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Abstract
This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in 
rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticil-
lioides (FUmix). This FUmix contained fusaric acid and fumonisin B1, B2 and B3. Four diets were formulated according to a 
2 × 2 factorial design: CON-CON; CON-FUmix; DON-CON; and DON-FUmix. Diets with and without DON contained on 
average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FUmix toxins was 12,700 and 100 µg/kg feed in the 
diets with and without FUmix, respectively. The experiment consisted of a 6-week restrictive feeding period immediately 
followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histo-
pathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end 
of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During 
both restrictive and ad libitum feeding, the effects of FUmix and DON on growth performance were additive (no interaction 
effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FUmix (p ≤ 0.01) inhibited growth 
and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy 
retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FUmix affected HSI (p ≤ 0.01), while DON exposure 
reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal 
tissue measurements, no interaction effects between DON and FUmix were observed. In the liver, histopathological analysis 
revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FUmix (p ≤ 0.05) 
and decreased percentage of pleomorphic nuclei by FUmix (p ≤ 0.01). DON had a minor impact on the intestinal histologi-
cal measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal 
measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FUmix contaminated diets, with 
the most severe alterations being noted at week 8. Overall, the co-exposure to FUmix and DON gave rise to additive effects 
but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.
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Introduction

The diversity and inclusion level of vegetable/plant ingre-
dients in aquafeeds have increased over the years (Turchini 
et al. 2019), even for carnivorous fish-like salmonids (Aas 
et al. 2022). This is related to multiple factors, including 
the continuous expansion of the aquaculture sector (Naylor 
et al. 2021) and thereby the increasing demand for aqua-
feeds (Tacon 2020), the limited availability of fishmeal and 
fish oil (Naylor et al. 2009) and the competition for ingredi-
ents for farmed animal feeds and biofuel production (Kraan 
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2013). Next to other adverse antinutritional effects, the use 
of grains, seeds and their by-products increases the risk of 
fish and shrimp being exposed to mycotoxins (Francis et al. 
2001; Hardy 2010; Glencross 2016).

Mycotoxin contamination of crops by fungi can occur pre-
harvest in the fields and post-harvest during transportation 
and storage, depending on climatic conditions (temperature 
and humidity) (Bryden 2012). Ongoing climate change and 
more extreme weather conditions affect pre-harvest fungal 
proliferation, which increases the risk of mycotoxin con-
tamination (Paterson and Lima 2010; Perrone et al. 2020; 
Zingales et al. 2022). Aquafeeds which contain multiple 
plant-based ingredients can be contaminated with a mixture 
of different mycotoxins which are produced by one or several 
fungi (Streit et al. 2012; Smith et al. 2016). Indeed, surveys at 
the regional and country level have reported multiple myco-
toxin contamination in aquafeeds (Europe, (Koletsi et al. 
2021); Asia, (Gonçalves et al. 2018a); East Africa, (Marijani 
et al. 2017); Brazil, (Barbosa et al. 2013); Argentina, (Greco 
et al. 2015); Serbia, (Rokvić et al. 2020); Kenya, (Mwihia 
et al. 2020)). For instance, in European aquafeeds, 75% of 
the samples analysed were contaminated with two or more 
mycotoxins (Koletsi et al. 2021). In this review study, the 
most prevalent toxins in aquafeeds were identified as Fusar-
ium-produced mycotoxins: fusaric acid (55%), deoxynivale-
nol (DON) (48%), fumonisin B1 (FB1) (36%) and fumonisin 
B2 (FB2) (27%). Fumonisins (FB1, FB2 and FB3) and fusaric 
acid are produced (often as a mixture) by Fusarium verticil-
lioides and DON by Fusarium graminearum (Thrane 2014). 
F. verticillioides and F. graminearum grow under similar cli-
mate conditions in the field (Thrane 2014). Consequently the 
occurrence of DON often goes together with the presence of 
a mixture of F. verticillioides toxins.

Compared to terrestrial animals, the toxicological effects 
of mycotoxins are barely studied in fish (Gonçalves et al. 
2020c). The majority of the few fish studies that have been 
published have often focussed on one single mycotoxin 
(Anater et al. 2016). Due to its sensitivity, several studies 
on the toxicological impact of DON have been performed 
in rainbow trout (Oncorhynchus mykiss) (Koletsi et al. 2021; 
Hooft and Bureau 2021). With the exception of one study on 
FB1 (Carlson et al. 2001), no studies on F. verticillioides tox-
ins have been completed in trout. FB1 altered the metabolism 
of sphingolipids in rainbow trout (Carlson et al. 2001), but 
no information was presented regarding its effect on growth 
performance measurements. In other farmed fish species, 
fumonisins impaired growth (seabream, (Gonçalves et al. 
2020a); turbot, (Gonçalves et al. 2020b); African catfish, 
(Gbore et al. 2010); Nile tilapia, (Tuan et al. 2003); channel 
catfish, (Lumlertdacha et al. 1995; Yildirim et al. 2000). 
Despite its frequent occurrence in European aquafeeds 
(Koletsi et al. 2021), information on fusaric acid toxicity in 
farmed fish species is lacking. Finally, information on the 

interactions between different types of toxins (co-exposure) 
in fish is minimal. In zebrafish, it was observed that co-
exposure to different combinations of toxins also bring about 
different toxicological effects. The toxicological effects of 
FB1 and aflatoxin B1 (AFB1) were additive (no interaction) 
(Di Paola et al. 2022). Similarly, zearalenone (ZEN) and FB1 
effects were additives (Yang et al. 2021), whereas the effects 
of AFB1 and DON were synergistic, and the effects of DON, 
ZEN and AFB1 were antagonistic (Zhou et al. 2017). To 
our knowledge, only two in vivo feeding experiments were 
reported on farmed fish species, where synergistic toxico-
logical effects of FB1 and moniliformin were found in catfish 
(Yildirim et al. 2000) and AFB1 and ZEN in rainbow trout 
(Ghafarifarsani et al. 2021).

