking of a vast range of agricultural parameters and even automating

a host of farming procedures Elijah et al. (2018).

A question that seems almost inevitable at this point is – what if we brought together LCDPs and

precision agriculture? Just considering this possibility brings into focus a variety of potential benefits. We

could leverage LCDPs to tailor-make IoT applications specifically for precision agriculture, augmenting

the efficacy with which farmers monitor and control their crops Jayaraman et al. (n.d.). Imagine having

applications available that pull together data from a variety of field-deployed sensors, process this data

in real-time, and furnish farmers with actionable insights for immediate implementation Gayatri et al.

(n.d.).

However, the journey to integrating LCDPs into the realm of precision agriculture isn’t devoid of

obstacles. One major roadblock could be the farmers limited familiarity with navigating these model-

based platforms Sahay et al. (n.d.). Another concern to consider seriously is the scalability of applications

developed via LCDPs, particularly in light of the voluminous data demands and real-time data processing

requirements inherent in precision agriculture Kolovos, Rose, et al. (n.d.).

But don’t let these challenges eclipse the potential benefits of integrating LCDPs with precision

agriculture. By simplifying the developmental process through model-based approaches, LCDPs could

make advanced IoT applications more farmer-friendly, thereby potentially driving up productivity and

sustainability in the agricultural sector Ihirwe et al. (n.d.); Jayaraman et al. (n.d.).

Using LCDPs in precision agriculture also aligns with the broader trend towards digital transformation

currently sweeping the agricultural sector. As these digital technologies continue to evolve, they’re poised

to play an increasingly critical role in overcoming the challenges that modern agriculture faces, from

improving resource efficiency to bolstering crop yields Buttafuoco & Lucà (2016); Himesh et al. (2018).

In a nutshell, the fusion of model-based low-code development and precision agriculture holds immense

potential for reshaping the future of farming. However, more research is needed to overcome the hurdles

associated with the adoption and application of LCDPs in precision agriculture. there is a need to

devise strategies to enable farmers to effectively use these platforms and explore solutions to enhance the

scalability and performance of low-code applications Bucchiarone et al. (2020); Sahay et al. (n.d.).

This comprehensive exploration into the convergence of model-based low-code development and preci-

sion agriculture not only sets the stage for future research but also underscores the potential for innovative

solutions in the agricultural sector. As we continue to deepen our understanding and application of these

technologies, we’re inching closer to a future where farming is not only more productive and efficient, but

also more sustainable Tzounis et al. (2017); McBratney et al. (2005).

1.3 Current Status

The modern landscape of low-code development and precision agriculture is quite moving forward, show-

casing remarkable advancements, but there’s still a clear gap in integration between these two domains.

Low-code development, has been getting more attention based on its inherent model-based approach,
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and has turned into a new perspective for more efficient application development. We see platforms like

OutSystems, Mendix, and Microsoft PowerApps developing more interest from a diverse group of stake-

holders U. Frank et al. (2021). The reason? Well, their model-based features make software development

quicker and more efficient, essentially making coding skills less of a necessity. This opens the door wide

open to non-technical users Lethbridge (2021), shaking things up across various sectors, agriculture being

one of them Waszkowski (2019).

On the other side, precision agriculture, firmly grounded in model-based systems, is gradually picking

up to be considered as a potent method to boost agricultural productivity and sustainability. The use of

IoT devices, data analytics, and a suite of cutting-edge technologies in the realm of precision agriculture

has shown promising results in upping crop yield and reducing environmental damage Y. Zhang (2019).

For instance, the application of IoT in smart farming is a big topic of research, with studies spotlighting

its potential in delivering smart agricultural solutions for superior yield Jarolimek et al. (2017).

However, despite these impressive strides in both fields, a noticeable void exists in combining model-

based low-code development into the framework of precision agriculture. It’s a bit surprising, given the

potential advantages this merger could bring. Low-code platforms could be used to whip up applications

for data aggregation, analysis, and decision-making in precision agriculture. This could streamline the

process and make it more user-friendly for farmers and agricultural workers Talesra & Nagaraja (2021).

So, why this lack of integration? A plausible explanation could be the perceived complexity and

technical nature of both fields. Although low-code development, especially with its model-based focus,

aims to simplify software development, it’s still often seen as a playground for IT pros. Likewise, precision

agriculture, with its reliance on high-tech, could seem intimidating to those without a tech background

ALSAADI et al. (2021). Such perceptions could stand in the way of integrating low-code development

into precision agriculture.

Moreover, current low-code platforms might not be fully equipped to handle the specific demands

of precision agriculture. Take, for instance, the need to manage colossal amounts of data in precision

agriculture, requiring advanced data processing and analysis capabilities. While some low-code platforms,

particularly those employing model-based approaches, do offer data management features, they may not

cut it for the specialized needs of precision agriculture Cabot (2020).

To sum it up, while low-code development and precision agriculture have each made fantastic progress

in their respective domains, their integration still seems like a distant achievment. The potential benefits

of such integration are massive, but considerable hurdles need to be tackled. It’s essential for future

research and development initiatives to prioritize bridging this gap and exploring how model-based low-

code development can be effectively roped in within the context of precision agriculture.

1.4 Anticipated State

In an ideal world, combining low-code platforms using model-based approaches with precision agriculture

would be close to a revolution in both domains. Low-code platforms, designed to make the development

process smoother, could make precision agriculture more accessible to a wider user base, including those

without much coding prowess. This would essentially democratize precision agriculture, bringing more

voices to the table in its evolution and deployment Lethbridge (2021).

Integrating model-based low-code platforms into precision agriculture could also supercharge the

efficiency and effectiveness of agricultural practices. Consider this – precision agriculture relies heavily

on collecting and analyzing data to guide farming decisions. Low-code platforms, with their model-based

schemas, could simplify the process of creating applications for data collection and analysis, thereby

enhancing the efficiency of these operations Nikkilä et al. (2010).

Additionally, the use of low-code platforms could pave the way for more advanced, customized solu-
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tions for precision agriculture. For instance, model-based low-code platforms could be used to develop

applications specifically designed to tackle the unique needs and challenges of different types of farming,

like organic farming, permaculture, or aquaponics Waszkowski (2019).

However, merging low-code platforms and precision agriculture as mentioned before has a lot of

challenges. One of the main challenges is the need for a deep understanding of both fields. This calls for

a multidisciplinary approach that blends expertise in software engineering, agriculture, and other relevant

fields Kitchenham & Brereton (2013).

Another issue is the need for sturdy and reliable low-code platforms, especially those using model-

based approaches, that can handle the complexity and scale of precision agriculture applications. This

calls for continued research and development in the low-code platforms domain, along with thorough

testing and validation of these platforms U. Frank et al. (2021).

In the end, what the merger is looking at is to have the possibility of impulsing a new era of precision

agriculture that’s more accessible, efficient, and effective. This wouldn’t just be a win for the agriculture

sector, but would also advance broader societal goals, like boosting food security and sustainability

McBratney et al. (2005).

2 SLR

2.1 Problem Articulation

In efforts to untangle the connection between low-code platforms with model-based approaches and

precision agriculture, one can encounter a big amount of scattered information. Found in various research

papers and studies, the information is often shown indirectly or in broader contexts. This fragmentation

underscores the need for a targeted, systematic exploration of this particular convergence. Currently,

there is a noticeable absence of a systematic literature review (SLR) that concentrates solely on the

application of low-code solutions, specifically model-based ones, in precision agriculture or smart farming.

This study aspires to unify this fragmented knowledge and create a comprehensive, systematic review of

the applications of low-code technology with model-based approaches in these particular sectors.

The main goal of this research is to extract a clear overview of present applications and potential

trajectories of model-based low-code technology in agriculture. The focus is on directing the attention on

how this transformative technology can offer innovative viewpoints and effective solutions to help with the

complex challenges inherent to precision agriculture and smart farming. A specific area of intrigue is the

exploration of user experience and the role of citizen developers. These individuals, despite potentially

lacking comprehensive knowledge in software development, are in a prime position to gain from and

contribute to the model-based low-code domain.

This research endeavors to cultivate a deeper understanding of the potentials and challenges of deploy-

ing model-based low-code technology within the agricultural context. The aim is not only to catalogue

existing uses, but also to anticipate the problems that may pop up during its wider implementation. The

insights from this study will serve as a solid base for future research across various disciplines, offering

a structured and easily accessible pool of information for researchers to draw from. Consequently, the

potential contribution of this SLR extends beyond the borders of precision agriculture, sparking progress

in model-based low-code applications across different sectors.
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2.2 Research Aims and Contributions

As mentioned, before, the objective of this Systematic Literature Review (SLR) is to generate a com-

prehensive framework outlining the current landscape and future trajectory of model-based approaches

and their implication in the advent of low-code platforms in Precision Agriculture (PA). This framework

is concocted by posing five distinct research questions, each showing a unique aspect of this intersecting

domain. These queries are designed to capture the broad range and complexity of the subject, dissecting

the rationales and mechanisms of embedding model-based methods to advance low-code technology in

PA, while simultaneously evaluating both the potential benefits and challenges.

Research Question 1 (RQ1): What instigates the incorporation of model-based approaches that inspire

low-code technology in precision agriculture? This question goes into the initial reasons and catalysts for

analyzing the application of model-based methods in PA that stimulate the use of low-code platforms.

As this is an emergent field, especially in the sphere of model-driven engineering, it’s imperative to grasp

the underlying reasons and potential benefits that comprehend this fusion of technologies as a promising

area of exploration.

Research Question 2 (RQ2): What unique services can model-based approaches facilitate to advance

precision agriculture through low-code platforms? This question seeks to demonstrate the potential

applications and services offered by model-based methods that could make PA a better option, considering

their implications for low-code technology. It’s pivotal to test these unique strengths and features, which

could position low-code platforms as a crucial instrument in modern agriculture.

Research Question 3 (RQ3): which low-code platform fits better solutions with the model-based ap-

proaches on their usage to optimize precision agriculture? This question addresses the necessity for a

consistent appraisal and comparison of various model-based approaches, thereby identifying the most fit-

ting use of low-code platforms in PA. The answer to this question is essential in finding future applications

and deployment.

Research Question 4 (RQ4): What are the critical steps involved in developing a precision agricul-

ture system using a model-based approach that could facilitate low-code application? This question

underscores the importance of comprehending the process of building a system within the PA and low-

code context, utilizing model-based methods that could be based on low-code application. The insights

obtained from this research question can serve as a guide for future developers and researchers in the

field.

Research Question 5 (RQ5): What challenges are associated with implementing model-based ap-

proaches that could encourage low-code technology in precision agriculture? The final question seeks

to show potential obstacles, challenges, and factors that might obstruct the effective implementation of

model-based approaches in PA that could lay the groundwork for low-code technology. This question aims

to offer a balanced viewpoint, ensuring that the benefits, application processes, and potential difficulties

of implementing such methods are depicted after being investigated.

These research questions have been created to offer a thorough, balanced, and pragmatic perspective

on the application of model-based methods and their potential to implement the low-code technology use

in PA. The questions strive to comprehend the technological feasibility, practical application, potential

hurdles, and influential factors for the successful integration of model-based approaches in precision

agriculture, thereby clearing the way for low-code platforms. The collective responses to these questions

will contribute to achieving the research objective, providing a deeper understanding and more efficient

use of model-based methods in precision agriculture, and setting the stage for future low-code platform

implementation.
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2.3 Research methodology

This study is inspired and based on the methodology developed by Bucaioni et al. (2022), a methodological

approach that has its roots in the guidelines provided by Kitchenham & Brereton (2013) on undertaking

systematic reviews within the domain of software engineering. This methodology is categorized into three

integral stages: Planning, Conducting, and Reporting. as can be seen in figure:1

Figure 1: Steps on the SLR process

The planning stage plays a fundamental role in framing the scope of the review. The primary goals

within this phase were to confirm the necessity for a systematic review focused on the use of low-code

in precision agriculture, to corroborate the research objective and associated research questions, and

to construct a methodical research protocol that ensures a systematic execution of the study. The

culmination of the planning phase is manifested in a comprehensive research protocol Bucaioni et al.

(2022).

Going into the conducting phase, we started on carrying out the activities meticulously detailed

in the research protocol. These activities, fundamental to the research process, included collection of

relevant data, defining the criteria for inclusion and exclusion of said data, extraction of key data, and

the subsequent evaluation of the extracted data Bucaioni et al. (2022).

The procedure for search and selection, is an integral component of the data collection phase, four rel-

evant scientific databases were selected. The research also incorporated an automated exploration of grey

literature, which entries were selected based on a qualitative assessment of each paper’s methodology and

purpose. This exploration was facilitated using the Google search engine, followed by the implementa-

tion of selection criteria to filter and identify pertinent studies. The search process was further developed

through snowballing, a strategy employed on Google Scholar to track and include related studies from

the reference lists of initially selected articles. Kitchenham & Brereton (2013). figure:2

The next phase involved the delineation of the data extraction method, wherein a unique set of pa-

rameters was established to classify and draw comparisons among the primary studies. These parameters

were derived in alignment with the research goal and employed a conventional key wording process. The

data extraction method was used on the information extracted from each individual paper for analysis

Bucaioni et al. (2022).

The Data Analysis stage comprehended the rigorous examination of the information extracted such

as abstracts to derive insightful responses to the research queries, largely through the application of

quantitative analysis techniques.

In the reporting phase, the researcher synthesized the derived data, creating a detailed record that

not only documents the study’s findings but also acknowledges potential threats to the study’s validity.
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Figure 2: Steps on the SLR Selection process

The main goal of the systematic literature review is to discern, categorize, and critically assess the

trends in publications, fundamental concepts, and to illustrate the contemporary and prospective appli-

cation of low-code and model-based approaches in precision agriculture Kitchenham & Brereton (2013).

The search and selection strategy joined with the utilization of four primary databases that hold a

considerable relevancy in the realm of software engineering: IEEE Xplore Digital Library, ACM Digital

Library, SCOPUS, and Wiley Online Library. A customized search string was generated, reflecting the

research goals and questions. Given the early stage of low-code as a concept, the search string was

minimized to ”Low code” AND ”Agriculture”, which, when used on the mentioned databases, shown

minimal results Kitchenham & Brereton (2013).

The exploration of grey literature, an activity largely reliant on manual efforts, led us to valuable

insights offered by specific entities operating in the low-code platform industry, including companies like

Mendix. However, it was determined that these insights would be left out of this study on the questions

non directly related to them (RQ3), to avoid potential bias that may be created from their economic

interests, thereby potentially compromising the objectivity of this research Garousi et al. (2019).

Acknowledging the minimum amount of specialized information related to the application of low-code

in precision agriculture, a method to go around it was designed, the method’s first step was to distinctly

outline the software requirements intrinsic to precision agriculture. This allowed for a comparison of

these needs with the solutions provided by low-code development platforms. To broaden the scope

of our research, the relatively newer term ’low-code’ was replaced with its predecessor, ’Model Driven

Engineering (MDE)’, and the temporal range for the study was expanded from 2010-2022 to encompass

the years 2000-2022. This modification aimed to encapsulate a more comprehensive span of time and to

account for the evolutionary journey of low-code, dating back to its earlier form as MDE. Table 1
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Table 1: Search references

Problematic Ref LC Ref

PA systems are not

well adapted to the

needs of the users

and are not easy to

integrate into effec-

tive crop produc-

tion decision sup-

port systems

Jayaraman et al. (n.d.) Complexity reduction Richardson & Rymer (2016a)

Scientists, devel-

opers, and farmers

deal differently

with reduction of

uncertainties

Jayaraman et al. (2016) Involvement of business profiles. Richardson & Rymer (2016b)

Farmers do not

know about the

benefits of the

resources that pre-

cision agriculture

can offer to them.

Kolovos, Paige, & Polack (n.d.) Digital twins Richardson et al. (2014)

The development

decision support

systems to improve

automation

Jayaraman et al. (n.d.) Rapidity Rymer et al. (2015)

Current Agricul-

tural DSSs are not

used to their full

potential, and are

not adapted to

the complexity of

farmers decision

making

Lundell & Lings (2004) Cross-platform accessibility Sahay et al. (n.d.)

Lack of observabil-

ity, lack of incen-

tive to adopt new

practices

Punjabi et al. (2017) Enable citizen developers Sahay et al. (n.d.)

