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ABSTRACT

Differential abundance analysis of infant 16S micro-
bial sequencing data is complicated by challenging
data properties, including high sparsity, extreme dis-
persion and the relative nature of the information
contained within the data. In this study, we propose
a pairwise ratio analysis that uses the compositional
data analysis principle of subcompositional coher-
ence and merges it with a beta-binomial regression
model. The resulting method provides a flexible and
easily interpretable approach to infant 16S sequenc-
ing data differential abundance analysis that does
not require zero imputation. We evaluate the pro-
posed method using infant 16S data from clinical
trials and demonstrate that the proposed method
has the power to detect differences, and demonstrate
how its results can be used to gain insights. We fur-
ther evaluate the method using data-inspired simu-
lations and compare its power against related meth-
ods. Our results indicate that power is high for pair-
wise differential abundance analysis of taxon pairs
that have a large abundance. In contrast, results for
sparse taxon pairs show a decrease in power and
substantial variability in method performance. While
our method shows promising performance on well-
measured subcompositions, we advise strong filter-
ing steps in order to avoid excessive numbers of un-
derpowered comparisons in practical applications.

INTRODUCTION

The interest in the early life development of the human mi-
crobiome has grown substantially in recent years, as have
publications showcasing some form of differential abun-
dance analyses (1,2). Microbiota compositions are mea-
sured using culture-independent techniques such as 16S
metagenomic sequencing with the aim of finding associa-

tions between microbiota compositions and diseases or to
assess the impact of interventions on composition (3). The
statistical analysis of infant 16S sequencing datasets is chal-
lenging due to a combination of data properties. These data
are extremely sparse, they have a high dispersion and they
are compositional (4–7). Sparsity and dispersion are the re-
sult of heterogeneity among experimental units (i.e. infants
and technical variation). Infant microbiome data are char-
acterized as hypervariable, developing microbial ecosystems
for which both compositions and absolute abundances tend
to fluctuate widely across experimental conditions or time
(8). The compositionality is a consequence of the fact that
the sequencing depth is a technical artifact that is not infor-
mative of the underlying total abundances, and of the lack
of internal standardization in the measurement approach
(5,9–13).

Many commonly applied data analysis approaches deal
with compositionality through some form of data standard-
ization, commonly referred to as ‘normalization methods’,
that assumes the existence of some stable features shared
across all samples (14,15). While such assumptions are com-
monly accepted in some RNA-seq contexts (16–18) and
may apply to various stable microbial ecosystems, they are
inappropriate for infant microbiomes. The lacking applica-
bility of standardization techniques and the extreme vari-
ability of infant compositions call for the development of
appropriate methodology for differential abundance analy-
sis.

Beta-binomial models have a long history of being ap-
plied to overdispersed count data to be analyzed as pro-
portions (19–22), and variants or extensions of the model
have been suggested for microbiome data analysis (23,24).
The method proposed by Martin et al. (23) models the
proportions of each taxon with respect to all other taxa,
which is conceptually the same as modeling the data as rel-
ative abundances (25–28). This approach uses the totals as
a normalization, which can be appropriate when total loads
stay constant across samples and conditions, in which case
changes in relative abundance correspond to changes in ab-
solute abundances up to a scaling constant (15). While this
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approach is compositional in the sense that it respects the
unit-sum constraint of the data, it suffers from interpreta-
tional shortcomings well known in the compositional data
analysis field. Specifically, all relative abundance techniques
are affected by what is referred to as the ‘compositional’
or ‘closure’ bias, i.e. the feature of compositional data that
forces all proportions to change when only one taxon actu-
ally changes in the absolute sense (5,29,30). The dependence
of each proportion on all others through closure alone ham-
pers interpretation of univariate tests based on them. More-
over, since all other taxa are amalgamated into one refer-
ence in relative abundance analyses, it becomes difficult to
compare differential relative abundances across studies or
measurement platforms with more limited taxonomic cov-
erage. While it is impossible to perform absolute abundance
analyses on the data without additional assumptions, it is
possible to make precise inferences by freeing analyses of
closure bias by focusing on ratios of taxa (31,32). For these
reasons, we propose merging the pairwise ratio perspective
with the beta-binomial regression model. Instead of mod-
eling proportions relative to the total library size, we con-
dition on the pairwise totals and thus model proportions
relative to the pairwise totals. As a result, we create a flexi-
ble method that provides inferences without requiring stan-
dardization, does not need zero imputation and leads to re-
sults that are subcompositionally coherent and thus com-
parable across studies.