Therefore, this experiment aimed to determine whether 
the toxicological effects of deoxynivalenol (DON) pro-
duced by F. graminearum are altered by the co-exposure 
to a mixture of toxins produced by F. verticillioides (FUmix; 
fusaric acid and FB1, FB2 and FB3) in rainbow trout. This 
was assessed by measuring growth performance and histo-
pathological measurements in the liver and gastrointestinal 
tract under restrictive and ad libitum exposure.

Materials and methods

The current study (project number: AVD2330020198084) 
was approved by the Central Committee on Animal Experi-
ments (CCD) of The Netherlands. All experimental proce-
dures were carried out following the Dutch law on the use 
of animals for scientific purposes. The feeding trial was per-
formed at the experimental facilities of the Alltech Coppens 
Aqua Centre (Leende, The Netherlands).

Experimental design and diets

In the experiment, four diets were studied according to a 
2 × 2 factorial design. The first factor was the contamina-
tion level of DON produced by Fusarium graminearum. 
The intended contrast in DON exposure levels was 0 and 
2000 µg/kg feed on a fresh basis (CON versus DON diets). 
The second factor was the contamination level of the toxin 
mixture (FUmix; fusaric acid and FB1, FB2 and FB3) pro-
duced by Fusarium verticillioides. The intended contrast in 
FUmix exposure was aimed to have an FB1 content of 0 versus 
8000 µg/kg feed on a fresh basis (CON versus FUmix diets). 
These contrasts in contamination levels were created by 
exchanging toxin-free ingredients with artificially contami-
nated ingredients (rice and cracked corn for the DON and 
FUmix exposure, respectively). Consequently, the four exper-
imental diets: CON-CON (DON = 0 µg/kg, FUmix = 0 µg/
kg), CON-FUmix (DON = 0 µg/kg, FUmix = 12,000 µg/k), 
DON-CON (DON = 2800 µg/kg, FUmix = 180 µg/kg) and 
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DON-FUmix (DON = 2500 µg/kg, FUmix = 13,500 µg/kg) 
were nutritionally identical (isoenergetic and isonitrog-
enous) and only differed in the mycotoxin profile (Table 1). 
Diets were produced by Research Diet Services (Wijk bij 
Duurstede, The Netherlands) as 2 mm extruded pellets.

The artificially contaminated ingredients were produced 
by fermentation with mycotoxin-producing fungi at the Lab-
oratory of Mycotoxins and Mycology, Department of Bio-
logical Sciences, College of Agriculture Luiz de Queiroz, 
University of São Paulo. Rice inoculated with a F. gramine-
arum isolate was fermented to produce DON-contaminated 
rice and cracked corn with a F. verticillioides isolate to pro-
duce the FUmix. Briefly, the Erlenmeyer flasks of 500 mL 
volume were used each containing 100 g of rice or corn. At 
least 2 h before the sterilization, 40 mL of distilled water was 
added to the flask and mixed with rice or corn. The steriliza-
tion was performed at 121 °C for 1 h (CS -75, Prismalab, 
Rio de Janeiro, RJ, Brazil). Thereafter, the flasks were left 
to cool down before inoculation. The sterilized ingredients 

were inoculated with 2 mL of conidia suspension with 106 
conidium/mL of either Fusarium graminearum or Fusarium 
verticillioides. The incubation was carried out for 25 days at 
a constant temperature of 25 °C in static conditions for the 
DON and FUmix production. After incubation, the fermented 
ingredients containing the respective mycotoxins were oven 
dried at 50 °C. After drying, the ingredients were ground 
in a mill with a 0.85-mm sieve. For the control treatments, 
non-inoculated rice and/or cracked corn of the same batches 
were used.

The mycotoxin content of the spiked ingredients and 
experimental diets were analysed with liquid chromatogra-
phy/tandem mass spectrometry (LC–MS/MS) at the Alltech 
37 + mycotoxin laboratory (Dunboyne, Ireland; ISO/IEC 
17025:2005 accredited). The analysed DON content in rice 
was 768 mg/kg on as is basis and the FB1 content in corn 
220 mg/kg on as is basis. Based on these analysed contents 
and the targeted contrasts in DON (2000 µg/kg) and FB1 
(8000 µg/kg) between diets, the inclusion levels of clean and 