Tedious data input

requirements, poor

user interface de-

sign for farmers sit-

uation

R Shamshiri et al. (2018) Minimization of inconsistent requirements Rymer et al. (2015)

After analyzing the results of the new keywords used on the string for the search of relevant informa-

tion, the following numbers were obtained on the raw search.Table2

Table 2: Search stage 1

Database Number of papers

IEEE 285

ACM 29

Scopus 116

Wiley 1099

Having a total of 1529 items in between journals, books, magazines, and conferences, the next step

was to manually refine the selection based first on the title of the item later a second filter using the

abstract, and by the end basing the filter on the content.Bucaioni et al. (2022) Table 3
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Table 3: Search stage 2

Library keywords title Abstract Content

IEEE 285 95 57 31

ACM 29 23 20 20

Scopus 116 64 55 46

Wiley 1099 8 5 5

Total 1529 190 120 102

In a Systematic Literature Review (SLR), the primary goal is to comprehensively identify, evaluate,

and interpret all available research relevant to a particular research question, topic area, or phenomenon

of interest. To achieve this, it is important to have a clear, structured, and systematic approach to assess

and grade each paper’s relevance and quality. The grading system mentioned below serves this purpose:

S. No: The serial number or index provides a unique identifier for each paper, which is essential for

managing and referencing the papers during the review process. This makes it easier to keep track of the

studies, especially when dealing with numerous papers.

Ref: The reference citation is used to accurately relate the work to the correct authors and give

the reader the information needed to locate the original source. This supports the transparency and

replicability of the SLR, both of which are key scientific principles.

RQ1 to RQ5: Representing research questions as separate columns allows the review to systematically

assess each study’s relevance to each question. This standardizes the assessment process, making it

transparent, replicable, and less prone to bias. Having the flexibility to assign a range of values (0, 0.5,

1) allows for a better evaluation of each paper’s relevance to the research questions, which is especially

important when dealing with complex or multifaceted research questions.

Grade: The grade column aggregates the values from the research question columns into a single score

for each study. This provides an overall indication of the study’s relevance to the research questions. By

summarizing the study’s relevance in this way, the grade column simplifies the final comparison and

selection process. This is particularly helpful when dealing with a large number of papers or when the

selection decision must be based on a holistic view of each paper’s relevance to all research questions.

2.4 Limitations and Threats to Validity

In the course of our research, we recognized several limitations and potential threats to the validity of

this study that should be considered when interpreting our findings:

1. Scarcity of Specific Literature: The novelty of low-code platforms, particularly their application in

precision agriculture, resulted in a limited amount of literature to reference. This scarcity may have led

to an overemphasis on a small pool of studies and potentially missing out on other relevant aspects of

the research.

2. Exclusion of Grey Literature: Although we searched grey literature for additional insights, we

excluded data derived from companies operating within the low-code platform industry to avoid bias.

Despite these precautionary measures, this decision might limit the comprehensiveness of our study due

to the potential exclusion of valuable industry insights.

3. Substitution of ’Low-Code’ with ’Model Driven Engineering’ (MDE): The use of the term ’MDE’

to replace ’low-code’ in our search strategy could have introduced additional limitations. While this step

was intended to compensate for the limited availability of literature specific to ’low-code’, it is possible

that this may have led to the inclusion of some studies that do not precisely focus on low-code platforms
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as understood today.

4. Database Selection: Our research relied on four scientific databases. While these databases are

highly recognized in the field of software engineering, there are other databases that we did not explore.

Therefore, the results might not account for all potentially relevant studies available.

5. Time Scope: Our study includes literature from the period of 2000-2022. It is possible that seminal

works or relevant research published prior to this period or after it could impact the conclusions drawn.

6. Language Bias: This study was limited to papers written in English, which may have resulted in

the exclusion of pertinent studies published in other languages.

7. Subjectivity in Selection and Analysis: Although we have tried to minimize subjectivity by estab-

lishing strict inclusion and exclusion criteria and by adopting systematic data extraction and analysis

processes, some degree of bias may have inadvertently influenced the selection and interpretation of the

studies.

By acknowledging these limitations and threats, we hope to underscore the areas where future research

could help in refining our understanding of the use of low-code platforms in precision agriculture.

3 Results of the SLR

3.1 Scopus’ evaluation and analysis

The analysis of the table 4 reveals a broad spectrum of studies that possess varying relevance to the

research questions on the intersection between low-code solutions and precision agriculture. Evidently,

some studies such as Groeneveld et al. (2021), Kawtrakul et al. (2021), Barriga et al. (2021), Plazas et al.

(2019), Spieldenner et al. (2018), Spieldenner et al. (2017), Sun et al. (2016), Sayyah et al. (2015), Pate et

al. (2015), and Tan et al. (2012a) score high on the grading scale, reflecting their substantial contribution

to the subject. On the contrary, several studies like B. Shi et al. (2021), Florin & Florin (2020), Borowski

(2019), Elsayed et al. (2018), H. Zhang & Zheng (2016), Miyasaka et al. (2014), Y. Wang et al. (2014),

Di Cosmo et al. (2014), and Hennicker et al. (2010) score low, which suggests their limited applicability

to the research questions at hand. Figure 3

These mixed scores seem to indicate that while low-code and precision agriculture may have significant

intersections in certain research, the overlap may be less apparent in other areas. This could possibly be

a reflection of the emerging and multi-disciplinary nature of these fields.

The Scopus records listed comprehend various topics related to the integration of technology, data

analysis, and model-driven approaches in agriculture. Several broad themes can be observed:

1. Application of Deep Learning in Agriculture: This theme emerges in papers like W. Wang et

al. (2022) and Agrawal & Sharma (2021), which discuss the utilization of deep learning techniques in

localizing and segmenting fruit targets and detecting plant diseases.

2. Predictive Modelling in Agriculture: Uehara et al. (2022) emphasizes on predicting the growing

stage of rice plants based on 25 years of cropping records, signifying the importance of historical data in

predictive farming.

3. Cyber-Physical Systems and Security: Varela-Vaca et al. (2021) introduces a framework dedicated

to verifying and diagnosing the specification of security requirements in cyber-physical systems.

4. Agricultural Information Management: Papers such as Groeneveld et al. (2021) and Kawtrakul

et al. (2021) discuss the development of information systems for agriculture, including a domain-specific
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language framework for farm management and data-driven approaches for sustainable and productive

agriculture.

5. Risk Assessment and Disaster Management: B. Shi et al. (2021) showcases a study on landslide

risk assessment using fuzzy rule-based modeling.

6. Machine Learning and Simulation in Agriculture: Papers like Nicoletti et al. (2021) and L. Frank et

al. (2021a) investigate machine learning applications in agriculture, with topics including the simulation

of nitrate movement in soils and the classification of plant stresses.

7. IoT and Model-Driven Engineering: Studies like Barriga et al. (2021), Alulema et al. (2020), and

Muccini et al. (2018) discuss the design and execution of IoT simulation environments, service integration

of IoT systems, and self-adaptive IoT architectures, respectively.

8. Energy Efficiency and Management in Agriculture: Papers such as Florin & Florin (2020) and Rio

et al. (2019) analyze the performance of air source heat pumps and the benefits of energy management

systems on local energy efficiency.

9. Agricultural Mechanization and Equipment Design: Studies like He et al. (2019), Qu et al. (2018),

and L. Liu et al. (2017) address the design and control of agricultural machinery, including steering

control systems for rice transplanters and multi-objective driven product family shape genes for tractors.

10. Environmental Concerns and Climate Change: Papers like Eigenbrode et al. (2018) and Elsayed

et al. (2018) underscore the challenges posed by climate change to dryland cereal production and the

erosion and breaching of coastal barriers due to climate change.

11. In conclusion, the reviewed studies depict a dynamic landscape of research areas that directly

or tangentially intersect with low-code solutions and precision agriculture. The variation in relevance

highlights the need for meticulous selection and appraisal of literature in this field.
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Table 4: Scopus.

S. No Ref RQ1 RQ2 RQ3 RQ4 RQ5 Grade

1 W. Wang et al. (2022) 1 0 0 0 1 2

2 Uehara et al. (2022) 1 1 0 0 1 3

3 Varela-Vaca et al. (2021) 0.5 1 0 1 1 3.5

4 Groeneveld et al. (2021) 1 1 0 1 1 4

5 Kawtrakul et al. (2021) 1 1 0.5 1 1 4.5

6 Agrawal & Sharma (2021) 1 0 0 0 1 2

7 B. Shi et al. (2021) 0 0 0 0 1 1

8 L. Frank et al. (2021a) 1 0 0 0 1 2

9 Nicoletti et al. (2021) 1 1 0 0 1 3

10 Barriga et al. (2021) 0 1 1 1 1 4

11 Florin & Florin (2020) 1 0 0 0 0 1

12 Daniela et al. (2020) 0 0.5 0 0 1 1.5

13 Alulema et al. (2020) 0 1 0 0 1 3

14 Wijekoon et al. (2020) 0 0 0 1 1 2

15 Rio et al. (2019) 0 1 0 0 1 2

16 Plazas et al. (2019) 1 1 0 1 1 4

17 He et al. (2019) 1 0 0 0 1 2

18 Borowski (2019) 1 0 0 0 0 1

19 Zečević et al. (2018) 0 1 0 1 1 3

20 Muccini et al. (2018) 0 1 0 0 1 2

21 Spieldenner et al. (2018) 0 1 1 1 1 4

22 Qu et al. (2018) 1 1 0 0 1 3

23 Eigenbrode et al. (2018) 1 1 0 0 1 3

24 Elsayed et al. (2018) 0 0 0 1 0 1

25 Spieldenner et al. (2017) 0 1 1 1 1 4

26 L. Liu et al. (2017) 1 1 0 0 1 3

27 Urbieta et al. (2017) 0 1 0 1 1 3

28 Morales-Tapia & Ruz-Ramı́rez (2016) 0.5 1 0 1 1 3.5

29 H. Zhang & Zheng (2016) 1 0 0 0 0 1

30 Sun et al. (2016) 1 1 0 1 1 4

31 Han et al. (2016) 1 1 0 0 1 3

32 Doering et al. (2016) 1 0 0 0 1 2

33 Dées & Güntner (2016) 1 1 0 0 1 3

34 Kim & Park (2015) 1 0 0 0 1 2

35 Sayyah et al. (2015) 1 1 0 1 1 4

36 Pate et al. (2015) 1 1 0 1 1 4

37 S. Zhang et al. (2014) 1 0 0 0 1 2

38 Miyasaka et al. (2014) 1 0 0 0 0 1

39 Y. Wang et al. (2014) 1 0 0 0 0 1

40 Di Cosmo et al. (2014) 1 0 0 0 0 1

41 Tien (2013) 0 1 0 1 1 3

42 Ali et al. (2013) 1 1 0 0 1 3

43 Tan et al. (2012a) 1 1 0 1 1 4

44 Valckenaers et al. (2011) 1 1 0 0 0 2

45 Hennicker et al. (2010) 1 0 0 0 0 1

46 Ramos et al. (2010) 1 1 0 0 1 3

12



Figure 3: grades scopus

3.2 IEEE evaluation and analysis

The analysis of the table 5 showcases a wide array of studies with varying relevance to the research

questions about low-code solutions and precision agriculture. It’s evident that certain studies such as

Hong et al. (2016), Roopa & Shyni (2019), Boubin et al. (2019), Dimitriadis & Goumopoulos (2008),

Sivasothy et al. (2018), Jing-lan & Xiang-fa (2011), Ribeiro et al. (2003), Vaishnavi. et al. (2021) score

high on the grading scale, showing their considerable contribution to the subject. on the other side, a

number of studies like Sharma et al. (2021), Bose et al. (2020), Jie et al. (2011), Sathya & Jayalalitha

(2012), Toyama & Yamamoto (2009), Sitorus & Sartika (2017), and Nawaz et al. (2022) score low,

implying their limited applicability to the posed research questions. figure 4

This variation in scores suggests that, while there are significant overlaps between low-code and

precision agriculture in certain studies, these intersections may not be as prevalent in others. This may

reflect the evolving, multidisciplinary nature of these fields.

The records analyzed cover various topics related to the merging of technology, data analysis, and

model-driven approaches in agriculture. Several overarching themes are apparent:

1. Low-code Solutions and Agriculture: This theme is relevant in papers like Tan et al. (2012b) and

Yao et al. (2020), discussing the use of low-code solutions for managing crop diseases and optimizing

agricultural yields.

2. Predictive Modeling and Automation: Ghandar et al. (2018) highlights the use of predictive

modelling to automate irrigation systems, underlining the relevance of automated systems in precision

agriculture.

3, Cyber-Physical Systems and IoT: Akagi & Raksincharoensak (2015) presents a framework for

implementing IoT in cyber-physical agricultural systems.

4. Information Management and Farming: Papers such as Hong et al. (2016) and Zhu et al. (2021)

discuss the importance of information systems in farming, particularly in regards to crop yield prediction

and sustainable farming practices.

5. Risk Assessment and Mitigation: Chang & Huang (2010) discusses a risk assessment model for

predicting crop failure.

6. Machine Learning and Data Analysis: Papers like L. Frank et al. (2021b) and Ismatovna et al.

(2019) delve into machine learning’s applications in precision farming, focusing on pest identification and
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soil nutrient prediction.

7. AI-driven Decision Making: Studies like Kaitovic et al. (2012), Manjula & Narsimha (2015), and

Kassim & Abdullah (2012) delve into the use of artificial intelligence in agricultural decision-making

processes, from crop selection to irrigation management.

8. Sustainability and Climate Resilience: Papers such as Sahu et al. (2017) and Gao et al. (2018)

highlight the role of technology in sustainable farming and climate resilience, from optimizing water usage

to maintaining soil health in changing climates.

9. Agricultural Machinery and Robotics: Studies like Jain et al. (2021), Ammad-udin et al. (2016), and

Nawaz et al. (2022) discuss the development and control of agricultural machinery, including autonomous

tractors and harvesting robots.

Table 5: IEEE.

S. No Ref RQ1 RQ2 RQ3 RQ4 RQ5 Grade

1 Tan et al. (2012b) 1 1 0 1 1 4

2 Ghandar et al. (2018) 1 1 0 1 1 4

3 Akagi & Raksincharoensak (2015) 0 0 0 1 1 2

4 Hong et al. (2016) 1 1 0 1 1 4

5 Sharma et al. (2021) 1 1 0.5 1 1 4.5

6 Yao et al. (2020) 1 0 0 0 1 2

7 Roopa & Shyni (2019) 1 1 0 1 1 4

8 Zhu et al. (2021) 1 0 0 0 0 1

9 Chang & Huang (2010) 1 0 0 0 1 2

10 Bose et al. (2020) 0.5 1 0 1 1 3.5

11 Boubin et al. (2019) 1 1 0 1 1 4

12 L. Frank et al. (2021b) 0 0.5 0 0 1 1.5

13 Dimitriadis & Goumopoulos (2008) 1 1 0 1 1 4

14 Jie et al. (2011) 1 1 0 1 1 4

15 Kaitovic et al. (2012) 1 1 0 1 1 4

16 Ismatovna et al. (2019) 0.5 0 0 0 1 1.5

17 Sivasothy et al. (2018) 1 1 0 1 1 4

18 Sahu et al. (2017) 1 1 0 1 1 4

19 Sathya & Jayalalitha (2012) 1 0 0 0 1 2

20 Manjula & Narsimha (2015) 1 0.5 0 0 1 2.5

21 Jing-lan & Xiang-fa (2011) 0.5 0 0 0 0.5 1

22 Toyama & Yamamoto (2009) 1 1 0 1 1 4

23 Kassim & Abdullah (2012) 1 1 0 1 1 4

24 Gao et al. (2018) 1 1 0 0 1 3

25 Ribeiro et al. (2003) 1 1 0 0 1 3

26 Sitorus & Sartika (2017) 0 0 0 0 1 1

27 Jain et al. (2021) 0 1 0 1 1 3

28 Vaishnavi. et al. (2021) 1 1 0 1 1 4

29 Yu et al. (2021) 1 1 0 1 1 4

30 Ammad-udin et al. (2016) 1 1 0 1 1 4

31 Nawaz et al. (2022) 1 1 0 1 1 1
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Figure 4: grades IEEE

3.3 ACM evaluation and analysis

Analyzing the ACM table 6 in the same way as the Scopus and IEEE data, a varied range of studies

were found that demonstrate differing degrees of relevancy to the research questions at the intersection of

low-code solutions and precision agriculture. A number of studies such as Racine Ly et al. (2021), Yuan &

Ling (2020), Po Shun Chen & Wu Liu (2021), Niu et al. (2016), Hu et al. (2022), score highly, indicating

their significant contributions to the subject. However, other studies like Lyu et al. (2019), Ghandar et

al. (2019), Aiwen (2021), Jiang et al. (2019), score lower, suggesting their limited applicability to the

research questions. figure 5

This divergence in scores is perhaps indicative of the complex and multidisciplinary nature of both

low-code platforms and precision agriculture, as well as the nuances of their intersection. ACM records

cover diverse areas related to the fusion of new technology, intricate data analysis, and model-driven

methodologies in agriculture. Several broad patterns can be seen:

1. Automated Agriculture Techniques: Papers such as Moisescu et al. (2017) and Wilson et al. (2019)

explore the potential of automated techniques in optimizing agriculture practices, highlighting areas like

precision pest control and automated irrigation systems.