We evaluate the proposed method with an application
and a simulation study. In the application section, we com-
pare our method to the beta-binomial model proposed by
Martin et al. (23). In the latter, we evaluate the method in
terms of type I error rates and power for realistic in silico
16S sequencing data inspired by infant microbiome data
from clinical trials. We compare with alternative methods
that model pairwise ratios to gain further insights into the
performance of the proposed method. The remainder of this
paper is structured as follows. In the ‘Materials and Meth-
ods’ section, we first describe the pairwise beta-binomial re-
gression model. Next, we describe some additional method-
ological aspects concerning multiple comparisons and the
interpretation of pairwise results. We then describe the in-
fant reference data used for evaluation of the method and
outline the application and the simulation study. In the ‘Re-
sults’ section, we describe the findings of the application and
the simulation study. In the last section, we discuss the scope
and limitations of our results and give recommendations for
scientists involved in the analysis of infant microbiome data.

MATERIALS AND METHODS

Pairwise beta-binomial generalized linear model

The focus of the proposed method is on the univariate anal-
ysis of one taxon pair using the beta-binomial model. We
model the abundance as a pairwise ratio, i.e. one taxon with
respect to another taxon. Indexing two taxa by a and b, and
indexing the samples by i, the beta-binomial model can be
denoted by

Yi,a|(Pi , Ti,ab) ∼ Binomial(Ti,ab, Pi ),

Pi ∼ Beta(α1,i , α2,i ),

where Ya denotes the count of taxon a and Tab denotes the
total count of taxa a and b. The count of taxon b is implicit
in the model via the pairwise totals Tab, where Yb = Tab −
Ya. Sample-specific binomial probabilities Pi are assumed
to follow a beta distribution with parameters �1,i and �2,i.
In this model, the (latent) beta distribution describes the
shape of the pairwise relative abundance per taxon pair; the
beta distribution is flexible and commonly used to model
proportions (see Figure 1 for an example). The binomial
part models the accuracy with which the pair is observed
in the data. The beta distribution has an expected pairwise
relative abundance given by E(Pi ) = μi = α1,i/(α1,i + α2,i )
and a dispersion given by θi = 1/(α1,i + α2,i ). From here
we can model the probability μ with a linear predictor
using the logit link, i.e. logit(μi ) = log[μi/(1 − μi )] = πi .
Here, μi and 1 − μi describe, respectively, the relative abun-
dance of taxon A and taxon B relative to the pairwise to-
tal. To make the connection to pairwise ratios more ev-
ident, note that Ya/Tab = [1 + (Yb/Ya)]−1. The linear pre-
dictor (π i) may contain any qualitative or quantitative ex-
planatory variable. When comparing expected pairwise rel-
ative abundances across two treatment groups, we can set π i
= β0 + β1xi. For a two-group comparison, the parameter β0
represents the log odds of taxon a with respect to taxon b in
the control group. The parameter β1 describes the difference
in log odds between the treatment and control groups, indi-
cated via the treatment dummy variable xi. After exponen-
tiation, β1 represents the odds ratio of taxon a with respect
to taxon b across treatment and control.

A recent paper describes how count data contain scale in-
formation, and that small counts can be an issue (33). In our
proposed method, we model the amount of information in
the data with the binomial part. For a taxon pair that con-
tains a large number of small counts, we can less accurately
estimate the pairwise relative abundances, which will lead
to larger confidence intervals and a low power, which is an
accurate reflection of the amount of information available.
Note that the pairwise totals are affected by the sequencing
depth: a higher depth means a higher pairwise total, and
vice versa. For moderate pairwise totals, the variance of the
beta-binomial is approximately equivalent to the variance
of the often sizable beta component, i.e. Var(Yi,a/Ti,ab) =
[(1/Ti,ab) + ((Ti,ab − 1)/Ti,ab)φ]μa(1 − μa). If Tab is large,
we have Var(Yi,a/Ti,ab) � φμa(1 − μa) = [θ/(1 + θ )]μa(1 −
μa), where φ models extra-binomial variation. The latter
term is equivalent to the variance of the beta distribution.
This means the latent beta distribution variability is ex-
pected to dominate over binomial count variability with
moderate or large pairwise totals.