Table 1   Ingredient 
composition, proximate, and 
mycotoxin analysis of the 
experimental diets: without 
DON or other mycotoxins 
(CON-CON), without DON but 
contaminated with a mixture of 
toxins produced by Fusarium 
verticillioides: fusaric acid 
and FB1, FB2 and FB3 (CON-
FUmix), contaminated with DON 
alone produced by Fusarium 
graminearum (DON-CON), and 
co-contaminated with all toxins 
produced by F. graminearum 
and F. verticillioides (DON-
FUmix)

a Commercial premix from Alltech Coppens to meet (NRC 2011) requirements of rainbow trout
b On dry matter basis, CON-CON diet contained only Enniatin A/A1 0.95 µg/kg
c In the main text, the rounded levels are mentioned e.g. DON 2800 and 2500 µg/kg. Rounded FUmix totals 
are, respectively, 12,000, 180 and 13,500 µg/kg

Ingredients inclusion (%) Experimental diets

CON-CON CON-FUmix DON-CON DON-FUmix

Wheat 38.42 38.42 38.42 38.42
Soybean meal 25.00 25.00 25.00 25.00
LT fishmeal 12.93 12.93 12.93 12.93
Fish oil 11.98 11.98 11.98 11.98
Blood meal 7.94 7.94 7.94 7.94
Clean cracked corn 1.60 – 1.60 –
Contaminated cracked corn – 1.60 – 1.60
Clean rice 0.26 0.26 – –
Contaminated rice – – 0.26 0.26
Monocalcium phosphate 0.66 0.66 0.66 0.66
DL-methionine liquid 0.16 0.16 0.16 0.16
Choline chloride liquid 0.18 0.18 0.18 0.18
Premixesa 0.88 0.88 0.88 0.88
Analysed nutrient composition (%)b

Dry matter 94.0 94.4 94.5 94.4
Protein 37.6 37.5 37.6 37.7
Fat 15.8 16.0 15.8 15.9
Ash 6.3 6.2 6.1 6.3
Gross energy (MJ/kg) 22.6 22.6 22.3 22.4
Mycotoxin concentration (µg/kg)b,c

Deoxynivalenol (DON) – – 2809 2495
Fusaric acid – 2696 183 3281
Fumonisin B1 (FB1) – 7599 – 8557
Fumonisin B2 (FB2) – 1199 – 1163
Fumonisin B3 (FB3) – 485 – 526
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contaminated rice and cracked corn were set at, respectively, 
0.26 and 1.60% in the diets (Table 1). In the experimental 
diets, the targeted levels of DON and FB1 (in the FUmix) 
were reached; however, the DON-CON diet contained some 
traces of fusaric acid (Table 1).

Husbandry

Rainbow trout (Oncorhynchus mykiss) with an average 
initial body weight of approximately 7 g were maintained 
in a recirculating aquaculture system (RAS) for 8 weeks. 
The housing conditions were similar to those of a previous 
in vivo experiment (Koletsi et al. 2022). Fish were purchased 
from a commercial trout farm (Mohnen Aquaculture GmbH, 
Germany) 1 week prior to the start of the experiment during 
which they were fed a standard commercial trout diet. Ten 
tanks were each stocked with 30 fish. Tanks were randomly 
assigned to one of the experimental diets. The CON-CON 
and CON-FUmix diets were tested in duplicate and the DON-
CON and DON-FUmix diets in triplicate. Fish were housed 
at a temperature of 14 ± 0.5 °C. The applied photoperiod 
was 17 h of light and 7 h of darkness. Water quality was 
monitored and maintained within the optimal range for trout. 
In the outlet water of the tanks, the measured pH ranged 
from 7.0 to 8.5, NH4

+ was below 1 mg/L, NO2
− was below 

0.5 mg/L, and oxygen (O2) was above 8 mg/L. During the 
whole experiment, fish were hand-fed twice per day. During 
the first 6 weeks of the experiment, trout were fed restric-
tively in order to measure the direct impact of toxins. In this 
period, the feeding level was based on the metabolic body 
weight of the fish (12 g/kg0.8/d). During the last 2 weeks 
of the experiment, fish were fed ad libitum for 1 h during 
each meal to determine the potential impact of the tested 
mycotoxins on feed intake capacity. When uneaten pel-
lets remained on the bottom of the tank or floating on the 
water’s surface for more than 10 min or when the feeding 
time of one hour was over, the feeding was stopped, and it 
was assumed that the fish had reached satiation. During both 
feeding periods, uneaten pellets were removed by siphoning 
after feeding was stopped and counted to accurately deter-
mine feed consumption.

Sampling

The sampling scheme and the processing of samples were 
similar to those applied in our previous in vivo experiment 
(Koletsi et al. 2022). Briefly, tank biomass measurements 
were performed at the start of the experiment, the end of 
the restrictive feeding period (week 6) and the end of the 
ad libitum feeding period (week 8) to calculate growth per-
formance indicators. At the start of the experiment, 20 fish 
from the initial population were removed, and at the end of 

the restrictive exposure (week 6), five fish per tank were 
euthanised and stored at − 20 °C. These samples were used 
for body composition measurements to calculate protein 
and energy retention. Additionally, for histopathological 
analysis, tissue samples from the liver (two sections per 
fish) and one section of each gastrointestinal tract segment 
(pyloric caeca, midgut, and hindgut) were collected from 
six fish of the initial population and from two fish per tank 
at week 1 and week 6 of restrictive feeding period and at 
the end of the ad libitum feeding period (week 8). These 
tissue samples were placed into embedding cassettes, fixed 
by immersion in 10% neutral buffered formaldehyde for 
three days at room temperature and afterwards transferred 
to 70% ethanol until further processing. Before collecting 
these tissue samples, body weight, liver weight and body 
length were recorded in these fish.