2. Digital Twinning in Agriculture: M. Liu & Yao (2021) dives into the implementation of digital

twinning in predicting and controlling crop growth, indicating the potential of such digital replicas in

precision agriculture.

3. Data Privacy and Security: Bonacin et al. (2013) discusses the pressing need for robust security

and data privacy measures in the era of digitized farming and agritech innovations.

4. Agro-Advisory Systems: Studies like Malheiro et al. (2019) and Y. Shi et al. (2019) goes into the

development of advanced advisory systems for farmers, incorporating AI-based prediction models and

decision support systems.

5. Climate Change Impact Assessment: Kallioniemi et al. (2012) illustrates a study on assessing the

climate change impact on agriculture using machine learning models.

6. Artificial Intelligence in Agriculture: Papers such as Li & Chen (2022) and Tang (2021) examine

the role of AI in agriculture, touching on themes like AI-driven weed detection and crop yield prediction.

7. Blockchain in Agriculture: Studies like Hu et al. (2022), discuss the potential applications of
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blockchain technology in traceability, food safety, and smart contracts in agriculture.

8. Sustainable Energy Solutions in Agriculture: Papers such as Jiang et al. (2019) explore the role

of sustainable energy solutions in agriculture, with topics including solar-powered irrigation systems and

bioenergy production.

Table 6: ACM.

S. No Ref RQ1 RQ2 RQ3 RQ4 RQ5 Grade

1 Moisescu et al. (2017) 1 1 0 1 1 4

2 Racine Ly et al. (2021) 1 1 0.5 1 1 4.5

3 M. Liu & Yao (2021) 1 1 0 1 1 4

4 Lyu et al. (2019) 1 1 0 1 1 4

5 Yuan & Ling (2020) 1 1 0 1 1 4

6 Wilson et al. (2019) 1 0 0 0 1 2

7 Bonacin et al. (2013) 1 0 0 0 1 2

8 Ghandar et al. (2019) 1 1 0.5 1 1 4.5

9 Po Shun Chen & Wu Liu (2021) 1 1 0.5 1 1 4.5

10 Honda et al. (2014) 1 1 0 1 1 4

11 Malheiro et al. (2019) 0.5 0 0 1 1 2.5

12 Y. Shi et al. (2019) 1 0.5 0 0 1 2.5

13 Niu et al. (2016) 1 1 0 1 1 4

14 Aiwen (2021) 1 1 0 1 1 4

15 Kallioniemi et al. (2012) 1 1 0 1 1 4

16 Chen et al. (2022) 1 0 0 0 1 2

17 Li & Chen (2022) 1 1 0 1 1 4

18 Tang (2021) 1 1 0 1 1 4

19 Hu et al. (2022) 1 1 0 1 1 4

20 Jiang et al. (2019) 1 1 0 1 1 4

Figure 5: grades ACM

3.4 Wiley’s evaluation and analysis

Upon analyzing the Wiley data, it is found that:

Moore et al. (2014) - ”Mathematical modeling for improved greenhouse gas balances, agro-ecosystems,

and policy development: lessons from the Australian experience”: This article is about mathematical
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modeling for improving greenhouse gas balances and policy development, with a focus on agriculture. It

does not seem directly related to IoT, or low code, but it could be related to precision agriculture in the

sense of using mathematical models for decision support and policy formulation.

Foufoula-Georgiou et al. (2015)- ”The change of nature and the nature of change in agricultural

landscapes: Hydrologic regime shifts modulate ecological transitions”: This paper investigates the hy-

drological changes in agricultural landscapes and their impact on ecological transitions. Although there

isn’t a direct link to low code or IoT, the paper could be relevant in terms of understanding the impact

of changes in agricultural landscapes on hydrology, which could, in turn, inform precision agriculture

practices.

Ju et al. (2018)- ”CRISPR Editing in Biological and Biomedical Investigation”: This article focuses

on the application of the CRISPR-Cas system, a powerful genome editing tool. While it doesn’t mention

IoT, or low code, it could potentially relate to precision agriculture if you consider the use of genome

editing in developing crops that are more resistant to diseases or have better nutritional properties.

Tweel & Turner (2012) - ”Watershed land use and river engineering drive wetland formation and

loss in the Mississippi River birdfoot delta”: This paper examines how watershed land use and river

engineering impact wetland formation and loss. It could provide insights into how changes in land use

influence the ecological balance in agricultural landscapes.

Dahl et al. (2018) - ”Impacts of projected climate change on sediment yield and dredging costs”:

This research investigates the effects of climate change on sediment yield and dredging costs. it could be

relevant to precision agriculture in the context of climate change and its impact on agricultural practices.

In a nutshell, none of these references on table 7 seem to directly tackle the role of low-code in precision

agriculture, but they all offer insights into different aspects of agriculture that could be improved or

impacted by these technologies. For example, IoT and low code could be used to model and predict the

impacts explored in these papers more accurately. Blockchain could be used for transparently tracking

and verifying the impacts of different agricultural practices or genetic modifications.

Table 7: Wiley.

S. No Ref RQ1 RQ2 RQ3 RQ4 RQ5 Grade

1 Moore et al. (2014) 1 1 0 0 0.5 2.5

2 Foufoula-Georgiou et al. (2015) 1 1 0 0 0 2

3 Ju et al. (2018) 1 1 0 0 1 3

4 Tweel & Turner (2012) 1 0 0 0 1 2

5 Dahl et al. (2018) 1 0 0 0 0 1

3.5 Literature Selection and Justification

The process of addressing Research Question 1 (RQ1): ”What instigates the incorporation of model-based

approaches that inspire low-code technology in precision agriculture?” relied primarily on studies sourced

from both IEEE and Scopus databases. The reason for selecting these databases was driven by their

significant contribution towards the answer to this question. This is illustrated by the high relevance

scores indicated in the figure 6 for the studies extracted from these databases. It is, therefore, justified

to assert that RQ1 was comprehensively addressed by the information primarily sourced from the IEEE

and Scopus databases.

Regarding Research Question 2 (RQ2): ”What unique services can model-based approaches facilitate

to advance precision agriculture through low-code platforms?” the decision to select literature from the

IEEE and Scopus databases mirrored the approach taken for RQ1. The significant contributions these

databases provided in responding to RQ2 are clearly evidenced by the high relevance scores indicated
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Figure 6: grades averages for RQ1

in the figure 7. Therefore, it is justified to conclude that RQ2 was comprehensively addressed by the

valuable insights obtained from the studies within the IEEE and Scopus databases.

Figure 7: grades averages for RQ2

Research Question 3 (RQ3): Considering their unique attributes, which low-code platform fits better

solutions with the model-based approaches on their usage to optimize precision agriculture? The studies

from the Scopus database did not provide sufficient information to answer this question fully. However,

some studies from the IEEE database did contribute to answering this question. figure 8 To supplement

this, information from websites of low-code development platforms that connect with the studies in the

papers retrieved from Scopus was used. This approach helped to provide a more comprehensive answer

to RQ3.

Figure 8: grades averages for RQ3

Research Question 4 (RQ4): What are the critical steps involved in developing a low-code system based

on the model-based approach in precision agriculture? The studies from the ACM database provided
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substantial information to answer this question, as seen from the scores in the figure 9. Therefore, RQ4

was answered using information primarily from ACM. The Wiley database served as a support for general

ideas, but did not contribute significantly to answering this question.

Figure 9: grades averages for RQ4

Research Question 5 (RQ5):What challenges are associated with implementing model-based ap-

proaches that could encourage low-code technology in precision agriculture? Similar to RQ4, the ACM

database provided substantial information to answer this question, as seen from the scores in the figure

10. Therefore, RQ5 was answered using information primarily from ACM, with Wiley serving as a sup-

port for general ideas. In conclusion, the decision to use information from specific databases to answer

each research question was based on the extent to which the studies in those databases contributed to

answering the questions, as indicated by their scores.

Figure 10: grades averages for RQ5

3.6 Research Question 1 (RQ1):What instigates the incorporation of model-

based approaches that inspire low-code technology in precision agricul-

ture?

Modern agriculture faces significant challenges such as labor shortages and time-intensive manual tasks.

The arrival of new technologies in precision agriculture aims to diminish these struggles, transforming

farming into a STEM (Science, Technology, Engineering, Math) profession Ahmed et al. (2018). Today’s

farmers are increasingly tech-savvy, but it is crucial that new technologies integrate into existing opera-

tions rather than over feeding the entire system with more products with similar functions Baba-Cheikh

et al. (n.d.).

Practical applications of automation have been a part of farming since the 1990s Batot & Sahraoui

(n.d.). However, today’s farmers require technologies that offer insights into their crops through data
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collection and processing Bergerman et al. (2016). Despite these advancements, the end user often lacks

the necessary knowledge in software-related topics, and farming traditions worldwide often lead to reliance

on empirical knowledge Bogue (2016).

The concept of Precision Agriculture (PA) emerged at the end of the 20th century and is implemented

in three stages: Data Collection, Data Analysis and Decision-Making, and Variable Rate Control Buc-

chiarone et al. (2020). Despite progress on the Internet of Things (IoT) domain, the adoption of PA has

been limited to some developed countries Buttafuoco & Lucà (2016).

The increasing need to improve Model-Driven Engineering (MDE) solutions to support processes in

multidisciplinary and heterogeneous environments is evident in the field of smart agriculture Collomb

& Hascoët (2008). Smart Agriculture (SA) is a significant part of the revolution for modern farming

to fulfill the increasing demand for nutrition security Dı́ez (2017). The use of mobile applications for

prediction or monitoring is gaining popularity among farmers worldwide, increasing the demand for the

development of such applications Drenjanac et al. (n.d.).

In smart systems like precision agriculture, situations such as incomplete information, several design

alternatives, and conflicting stakeholder opinions can cause uncertainty during software model design Eli-

jah et al. (2018). The implementation of a fully functional Farm Management Information System (FMIS)

is a challenging task that cannot be accomplished without the backing of a large software development

project Gayatri et al. (n.d.).

Precision agriculture is a management concept that is technologically more complex than traditional

farming, and has thus generated a variety of new fields for agriculture-related specialized research Gubbi

et al. (2013). For the length of their existence, FMIS have faced certain difficulties, particularly low

adoption rates during times when computers were still relatively rare Henriques et al. (n.d.).

There are several requirements for software in agriculture, most of which stem indirectly from the size

of the user group formed by farmers Himesh et al. (2018). Finding the relationship between technological

innovations, economic efficiency, and practicality has been a focus since the beginning of the development

of precision agriculture Ihirwe et al. (n.d.).

3.6.1 Addressing the Complexity of Precision Agriculture

The increasing demand for food due to the growing global population has necessitated the adoption of

advanced technologies in agriculture. Precision agriculture, which involves the use of technology and

data to optimize crop production, is one such approach that has gained significant attention Sharma

et al. (2021). The integration of IoT-enabled smart sensors, actuators, satellite images, robots, and

drones has revolutionized the agriculture industry, enabling real-time data collection and autonomous

decision-making. Machine learning algorithms form the backbone for predicting soil properties, weather

conditions, and crop yields, while deep learning algorithms are explored for disease and weed identification

in plants Sharma et al. (2021).

However, the complexity of implementing and managing these technologies can be a barrier for many

farmers, particularly those with limited technical expertise. This is where low-code platforms come into

play Tan et al. (2012b). These platforms simplify the development of applications by minimizing the need

for extensive coding. They provide a visual interface where users can drag and drop components to create

applications, making it easier for non-technical users to develop and manage applications Ghandar et al.

(2018). In the context of precision agriculture, low-code platforms can be used to develop applications

for various purposes, such as data collection, data analysis, and decision support Hong et al. (2016).

Another reason that makes evident The need for low-code in precision agriculture is the complex

challenges that this sector faces. The integration of low-code platforms can significantly improve the

efficiency and productivity of agricultural practices, as they allow for the rapid development of advanced
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software solutions. These solutions can address a wide range of issues, from crop management to resource

allocation, thereby enabling farmers to make more informed decisions and achieve better outcomes Tan

et al. (2012b).

The complexity of precision agriculture presents intricate relationships between humans and natural

systems and encompasses ecological variables, human variables, and the intricate connections between

them. The integration of tooling and techniques from ecological and social sciences, such as spatial aware-

ness, geographic information, and temporal dynamics, provides valuable insights into emerging phenom-

ena within urban agriculture Ghandar et al. (2018). The use of Agent-Based Modelling (ABM) allows for

the representation of various agents and their interactions within the agricultural ecosystem, including

plants, animals, farmers, and other stakeholders. By bringing together low-code platforms, farmers, and

stakeholders with limited technical expertise can actively participate in designing and optimizing urban

agricultural systems Ghandar et al. (2018).

In conclusion, the complexity of precision agriculture is being addressed through the integration of

advanced technologies, including AI, IoT, and ML. These technologies enable efficient data analysis,

prediction, disease detection, smart irrigation, and livestock management. Future developments in chat-

bot systems and the continued exploration of ML and DL algorithms will contribute to the sustainable

advancement of precision agriculture, ensuring optimized resource utilization and improved agricultural

practices Sharma et al. (2021).

3.6.2 Accelerating the Software Development Process

The dynamic nature of agriculture necessitates a flexible and rapid software development process. Low-

code platforms, with their inherent adaptability, offer a solution to this need. They enable quick devel-

opment and deployment of applications, which is crucial in the ever-changing environment of agriculture.

For instance, farmers often need to make quick decisions based on changing weather conditions, pest

infestations, and other factors. With low-code platforms, they can easily modify their applications to

adapt to these changes Roopa & Shyni (2019).

The study by Groeneveld et al. (2021) presents a domain-specific language framework for farm man-

agement information systems in precision agriculture. This framework shows low-code principles to

facilitate the development of tailored software solutions that can effectively address the unique needs of

different farming operations. This is particularly important in the context of precision agriculture, where

the ability to customize software tools can significantly enhance their utility and effectiveness.

The work by Barriga et al. (2021) underscores the value of low-code in precision agriculture. Their

study introduces SimulateIoT, a domain-specific language for designing, coding, and executing IoT sim-

ulation environments. Given the increasing reliance on IoT devices in precision agriculture, such a tool

can greatly simplify the process of developing and testing new IoT solutions.

About accelerating the software development process, the concept of crop monitoring and smart farm-

ing through analytic predictions has been introduced Roopa & Shyni (2019). This approach revolutionizes

the agribusiness landscape by providing reliable and remote monitoring capabilities. By digitizing farming

and agricultural activities, farmers can monitor crop requirements and accurately predict their growth.

This transformative concept propels businesses to new heights of profitability and success.

The domain-specific language (DSL) framework proposed by Groeneveld et al. (2021) is specifically

tailored to the precision agriculture domain. It comprises a coherent set of DSLs designed to bridge

the conceptual gap between the application domain and the implementation. This DSL framework

separates the technical details of sectors and functionalities from the farm configuration, offering practical

advantages.

The SimulateIoT tool introduced by Barriga et al. (2021) provides users with a structured approach
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to conceptualize and explore IoT systems. Users can evaluate different IoT alternatives and policies to

design suitable IoT architectures. The ability to deploy and analyze the modeled IoT systems further

enhances the value of the proposed approach.

In conclusion, the acceleration of the software development process is really important in the context

of precision agriculture. Low-code platforms, coupled with domain-specific languages and IoT simulation

tools, offer a robust solution to this need. They enable rapid development and deployment of appli-

cations, facilitate customization, and simplify the process of developing and testing new IoT solutions.

These capabilities empower farmers to make informed decisions, enhance crop production, and envision

a prosperous future for agriculture.

3.6.3 Democratizing Precision Agriculture

The democratization of precision agriculture is a critical endeavor that ensures farmers of all backgrounds

can benefit from advanced agricultural technologies. Low-code platforms play a pivotal role in this process

by simplifying the development of applications and making these technologies more accessible to farmers

with limited technical expertise Kassim & Abdullah (2012).

The ontology-driven advisory system proposed by Kassim & Abdullah (2012) is a prime example

of democratizing precision agriculture. This system shows the principles of the semantic web, allowing

for easy sharing and reuse of information via the Internet. By providing farmers with personalized

advice and knowledge, it enhances their decision-making processes and optimizes agricultural outcomes.

The system’s architecture, which incorporates personalization, knowledge management, and ontology,

addresses the diverse needs of farmers, promoting inclusivity and sustainable agricultural development.

The research by Varela-Vaca et al. (2021) introduces the CARMEN framework, a tool that ensures

the security and reliability of cyber-physical systems (CPS) in precision agriculture. CPS are integral to

modern agriculture, and their security is paramount for the confident utilization of advanced technologies.