Software

The pairwise beta-binomial model can be fitted with any
beta-binomial implementation. A number of implementa-
tions exist in R, most notably corncob (23), glmmTMB
(34) and gamlss (35). Each of these has its own advantages
and collectively they contain a large statistical toolbox that
can be used in combination with a pairwise beta-binomial
model. In this paper, we only use corncob because it has
a speed advantage over the mentioned alternatives, which is
useful in a simulation study or doing a full pairwise compar-
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Figure 1. Histograms of pairwise proportion (Ya/Tab) for four selected taxon pairs and corresponding fitted beta distributions of the beta-binomial model.
Raw data proportions show extreme dispersion and sparsity. In many samples, either one of the taxa has a zero or close to zero count, represented by large
fractions of proportions close to or at the boundaries of the proportional spectrum. For some taxon pairs, both taxa may be registered as a zero count,
making it impossible to establish pairwise proportions or ratios. The beta component of the beta-binomial models shows adequate flexibility to account
for observed distributional patterns.

ison. Note that for practical applications speed is unlikely
an issue with any of the mentioned implementations, as a
single model fits in a matter of seconds. For a basic code ex-
ample in R, we refer to Supplement A. The code used in the
analyses is included in Supplement D.

Multiple comparison

Each taxon pair can be analyzed separately, which means
that the number of possible comparisons that can be made
increases quadratically with the number of evaluated taxa.
With k taxa, there are (1/2)(k2 − k) possible ratios. A mul-
tiple comparison correction across all tested ratios is thus
required. In this data example, we apply the Benjamini–
Hochberg method (36) across all tested ratios. Benjamini–
Hochberg is computationally quick to apply, robust and fre-
quently applied with omics data to calculate the false dis-
covery rate (FDR).

Selecting taxa

Although the inference with the pairwise beta-binomial
model is on the level of the ratio, the interest may still be
in identifying a subset of taxa. This requires some strategy
on how to interpret the pairwise results. As a first step, it
is useful to examine a visualization of a pairwise result (as
example see Figure 3). This figure displays all ratios on the
x and y axes and each square in the figure represents one
ratio. The blue squares represent significant ratios.

One possibility is then to assign each ratio to one taxon,
and then find a set of taxa that together are involved in

most or all of the significant ratios. One way of identifying
such a set is by ‘unwrapping’ the ratios. In this approach,
we first select the taxon that has the most significant ratios.
We then exclude all ratios this taxon is involved in, and se-
lect the taxon that is next involved in the most (remaining)
significant ratios, and so on, until all significant ratios are
accounted for. The resulting set of taxa can then be selected
as interesting for further investigation. The order in which
we unwrap the ratios provides a ranking.

A second possibility is to simply count the number of sig-
nificant ratios each taxon is involved in, and use this as a
ranking. The top of this ranking will often be similar to that
of the first approach. Because here each (significant) ratio is
assigned to two taxa, more ratios are assigned to seemingly
unimportant taxa, which makes a stringent selection more
difficult. Note that the ratio count of the second option is
similar to the statistic (‘W’) that is used in method called
ANCOM (37), which also attempts to identify taxa from
ratio results, albeit with a very different approach.

Irrespectively of the selection method, taxa that are in-
volved in many significant ratios may have a shift in their
underlying abundance. Note that, given the compositional
nature of the data, there is no guarantee that being in-
volved in many significant ratios corresponds to underly-
ing actual shifts. Similarly, it is possible that taxa with abso-
lute shift do not have significant ratios (i.e. when all taxa
shift in the same direction). Both issues are inherent to
compositional data, and not related to the method. Also
note that we do not classify individual taxa as significant
or nonsignificant, because such statements are not possi-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/1/lqad001/6993937 by guest on 31 August 2023



4 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

ble with a pairwise beta-binomial model (i.e. it analyzes
ratios).

Reference data

The proposed method is evaluated using a subset of
16S sequencing data extracted from two infant clinical
trials where the impact of various infant formulas on
the gut microbiome was studied (clinical trial references:
https://trialsearch.who.int/?TrialID=NTR2521 and https://
trialsearch.who.int/?TrialID=NTR3455). In both studies,
highly similar infant formulas with and without fermented
components are compared in a randomized, double-blind
clinical trial. In each study, 16S sequencing workflows pro-
vide insights into broad compositional trends in the data.
Both clinical trial datasets were processed jointly (see details
in Supplement B). Based on available metadata, a selection
of samples based on infant age at sampling time has been
made, restricting the age of all used infant samples to 3.5–
6.5 months. If technical replicate samples were available for
an infant, these were removed to ensure one sample per in-
fant. The data of a selection of taxa are displayed against
each other in Figure 2. The data are available in Supple-
ment D.