Chemical analysis

Fish carcass and feed samples were analysed for dry mat-
ter, crude protein and fat, ash content and gross energy 
by Nutricontrol (Veghel, The Netherlands) as described 
previously (Koletsi et al. 2022).

Histological analysis

Liver and intestinal tissue samples were dehydrated in a 
tissue processor and embedded in paraffin wax according 
to standard histological procedures. Tissue blocks were 
cut into 5 μm thick paraffin sections, mounted onto micro-
scope slides and stored until further processing. Thereafter, 
liver sections were stained with two separate techniques: 
Haematoxylin and Eosin (H&E) to colour the cell nuclei 
and structure, and periodic acid-Schiff’s (PAS) reagent to 
distinguish glycogen from lipid vacuolisation. The gastro-
intestinal tract sections were stained with Alcian blue (pH 
2.5) followed by Crossman. All stained slides were pic-
tured with a Leica DM6 microscope (Leica Microsystems, 
Wetzlar, Germany). Liver pictures (n = 10 per fish) were 
further evaluated using the semi-quantitative scoring sys-
tem described by (Koletsi et al. 2022). The gastrointestinal 
tract pictures were imported in ImageJ software (version 
1.53q) (Schindelin et al. 2012). With the ROI manager 
function of ImageJ, on 10 well-oriented (simple) mucosal 
fold units per fish (n = 10 per fish) the following indica-
tors were measured as previously described (Koletsi et al. 
2022): mucosal fold width, mucosal fold height, lamina 
propria width, enterocyte width, supranuclear vacuoles 
width and goblet cell density.
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Calculations and statistics

The following measurements, growth (g/d), specific growth 
rate (SGR, %/d) and performance; feed conversion ratio 
(FCR), hepatosomatic index (HSI, %), condition factor (K), 
retained protein (g/fish), protein retention efficiency (%), 
retained energy (MJ/fish), energy retention efficiency (%), 
were calculated separately for each feeding period (6 weeks 
restrictive and 2 weeks ad libitum feeding) according to pre-
viously established equations (Koletsi et al. 2022).

A two-way ANOVA was used to analyse the growth per-
formance measurements for the effect of DON supplemen-
tation, FUmix supplementation and their interaction effect 
(FUmix and DON). Before ANOVA, Levene’s test was used 
to determine whether the variance of the data was homo-
geneous. The Kolmogorov–Smirnov test was applied to 
determine whether the distribution of residuals was normal. 
For non-normally distributed data, a non-parametric test, 
Kruskal–Wallis, was applied to test the FUmix effect and the 
DON effect, although this model could not test the interac-
tion effect. Histological data (n = 600 per time point) from 
each segment of the gastrointestinal tract (pyloric caeca, 
midgut and hindgut) and ordinal measurements in the liver: 
glycogen and lipid (scores of 1, 2 and 3) and necrosis (scores 
of 0, 1, 2 and 3) were analysed with a mixed-effect model, 
multinomial logistic regression using the fish as the ran-
dom effect. The fixed variables tested were the effects of 

FUmix, DON, time (week 1, 6 and 8) and their interactions. 
Liver binomial data (nuclei pyknosis and pleomorphism, 
necrosis, haemorrhage, inflammation) were expressed as 
percentages (%) and analysed with a mixed binary logis-
tic regression model including FUmix, DON, time and their 
interactions as fixed effects and the fish as a random effect. 
Statistical significance was tested at a probability level 
below 0.05 (p ≤ 0.05), while p-values between 0.1 and 0.05 
(0.1 > p ≥ 0.05) were defined as close to statistical signifi-
cance and reported as tendencies. All data were statistically 
analysed in the IBM Statistical Package for the Social Sci-
ences (SPSS) program (v 23.0; New York, NY, USA).

Results

Growth performance

During the 8-week experiment, no mortality, abnormal 
behaviour or issues with feed acceptance were noted.

Restrictive feeding period

During the restrictive feeding period, growth and FCR were 
affected by both FUmix exposure (p ≤ 0.01) and DON expo-
sure (p ≤ 0.001) (Table 2). Trout fed the FUmix diets had 
lower growth than those fed the diets without the FUmix. 

Table 2   The effects of FUmix exposure, DON exposure and their interaction on growth performance measurements of rainbow trout during a 
6-week restrictive feeding period

The measured levels of DON and FUmix (fusaric acid and FB1, FB2 and FB3) in the diets are given in Table 1
Values presented are means based on n = 2 for the diets CON-CON and CON-FUmix and n = 3 for the diets DON-CON and DON-FUmix

FUmix, a mixture of toxins produced by Fusarium verticillioides: fusaric acid and FB1, FB2 and FB3

DON, a toxin produced by Fusarium graminearum
*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001
a CON-CON, diet without DON and without FUmix contamination; CON-FUmix, diet without DON and with FUmix contamination; DON-CON, 
diet with DON and without FUmix contamination; DON-FUmix, diet with DON and with FUmix contamination
b BW body weight, FCR feed conversion ratio on dry matter basis, HSI hepatosomatic index, SEM standard error of means, NS not significant
c Analysed with a non-parametric test (Kruskal–Wallis) for FUmix and DON effect, where “–” FUmix × DON was not applicable