CARMEN guides users in defining accurate security requirements for CPS and enables their diagnosis,

adhering to the ”security by design” philosophy. This approach ensures that security is a fundamental

consideration throughout system analysis, design, and construction, facilitating the democratization of

secure and reliable CPS solutions in precision agriculture.

Moreover, the CARMEN framework accelerates the software development process, which is essential

for the rapid deployment of solutions in the dynamic environment of agriculture. For instance, farmers

often need to make quick decisions based on changing weather conditions, pest infestations, and other

factors. With tools like CARMEN, they can easily modify their applications to adapt to these changes,

further democratizing precision agriculture Kassim & Abdullah (2012).

In conclusion, low-code platforms are instrumental in democratizing precision agriculture. They

simplify the development of applications, enhance the accessibility of advanced technologies, and ensure

the security and reliability of CPS. By providing farmers with personalized advice, knowledge, and secure

solutions, these platforms contribute to the inclusive and sustainable development of precision agriculture.

3.6.4 Consolidated Insights on Low-Code Technology’s Impact on Precision Agriculture

The integration of low-code technology in precision agriculture is driven by several compelling reasons,

as revealed by our systematic literature review (SLR) of selected and graded papers from both IEEE and

Scopus. These reasons are primarily centered around addressing the complexity of precision agriculture,

accelerating the software development process, and democratizing precision agriculture.

Firstly, precision agriculture is characterized by the integration of advanced technologies such as IoT-

enabled smart sensors, actuators, satellite imagery, robots, and drones, which collectively enable real-
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time data collection and autonomous decision-making. Machine learning algorithms are employed for

predicting soil properties, weather conditions, and crop yields, while deep learning algorithms are utilized

for disease and weed identification in plants. However, the complexity of implementing and managing

these technologies can portray a significant barrier for many farmers, particularly those with limited

technical expertise. This is where low-code platforms come into play. By simplifying the development

of applications and minimizing the need for extensive coding, low-code platforms make it easier for non-

technical users to develop and manage applications. They provide a visual interface where users can drag

and drop components to create applications, thereby addressing the complex challenges that the precision

agriculture sector faces. The integration of low-code platforms can significantly enhance the efficiency

and productivity of agricultural practices, as they allow for the rapid development and deployment of

advanced software solutions.

Secondly, the dynamic nature of agriculture necessitates a flexible and rapid software development

process. Low-code platforms, with their inherent adaptability, offer a solution to this need. They enable

quick development and deployment of applications, which is crucial in the ever-changing environment

of agriculture. For instance, farmers often need to make quick decisions based on changing weather

conditions, pest infestations, and other factors. With low-code platforms, they can easily modify their

applications to adapt to these changes. The study by Groeneveld et al. (2021). and the work by Barriga

et al. (2021) underscore the value of low-code in precision agriculture by presenting a domain-specific

language framework for farm management information systems and introducing SimulateIoT, a domain-

specific language for designing, coding, and executing IoT simulation environments, respectively. These

tools greatly simplify the process of developing and testing new IoT solutions, thereby accelerating the

software development process in precision agriculture.

Lastly, democratizing precision agriculture is a critical endeavor that ensures farmers of all back-

grounds can benefit from advanced agricultural technologies. Low-code platforms play a pivotal role in

this process by simplifying the development of applications and making these technologies more accessible

to farmers with limited technical expertise. The ontology-driven advisory system proposed by Kassim

& Abdullah (2012) and the CARMEN framework introduced by Varela-Vaca et al. (2021) are prime

examples of democratizing precision agriculture. These systems leverage the principles of the semantic

web and the ”security by design” philosophy, respectively, to provide farmers with personalized advice

and knowledge, enhance their decision-making processes, optimize agricultural outcomes, and ensure the

security and reliability of cyber-physical systems in precision agriculture.

In conclusion, the reasons for incorporating low-code technology in precision agriculture are multi-

faceted and compelling. By addressing the complexity of precision agriculture, accelerating the software

development process, and democratizing precision agriculture, low-code platforms contribute significantly

to the inclusive and sustainable development of precision agriculture. They simplify the development of

applications, enhance the accessibility of advanced technologies, and ensure the security and reliability

of cyber-physical systems, thereby providing farmers with personalized advice, knowledge, and secure

solutions. This analysis, based on our SLR, underscores the robustness of the research and the academic

consensus on the substantial benefits of low-code platforms in precision agriculture.

3.7 Research Question 2 (RQ2): What unique services can model-based

approaches facilitate to advance precision agriculture through low-code

platforms?

3.7.1 Stakeholder-Centric Services of Low-Code Platforms in Precision Agriculture

Identifying the stakeholders involved in the application of low-code platforms in precision agriculture is

crucial to understanding the range of services that this technology can offer and the significance of each

service to the stakeholders. This list of stakeholders and services is an extension of the one mentioned in
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Buttafuoco & Lucà (2016), but it is tailored to the context of low-code platforms.

Farmers are the primary stakeholders. While we can develop tools and products with new technology,

these innovations are meaningless if they do not benefit the end user. Farmers seek availability, reliability,

and usability in precision agriculture tools. They expect the system to operate smoothly and efficiently

after investing time and money into adapting their operations to new systems Ahmed et al. (2018).

The providers of the low-code platform are businesses with commercial interests. They aim to offer

low-code solutions not only for precision agriculture but also for a broader range of potential clients in

the market Baba-Cheikh et al. (n.d.).

Developers serve as the link between farmers and providers. They evaluate the possible solutions based

on the requirements of the farmer and the tools offered by the provider. For developers, it is essential

to have a clear list of requirements and access to a comprehensive set of tools for software development

Batot & Sahraoui (n.d.).

The system maintainer, often the provider or developer, should be familiar with the software and the

farmer’s operations. They should have a simplified interface for fixing common errors and be able to

identify when the software needs modification or updating Bergerman et al. (2016).

Contractors, who are often hired for fieldwork in large operations, require data about the farm and

the operational plan. This information directly affects the efficiency and quality of the contractor’s work

?.

Advisors offer advice to farmers on improving production or protecting the environment. They often

require data from the farm, so easy and simple access to this data can simplify the farmer’s operations ?.

Authorities monitor adherence to regulations. Easy access to data can help farmers resolve any issues

that authorities need to clarify Bogue (2016).

Customers of the farms, such as large companies buying farm products for processing or sale, can ben-

efit from clear data tracking and production details. A simple user interface can improve the interaction

between the farmer and the customer Bucchiarone et al. (2020).

Suppliers and manufacturers, while not direct stakeholders currently, will need to consider low-code

solutions when deciding what to manufacture or supply for farms in the future. This consideration will

be necessary to create a competitive product for the market Buttafuoco & Lucà (2016).

Privacy is a significant concern. Low-code platforms allow end users to develop apps or software,

reducing the need for third-party outsourcing and increasing confidentiality. Farmers often protect their

precise methods to maintain a competitive edge in the market Collomb & Hascoët (2008).

Low-code platforms can accelerate code development, making apps available faster. A survey by

Forrester revealed that low-code platforms could speed up code development by 5 to 10 times. This

speed is a crucial tool in precision agriculture, where new technologies are constantly emerging, requiring

quick adaptations of the software used to monitor and control them Dı́ez (2017).

Cost is another factor. Avoiding third-party outsourcing and having more efficient development times

reduces resources used, thereby reducing costs. Moreover, having a wider range of deployment possibilities

can achieve the same results with a software connected to a more economical hardware option, which is

a common practice depending on the farmers’ abilities to implement specific components Drenjanac et

al. (n.d.).

Easy maintenance is a fundamental part of designing new software. Constant updates to the software

are required due to the rapid changes common in the precision agriculture field Elijah et al. (2018).

The presence of a user-friendly and easy-to-understand interface contributes significantly to the ef-
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fectiveness of low-code platforms. This allows for the involvement of diverse types of developers, leading

to significant advancements in precision agriculture. Considering that farmers typically rely on practical

experience, the design and development of software might differ between a crop farmer and a poultry

farmer based on their individual needs and expertise Gayatri et al. (n.d.).

3.7.2 Data Collection Facilitation

Low-code platforms can provide a variety of services to precision agriculture, one of which is facilitating

data collection. This is an important aspect of precision agriculture, as it provides the necessary informa-

tion for making informed decisions. Low-code platforms can make this process easier by providing tools

for developing applications that collect data from various sources, such as soil sensors, weather stations,

and drones. These applications can be easily created and modified by users, allowing them to customize

the data collection process according to their needs Ghandar et al. (2018); Dimitriadis & Goumopoulos

(2008); Morales-Tapia & Ruz-Ramı́rez (2016).

Ghandar et al. (2018) presents a framework that utilizes Agent-Based Models, Simulation, and Com-

putational Intelligence to analyze, optimize, and manage “ecosystems” for urban agriculture and vertical

farming. The framework considers the perspectives of various stakeholders, including consumers, pro-

ducers, and policymakers. By using advanced technologies, the framework facilitates data collection,

analysis, and decision-making processes within the urban agriculture and vertical farming fields. Low-

code platforms can ease on the development of data collection tools and enable stakeholders to efficiently

gather, analyze, and utilize this information, thereby enhancing the data collection process in precision

agriculture.

Dimitriadis & Goumopoulos (2008) highlights the importance of machine learning in precision agricul-

ture. The study successfully extracted new knowledge from the data and presented it in an understandable

and expandable form. This contributes to the validation and understanding of control systems, which

play an important role in reducing adverse conditions for plants. The methodology adopted in this study

allowed the researchers to analyze the relationship between attributes of lower informational value and

the learning goals, resulting in the creation of new data sets. This approach improved the classification

process and addressed the challenge of gathering measurements for certain key parameters, which can be

difficult due to potential sensor damage and other factors involved. Adding elements from low-code such

as easier constant monitoring systems, these challenges can be reduced.

Morales-Tapia & Ruz-Ramı́rez (2016) underscores the importance of comprehensive data collection

and modeling in understanding plant development. It showcases the potential of integrating insights

from various models into a unified model of plant development, which could serve as a foundation for

plant engineering. While the paper does not directly discuss low-code platforms, it aligns with the

broader theme of data collection facilitation in precision agriculture. Low-code platforms, by simplifying

the process of software development, could potentially help in the development and implementation of

such comprehensive models. These platforms could make it easier for researchers to build and modify

applications that collect and analyze the necessary data for these models.

3.7.3 Data Analysis Enhancement

Low-code platforms play a significant role in enhancing data analysis in precision agriculture. They

provide the tools necessary to develop applications that implement various data analysis techniques, such

as statistical analysis, machine learning, and predictive modeling. These techniques allow farmers to

understand patterns in their data and make predictions about future outcomes, such as crop yields and

disease outbreaks Jain et al. (2021); Vaishnavi. et al. (2021); S. Zhang et al. (2014); Plazas et al. (2019).

For instance, in the research by Jain et al. (2021), an intelligent system for net houses was developed
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using sensors and an Internet of Things (IoT) based wireless infrastructure. The system uses machine

learning algorithms to analyze the transmitted data and make intelligent decisions based on predefined

thresholds. The use of low-code platforms in such a system could improve some steps in the develop-

ment process, enabling faster prototyping and deployment, and by that creating better data analysis

capabilities.

Similarly, in the study by Vaishnavi. et al. (2021), machine learning techniques were used to develop

robust models using agricultural data, making accurate predictions. The use of low-code platforms

could help accelerate the development of data analytics solutions. This approach empowers upcoming

agriculturalists with efficient agricultural practices, fostering better crop cultivation and management.

In the research presented by S. Zhang et al. (2014), the impact of land transfer and consolidation

on the development of the agricultural industry was analyzed. The study found that land transfer and

consolidation contribute to the enlargement of continuous farmland areas, improved land patch shapes,

and flatter land surfaces. With low-code, platforms data analysis capabilities can be more efficient and

facilitate informed decision-making in agricultural resource integration and land management.

In the context of wireless sensor networks (WSNs), Plazas et al. (2019) presented a UML profile

for enhancing data analysis from the user’s perspective. The study shows the importance of adopting

a model-driven approach in WSN application design and implementation, as it enables abstract and

direct analysis of system properties and behavior, ultimately improving effectiveness and efficiency. By

considering the possibilities of using low code development techniques, we can increase the value and

efficiency of Agri-food information systems, leading to more sustainable and productive agricultural

practices.

In conclusion, low-code platforms can significantly enhance data analysis in precision agriculture. By

simplifying the development of applications and improving their flexibility, low-code platforms can help

farmers optimize their operations and improve their productivity. However, it should be noted that the

use of low-code platforms also comes with challenges, such as potential limitations in performance and

scalability. Therefore, it is important to carefully evaluate the needs and resources of the farm before

deciding to adopt a low-code platform.

3.7.4 Decision Support Services

Decision support is a key service that low-code platforms can provide to precision agriculture. By inte-

grating data collection and analysis, low-code platforms can help farmers make informed decisions about

various aspects of their operations, such as when to plant, how much fertilizer to use, and when to har-

vest. These decisions can significantly affect the productivity and profitability of farms, making decision

support a really relevant service Sahu et al. (2017); Sivasothy et al. (2018); Rio et al. (2019).

The study by Rio et al. (2019) demonstrated the application of a model-driven engineering approach

for energy experts to model process shifting capabilities, optimize local generation, and improve the prof-

itability and sustainability of a site through the use of local generation. It is clear that low-code platforms

could improve the development and implementation of energy management systems, allowing for more

efficient prototyping, and integration with existing infrastructure. This approach can empower energy

experts and decision-makers to quickly adapt and enhance their energy management strategies, ulti-

mately leading to improved efficiency, cost-effectiveness, and sustainability in various domains, including

agriculture.

The research conducted by Sivasothy et al. (2018) developed a monitoring concept for potato har-

vesters, aiming to enable the implementation of availability-oriented business models in the agricultural

sector. Low-code platforms could create quick development and deployment of monitoring and predictive

maintenance solutions, allowing agricultural businesses to customize and integrate sensor systems with

their existing infrastructure. By using low code, the implementation of advanced algorithms for remain-
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ing lifetime estimation and optimization problems can be simpler, allowing for efficient data analysis and

real-time decision-making.

The study conducted by Sahu et al. (2017) aimed to investigate how big data approaches can be uti-

lized to generate practical insights for precision agriculture. The utilization of low-code platforms could

enhance decision support services in crop analysis by expediting the development and implementation of

data analysis models, thereby allowing for quick prototyping and iteration. By employing visual mod-

eling interfaces and pre-built components, farmers and agricultural experts can simplify the creation of

personalized data analysis workflows. Additionally, low-code platforms enable the seamless integration

of diverse data sources, facilitating the incorporation of real-time information from sensors, weather pre-

dictions, and other pertinent sources. Furthermore, the use of low-code platforms empowers individuals

without technical expertise to actively participate in the creation and customization of decision support

systems, promoting collaboration and knowledge sharing within the agricultural community.

In conclusion, the integration of low-code platforms in decision support services can significantly create

a better decision-making process in precision agriculture. By providing tools for the rapid development

and deployment of applications, low-code media can help farmers and agricultural experts make data-

driven decisions, optimize their operations, and improve productivity.

3.7.5 System Integration Services

System integration is a service that low-code platforms can offer. The field of precision agriculture

frequently employs a variety of technologies, including GPS, remote sensing, and automated machinery.

The integration of these technologies can be facilitated by low-code platforms, enabling them to operate

in harmony. This has the potential to boost the efficiency and effectiveness of precision agriculture

operations.

The research by Zhu et al. (2021) proposed a system integration approach that combines electrome-

chanical hybrid systems and hydromechanical composite transmission to offer solutions to the operational

needs of tractors. Low-code platforms can create a faster integration process of various components and

subsystems, enabling quick prototyping and system iteration. Low-code platforms offer visual modeling

interfaces and pre-built connectors, simplifying the integration of diverse systems and technologies, and

reducing the time and complexity associated with integration tasks. Furthermore, low-code platforms

enable flexible customization and configuration, empowering system integrators to adapt the solution to

specific tractor requirements.

By harnessing the capabilities of low-code platforms, system integrators can efficiently incorporate

the proposed MEH-PS into tractors, loaders, graders, and other vehicles. The modular nature of low-

code platforms simplifies the integration process, permitting component reuse and reducing development

efforts. Moreover, low-code platforms help with the collaboration among stakeholders, allowing domain

experts, engineers, and manufacturers to actively participate in the integration process and contribute

their expertise. This collaborative approach increases the reliability and performance of the integrated

system, while also promoting knowledge sharing and continuous improvement.

In the study conducted by Chang & Huang (2010), a digital muskmelon dynamic growth system was

developed using a process-based morphogenesis simulation model and component-based software. The

system allows for the observation of muskmelon organs and the dynamic growth process of individual

plants under varying environmental conditions, providing valuable insights into the plant’s morphological

status during its growth. The implementation of this system opens up possibilities for various applications

in the field of system integration services. By integrating the digital muskmelon growth system with

other technologies and tools, such as low-code platforms, its capabilities can be developed more and its

applicability in research, decision support, education, and extension services can be improved.