Evaluation

The evaluation is done by applying the method to an ex-
ample from the reference data and with a data-driven sim-
ulation study. In the application, we compare the result of
the proposed method to the closely related beta-binomial
model of Martin et al. (23); we will refer to this method as
the MWW method.

In the simulation study, we further evaluate the robust-
ness and performance of the pairwise beta-binomial regres-
sion model and compare it to competing pairwise methods.
The application is based upon one study (149 samples) and
in the simulation study we use all 272 samples of both stud-
ies. In both parts of the evaluation, we use a set of 51 taxa
(genus level) that were prevalent in at least 20% of the sam-
ples; any taxa at lower prevalence were removed. In both
parts of the evaluation, testing is done using the null hy-
pothesis of H0: β1 = 0 with Ha: β1 �= 0 using a likelihood
ratio test (38). Both model fitting and likelihood ratio test-
ing are done using corncob (23); 95% confidence intervals
are created using approximate normality assumptions of the
sampling distribution of the parameter and the estimated
standard error provided by corncob via β̂1 ± 1.96 × se(β̂1)
(38).

Application

In the application, we compare three different types of in-
fant formulas (sample sizes of, respectively, 34, 37 and 42
infants, named treatments 1–3) separately against one ref-
erence formula (sample size of 36, named treatment 4). The
research question is which (ratios of) taxa have changed in
the infant microbiome as a result of being given treatment
1, 2 or 3 versus being given treatment 4. The taxa/ratios
that are identified may provide further insights into how
the feeds differ in their biological working. In total, this

gives three different treatment comparisons. In this exam-
ple, we analyze all combinations between 51 taxa (giving
1275 pairs). Per treatment comparison, we adjust for multi-
ple comparisons across all ratios by calculating the FDR us-
ing Benjamini–Hochberg. Next, we classify as significant all
ratios that have a FDR below 0.05; here, in practice a differ-
ent threshold can be chosen. We visualize the rejected ratios
with a grid that gives an overview of how findings per taxon
pair/ratio relate to the individual taxa (as example see Fig-
ure 3). An example of a small subset of ratios with the data
is displayed in Figure 2.

Next, we identify a limited set of taxa that are involved in
the significant ratios (using the earlier described method).
Finally, we make a comparison with the MWW method
(23). Although the focus of this method is different (i.e. indi-
vidual taxa versus ratios), we can compare the sets of taxa
that are identified. With the MWW method, we test each
taxon and calculate the FDR (with Benjamini–Hochberg)
across the taxa. We then classify taxa with an FDR below
0.05 as significant.

Simulation study

Benchmarking method simulation. We compare the pair-
wise beta-binomial method with a log-ratio transformation
followed by a linear model (with and without zero imputa-
tion, LRLM and LRLM-2) and by nonparametric methods
(Wilcoxon and permutation tests, named LRW and LRP).
With the LRLM approach, we use the log-ratio transform
log(Yi,a/Yi,b) = Y′

i . As with the beta-binomial model, the
starting point of the LRLM approach is the reduced taxon
table involving two taxa only. We then proceed to log-
ratio transform the counts using log(Yi,a/Yi,b) = Y′

i , where
Y′

i is assumed to be approximately normally distributed
with constant variance σ 2 and mean μi. A linear regres-
sion model specified as μi = γ 0 + γ 1xi, where γ 0 is the in-
tercept representing the expected log ratio for the control
group and γ 1 indicates the treatment-specific difference in
log ratio, can be used for testing for differential abundance.
Since the transformation is not defined for values of Y = 0,
we make use of the field standard pseudocount imputation
and replace each 0 by a pseudocount of 1, where 1 repre-
sents an ad hoc choice (37). This approach is identical to
Aitchison’s additive log-ratio transformation for a two-part
composition followed by a linear model (31). Significance
testing of the group difference parameter γ 1 is done using
a Wald test. The parameter fitted in the LRLM is an em-
pirical, transformation-based equivalent of the odds ratio
estimated in the beta-binomial regression model. LRLM-
2 is identical to LRLM, except that samples where both
counts are zero are removed from the analysis. The non-
parametric reference methods make use of the same data
transformation, with the t-test being replaced by either the
Wilcoxon’s rank sum test (LRW) or a permutation test
(LRP) (39–42).