Measurementsb Experimental dietsa p-value

CON-CON CON-FUmix DON-CON DON-FUmix SEM FUmix DON FUmix × DON

Initial BW (g) 7.1 7.5 7.3 7.3 0.16 NS NS NS
Final BW (g) 26.4 25.5 24.6 23.4 0.22 ** *** NS
Growth (g/d) 0.48 0.45 0.43 0.40 0.01 ** *** NS
FCR 0.79 0.85 0.89 0.95 0.01 ** *** NS
HSI (%)c 2.6 1.6 2.3 1.4 0.43 ** NS –
Condition factor (K) 1.30 1.28 1.22 1.18 0.03 NS * NS
Retained protein (g/fish) 3.1 2.9 2.5 2.4 0.07 NS *** NS
Protein retention efficiency (%) 52.9 50.6 43.6 41.3 1.33 NS *** NS
Retained energy (MJ/fish) 0.16 0.16 0.15 0.15 0.004 NS * NS
Energy retention efficiency (%) 47.2 45.3 43.7 42.7 1.18 NS * NS
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Growth of trout fed the DON diets was lower than that of 
trout fed the diets without DON. The decline in growth due 
to the presence of DON (0.05 g/d) was identical at the diet 
level with and without the FUmix (Table 2), indicating that 
the effects of DON and FUmix were additive (no interaction). 
FCR was increased when diets were contaminated with the 
FUmix and the increase was even higher when contaminated 
with DON compared to their controls. During the restric-
tive feeding period, the HSI was only affected by FUmix 
(p ≤ 0.01), being lower in trout fed the diets with the FUmix 
compared to trout fed the diets without the FUmix. The con-
dition factor was only influenced by DON (p ≤ 0.05) and 
was lower in fish fed diets with DON compared to those 
fed the diets without DON. Finally, DON was also the only 
factor that affected protein retention (p ≤ 0.001), protein 
retention efficiency (p ≤ 0.001), energy retention (p ≤ 0.05) 
and energy retention efficiency (p ≤ 0.05) (Table 2). Trout 
fed the DON-contaminated diets retained less protein and 
less energy compared to trout fed diets without DON. FUmix 
had no impact on metrics of retained protein and energy 
(Table 2).

Ad libitum feeding period

During the ad libitum feeding period, the feed intake, growth 
and FCR of rainbow trout were only influenced by the DON 
treatment (p ≤ 0.01; Table 3), not by FUmix treatment and 
the interaction. Trout fed the DON-contaminated diets had 
lower feed intake, lower growth and higher FCR compared 
to those fed the DON-free diets (Table 3). At the end of the 

ad libitum feeding period, both DON and FUmix treatments 
did not affect the condition factor. Liver weight (HSI) was 
reduced in fish fed diets containing the FUmix compared to 
those fed diets without the FUmix (p ≤ 0.01; Table 3).

Histopathological assessment of liver 
and gastrointestinal tract

Liver

The qualitative assessment of the liver histology did not 
show severe liver damage, but only some minor changes. 
Some examples of minor changes are given in Fig. 1. where 
panel (i) shows an unaffected liver; panel (ii) a liver with 
necrotic areas; panel (iii) a liver with scattered blood cells; 
and panel (iv) a liver with both necrotic areas and scattered 
blood cells.

The semi-quantitative assessment (Table 4) showed that 
for pyknotic nuclei, all scores were 0 in week 8 only for 
the DON-CON diet. For inflammation, all scores during the 
restrictive feeding period (weeks 1 and 6) were 0 for all 
diets. After ad libitum feeding (week 8), however, 23 and 
27% inflammation spots were found for the FUmix contami-
nated diets, compared to 7% in the DON-CON diets and 0% 
in the CON-CON diet. Due to the presence of 0 scores in one 
or multiple combinations of diets and weeks, the effects of 
DON and FUmix could not be estimated for pyknotic nuclei 
and inflammation (Table 4).

During the restrictive feeding period (weeks 1 and 6), 
the glycogen vacuolization score was similar for all diets. 

Table 3   The effects of FUmix exposure, DON exposure and their interaction on growth performance measurements of rainbow trout during a 
2-week ad libitum feeding period

The measured levels of DON and FUmix (fusaric acid and FB1, FB2 and FB3) in the diets are given in Table 1
Values presented are means based on n = 2 for the diets CON-CON and CON- FUmix and n = 3 for the diets DON-CON and DON-FUmix

FUmix, a mixture of toxins produced by Fusarium verticillioides: fusaric acid and FB1, FB2 and FB3

DON, a toxin produced by Fusarium graminearum
*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001
a CON-CON, diet without DON and without FUmix contamination; CON-FUmix, diet without DON and with FUmix contamination; DON-CON, 
diet with DON and without FUmix contamination; DON-FUmix, diet with DON and with FUmix contamination
b BW body weight, FCR feed conversion ratio on dry matter basis, HSI hepatosomatic index, SEM standard error of means, NS not significant