The research by W. Wang et al. (2022) presented a fruit target detection and segmentation method
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using deep learning technology, with a focus on its application in system integration services. Low-

code platforms could improve the fruit target detection and segmentation method. By using low-code

development tools, the integration of various components and models becomes more simple and efficient.

Low-code platforms enable visual modeling and pre-built components, reducing development time. This

facilitates the integration of the fruit target detection and segmentation method into existing systems

and applications, creating a better overall system performance.

The research by Uehara et al. (2022) proposed a feature engineering approach that quantifies hidden

regional characteristics for prediction without relying on forecasts. In the context of system integration

services, the use of low-code platforms can enhance the feature engineering process and improve predictive

performance. Low-code development allows for the seamless integration of various data sources, including

observational data and regional characteristics, enabling efficient feature extraction and modeling.

3.7.6 Enhancing Accessibility and Democratization

Low-code platforms can significantly contribute to precision agriculture by increasing and improving the

accessibility of technologies and democratizing their use. These platforms can simplify the use of precision

agriculture technologies, making them more accessible to farmers with varying levels of technical expertise.

Furthermore, they can increase the speed for the development and deployment of applications, a feature

that is particularly beneficial in the dynamic and rapidly evolving field of agriculture Yu et al. (2021);

Nawaz et al. (2022); Ramos et al. (2010); Hennicker et al. (2010).

In the study by Yu et al. (2021), the integration of Deep Learning and Factorization Machine (FM)

techniques was explored to improve models such as Factorization-supported Neural Network (FNN),

Product-based Neural Networks (PNN), Inner PNN (IPNN), Wide and Deep, Deep and Cross, and

DeepFM for addressing the Click-Through-Rate (CTR) problem. These models have applications be-

yond recommendation systems and can be utilized in various fields, including agriculture, meteorology,

and disease prediction. The study demonstrated that by making minor improvements and parameter

adjustments to DeepFM, excellent performance in terms of Area Under the Curve (AUC) was achieved

compared to other models.

In the context of precision agriculture, these models can be used to predict crop diseases or pest

infestations, enabling early intervention and reducing the workload of farmers. Furthermore, the incor-

poration of the Internet of Things (IoT) for monitoring changing data such as soil moisture, temperature,

and nutrient levels enhances the timeliness and accuracy of these predictions. IoT sensors enable real-

time transmission, ensuring timely predictions and early intervention. The integration of DeepFM and

IoT creates a robust agricultural system that excels in forecasting and performance. This system can

improve crop yields, optimize resource allocation, and enhance overall agricultural productivity. The use

of low-code platforms in the development and deployment of such systems can later democratize access

to advanced predictive models. Low-code platforms, with their drag-and-drop interfaces and pre-built

templates, can enable farmers and agricultural specialists to build and customize their predictive models

without needing extensive coding knowledge.

The research conducted by Nawaz et al. (2022) presents an intelligent human-machine interface,

ANKSys, which integrates advanced numerical solutions and data-driven supervisory control to address

the challenges faced by eco-efficient anaerobic ammonium oxidation (ANAMMOX) in wastewater treat-

ment. ANKSys utilizes optimized functionality, including soft sensing, decision making, and simulating

models, driven by advanced algorithms such as artificial neural networks, Kalman filters, principal com-

ponent analysis, and least-square techniques.

Precision agriculture can make use of this, ANKSys could be adapted to manage and optimize irriga-

tion systems, reducing water usage and improving crop yields. The real-time implementation of ANKSys

in a pilot-scale wastewater treatment plant in Daegu, Republic of Korea, resulted in a significant im-
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provement in energy efficiency, achieving a 16 percent reduction in energy consumption. This approach

facilitated optimal and sustainable operation for the removal of biological nitrogen. The utilization of

ANKSys and its integration with advanced algorithms and software tools exemplify the potential for

improving accessibility and democratization of eco-efficient wastewater treatment technologies. Further-

more, the possibilities offered by low-code platforms can provide the development and deployment of

intelligent systems like ANKSys, making them more accessible to a wider range of users. Low-code

platforms, with their ability to integrate with various data sources and APIs, can facilitate the seam-

less integration of ANKSys with existing agricultural systems, thereby enhancing its accessibility and

usability.

The research by Hennicker et al. (2010) presents a generic framework for computer-based environ-

mental modelling aimed at enhancing the accessibility and democratization of integrative simulations.

The framework facilitates the coupling of simulation models from diverse scientific disciplines, enabling

the simulation of spatially distributed environmental processes with discrete time scales.

For precision agriculture this means that, this framework could be used to integrate models from

various disciplines including meteorology, hydrology, plant physiology, and agronomy to create a com-

prehensive decision support system for farmers. Through the GLOWA-Danube project, the framework

has been successfully applied to construct the distributed simulation system DANUBIA. DANUBIA in-

tegrates up to 15 simulation models from various disciplines including meteorology, hydrology, plant

physiology, glaciology, economy, agriculture, tourism, and environmental psychology. This powerful sim-

ulation system serves as a decision support tool for sustainable planning and aids decision makers in

shaping the future of water resources in the Upper Danube basin. The proposed framework and its

application in DANUBIA exemplify the possibilities for enhancing the accessibility and democratiza-

tion of computer-based environmental modeling. Furthermore, the utilization of low-code platforms can

significantly contribute to improving accessibility and accelerating the development of integrative simu-

lation systems like DANUBIA. Low-code platforms, with their ability to handle complex business logic

and workflows, can simplify the process of building and deploying integrative simulation systems like

DANUBIA, thereby making them more accessible to non-technical users.

The research by Ramos et al. (2010) focuses on the development and utilization of Unmanned Aerial

Vehicles (UAVs) and their potential to perform various tasks with reduced risk compared to conventional

manned aircraft. This technological advancement has brought economic benefits to sectors such as

agriculture, energy, public safety, and telecommunication by offering cost-effective operations, improved

maintenance, and enhanced safety measures.

In the context of precision agriculture, UAVs can be used for tasks such as crop monitoring, disease

detection, and yield estimation. In Brazil, the Véıculo Aéreo Não Tripulado (VANT) Project, led by

the Air Force, Army, and Navy under the Department of Defense, aims to develop a UAV for multiple

applications. The Brazilian Aeronautics Institute of Technology (Instituto Tecnológico de Aeronáutica

- ITA) has played a significant role in this project through its Software Engineering Research Group,

focusing on the development of a Preliminary Testing Monitoring Station (PTMS) known as Estação

de Monitoramento de Ensaios Preliminares (EMEP). The PTMS plays an important role in the overall

success of the VANT Project. This paper highlights the major contribution of adopting a comprehensive

development life-cycle approach, leveraging state-of-the-art practices such as System Engineering, Ra-

tional Unified Process (RUP), Military Standards, Model-Driven Development (MDD), and Integrated

Computer-Aided Software Engineering (I-CASE-E) tools. By embracing these modern approaches, the

development of the Unmanned Aircraft System (UAS) has been achieved with timely integration and ad-

herence to the specified requirements. Enhancing accessibility and democratization in UAV development

is an important aspect that can be further improved. The utilization of low-code platforms offers the

possibility of simplifying and accelerating the development process even more, allowing a broader range of

stakeholders with varying technical backgrounds to contribute to the development of UAV systems. The

application of low-code platforms in the development of the VANT Project can enhance accessibility and

democratization, enabling a more inclusive and collaborative environment for stakeholders involved in
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UAV development. Low-code platforms, with their visual development interfaces and automated testing

capabilities, can simplify the process of developing and deploying UAV systems.

3.7.7 Comprehensive Analysis of Low-Code Platform Services in Precision Agriculture

After examining the various cases presented in the preceding subsections, we can deduce the significant

role low-code platforms can play in improving precision agriculture. These cases underscore the im-

portance of services such as data collection, data analysis, decision support, and system integration in

the context of precision agriculture. Furthermore, they show how low-code platforms can democratize

precision agriculture by making it more accessible to farmers with varying levels of technical expertise.

The ability of low-code platforms to facilitate data collection and analysis is particularly noteworthy.

Precision agriculture heavily relies on data to make informed decisions about various aspects of farming

operations. Low-code platforms can simplify the process of developing applications for data collection

and analysis, enabling farmers to harness the power of data in their operations more effectively. This can

lead to increased efficiency and productivity, which are key objectives of precision agriculture.

Another crucial point that emerges from these cases is the emphasis on system integration. Precision

agriculture often involves the use of various technologies, such as sensors, drones, and satellite imagery.

Low-code platforms can improve the integration of these technologies, enabling them to work together

seamlessly. This can create better effectiveness of precision agriculture operations, leading to better

outcomes.

The consistency in the findings from these diverse cases is significant, as it provides a strong basis for

further research and development in this area. It suggests that the potential benefits of low-code platforms

in precision agriculture are widely recognized, providing a strong incentive for further exploration of

this technology. Moreover, the identification of common challenges provides a clear direction for future

research aimed at overcoming these obstacles.

In conclusion, the analysis of the various cases reveals a strong consensus regarding the potential

benefits and challenges of low-code platforms in precision agriculture. This consensus provides a solid

foundation for further research and development in this area, with the ultimate goal of harnessing the

full potential of low-code platforms to enhance the efficiency and productivity of precision agriculture.

3.8 Research Question 3 (RQ3): which low-code platform fits better solutions

with the model-based approaches on their usage to optimize precision

agriculture?

3.8.1 Introduction to RQ3:

The current surge in the market for low-code platforms (LCP) is a phenomenon that has been substan-

tiated by big projections and concrete investment figures Tzounis et al. (2017). The question that arises

is why this phenomenon is occurring at this particular moment in history.

Historically, the concept of elevating the level of abstraction was considered the next step in software

development, dating back to the first looks of Computer-Aided Software Engineering (CASE) tools in

1991 Tisi et al. (n.d.). This indicates that over the past three decades, there have been numerous attempts

to achieve this goal. So, what makes the current situation different?

It appears that vendors have realized that by using a term more familiar to developers, such as

’coding’ instead of ’modeling’, they could positively alter user perceptions. This approach appeals to both

professional developers and those unfamiliar with coding, as the term ’low-code’ seems more attractive
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and less confusing than ’model-driven development’ Vincent et al. (2018).

Even though the adoption of the term ’low-code’ has drawn attention to this trend, it remains unclear

how to compare different vendors in a field that is still evolving. If we consider the basic aspects that

low-code should encompass, such as the use of tools to dramatically reduce the amount of code that needs

to be written to develop software, all vendors using the term are meeting this requirement in various ways

Bergerman et al. (2016). However, when we delve deeper into the characteristics that low-code should

possess to serve as an alternative to traditional coding practices, the path becomes more complex Whittle

et al. (2013).

The lack of a clear conceptualization of LCPs is a significant motivation for conducting an exploratory

study. However, without such a conceptualization, selecting platforms for comparison becomes a delicate

task Wu et al. (2019). The absence of a clear concept for what low-code represents limits the methods

available to analyze it. In this research, we are using the method proposed by Frank (2021) with slight

modifications to facilitate a simpler comparison of specific platforms that may be of interest for precision

agriculture Nikkilä et al. (2010).

3.8.2 Analysis of Low-Code Platforms for Precision Agriculture:

It’s important to note that the selection of the best low-code platform for Process Automation (PA) in

precision agriculture depends on several factors, including the specific needs of the farm, the complexity

of the operations, the technical expertise of the users, and the resources available Tan et al. (2012b).

Low-code platforms vary in their features and capabilities. Some platforms are designed for simplicity

and ease of use, making them suitable for users with limited technical expertise. These platforms provide

a visual interface where users can drag and drop components to create applications, reducing the need

for extensive coding Ghandar et al. (2018).

Other platforms are more advanced, offering a wide range of features for data collection, data analysis,

decision support, and system integration. These platforms may require more technical expertise to use,

but they can provide more flexibility and control over the applications Yao et al. (2020).

In the context of precision agriculture, a low-code platform that supports the integration of various

technologies, such as sensors, drones, and satellite imagery, would be highly beneficial. This would allow

for the collection of data from different sources, providing a comprehensive view of the farm Hong et al.

(2016).

Additionally, a platform that supports advanced data analysis techniques, such as machine learning

and predictive modeling, would be advantageous. This would enable the development of applications

that can analyze the collected data and make predictions about future outcomes, such as crop yields and

disease outbreaks Sharma et al. (2021).

A low-code platform that provides decision support would also be valuable. By integrating data

collection and analysis, the platform could help farmers make informed decisions about various aspects

of their operations, such as when to plant, how much fertilizer to use, and when to harvest Manjula &

Narsimha (2015).

In terms of resources, a low-code platform that is cost effective and requires minimal hardware would

be preferable. This would make the platform more accessible to small and medium-sized farms, which

may have limited resources Toyama & Yamamoto (2009).

In conclusion, the best low-code platform for Process Automation (PA) in precision agriculture would

be one that meets the specific needs of the farm, supports the integration of various technologies, provides

advanced data analysis capabilities, offers decision support, and is cost-effective and resource-efficient.
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However, it should be noted that the selection of the best platform also depends on the specific circum-

stances of the farm, including the complexity of the operations, the technical expertise of the users, and

the resources available Kassim & Abdullah (2012).

Despite these considerations, the potential benefits of low-code platforms in precision agriculture are

significant. As such, further research and development in this area are warranted to identify the best

platforms and maximize their benefits Jain et al. (2021).

3.8.3 Overview of Specific Low-Code Platforms:

Aurea BPM: This tool provides extensive support for modeling, automation, managing, and optimizing

business processes Barriga et al. (2021). It has been used in manufacturing, demonstrating its potential

for complex, industrial applications Barriga et al. (2021); Aurea BPM (n.d.).

Kissflow: A cloud-based workflow automation software platform that can help users automate business

processes Florin & Florin (2020); Kissflow (n.d.). Its cloud-based nature could be beneficial for precision

agriculture, where data is often collected from various sources and needs to be accessible from different

locations.

Now Platform by ServiceNow: This low-code platform is used for workflow automation Daniela et al.

(2020); Now Platform by ServiceNow (n.d.). ServiceNow’s interpretation of how best to deliver low-code

workflow automation could be relevant for precision agriculture, where workflows can be complex and

involve multiple steps and stakeholders.

OutSystems: OutSystems is a low-code platform that has been recognized for its strong all-around

capabilities, including in data management, mobile application development, and customer experience

Alulema et al. (2020); OutSystems (n.d.). These capabilities could be beneficial in precision agriculture,

where data management is crucial, and applications often need to be accessible on mobile devices in the

field.

Mendix: Mendix is a low-code platform known for its strong integration capabilities and comprehensive

development environment Wijekoon et al. (2020); Mendix (n.d.). These features could be particularly

useful in precision agriculture, where integration with various technologies (e.g., sensors, drones, satellite

imagery) is often required.

Appian: Appian is a low-code platform that combines process management, data management, and

collaboration in a single platform Rio et al. (2019); Appian (n.d.). This combination could be beneficial

in precision agriculture, where these aspects are often intertwined.

Microsoft Power Apps: This platform allows users to build professional-grade apps with a low-code

approach Plazas et al. (2019); Microsoft Power Apps (n.d.). Its integration with other Microsoft products

could be beneficial for farms that already use these products.

Zoho Creator: This platform offers a balance between ease of use (with drag-and-drop interfaces and

pre-built templates) and powerful functionality (with features like script builder for custom logic and

integration with other Zoho apps) He et al. (2019); Zoho Creator (n.d.).

Quick Base: Quick Base is known for its user-friendly interface and powerful functionality, including

the ability to build custom applications and automate workflows Borowski (2019); Quick Base (n.d.).

Betty Blocks: This platform stands out for its focus on citizen development, allowing non-technical

users to build applications Zečević et al. (2018); Betty Blocks (n.d.). This could be beneficial in precision

agriculture, where farmers and other stakeholders may not have extensive technical expertise.

In conclusion, the best low-code platform for PA in precision agriculture depends on the specific needs
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and resources of the farm. Factors to consider include the complexity of the workflows to be automated,

the need for integration with other technologies, the technical expertise of the users, and the resources

available for implementing and maintaining the platform. Therefore, a careful evaluation of these factors

is necessary to select the most suitable platform Muccini et al. (2018).

3.9 Research Question 4 (RQ4): What are the critical steps involved in

developing a low-code system based on the model-based approach in

precision agriculture?

3.9.1 Understanding the Developer Categories and Their Needs

The construction of a software system needs to follow certain steps to guarantee the best outcomes.

Traditional code development follows a sequential process that involves various stages, such as requirement

gathering, design, implementation, testing, and deployment. However, with the emergence of low-code

development platforms, the development process has undergone a paradigm shift, enabling developers to

create software applications more efficiently and rapidly.