Resampling-based nominal error rate assessments. To
study type I error rates of the various methods under re-
alistic data-generating scenarios, without parametric as-
sumptions, we make use of resampling. In these analyses,
we use Bifidobacterium and Anaerostipes as the denomi-
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Figure 2. A visualization of a small subset of taxa of the data example. Displayed are four taxa plotted against each other that correspond to the bottom
left 4 × 4 taxa of the treatment 2 versus treatment 4 comparison of Figure 3 (as indicated by the corresponding numbers). The blue coloring corresponds
with Figure 3 and indicates that the null hypothesis (treatment 2 versus treatment 4) was rejected for that ratio. This figure illustrates the high variability
and large numbers of zeros encountered with infant microbiome data. The data are log transformed using a pseudocount of 1.

nator taxa. These taxa represent two opposites: Bifidobac-
terium is highly prevalent and usually highly abundant,
while Anaerostipes is highly sparse with 80% zeros across
the two reference studies and, if present, tends to have low
counts. For each denominator taxon, we have 50 possible
pairwise combinations. These situations thus represent sce-
narios with type I error rates to be expected for the vast
majority of possible pairwise comparisons in infant micro-
biome data.

Since we combine data from two studies, the data for each
possible taxon pair are indexed by sample and study of ori-
gin. For a given sample size n = 20, 40, 60, 80, 100 and 200,
we sample n/2 samples with replacement from each study
and randomly label half the samples within each study sam-
ple to either treatment or control group. For the log-ratio
linear model and the beta-binomial model, we test for differ-
ences between treatment groups while controlling for study-
specific effects using an additive model that symbolically
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A B C

Figure 3. Visualization of the result with treatment 1 (A), treatment 2 (B) and treatment 3 (C) versus treatment 4. Each square represents a ratio between
two taxa that is tested with the pairwise beta-binomial model. The diagonal contains numbers that indicate which taxa are used in a particular ratio; these
numbers can be connected to taxonomy. Significant ratios [classified with FDR(BH) < 0.05] are colored in blue; ratios >0.05 are colored gray. Only taxa
with at least one significant ratio in any of three comparisons have been included in the grid. Note that the grid is symmetric. The triangles at the x-axis
indicate taxa that together contain most of the significant ratios in the pairwise beta-binomial model. The black circles at the x-axis indicate the taxa that
are identified by the MWW method [FDR(BH) < 0.05].

reads study + treatment. Nonparametric testing is done ig-
noring possible heterogeneity across studies.

For the log-ratio linear model, the beta-binomial model,
and both nonparametric tests, sampling and testing are re-
peated 10 000 times for each possible taxon pair and sample
size combination. For each combination, we estimate the
type I error rate of the method by recording the propor-
tion of rejections of the null hypothesis of no difference in
expectation between groups at nominal α = 0.05. The re-
sults represent test-wise estimates of nominal error rates for
the methods at various sample sizes and biological reference
data. Since testing is done on the basis of resampled data
and thus not impacted by any parametric distributional as-
sumption made, the results of the nominal error rate evalu-
ations are not favoring any method in particular.

Parametric simulation-based power and coverage assessment.
Power curve estimation requires parametric assumptions
and a gradient of increasing effect sizes for evaluation.
The parametric simulations are based on the beta-binomial
model and, as in the resampling, we use Bifidobacterium
and Anaerostipes as the denominator taxa. We use one
dispersion estimate per denominator. For each denomina-
tor, we fit a beta-binomial regression model to each of
the 50 pairs, while accounting for possible reference study
effects. We then take the median dispersion (across 50
pairs/ratios) per denominator (0.46 for Bifidobacterium and
5.39 for Anaerostipes).

When generating count data, we need to provide count
values for the pairwise sampling effort (i.e. pairwise totals).
To mimic the data closely, we sample pairwise totals from
the empirical pairwise totals of the 50 possible pairwise

taxon combinations with Bifidobacterium and Anaerostipes
as the denominator. Median pairwise totals for taxon pairs
with Bifidobacterium as the denominator range from 9610
to 12 954. With Anaerostipes as denominator, the median
pairwise totals range from 0 to 9684. Note that this im-
plies that beta-binomial data can be generated using a set
total of zero, leading to zero counts for both numerator
and denominator taxa regardless of parameter values. In
the beta-binomial model, such pairs do not provide viable
information and are removed from analysis, while the log-
ratio transformation-based methods deal with such samples
using pseudocount imputation.