Measurementsb Experimental dietsa p-value

CON-CON CON-FUmix DON-CON DON-FUmix SEM FUmix DON FUmix × DON

Final BW (g) 52.1 51.2 41.2 39.9 1.12 NS *** NS
Growth (g/d) 1.71 1.70 1.11 1.10 0.07 NS *** NS
Feed intake (g/fish/d) 1.57 1.60 1.22 1.25 0.04 NS *** NS
FCR 0.86 0.89 1.04 1.08 0.04 NS ** NS
HSI (%) 2.1 1.4 2.2 1.9 0.18 ** NS NS
Condition factor (K) 1.3 1.3 1.3 1.2 0.04 NS NS NS
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At the end of the ad libitum feeding period (week 8), how-
ever, the glycogen vacuolization score increased only in 
the trout fed the diets containing the FUmix (interaction 
p ≤ 0.001). The effect of DON on glycogen vacuolization 
was not present (Table 4). Lipid vacuolization did not 
change over time and was unaffected by both dietary treat-
ments. Regarding the percentage of pleomorphic nuclei, 
the 3-way interaction effect was present (p ≤ 0.01), but 
there were no clear patterns of the effects of DON and 
FUmix over time (Table 4). In livers of DON-fed trout, the 
risk on the higher order necrosis scores was increased com-
pared to livers of trout not exposed to DON. Necrosis was 
also present in trout fed the CON-CON and CON-FUmix 
diet, although with a low average score (ranging from 0.1 
to 0.3) and a lower percentage of liver parts affect. Time 
also affected the liver necrosis score (p ≤ 0.01), being the 
highest at week 6 (Table 4). The percentage of haemor-
rhage was not significantly affected by the dietary treat-
ments and time (p > 0.05; Table 4).

Gastrointestinal tract

The statistical outcome of the semi-quantitative histologi-
cal assessment in the gastrointestinal tract of rainbow trout 
response to FUmix, DON, time and their interactions (3-way 
and 2-way) is presented in Table 5, showing mild histopatho-
logical changes indicated by a few 2-way significant inter-
actions. Figure 2 displays examples of the intestinal folds 
from the pyloric caeca, midgut and hindgut, collected at the 
end of the experiment (week 8). Similarly in the qualitative 
analyses (Fig. 2), no notable histological alterations were 
observed in the gastrointestinal tract.

The semi-quantitative assessment of the intestinal his-
tology showed that none of the indicators was affected 
by the 3-way interaction effect between DON, FUmix and 
time (Table 5). The enterocyte width in the midgut was the 
only intestinal indicator that was affected by the interaction 
between DON and time (p ≤ 0.05), which was related to an 
alteration in the effect of DON between week 1 and week 

Fig. 1   Examples of histological sections of the liver at the end 
of the experiment (week 8) from rainbow trout fed: (i) CON-
CON diet (DON = 0, FUmix = 0), (ii) CON-FUmix diet (DON = 0, 

FUmix = 12,000), (iii) DON-CON diet (DON = 2800, FUmix = 180)  
and (iv) DON-FUmix diet (DON = 2500, FUmix = 13,500). Staining: 
PAS-crossman; magnification: × 20; white scale bar = 200 µm
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6 of the restrictive feeding period (Table 5). Mucosal fold 
width in the midgut and enterocyte width in the midgut and 
hindgut were affected by the 2-way interaction between time 
and FUmix (p ≤ 0.01). These indicators were higher during 
week 1 and week 6 in fish fed diets containing FUmix, while 
during week 8 (the end of the ad libitum feeding period), 
these width measurements were reduced in fish fed diets 
containing FUmix (Table 5). The goblet cell density of the 
pyloric caeca was the only indicator with an interaction 
effect between DON and FUmix (p ≤ 0.01). Fish fed diets 
containing toxins had a similar goblet cell density in the 
caeca, but these densities were lower compared to the fish 
fed the toxin-free diet (CON-CON; Table 5). No interaction 
effect between DON and FUmix was noted in any of the other 
intestinal indicators measured. The supranuclear vacuole 
width in the hindgut was affected by both DON (p ≤ 0.05) 
and FUmix (p ≤ 0.01), without an interaction. Trout exposed 
to DON and FUmix had a reduced supranuclear vacuole 
width (Table 5).

Discussion

The current study investigated, via a 2 × 2 factorial design, 
the impact of individual and combined effects of Fusarium 
graminearum- and Fusarium verticillioides-produced toxins 

on growth performance and histology of the gastrointestinal 
tract of rainbow trout. The first factor was DON contamina-
tion produced by F. graminearum (DON), and the second 
factor was the mixture of the toxins: fusaric acid and FB1, 
FB2 and FB3 (FUmix) produced by F. verticillioides. There-
fore, the four experimental diets had a contrast without and 
with DON contamination (CON versus DON) and without 
and with FUmix contamination (CON versus FUmix).