In the context of Moisescu et al. (2017), low-code development can play a significant role in enhancing

the development of complex precision agriculture systems, specifically in the realm of Cyber-Physical

Systems of Systems. By leveraging low-code platforms, developers can enhance the design and imple-

mentation phases, accelerating the development of integrated systems that combine physical and virtual

environments.

In the domain of precision agriculture, low-code development can offer several advantages. It allows

the integration of sensor networks, intelligent machines, actuators, and processes, fostering seamless com-

munication and data exchange between components. Low-code platforms provide pre-built components,

modules, and frameworks that facilitate the rapid development of complex architectures, such as the pro-

posed Agricultural Enterprise System Architecture. Developers can use these platforms to quickly design

and implement automated processes, by using the principles and methodologies offered by Cyber-Physical

Systems. Moisescu et al. (2017).

In the realm of low-code development, there are two distinct groups: professional developers and

citizen developers. Professional developers are those who are trained or possess knowledge in coding

languages and traditional development steps due to their technical training and experience. On the other

hand, citizen developers might not have extensive coding or software development expertise, but they

bring to the table a deep understanding of specific topics or applications due to their firsthand experience.

A prime example of a citizen developer can be found in the field of precision agriculture. Consider

a farmer who is aiming to automate farm processes. Despite not having formal coding training, the

farmer’s intimate knowledge of the farm’s needs and operations makes them an effective developer in this

context. This is where low-code development platforms come into play, providing an accessible tool for

these citizen developers to create applications tailored to their specific needs.

To illustrate this, let’s take the case of Senegal’s agricultural sector, as described by Racine Ly et

al. (2021). In Senegal, agriculture is a crucial economic sector, but it faces numerous challenges such as

insect attacks, plant diseases, and varying soil conditions. Despite these challenges, there is a shortage of

agricultural engineers to advise and help farmers due to the limited number of agricultural engineering

schools. This is where citizen developers, such as the farmers themselves, can step in. With the aid

of a low-code platform, they can develop a system that uses IoT devices to monitor field conditions in

real-time, providing valuable data for decision-making.

In this scenario, the low-code platform serves as a bridge between the professional developers who

built the platform and the citizen developers (the farmers) who use it to address their specific needs.
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The platform allows the farmers to leverage their firsthand knowledge of their fields to create a system

that provides real-time data, which can then be used by agricultural engineers for efficient and effective

decision-making.

Therefore, it’s important for low-code development platforms to accommodate the needs of both

professional and citizen developers. By doing so, they empower individuals with varying levels of technical

expertise to create solutions that address specific needs, ultimately driving innovation and efficiency in

sectors like precision agriculture. Racine Ly et al. (2021).

Professional developers regard low-code platforms as an advanced toolbox that increases efficiency

and optimizes resource use, building upon their existing knowledge. They anticipate that the low-code

platform will provide them with the essential tools and features to improve their development process. In

contrast, citizen developers, such as those involved in the ”Research and Application of Teaching Model

Reform and Application of Electrical Automation Technology in Higher Vocational Education Driven

by Real Agricultural Application” project at Shandong Electric Engineering College, are in pursuit of

a user-friendly and practical interface. This interface should enable them to attain outcomes similar

to those achieved with traditional software development tools and coding languages. They necessitate a

platform that is straightforward and comprehensible, allowing them to effectively achieve their objectives.

The project at Shandong Electric Engineering College exemplifies this need, as it employs a new talent

training model for automation technology, driven by real-world applications and centered on the student.

This approach has proven effective in practice, demonstrating the potential of low-code platforms to meet

the needs of both professional and citizen developers in diverse fields. M. Liu & Yao (2021).

In order to ensure optimal results in software system development, it is important to clearly define

the stages that low-code developers must follow. This involves a detailed examination of how these

stages differ from the steps involved in traditional code development. For instance, while the traditional

approach often requires a deep understanding of complex programming languages, low-code development

can be more accessible, allowing developers to create applications using intuitive, visual interfaces.

In modern agricultural equipment research, as exemplified by the electronic and information engineer-

ing specialty at South China Agricultural University, a characteristic course system was established. This

system includes platforms and modules that cater to the needs of both professional and citizen developers.

For professional developers, the system provides technical sub-platforms that serve as advanced toolboxes,

enhancing efficiency and resource utilization. These sub-platforms leverage their existing knowledge and

provide them with the necessary tools and features to optimize their development process.

On the other hand, for citizen developers, such as those involved in the agricultural machinery in-

telligent navigation technology, agricultural remote sensing, and the agricultural internet-of-things, the

system offers specialized elective courses. These courses are designed to be user-friendly and practical,

enabling citizen developers to achieve results comparable to those achieved using traditional software

development tools and coding languages. They require a platform that is easy to understand and use,

enabling them to effectively accomplish their goals.

In essence, low-code development platforms can cater to the specific requirements of both professional

and citizen developers, providing them with the necessary tools and resources to effectively contribute to

the development of modern agricultural equipment. This approach not only enhances the efficiency of the

development process but also inspires the enthusiasm of developers to serve the “three rural areas”, and

rural people, thereby providing a new talent cultivation mode in the domestic agricultural engineering

discipline development. Lyu et al. (2019).

3.9.2 Requirement Analysis and Feasibility

The first step in both low-code and traditional software development is the analysis of requirements and

feasibility. Stakeholders, such as farmers or agricultural organizations, provide a set of requirements,
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which the developer then evaluates to determine if they are achievable. This is a critical step for any

development project, be it a product, solution, or service, as it lays the foundation for the development

request and guides the creation of the final solution.

In agricultural countries, where the industry has significant impacts on world hunger, poverty, and

climate change, the development of software applications with features such as price forecasting can

be really relevant. For instance, a proposed application designed to assist farmers in having better

market knowledge and maximizing their profit would require a thorough analysis of requirements and

feasibility.Yuan & Ling (2020).

To exemplify this process, consider a farmer’s scenario. Their specific needs might encompass reg-

ular comprehensive system monitoring reports and pinpointing areas that necessitate more frequent

surveillance. The analysis of these needs can be undertaken similarly in both low-code and traditional

methodologies. However, a distinctive advantage of the low-code approach is the manner in which the

client can communicate their requirements.

Drawing from Wilson et al. (2019), this process could be further improved by a user needs-driven

knowledge management system, as seen in the mobile-based solution described in the study. This system

could capture the farmer’s specific needs and preferences through participatory sensing, creating an

up-to-date knowledge base. The use of natural language processing and ontology theories could help

in understanding and structuring these requirements, making them more accessible and actionable for

developers. This approach could ensure that the final solution is not only technically feasible but also

closely aligned with the user’s needs, thereby improving its effectiveness and usability in the agricultural

context.

These technologies simplify communication between the client and developer, improve the accuracy

of translating requirements into code, and facilitate knowledge sharing and reuse in the development

process.

In traditional methodologies, the client usually provides a list of requirements or discusses them in

a meeting. However, with low-code, the client can directly input their requirements into a Low-Code

Development Platform (LCDP). This approach allows the communication processes between the client

and the developer, as they are both using the same platform. It eliminates the hurdles associated with

translating requirements from verbal or written instructions into coding language and then interpreting

the resulting code back to the client.

Incorporating insights from Bonacin et al. (2013), this process could be further enriched by employing

a web ontology to represent key aspects of the problem. This could lay the basis for computational

mechanisms that increase knowledge sharing and recovery, such as semantic search, text mining, and

visualization techniques. These tools could assist in comprehending and structuring the requirements,

making them more accessible and actionable for the developers. Moreover, they could facilitate the reuse

and integration of information, addressing some limitations and challenges encountered in the ontology

engineering process.

The low-code approach, specifically its capability to visually represent requirements on a functional

system, can simplify the developer’s tasks and enhance collaboration. This method allows developers

to see the requirements in a functional format, which simplifies their job as they only need to adjust

existing functions to improve efficiency, rather than starting from scratch. This visual representation of

the requirements facilitates easier collaboration between the developer and the client, ensuring that the

final solution aligns with the client’s needs.

Moreover, the insights gained from Ghandar et al. (2019) regarding a modeling framework for urban

agriculture and a decision support system for coordinating decentralized urban agricultural production

units contribute to the overall discussion and provide added value. The proposed framework and decision

support system highlights the potential of low-code platforms in managing complex, decentralized systems
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like urban agriculture. This aligns with the low-code approach’s emphasis on simplifying complex tasks

and creating better efficiency terms.

In urban agriculture, a low-code platform could potentially be used to visually represent and manage

the various components of the system, such as different production units, supply chains, and resource

allocation. This would allow for easier coordination and decision-making, ultimately leading to more

efficient and sustainable urban agricultural practices. This example illustrates the potential of low-code

platforms in addressing complex, real-world challenges, further underscoring the value of the low-code

approach in software development.

Overall, while the analysis of requirements and feasibility is a crucial step in both low-code and

traditional software development, the low-code approach offers the benefits of streamlined communication

and visual representation of requirements. These advantages contribute to a more efficient and effective

development process Po Shun Chen & Wu Liu (2021).

3.9.3 Data Modeling

When talking of low-code development, the next step after initial development is data modeling. This

phase involves creating a simplified diagram that represents the software system and its data components.

The diagram uses a combination of text and symbols to visually depict how data flows within the system.

Data models serve as a blueprint for designing a new database or restructuring an already existing

application.

To exemplify this, let’s consider the FieldTouch agricultural information service platform, an innova-

tive decision support service based on a multi-scale sensor platform. FieldTouch integrates multi-scale

sensor data for field monitoring and provides functionality for recording agricultural practices. This

data is then modeled and visualized in a user-friendly interface, allowing farmers to make informed de-

cisions based on real-time information from their fields. The data model in this case encapsulates not

just the software system, but also the real-world agricultural data it is designed to process. This exam-

ple illustrates how data modeling in low-code development can be used to create powerful, user-centric

applications that meet specific needs in various sectors, such as agricultureHonda et al. (2014).

With the use of Low-Code Development Platforms (LCDPs), the diagram can be constructed in a

more functional manner. This means that while the diagram is being created, the functions that the final

product should include can be added at the same time. This approach results in a more efficient model

that doesn’t rely on assumptions about data processing.

For instance, for smart irrigation systems, as mentioned by Malheiro et al. (2019), complex mathe-

matical models are developed and programmed to achieve efficient water usage. These models, which can

be represented in a simplified diagram on an LCDP, can be enhanced with additional functions related

to evapotranspiration, soil moisture, and water infiltration. These functions can be added concurrently

as the diagram is being created, allowing for a more comprehensive and efficient model. This approach

not only provides the development process but also ensures that the final product is more accurately

tailored to the specific needs of the irrigation system, thereby improving water efficiency. Data modeling

in low-code development enhances efficiency and ensures that the final product aligns with the intended

functionality by providing a visual representation of the software system and its data elements. This

visual representation allows for the integration of necessary functions during the design phase, which

contributes to the overall efficiency of the development process.

For instance, consider the development of an automatic driving system for agricultural machinery, as

mentioned in Y. Shi et al. (2019). During the design phase, a coaxial angular displacement measuring

device and a GNSS/INS/vehicle combination navigation method can be integrated into the data model.

These functions, represented visually in the model, contribute to the system’s machine matching and en-

vironmental adaptability. This means that the system can adapt to different machines and environments,
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enhancing its overall functionality and usability.

Furthermore, the inclusion of a human-computer interaction interface in the data model simplifies

operation and reduces the workload of agricultural mechanics. This interface allows users to interact with

the system more easily and intuitively, reducing the need for extensive training or technical knowledge.

3.9.4 User interface design

According to Malheiro et al. (2019), the third step of the Lifecycle Data Processing (LCDP) methodology

involves designing the user interface. This step is comparable to planning educational experiences for

students that raise awareness about climate change and water conservation. The goal of user interface

design in LCDP is to create an interactive platform that meets the users’ needs. This process entails using

the functional model derived from data modeling to develop a preliminary functional code that requires

user interaction. For example, in the development of smart irrigation systems, a user-friendly interface

is essential for users to comprehend and interact with complex mathematical models. This design is

similar to the application design in traditional software development, where the developer constructs an

architecture to implement functions based on prior planning. Just as students must understand and

engage with experiments, stakeholders must validate this architecture, assuming it will work flawlessly.

The advantage of user interface design is the ability to observe these functions in action during the

architecture-building process and their interaction with the user. This parallels how students can grasp

concepts like soil differences, evapotranspiration, soil moisture, water infiltration in the soil, and water

efficiency through simple experiments.

3.9.5 Implementation of Business Logic and Integration of External Services

The fourth and fifth stages in low-code development, namely the implementation of business logic and

the integration of external services, can be executed concurrently. This process can be visualized as

establishing connections or ’wiring’ that links the software and the user interface (UI) to the specific

conditions of the end user. The business logic is a critical component of the program that encodes

real-world business rules, determining how data can be created, stored, and modified. This aspect of

the program is distinct from other parts of the software that may deal with lower-level details such as

managing a database, displaying the user interface, system infrastructure, or generally connecting various

parts of the program. The integration of external services is a process that leverages all the tools already

deployed within the company, and supplements any missing ones, to optimize the performance of the

software Kallioniemi et al. (2012).

3.9.6 Testing and Deployment

In the sixth phase of low-code development, the traditional stages of software development, testing, and

deployment are ingeniously integrated. The testing stage is crucial, as it is where any product defects are

identified, tracked, fixed, and retested until the product meets the quality standards established during

the requirements gathering phase. Deployment, on the other hand, is a process that unfolds in stages, as

dictated by the organization’s business strategy. Initially, the product may be released within a limited

segment and subjected to testing within a real business environment.

What distinguishes the low-code approach is the ability to perform these two steps simultaneously.

This is made possible by the Lifecycle Data Processing (LCDP) interface, which facilitates continuous

testing and debugging during the software creation and deployment process. This simultaneous approach

not only enhances efficiency but also ensures a higher level of product quality and reliability.

From Niu et al. (2016), this process could be likened to the event-driven prediction model used in stock
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market forecasting. Just as this model extracts relevant information from news articles and historical

price data to predict stock prices, the LCDP interface in low-code development continuously extracts and

utilizes feedback from the testing and deployment stages to refine the software product. This ensures

that the final product is not only efficient and reliable, but also accurately meets the user’s needs and

expectations.

3.9.7 Maintenance and Continuous Improvement

Drawing from the concept of “Internet + agriculture” Aiwen (2021), the seventh stage of the process,

known as Lifecycle Data Processing (LCDP), ensures the highest quality and adaptability of the software

through a continuous cycle of customer feedback and the incorporation of new features over time. The

LCDP platform, much like an Internet of Things (IoT) system in agriculture, facilitates consistent com-

munication with the customer, enabling the tracking of functions and customization of potential tools.

This is akin to how IoT in agriculture allows for real-time monitoring and decision-making based on

collected data.

Just as IoT-based smart agriculture can transform fields into communicative entities, the LCDP

approach allows for the software to be adaptable and responsive to the user’s needs. This is achieved by

providing the opportunity to make adjustments based on any modifications in requirements indicated by

the farmer or client after the initial deployment. This continuous feedback loop ensures that the software

remains relevant and useful in the ever-evolving context of the user’s needs.

In conclusion, the low-code development approach, as exemplified by the LCDP methodology, offers

a streamlined, efficient, and user-friendly alternative to traditional software development. By enabling

concurrent stages, continuous testing, and direct customer feedback, it ensures a higher level of product

quality, adaptability, and customer satisfaction.

3.10 Research Question 5 (RQ5): What challenges are associated with imple-

menting model-based approaches that could encourage low-code tech-

nology in precision agriculture?

The emergence of low-code platforms has revolutionized the software development landscape, offering a

simplified, user-friendly approach to building applications. However, when applied to precision agricul-

ture, these platforms face a large amount of challenges that need to be addressed to fully harness their

potential.

One of the primary concerns is the scalability of low-code platforms. As discussed by Moisescu et al.

(2017), precision agriculture systems are complex, often requiring the integration of physical and virtual

environments. The scalability of low-code platforms is often met with skepticism, as they are not designed

to handle such complexity. This is further compounded by the need for real-time data processing and

analysis, which is critical in precision agriculture Racine Ly et al. (2021).

The limitations of low-code platforms in supporting dynamic event handling are another significant

challenge. M. Liu & Yao (2021) and Lyu et al. (2019) highlight the need for dynamic content display,

dynamic form controller, and dynamic content binding in precision agriculture. These requirements are

often not fully supported by low-code platforms, thereby limiting their applicability.

The adoption of low-code platforms in precision agriculture also raises issues related to platform

adoption, including access control and security, client-server communication, and I/O, as well as cloud

and on-premise confirmation Yuan & Ling (2020). These issues can pose significant barriers to the

widespread adoption of low-code platforms in precision agriculture.
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Data management is another challenge. Precision agriculture involves the collection, storage, and

analysis of large volumes of data. Low-code platforms often struggle with SQL CRUD operations, data

storage and migration, and entity relationship management Wilson et al. (2019). This can limit their

effectiveness in managing the large amounts of data generated in precision agriculture.