In order to provide an interpretable range of possible ef-
fect sizes, we fix the control group odds to 1/1, 1/9, 1/99
and 1/999. This represents pairwise probabilities for the
numerator taxon of 0.5, 0.1, 0.01 and 0.001, respectively.
As with the resampling, the evaluated sample sizes are n
= 20, 40, 60, 80, 100 and 200. Combined with four values
for the control group odds, this gives 24 scenarios, per dis-
persion. Each scenario is extended to create a power curve
as follows: We increase the expected success probability of
the numerator in the treatment group by steps of 0.05 un-
til we reach an absolute difference in proportion of 0.45.
The resulting range of proportions serves as expectations
for a treatment group that can be compared with the pro-
portions of the control group. In the scenarios inspired by
Bifidobacterium, the power is additionally evaluated using
increments of 0.005 (instead of 0.05). We also include a dif-
ference in proportion of 0, giving a parametric estimate of
the type I error. Note that while we change the expected
value across groups, we keep the dispersion fixed in order to
assess method capacity to show differences under realistic
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levels of variability. Power is computed as the percentage of
null hypothesis rejections for each sample size and baseline
versus alternative model combination. Each combination is
repeated 10 000 times for accurate power estimates.

We additionally use the described models to assess the
coverage of the 95% confidence interval around the treat-
ment effect. Here, we compute the expected difference in
proportion across the two groups and assess whether this
true expected difference is captured within the computed
95% confidence interval.

RESULTS

In the data example, we see that in all three comparisons
the pairwise beta-binomial is able to identify ratios that are
significant (classified as FDR < 0.05). For the comparison
of treatments 1, 2 and 3 versus treatment 4, we find, re-
spectively, 6, 107 and 100 significant ratios. As is evident in
Figure 3, these significant ratios are clustered among a lim-
ited number of taxa. With treatment 1, all six ratios share
the same taxon. With treatment 2, a set of eight taxa is in-
volved in all 107 ratios. With treatment 3, a set of six taxa
is involved in 98 out of 100 ratios. When comparing these
sets of taxa to the sets identified by the MWW method,
we see a high similarity (Figure 3). With treatment 1, the
MWW method identifies the same single taxon. With treat-
ment 2, the MWW method identifies eight taxa, of which
seven overlap with the proposed pairwise method. With
treatment 3, the MWW method identifies four taxa that all
overlap. Although we do not know the truth on which taxa
have shifted, these findings demonstrate that the pairwise
beta-binomial approach provides results that are consistent
with the MWW method, despite their different philoso-
phies. Note that there is no guarantee for this degree of over-
lap, as demonstrated in Supplement D where we illustrate
that the MWW method can be misled by compositional ar-
tifacts. In the comparison with treatment 2, for example,
we see that taxon 10 is identified by the MWW method.
However, based on insights from the pairwise beta-binomial
model, this may be the result of a compositional artifact.

With the parametric simulations, we assess the type I er-
ror using the 24 scenarios, inspired by Bifidobacterium and
Anaerostipes, that contain no difference between the treat-
ments (odds ratio = 1; Figure 4). At smaller sample sizes of
20 and 40 for the scenarios inspired by Bifidobacterium, we
observe liberalness (i.e. type I error rate too large) and con-
servativeness (i.e. type I error rate too small) for the beta-
binomial model and the LRLM without imputation. For
larger odds (1/99, 1/9 and 1/1), all methods’ type I error
rates appear stable at sample sizes of 60 and higher. For
scenarios inspired by Anaerostipes, we observe liberalness
for the analysis with the beta-binomial model for odds of
1/9 and 1/1 for sample sizes up to 100. Moreover, we ob-
serve conservativeness for the beta-binomial model and the
LRLM without imputation at low odds (1/999 and 1/99)
for sample sizes up to 100. The beta-binomial model type I
error rates appear to stabilize at a sample size of 200 for the
1/99 odds scenario, while conservativeness is maintained
for the 1/999 odds scenario. The LRLM, permutation tests
and Mann–Whitney–Wilcoxon tests have well-behaved type
I error rates across all scenarios with sample sizes >20.

Overall, no method exceeds type I error rates of 0.1 for any
parametric scenario.

With the resampling, we similarly observe that all
transformation-based methods assessed have a well-
behaved type I error rate across all sample sizes >20.
A sample size of 20 leads to conservativeness in both
the Anaerostipes-based ratios and, to a lesser extent, the
Bifidobacterium-based ratios (Figure 5). The beta-binomial
model type I error rates are much more variable and
display liberalness for Anaerostipes-based simulations
from sample sizes of 20–100. At sample size of 20, type
I error rate may approach values of up to 0.15. It should
be noted that sample sizes here are somewhat misleading
for the beta-binomial model since taxa may be pairwise
absent and hence lead to many pairwise zero count samples
that result in lower effective sample sizes. In contrast, the
transformation-based approaches are presented with the
exact sample sizes provided, albeit with large fractions of
pseudocount-only samples. In the resampling simulations
based on Bifidobacterium, there are no pairwise zeros
and we instead observe variable type I error rates with
increasing conservativeness for increasing sample sizes.