The restrictive feeding period revealed a direct impact 
of DON at a dose of 2700 µg/kg on growth, FCR, protein 
and energy retention. At half DON dose, an earlier study 
(Koletsi et al. 2022) measured the direct impacts of DON on 
protein and energy retention. These observations were not 
influenced by a reduction in feed intake since the restrictive 
feeding regime aimed to offer the same amount of feed in 
all treatments. Therefore, any change in the growth perfor-
mance indicators was associated with the mode of action 
of DON (e.g., inhibition of protein synthesis). During the 
ad libitum feeding period, the accurate monitoring of feed 
consumption by subtracting the uneaten pellets showed 
that DON exposure reduced feed intake in trout. This is in 
contrast to a previous in vivo study in trout with the same 
experimental design (Koletsi et al. 2022), where no effect 
of DON on feed intake was present. This difference might 
be explained by exposure to DON at a dose of 2700 µg/kg, 
which was higher than that in the previous study (Koletsi 

Fig. 2   Representative examples of histological sections of the 
intestinal folds at the end of the experiment (week 8) in a pyloric 
caeca, b midgut, and c hindgut of rainbow trout fed: (i) CON-
CON diet (DON = 0, FUmix = 0), (ii) CON-FUmix diet (DON = 0, 

FUmix = 12,000), (iii) DON-CON diet (DON = 2800, FUmix = 180), 
and (iv) DON-FUmix diet (DON = 2500, FUmix = 13,500). Staining: 
Alcian blue-crossman; magnification: × 20; black scale bar = 100 µm
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et al. 2022). The current DON dose resulted in an estimated 
daily intake (EDI) of 0.104 μg DON/g BW/day during the 
ad libitum feeding period, whereas in our earlier study, the 
EDI of DON was only 0.044 μg/g BW/day (Koletsi et al. 
2022). Most likely, the differences in DON exposure level 
may explain the differences between studies regarding appe-
tite. The current observation of a reduced feed intake is in 
line with studies in trout applying an ad libitum feeding 
period of 8 weeks (Hooft et al. 2011, 2019a, b; Ryerse et al. 
2016; Hooft and Bureau 2017; Gonçalves et al. 2018b). The 
combination of the dose of DON and experimental duration 
should, therefore, be considered when investigating statisti-
cal differences in feed intake.

Considering the higher dose of DON (2700  µg/kg) 
applied in the current study, it was expected that alterations 
in the liver histological measurements would be more severe 
compared to the ones reported in an earlier study (Koletsi 
et al. 2022) even at half DON dose. Other DON studies did 
not detect histopathological changes in the liver of trout 
(Matejova et al. 2014) (Hooft et al. 2019a) and of red tilapia 
(Tola et al. 2015).In contrast, histopathological changes were 
observed qualitatively in trout (Hooft et al. 2011; Gonçalves 
et al. 2019) and quantitatively in carp (Pietsch et al. 2014; 
Pietsch and Burkhardt-Holm 2015). The minor changes in 
the current study and variability between studies in DON 
impact on the liver might be linked to factors such as dif-
ferences in the power of the study (in the current study, 4 
or 6 fish were sampled for histology per treatment at each 
time point); variability inside the tank between fish in EDI 
of DON due to differences in feed intake; the occurrence 
of unknown co-exposure with other mycotoxins (over the 
years, the detection methods of mycotoxins have evolved; 
new toxins are discovered and analysed); differences in 
experimental conditions and genetic background and life his-
tory of the experimental fish. The minor/mild histological 
changes induced by DON on gut histology are in line with 
an earlier study (Koletsi et al. 2022). The absence/minor 
effect of DON on trout intestinal tissues may be related to 
the rapid absorption of the toxin in the upper part of the 
gastrointestinal tract and distribution to the liver within 1 h 
(Bernhoft et al. 2017). While the gastrointestinal tract was 
consistently unaffected by DON in our studies, other stud-
ies (Koletsi et al. 2022) reported alterations of histological 
measurements in the liver, where DON is eliminated at the 
half-life within 6.2 h (Bernhoft et al. 2017).

Regarding the second factor in this study, FUmix, it is not 
possible to estimate the contribution of each separate toxin 
present in the mixture produced by F. verticillioides (fusaric 
acid and FB1, FB2 and FB3) to the total effect of the mix-
ture. Information on fusaric acid and FB3 effects on fish is 
absent. In the EU recommendation for toxins, FB1 and FB2 
are summed with a current limit of 10,000 µg/kg (Commis-
sion 2006). In the FUmix contaminated diets in the current 

study, the mean FB1 and FB2 level was ~ 9000 µg/kg feed, 
which is below the current EU recommended limit. Com-
pared to the other toxins produced by F. verticillioides, FB1 
is the main toxin produced by this fungi, occurring more fre-
quently and most toxic and, therefore, also most frequently 
studied (Galeana-Sánchez et al. 2017).

This study is the first to evaluate the sensitivity of rain-
bow trout to fumonisins. Trout exposed to the FUmix (with a 
sum of FB1 and FB2 being 9000 µg/kg) showed a significant 
reduction in the growth, but only during restrictive feeding 
and not during ad libitum feeding. The sensitivity of fish to 
fumonisins seems to differ strongly between fish species. In 
studies with a longer ad libitum period than the current study, 
lower fumonisins levels resulted in reduced growth in sea-
bream (FB1 and FB2 ≥ 168 µg/kg; (Gonçalves et al. 2020a)) 
and in turbot (FB1 and FB2 ≥ 1000 µg/kg; (Gonçalves et al. 
2020b)). In other fish species, fumonisins effects on growth 
were only observed at higher levels (FB1 ≥ 5000 µg/kg in 
African catfish; (Gbore et al. 2010)) (FB1 ≥ 40,000 µg/kg 
in Nile tilapia; (Tuan et al. 2003)) (FB1 ≥ 20,000 µg/kg in 
channel catfish; (Lumlertdacha et al. 1995); (Yildirim et al. 
2000)). The disappearance of the FUmix on growth during 
the ad libitum period might suggest that trout adapted to 
FUmix exposure. In other words, the fish may have become 
less sensitive to the toxic effects of this mixture. However, 
liver and intestinal histopathological observations do not 
support this hypothesis of adapting to these toxins. Instead, 
various histopathological measurements (e.g., increased gly-
cogen vacuolization in the liver and reduced mucosal fold 
and enterocyte width in the gastrointestinal tract) revealed 
that FUmix effects aggravated with time, being more severe 
at the end of the ad libitum feeding period. The time (or 
feeding level) related change in FUmix effects together with 
the large variability between fish species in sensitivity to F. 
verticillioides toxins warrants further research on this group 
of toxins to improve the current recommended EU limits. 
The approach taken in the current study to use a mixture of 
F. verticillioides produced toxins can be advised as approach 
also for other fish species because feed ingredients with an 
infestation of F. verticillioides are most likely to contain a 
mixture of fusaric acid and FB1, FB2 and FB3.