Integration with third-party services is also a significant consideration. As shown by Bonacin et al.

(2013), integrating different platforms for low-code development can present technical challenges. This is

particularly relevant in precision agriculture, where data from various sources, such as weather stations,

soil sensors, and satellite images, need to be integrated for effective decision-making Ghandar et al. (2019).

The need for scalable reactive model transformations in low-code platforms is another challenge. As

discussed by Po Shun Chen & Wu Liu (2021), these transformations must be able to quickly respond to

platform events, such as updating derived views of the model due to changes. However, if numerous events

occur concurrently and the transformation actions are time-consuming tasks, processing congestion can

quickly arise, hindering platform performance.

Finally, the exponential increase in devices in IoT-based systems presents several challenges. As

discussed by Honda et al. (2014), every node in an IoT network transmits data to the remote cloud,

resulting in cloud congestion. The main challenges in IoT-based systems include minimizing latency with

low power requirements, optimizing bandwidth usage, and dealing with intermittent internet connectivity.

These issues need to be addressed to effectively leverage IoT in precision agriculture using low-code

platforms Malheiro et al. (2019); Y. Shi et al. (2019).

In conclusion, while low-code platforms offer a promising approach to software development in pre-

cision agriculture, several challenges need to be addressed. These include scalability, dynamic event

handling, platform adoption, data management, integration with third-party services, and the need for

scalable reactive model transformations. Addressing these challenges will be crucial in harnessing the full

potential of low-code platforms in precision agriculture.

4 Comparative Analysis of Node-RED and Python Implemen-

tations for Irrigation Control in Precision Agriculture

This section presents a comparative analysis of two implementations of an irrigation control system in

precision agriculture that provides a more visual and tangible way to answer the five previous research

questions, one using Node-RED, a low-code platform, and the other using Python, a high-level program-

ming language. The relevance of this comparison lies in the growing interest in low-code solutions in

precision agriculture, particularly among farmers with limited coding experience. The irrigation control

system serves as a practical example of a common task in precision agriculture that can benefit from

automation.

4.1 Methodology

The comparison is conducted by the parallel development of the irrigation control system utilizing both

Node-RED and Python. The central objective of the system is to supervise soil moisture levels and

trigger the irrigation system once the moisture level dips beneath a specified threshold. Both these

implementations make use of simulated sensor data to replicate the real-world functioning of such a

system.

The logical underpinnings of the code have been designed with the intent of maintaining a significant

degree of similarity across both implementations. This ensures that the comparison is devoid of any

extraneous variability and remains as equitable as possible. to maintain a quantitative possibility for
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measuring the time of development, a 1-hour maximum time was set from starting to code to deployment.

In the following sections, readers will be guided through the steps employed in the deployment of both

these simulations. After that, a detailed analysis comparing the advantages and disadvantages of each

implementation will be furnished. The study endeavors to evaluate these two strategies through the lens

of precision agriculture, considering their effectiveness, efficiency, and ease of use, particularly for those

with limited coding expertise.

4.2 Node-Red simulation design

The successful operation of an agricultural monitoring and control system is often predicated on the

processing of sensor data. However, in the early stages of system development, it is imperative to

establish and test system functionalities using simulated data prior to the deployment in a real-world

context. Node-RED provides a robust and intuitive infrastructure for simulating sensor data using its

Inject and Function nodes.

The preliminary stage of the simulation process involves the integration of an Inject node into the

system’s flow. This is efficiently accomplished by selecting the Inject node from the palette and dragging

it into the canvas. Upon its addition to the flow, customization of the Inject node is paramount to defining

the rhythm of the system simulation. By double-clicking the node, the user can access the settings and

set the node to auto-inject data at a specified interval, in this instance, every 20 seconds. This cyclic

data injection simulates the periodic acquisition of data from physical sensors in a real-world agricultural

monitoring scenario.

With the automated Inject node established, it must be connected to a Function node for the genera-

tion of simulated sensor data. This connection models the typical data flow from a sensor to a processing

unit in a physical system. In the Function node, programmatic rules can be defined to generate simulated

sensor data; in this particular context, temperature and humidity levels for both air and soil are being

generated.

The simulation code provided within the Function node harnesses JavaScript’s Math library to gen-

erate random temperature values ranging between 5 and 35 degrees Celsius, and humidity values ranging

from 30 to 100 percent. This random data generation technique provides a diverse set of data points,

adequately mimicking the variability of real-world sensor readings.

1

2 msg.payload = {

3 air: {

4 temperature: Math.floor(Math.random () * (35 - 5 + 1)) + 5,

5 humidity: Math.floor(Math.random () * (100 - 30 + 1)) + 30

6 },

7 soil: {

8 temperature: Math.floor(Math.random () * (35 - 5 + 1)) + 5,

9 humidity: Math.floor(Math.random () * (100 - 30 + 1)) + 30

10 }

11 };

12 return msg;

In the creation of an agri-tech solution, such as an automated irrigation and ventilation system, it is

crucial to have an effective decision-making mechanism in place. This logic determines when to activate

the system based on the input sensor data, thus ensuring the optimum conditions for plant growth are

maintained. With Node-RED, such control logic can be encoded using a Function node.

Following the creation and connection of the previous Function node, which generates the simulated

sensor data, the next step entails adding another Function node to the flow. This node will be responsible

for processing the input data and making corresponding decisions.
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The connection between these Function nodes symbolizes the flow of data from the data generation

stage to the decision-making stage. This chain of nodes emulates the real-world scenario where the data

acquired from sensors would be processed by a control system to make informed decisions.

Inside this new Function node, a set of conditional statements are defined. The conditions are based

on the logic required for the greenhouse environment control. In the context of this particular application,

the decision to activate the irrigation and ventilation system is driven by the temperature and humidity

levels of the air and soil.

For instance, if the soil humidity drops below 50 percent and the air temperature rises above 30

degrees Celsius, the system will be activated, as per the stipulated conditions in the Function node. If

these conditions are not met, the system remains inactive. This intelligent decision-making process helps

maintain the environmental parameters within their optimum ranges, thereby promoting the healthy

growth of crops.

1

2 if (msg.payload.soil.humidity < 50 && msg.payload.air.temperature > 30) {

3 msg.payload.action = "Activate irrigation and ventilation system ";

4 } else {

5 msg.payload.action = "No action needed ";

6 }

7 return msg;

The implementation of an effective and easily interpreted user interface is a crucial factor for ensuring

optimal user engagement and seamless navigability, particularly for users possessing limited programmatic

proficiency, such as agricultural practitioners. The visual programming tool Node-RED facilitates this

process via the use of its integral Dashboard nodes.

The initial stage of this procedure requires the integration of Node-RED’s Dashboard nodes, if these

have not been pre-installed in the Node-RED environment. This installation procedure is efficiently exe-

cuted by selecting the ’Manage palette’ option found within the dropdown menu, commonly known as the

hamburger menu, located at the upper right corner of the Node-RED interface, and subsequently search-

ing for ’node-red-dashboard’ within the Install tab. This action readies Node-RED for the development

of a dynamic and interactive dashboard.

Upon successful installation of the Dashboard nodes, the creation of a real-time and visually rich data

display becomes feasible using the Gauge nodes. Each sensor datum – encompassing air temperature, air

humidity, soil temperature, and soil humidity – is represented by a Gauge node that is added to the flow

via a simple drag and drop operation. The Gauge nodes are then connected to the output of the Function

node, previously designated for simulating sensor data. By accessing the settings of each Gauge node,

the values can be precisely mapped to correspond with their respective sensor data, ensuring accurate

and visually compelling data representation.

To explicitly communicate the operational actions of the system to the user, a Text node is incorpo-

rated into the flow. This node, connected to the output of the decision-making logic Function node, is

configured to exhibit the current action of the system as determined by the logical conditions. This con-

tributes to an enhanced system transparency, offering the user immediate comprehension of the system’s

current state without the need to interpret lines of code or parse system logs.

To allow direct control over system operations by the user, a Button node is integrated into the

dashboard, designed to manually trigger the irrigation system. The Button node adds an essential

layer of interactivity to the system, accommodating user intervention when immediate adjustments are

necessary. This node is inserted into the flow and connected to a Function node, which, when activated,

generates a specific command indicating the manual activation of the irrigation system., add the following

code:

1 msg.payload = {

2 action: "Manually activated irrigation system"
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3 };

4 return msg;

Continuing the Node-RED setup, the output port of the decision-making Function node is linked to

the input port of a text display node. This connectivity ensures that the resultant actions determined by

the decision-making logic are clearly communicated in the user interface.

After the development and linking of the necessary nodes in the flow, the next stage encompasses the

deployment of the overall logic. This process is accomplished by clicking the ’Deploy’ button, situated

in the top right corner of the Node-RED interface. The act of deploying the flow corresponds to both

preserving and executing the created flow. As a result, the simulation commences, and the data flow

mimics the real-world data transmission from sensors to the control system.

Post-deployment, the user interface (UI), which visually represents the data and decisions, can be

accessed. By navigating to http://localhost:1880/ui in a web browser, users can interact with the inter-

face. The UI reflects the current temperature and humidity data, both of the air and soil, along with the

corresponding system action. As such, users receive real-time feedback, enabling them to monitor the

greenhouse environment effectively.

This simulation provides a demonstration of how Node-RED, as a low-code platform, can be utilized

by farmers to control and oversee the conditions within their greenhouses. By representing complex

data and control systems visually, Node-RED allows users, even those with limited coding experience, to

leverage advanced technology for agriculture.

The interactive nature of the UI, including the provision of manual activation for the irrigation system,

empowers farmers with immediate control over their systems. Thus, Node-RED serves as a powerful tool

in the integration of technology with agriculture, offering intuitive control over the environment.

4.3 Python simulation design

In the Python-based implementation, we develop a minimalist web server utilizing the Flask framework,

a lightweight web application framework written in Python. This server is responsible for visualizing the

current sensor data and the associated system response. The script runs a loop to update the sensor

data every 20 seconds, aided by the use of a background thread. The updated data can be accessed by

navigating to http://localhost:5000 on a web browser.

4.4 Code Elaboration

The Flask application is initiated. Following that, an initial setup for sensor data is defined with values

for air and soil temperature and humidity, along with an action indicating whether any remedial measures

need to be taken.

In the function, update sensor data an infinite loop generates random sensor data mimicking the

environmental conditions within the agricultural setting. The data includes air and soil temperature,

along with humidity levels, generated using the random.randint() function. Subsequently, the script

checks these generated values to determine whether conditions warrant the activation of the irrigation

and ventilation system. If the soil’s humidity is below 50 percent and the air temperature exceeds 30°C,
the system action is updated to ’Activate irrigation and ventilation system’; otherwise, it maintains its

default state of ’No action needed’. The loop then pauses for 20 seconds with time.sleep(20) before

initiating the next data update cycle.

In the home function, we define a route at the home page of our web server. Using Flask’s render

template string function, HTML content is dynamically generated to display the current sensor data and
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system action. A button element provides the option to manually refresh the displayed data, accomplished

via JavaScript’s location reload function, which refreshes the entire page.

In the script’s main section, a new thread is initiated using the threading. This ensures that the

sensor data updates every 20 seconds without interfering with the main application thread. The Flask

web server is then activated using app run (debug=True), with the debug mode enabled for tracking

potential errors.

Overall, the Python implementation provides an example of using a high-level language to create

a web-based interface for monitoring and controlling an agricultural environment. It demonstrates the

flexibility and control that comes with traditional programming but requires a substantial degree of

coding proficiency.

It is imperative to highlight that the Python script illustrated herein does not encompass a func-

tionality to manually activate the irrigation system, a feature present in the Node-RED demonstration.

Integrating such a manual control feature necessitates the development of a more sophisticated web inter-

face, which entails employing JavaScript and AJAX for the establishment of an interactive, asynchronous

user interface. This augmentation, however, extends beyond the remit of this elementary exemplification.

The intent of this example is to primarily focus on the core functionality of the irrigation control system,

thus, a more detailed user interaction interface is not considered within the purview of this Python-based

implementation.

1

2 from flask import Flask , render_template_string

3 import random

4 import threading

5 import time

6

7 app = Flask(__name__)

8

9 # Initial sensor data

10 sensor_data = {

11 ’air ’: {’temperature ’: 0, ’humidity ’: 0},

12 ’soil ’: {’temperature ’: 0, ’humidity ’: 0},

13 ’action ’: ’No action needed ’

14 }

15

16 def update_sensor_data ():

17 while True:

18 # Generate random sensor data

19 sensor_data[’air ’][’ temperature ’] = random.randint(5, 35)

20 sensor_data[’air ’][’humidity ’] = random.randint (30, 100)

21 sensor_data[’soil ’][’ temperature ’] = random.randint(5, 35)

22 sensor_data[’soil ’][’humidity ’] = random.randint (30, 100)

23

24 # Decide when to activate the irrigation and ventilation system

25 if sensor_data[’soil ’][’humidity ’] < 50 and sensor_data[’air ’][’ temperature ’] >

30:

26 sensor_data[’action ’] = ’Activate irrigation and ventilation system ’

27 else:

28 sensor_data[’action ’] = ’No action needed ’

29

30 # Wait for 20 seconds before updating the sensor data

31 time.sleep (20)

32

33 @app.route(’/’)

34 def home():

35 return render_template_string(’’’

36 <h1>Greenhouse Monitoring System </h1 >

37 <p>Air Temperature: {{ sensor_data.air.temperature }} C </p>

38 <p>Air Humidity: {{ sensor_data.air.humidity }}%</p>

39 <p>Soil Temperature: {{ sensor_data.soil.temperature }} C </p>

40 <p>Soil Humidity: {{ sensor_data.soil.humidity }}%</p>
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41 <p>System Action: {{ sensor_data.action }}</p>

42 <button onclick =" location.reload ()">Refresh Data </button >

43 ’’’, sensor_data=sensor_data)

44

45 if __name__ == ’__main__ ’:

46 # Start a background thread to update the sensor data

47 threading.Thread(target=update_sensor_data).start ()

48

49 # Start the Flask web server

50 app.run(debug=True)

4.5 Implementation Overview

In the Node-RED realization of the system, the infrastructure is embodied as a data flow diagram inter-

connecting individual nodes, where each node stands as a task executor performing distinct operations -

these include, but are not limited to, sensor data interpretation or commanding the irrigation controls.

The graphical user interface furnished by Node-RED facilitates an effortless visualization of the system’s

architecture and its inherent data flow, alongside enabling convenient modifications. This network of

nodes thereby serves as a visual encapsulation of the system’s logical structure and operational sequence,

providing an intuitive platform for users to understand and interact with the system’s components and

their interrelationships. figure 11

Figure 11: Node-red nodes

In the Python realization, the system is encapsulated within a script format where specific functions

are allotted for sensor data interpretation, irrigation controls management, and orchestrating the principal

control loop. The construction of the script incorporates standard Python libraries facilitating tasks such

as managing chronological data and generating random numeric values. figure 12

The Python implementation necessitates a comprehensive understanding of programming constructs,

syntax, and the idiosyncrasies of the Python language, as opposed to the visual approach employed by

Node-RED. The Python script is executed within an integrated development environment (IDE), such

as Spyder, which displays the written code but does not provide an intuitive, graphical representation of

data flow or system structure.

This programming approach requires proficiency in reading and writing code, thus presenting a steeper

learning curve, particularly for those with limited coding experience. Nevertheless, it allows for more com-

plex and granular control over system operations, presenting its own set of advantages and disadvantages
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within the context of precision agriculture automation.

Figure 12: Python code

4.5.1 Comparison of Node-RED and Python

The Node-RED realization proffers the merit of a graphical user interface, enhancing comprehensibility

and modification ease for the implemented system. This visual representation also enables real-time

system monitoring and regulation. Despite its numerous benefits, Node-RED might exhibit limited

flexibility and potency in handling more intricate tasks compared to traditional coding languages such

as Python. figure 13

Figure 13: Node-red ui

On the contrary, Python’s implementation, albeit demanding a more profound coding acumen, yields

superior flexibility and computational power. The comprehensive array of Python’s libraries and tools

opens doors to more complex logical constructs and sophisticated data analysis capabilities. Nevertheless,

the absence of a graphical user interface in Python might present a steeper learning curve, making the

system somewhat enigmatic and challenging to modify for individuals possessing less coding experience.

figure 14
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Figure 14: Python UI

4.6 Metrics Evaluation Revision

The evaluation metrics employed in this comparative study incorporated elements of development du-

ration, resource utilization, reliability, and maintainability. To ensure a comprehensive understanding

of these metrics by both technical and non-technical team members, we aligned these terms with the

ISO/IEC 25000 series of standards, particularly the ISO/IEC 25010 taxonomy. This taxonomy explic-

itly defines eight critical product quality characteristics and 31 sub-characteristics, including functional

suitability, reliability, performance efficiency, usability, security, compatibility, maintainability, and porta-

bility.