The parametric power simulations also cover two situa-
tions: abundant taxa are represented by the scenarios in-
spired by Bifidobacterium and sparse taxa are represented
by the scenarios inspired by Anaerostipes. In our discus-
sion, we focus on the sample size of 60 (Figure 6 and Sup-
plementary Figure S1 in Supplement C). The sample size
of 60 is interesting since it represents a generally feasible
sample size for most studies and corresponds to the sam-
ple size for which type I error rates are mostly stabilized. In
the Bifidobacterium-inspired scenarios, the beta-binomial
model achieves 80% power for odds ratios between 11 and
16 (	p = 0.01–0.015; Figure 6 and Supplementary Figure
S1 in Supplement C). In comparison, the transformation-
based methods require odds ratios of 31 (	p = 0.03) to
achieve equivalent power (Figure 6). In the low odds sce-
nario inspired by Anaerostipes, the beta-binomial model re-
quires an odds ratio of around 250 (	p = 0.2) to achieve
80% power. Transformation-based approaches fail to reach
the 80% power level for all simulated odds ratios up to
820 (	p = 0.45). For control group odds of 1/99 in the
Bifidobacterium-inspired scenarios, differences in power be-
tween methods are less pronounced. The beta-binomial
model reaches 80% power at an odds ratio of 4 (	p = 0.03)
and the transformation-based approaches reach equivalent
power at odds ratios of 5.2 (	p = 0.04). At 1/99 odds,
the difference between methods remains more pronounced
for Anaerostipes-inspired simulations. The beta-binomial
model reaches 80% power at an odds ratio of 26 (	p = 0.2)
and the transformation-based approaches fail to achieve
equivalent power at odds ratios of 84 (	p = 0.45). For larger
odds of 1/9 and 1/1 and Bifidobacterium-inspired scenar-
ios, we observe very similar method performance with 80%
power reached at odds ratios of 2.25 (	p = 0.1) and 2.33
(	p = 0.2) for the two respective baseline odds. More siz-
able discrepancies between methods arise again in simula-
tions using the Anaerostipes-inspired scenarios, where the
beta-binomial model reaches 80% power for odds ratios of
7.36 (	p = 0.35) and 9 (	p = 0.4) for control group odds
of 1/9 and 1/1, respectively. Here, all transformation-based
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Figure 4. Method type I error rates for parametric null scenarios inspired by Bifidobacterium and Anaerostipes. Shown are the fraction of rejected hypothe-
ses (α = 0.05). The following methods are included: the likelihood ratio test for the beta-binomial model (bbglm), the pseudocount imputation followed by
log-ratio transformation linear model with t-test on difference parameter (lrlm), the equivalent to the previous but with omission of any zero-containing
samples (lrlm 2), the imputation and log-ratio transformation-based permutation (perm) and Wilcoxon rank sum tests (wilcox).

approaches fail to reach 80% power for the largest simulated
odds ratios of 11 (	p = 0.45) and 19 (	p = 0.45). Over-
all, beta-binomial model power is consistently superior to
that of transformation-based approaches, with the advan-
tage being especially pronounced for sparse scenarios and
more subtle for nonsparse 1/9.

For 95% confidence interval coverage evaluations in the
parametric simulations, we observe two trends. First, for
both the beta-binomial model and the LRLM the 95% con-
fidence interval coverage appears to cover null scenarios
well, in line with good type I error rate performance in most
cases (Figure S2 in Supplement C). Second, while the beta-
binomial models show excellent effect recovery capability
across all scenarios, the log-ratio linear model suffers from
heavy biases in a highly situation-dependent fashion (Fig-
ure S3 in Supplement C). Low odds, high dispersion and
the choice of the scenario affect confidence interval cov-
erage heavily, with larger sample sizes decreasing coverage
probabilities as expected in a biased model. The omission of
pseudocount imputation only partially ameliorates this sit-

uation in some scenarios and often leads to complete model
breakdown or complete loss of power.

DISCUSSION

This paper introduces a novel method for analyzing infant
microbiome data. Microbiome data from the developing in-
fant are highly heterogeneous (8) and challenging to analyze
because of their extreme variability and sparsity. The focus
of the proposed method is on the ratios of the taxa, which
we analyze with the beta-binomial model. We evaluate the
proposed method with a data example and an extensive sim-
ulation study.