The main objective of this study was to investigate the 
presence of interaction effects (antagonism, synergism or 
additivity) of FUmix and DON. For growth performance data 
during both feeding periods (restrictive and ad libitum), no 
significant interaction effects were present (Tables 2 and 
3), which suggests that the effects of FUmix and DON are 
additive during co-exposure. Apart from the goblet cell 
density of the pyloric caeca, all studied histological meas-
urements suggested additivity of FUmix and DON effect. It 
can be hypothesised that the combination of Fusarium spp. 
toxins, as applied in the current study (FUmix versus DON), 
does not influence each other’s toxicological effects. It has 
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been suggested that combining mycotoxins with structural 
similarities, comparable modes of action and thus toxicity 
profiles, increases the likelihood that their effects are addi-
tive (Speijers and Speijers 2004). The absence of a signifi-
cant interaction effect might also be related to low statisti-
cal power of this study (a too low number of tanks/animals 
being included into the study). A major toxicological impact 
FB1, the most abundant toxin produced by F. verticillioides, 
is an interference with the sphingolipids’ metabolism via 
inhibition of ceramide synthase enzymes (Feijó Corrêa et al. 
2018), which results in an alteration of the sphinganine/
sphingosine ratio in livers. Therefore, this ratio is used as a 
biomarker of FB1 exposure (Riley et al. 1994). It can also be 
the case that the proper measurements for quantifying FUmix 
effects were not assessed in the present study in order to 
reveal interaction effects (e.g., the sphinganine/sphingosine 
ratio in the liver).

Only few studies in fish addressed co-exposure; thus, 
the comparison between effects of co-exposure to FUmix 
and DON is only possible with terrestrial animal literature. 
Feeds and also ingredients are often co-contaminated with 
multiple toxins (Streit et al. 2012). Next to the limited infor-
mation on the effects of co-occurrence, also in terrestrial 
animals, there is a large variability in responses between 
studies, species and the measured indicators (Smith et al. 
2016). In pigs, an early study (Smith et al. 1997) found 
synergism between DON and fusaric acid on growth per-
formance. In contrast, a later study in pigs (Grenier et al. 
2011) did not show a interaction effect between DON and 
fumonisins on growth, but a synergistic action was observed 
regarding the severity of histopathological lesions in the 
liver. In ducks, synergism between fumonisins, DON and 
ZEN resulted a lower growth, but this was not observed in 
any of the other factors assessed (Peillod et al. 2021). In 
another pig study (Bracarense et al. 2012), synergism, anto-
gonism and additivity were observed for the co-exposure 
to DON and fumonisins depending on the assessed meas-
urement. Due to the large variability between and within 
studies, further in vitro and in vivo research is required to 
understand and explain the combined mycotoxin effects and 
to predict their interactions. Such information is needed for 
regulatory authorities of the animal feed industry in formu-
lating recommended limits for mycotoxin mixtures.

This first rainbow trout study evaluating the combined 
effects of the most prevalent mycotoxins in aquafeeds pro-
duced by F. graminearum: DON and F. verticillioides: FUmix 
(fusaric acid and FB1, FB2 and FB3) showed that the co-
exposure of FUmix and DON primarily had additive effects 
on growth performance (no interaction effects). The expo-
sure to FUmix and to DON impaired growth and FCR during 
the restrictive feeding period. During ad libitum feeding, 
growth and feed intake were reduced by DON exposure, 
but not by FUmix. There were no toxins interaction effects 

on histopathological measurements in the liver and gastro-
intestinal tract. DON exposure in the current study resulted 
in minor histological changes, and FUmix did lead to minor 
alteration in liver and intestinal tissue but mainly at the end 
of the ad libitum feeding period.

In conclusion, despite the minor impact on the liver, the 
current study clearly shows a substantial effect on growth 
performance already at a DON exposure of level of 2700 µg/
kg feed. This implies that the current EU recommended limit 
for DON at 5000 µg/kg may need to be reconsidered for fish. 
Since no other studies in trout have evaluated the effects of 
the sum of FB1 and FB2, a conclusion cannot be drawn about 
the effectiveness of the EU recommended limit at 10,000 µg/
kg, although it is suggested future studies to measure the 
effects of FUmix instead of the sum of FB1 and FB2.
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