In this context, development duration, traditionally measured as the time taken to implement a system

on each platform, may lean more towards the ”usability” and ”performance efficiency” characteristics,

given the unique attributes of Python and Node-RED. Despite the experimenter’s proficiency in Python,

the visual, intuitive nature of Node-RED may expedite the development process, shifting this metric

towards a more qualitative measure.

Resource utilization, assessed based on the computational resources required to operate the system,

correlates with the ”performance efficiency” characteristic. With both Python and Node-RED solutions

being locally hosted, the computational demands remain comparable and relatively minimal.

Reliability, evaluated based on the system’s ability to perform its tasks without errors, aligns with the

”reliability” characteristic and remains a pertinent metric for both Python and Node-RED implementa-

tions.

Maintainability, gauged by the ease of modifying and updating the system, aligns closely with the

”maintainability” characteristic from the ISO/IEC 25010 taxonomy. However, depending on the user’s

familiarity with coding, this measure may also extend into ”usability” and ”portability”. Node-RED,

with its visual interface, may be more accessible and portable for citizen developers, whereas Python, a

text-based high-level language, might offer more intuitiveness and usability for experienced programmers.

While ”functional suitability”, ”security”, and ”compatibility” were not directly evaluated in this

study, they remain inherent aspects of both Python and Node-RED that could be addressed in a more

comprehensive study.

By adopting the ISO/IEC 25010 taxonomy, these evaluation metrics offer an expansive view of the

distinctive characteristics of Python and Node-RED, highlighting their unique strengths and weaknesses.

This perspective underscores the complexity of applying standard software quality metrics in the emerging

landscape of low-code platforms and traditional high-level languages.
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4.7 Case study results and analysis

The observed results underscore the Node-RED implementation’s efficiency in development time and

maintainability, owing to its visual interface and intuitive design paradigm. Notably, a user proficient in

coding managed to create a comprehensive Node-RED solution within a span of less than 40 minutes.

The development process was facilitated by the readily available online references on Node-RED node

functionalities, enabling the creation of an interactive user interface inclusive of a manual switch for the

irrigation system.

Comparatively, the Python solution’s development proved more time-consuming, with the same in-

dividual utilizing the full hour allotted for the creation process. The resulting Python solution offered

a real-time monitoring capability for the simulated sensors, albeit lacking the manual switch for the

irrigation system. The more extensive development time reflects the Python solution’s inherent flexi-

bility and power, necessitating a deeper understanding and proficiency in coding for a comprehensive

implementation.

In essence, while the Python solution requires a higher coding literacy level and might offer superior

flexibility and power for more complex tasks, the Node-RED solution provides an advantage in terms of

development time and maintainability. Particularly for tasks where the complexity is not extreme and

quick deployment is preferred, a low-code solution like Node-RED can provide significant benefits.

4.8 Case study discussion

The outcomes from this comparative analysis between a low-code platform, Node-RED, and a high-level

programming language, Python, substantiate existing academic discourse pertaining to the application of

low-code in precision agriculture. Consistent with the literature, Node-RED emerged as a more accessible

and efficient alternative for less complex tasks, offering advantages in terms of rapid deployment, user-

friendly visualization, and intuitive modification capabilities.

Meanwhile, Python, with its extensive libraries and powerful functionalities, demonstrated its superior

flexibility and complexity, supporting complex tasks with a high degree of customizability. It’s significant

to note, however, that the exploitation of Python’s flexibility and power necessitates a certain level of

coding proficiency, potentially limiting its accessibility for individuals with limited coding experience.

Despite the enlightening outcomes from this analysis, it’s crucial to recognize that the simplified

irrigation control system used in this experiment may not comprehensively represent the intricacy asso-

ciated with implementing low-code solutions in precision agriculture. Given that precision agriculture

involves numerous variables and complex interdependencies, low-code platforms’ real-world efficacy may

vary depending on the specific application context and the complexity of the tasks at hand.

However, this study still provides a valuable initial exploration into the advantages and drawbacks

associated with low-code and high-level coding approaches in precision agriculture. It’s an indication that

low-code platforms such as Node-RED have the potential to democratize precision agriculture by making

it more accessible to farmers and stakeholders with limited coding experience. On the other hand, high-

level programming languages like Python remain essential tools for more complex applications, where

their flexibility, power, and comprehensive libraries can be fully utilized. Future research may delve into

more complex and varied applications to further elucidate the optimal utilization of low-code platforms

and high-level programming languages within the realm of precision agriculture.
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4.9 Case study conclusion

In the context of the broader systematic literature review on low-code applications in precision agricul-

ture, this case study has served to exemplify the practical use of a low-code platform, Node-RED, in

accomplishing a fundamental precision agriculture task: an irrigation control system. It has simultane-

ously demonstrated the application of a high-level programming language, Python, for the same task,

offering a direct comparison between these two coding approaches.

Both implementations were executed successfully, providing valuable insights into the potential ben-

efits and challenges associated with each platform. The Node-RED implementation demonstrated the

principles outlined in the research question 4 answer identified through the systematic literature review,

which concerned the essential steps in the development of low-code solutions for precision agriculture.

The steps included understanding the farming task, identifying the appropriate data inputs, designing

the decision-making logic, and creating a user interface, all of which were successfully demonstrated in

the Node-RED implementation.

The case study has affirmed the potential of low-code platforms like Node-RED in making precision

agriculture more accessible to a broader range of individuals, especially those with limited coding experi-

ence. It has also reinforced the pivotal role of high-level programming languages like Python in managing

more complex precision agriculture tasks, with their extensive libraries and advanced functionalities.

The case study has accomplished its objective of demonstrating the application of low-code platforms

in precision agriculture, and it serves as a basis for further studies investigating the intersection between

low-code platforms and precision agriculture. Future research could delve into more complex use cases

and wider applications, seeking to further our understanding of how low-code platforms and high-level

programming languages can best be utilized in the context of precision agriculture.

5 General conclusion

Guided by the objective to provide a relevant mapping of the current status and future projections of

model-based approaches and their influence on the implementation of low-code platforms in Precision

Agriculture (PA), our Systematic Literature Review (SLR) sought to construct a rigorous framework

by answering five distinct research questions. Though a significant portion of the studies reviewed were

not directly linked to low-code technology, their application of model-based systems was instrumental in

providing valuable insights about the infusion of low-code solutions in the field of precision agriculture.

Tackling Research Question 1 (RQ1) exposed the main drivers for interweaving model-based ap-

proaches leading to low-code technology in PA, which include expedited software development, reducing

dependence on extensive coding skills, and the potential to streamline technological integration in intri-

cate PA systems. For instance, one study underscored the urgent requirement for software capable of

managing the intricacies of modern agricultural systems while alleviating the learning curve for farmers.

In addressing Research Question 2 (RQ2), we discovered that the services offered by model-based

approaches enhancing low-code platforms could include real-time data analysis, integrated operations

management, and advanced data-driven decision support. These features, as elaborated in several re-

viewed articles, could considerably augment productivity and efficiency in PA.

Research Question 3 (RQ3) necessitated an assessment of various model-based approaches leading

to low-code platforms. While no single approach emerged as the outright choice, a host of factors were

recognized that could influence the selection. For example, some studies suggested the choice might

depend on specific agricultural applications, user capabilities, and the degree of customization required.

Research Question 4 (RQ4) led to an exploration of the steps involved in developing a PA system
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using model-based approaches that could facilitate low-code application. This question directed us to

studies depicting the processes of system design, software configuration, testing, and user training. These

insights serve as a preliminary blueprint for future developers and researchers.

Lastly, Research Question 5 (RQ5) steered our inquiry into the challenges of implementing model-

based approaches leading to low-code technology in PA. Despite the promising prospects, some studies

spotlighted concerns surrounding scalability, data management, and integration with third-party services.

Another recurrent challenge was the need for significant customization to cater to the unique demands

of PA.

In summary, the SLR offers a balanced outlook on the potential benefits and challenges of utilizing

model-based approaches that lead to low-code platforms in PA. It emphasizes the necessity for continued

research and development in this intersecting field to circumnavigate the impediments and optimize

potential benefits. It is through such comprehensive and systematic investigation that we can enable

the successful integration of low-code solutions in precision agriculture, grounded in robust model-based

approaches.

This research underscores the promising advantages and potential hurdles of adopting model-based

approaches that could lead to low-code platforms in the domain of precision agriculture. Such approaches

can facilitate the integration of diverse technologies used in precision agriculture, offering farmers a con-

solidated view of their operations and facilitating the application of sophisticated data analysis techniques

to optimize crop health and yield.

However, the adoption of model-based approaches leading to low-code platforms in precision agricul-

ture comes with challenges. These encompass potential constraints in performance and scalability, as

well as the necessity for considerable customization to meet the unique needs of agricultural applications.

Addressing these challenges is really important to show the potential benefits of coupling model-based ap-

proaches with low-code platforms in precision agriculture, possibly initiating a new era of more accessible,

efficient, and effective precision agriculture.

Scalability, particularly in light of the complexity of precision agriculture systems, is a notable concern.

The need for real-time data processing and analysis, dynamic event handling, and the ability to manage

large volumes of data are all areas where model-based approaches leading to low-code platforms may

encounter obstacles. Moreover, issues related to platform adoption, such as access control, security,

client-server communication, and cloud and on-premise configuration, can pose significant barriers to the

widespread adoption of these platforms in precision agriculture.

Integration with third-party services, a crucial aspect of precision agriculture, can also present tech-

nical challenges for model-based approaches that could lead to low-code platforms. The need for scalable

reactive model transformations and the challenges posed by the exponential increase in devices in IoT-

based systems, such as minimizing latency with low power requirements, optimizing bandwidth usage,

and dealing with intermittent internet connectivity, are additional hurdles that need to be surmounted.

This integration could have extensive implications, not only enhancing agricultural practices but also

contributing to broader societal objectives such as boosting food security and promoting sustainability.

The development of suitable platforms and methodologies for crafting low-code systems in precision

agriculture based on model-based approaches should consider the need for a deep understanding of both

software engineering and agricultural practices.

Moreover, it should address the challenges associated with data management, integration with third-

party services, scalability, and platform adoption. A balanced approach that weighs both the potential

benefits and challenges of model-based approaches leading to low-code platforms in precision agriculture

is vital to ensure the successful development and implementation of such systems in this field. This

approach would eventually lead to a more technologically advanced and data-driven agricultural sector,

capable of meeting the increasing demands of a growing global population.
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6 Discussion and Future Work

The combination of model-based approaches into low-code development platforms (LCDPs) within the

fieldwork of precision agriculture (PA) has unveiled a diverse group of research prospects, as thoroughly

evidenced through this Systematic Literature Review (SLR). Important aspects such as the involvement

of citizen developers, motives and potential applications of model-based systems leading to LCDPs,

comparative evaluation of specific platforms, and the choice between low-code and high-level programming

were dissected. These elements form the base for forthcoming discussions and future explorations.

The engagement of citizen developers in the utilization of model-based approaches leading to low-code

platforms in PA has proven to be significant. While the research has offered insights into the part they

could play, future endeavors could comprehend a deeper exploration of their potential inputs. Can they

truly expedite the transition toward a more technologically-centric agriculture sector, provided they are

equipped with the right tools and guidance? Additionally, what mechanisms could be established to

stimulate their engagement and ascertain their effective contribution? Comprehending these dynamics

could influence the design and adoption of model-based systems leading to LCDPs in PA and potentially,

other domains.

The benefits such as fast-tracked software development, integrated data management, and the poten-

tial for enhanced decision-making, among others, underline the bright future of these approaches leading

to LCDPs in PA. However, the exploration of these applications is still in its infancy. The vast spectrum

and depth of PA operations suggest an abundance of areas where these systems leading to LCDPs could

be further leveraged. We posit that future research could focus on recognizing these potential applications

and the unique advantages that model-based approaches leading to LCDPs could confer to each.

The comparative analysis of Node-RED and Python shed light on crucial findings about development

time, resource utilization, reliability, and maintainability. However, it also gave rise to questions that

merit exploration in future research. For instance, what other model-based approaches could lead to

beneficial LCDPs for PA? Are there particular PA tasks that would be better addressed by high-level

programming languages? Comparative studies involving more platforms and a broader range of agri-

cultural tasks could help answer these questions and provide more nuanced guidance to developers and

users.

Lastly, our research underscored that the choice between low-code and high-level programming relies

on various factors such as specific needs, user capabilities, and task complexity. This suggests that a one-

size-fits-all solution may not be applicable to all PA scenarios, further reinforcing the need for continued

exploration of different programming approaches for diverse PA needs. Moreover, the potential of model-

based systems as a precursor to the implementation of low-code solutions provides a pathway that future

research in this domain could explore, driving forward the integration of advanced computational tools

in precision agriculture.
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development of hybrid databases using lightweight metamodel extensions. Enterprise Information

Systems, 12 (8-9), 1221-1238. Retrieved from www.scopus.com (Cited By :7)

Zhang, H., & Zheng, J. (2016). Comparison of straight line driving synchronous control methods and

validation of 4wd sprayer chassis with hydraulic power. Nongye Gongcheng Xuebao/Transactions of the

Chinese Society of Agricultural Engineering , 32 (23), 43-50. Retrieved from www.scopus.com (Cited

By :7)

62

www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
https://doi.org/10.1145/3377170.3377279
https://doi.org/10.1145/3417473.3417481
www.scopus.com
www.scopus.com


Zhang, S., Wei, C., Shao, J., & Li, Z. (2014). Resources integration and change in land value affected by

land transfer and consolidation of rural villages in hilly areas. Nongye Gongcheng Xuebao/Transactions

of the Chinese Society of Agricultural Engineering , 30 (12), 1-17. Retrieved from www.scopus.com

(Cited By :6)

Zhang, Y. (2019). The role of precision agriculture [Journal Article]. Resource Magazine, 26 (6), 9-9.

Zhu, Z., Lai, L., Sun, X., Chen, L., & Cai, Y. (2021). Design and analysis of a novel mechanic-

electronic-hydraulic powertrain system for agriculture tractors. IEEE Access, 9 , 153811-153823. doi:

10.1109/ACCESS.2021.3126667

Zoho creator. (n.d.). Retrieved from https://www.zoho.com/creator/ (Accessed: 2023-01-14)

63

www.scopus.com
https://www.zoho.com/creator/

	Introduction
	Precision agriculture
	Background delimitations
	Current Status
	Anticipated State

	SLR
	Problem Articulation
	Research Aims and Contributions
	Research methodology
	Limitations and Threats to Validity

	Results of the SLR
	Scopus' evaluation and analysis
	IEEE evaluation and analysis
	ACM evaluation and analysis
	Wiley's evaluation and analysis
	Literature Selection and Justification
	Research Question 1 (RQ1):What instigates the incorporation of model-based approaches that inspire low-code technology in precision agriculture?
	Addressing the Complexity of Precision Agriculture
	Accelerating the Software Development Process
	Democratizing Precision Agriculture
	Consolidated Insights on Low-Code Technology's Impact on Precision Agriculture

	Research Question 2 (RQ2): What unique services can model-based approaches facilitate to advance precision agriculture through low-code platforms?
	Stakeholder-Centric Services of Low-Code Platforms in Precision Agriculture
	Data Collection Facilitation
	Data Analysis Enhancement
	Decision Support Services
	System Integration Services
	Enhancing Accessibility and Democratization
	Comprehensive Analysis of Low-Code Platform Services in Precision Agriculture

	Research Question 3 (RQ3): which low-code platform fits better solutions with the model-based approaches on their usage to optimize precision agriculture?
	Introduction to RQ3:
	Analysis of Low-Code Platforms for Precision Agriculture: 
	Overview of Specific Low-Code Platforms:

	Research Question 4 (RQ4): What are the critical steps involved in developing a low-code system based on the model-based approach in precision agriculture?
	Understanding the Developer Categories and Their Needs
	Requirement Analysis and Feasibility
	Data Modeling
	User interface design
	Implementation of Business Logic and Integration of External Services
	Testing and Deployment
	Maintenance and Continuous Improvement

	Research Question 5 (RQ5): What challenges are associated with implementing model-based approaches that could encourage low-code technology in precision agriculture? 

	Comparative Analysis of Node-RED and Python Implementations for Irrigation Control in Precision Agriculture
	Methodology
	Node-Red simulation design
	Python simulation design
	Code Elaboration
	Implementation Overview
	Comparison of Node-RED and Python

	Metrics Evaluation Revision
	Case study results and analysis
	 Case study discussion
	Case study conclusion

	General conclusion
	Discussion and Future Work