Differential abundance analysis methods in microbiome
science fall into two broad categories. The first category of
approaches incorporate some form of internal data normal-
ization that aims to make statements about the absolute
abundances of single taxa possible. These approaches re-
quire strong assumptions such as positing the existence of
a vast majority of nondifferential taxa that are not affected
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Figure 5. Method type I error rates for the Bifidobacterium- and Anaerostipes-inspired scenarios (50 taxon pairs each). Per pair real pairwise count data
are sampled 10 000 times with various sample sizes and random treatment assignment. The type I error rate is computed as the fraction of rejections
(α = 0.05). The following methods are included: the likelihood ratio test for the beta-binomial model (bbglm), the pseudocount imputation followed by
log-ratio transformation linear model with t-test on difference parameter (lrlm), the imputation and log-ratio transformation-based permutation (perm)
and Wilcoxon rank sum tests (wilcox). Shown are histograms and density plots (Gaussian kernel, density determines y-axis scale) over the 50 pairs for each
sample size and method combination.

by treatments or covariates (14,15). These assumptions tend
not to be verifiable on the basis of sequencing data alone,
but the analyses will critically rely on their validity (30,43).
Commonly used analysis tools (17,18,44,45) make use of
a variety of such techniques. For the data we consider in
this paper, the required normalization assumptions are un-
likely to be met. Similarly, proportions, total sum scaling
and rarefaction can also be seen as a normalization. These
methods only provide inferences on the absolute abundance
if the total loads are equivalent between samples, which is
unlikely for the data we consider. A second category of ap-
proaches, from the field of compositional data analyses, aim
for compositional statements, which leads to inferences on
ratios of taxa (16). In this paper, we propose a method based
on the second approach; i.e. each taxon’s abundance is an-
alyzed relative to some other taxon’s abundance. The ad-
vantage is that we do not need to normalize the data, and
we thus do not require the normalization assumptions. An-
other advantage is that the method is subcompositionally

coherent, meaning that the size of the full composition and
the existence of other components do not impact the in-
terpretation of the individual pairwise comparison. Corre-
spondingly, this means that to compare quantitative mea-
surements for new samples only the two taxa in question
need to be quantified rather than the full compositions.

Simulations show that the proposed method performs
well in the Bifidobacterium-inspired scenarios, where it is
possible to detect small changes in pairwise proportion
across treatment groups; the same is true for competing
methods. Simulations inspired by Anaerostipes show dimin-
ished power for all methods and larger discrepancies be-
tween methods. In this setting, the beta-binomial model has
a strong advantage over competing (transformation-based)
methods. Here, for most scenarios, the beta-binomial model
is the only method reaching adequate power. Deficiencies
in power for the transformation-based methods are likely
due to an increasing impact of pseudocount imputation and
the resulting distortions of the data. The latter also affects
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Figure 6. Method power for various parametric scenarios inspired by Bifidobacterium (top half) and by Anaerostipes (bottom half). The power is computed
as the fraction of rejections (α = 0.05). The following methods are included: the likelihood ratio test for the beta-binomial model (bbglm), the pseudocount
imputation followed by log-ratio transformation linear model with t-test on difference parameter (lrlm), the equivalent to the previous but with omission
of any zero-containing samples (lrlm 2), the imputation and log-ratio transformation-based permutation (perm) and the Wilcoxon rank sum tests (wilcox).
Note that while y-axes are comparable, each column implies vastly different odds ratios for each difference in proportion between groups.
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the 95% confidence interval coverage rates in rather unpre-
dictable ways. Here, the beta-binomial model has the ad-
vantage that it does not require ad hoc pseudocount impu-
tations, resulting in good coverage for the confidence inter-
vals. In terms of type I error, all transformation-based meth-
ods have well-behaved type I error rates across the paramet-
ric and resampling scenarios. The beta-binomial model with
sparse taxa requires a larger sample size to avoid liberal type
I error rates. This liberalness is likely caused by a low effec-
tive sample size, which in turn is caused by a large number of
pairwise absences. Note that the method of zero imputation
may influence the performance of the LRM methods, but a
full evaluation of zero imputation methods (46) is beyond
the scope of this article.

A full pairwise ratio analysis yields an exhaustive infer-
ence on the data (as demonstrated in the example), but prac-
tical data considerations may limit such analyses in prac-
tice. The alternative is to use a subset of taxa, or a subset
of ratios. A variety of possible pairwise ratios are possi-
ble, each representing a different relationship between taxa.
However, the interpretation of each ratio and its utility for
inference is unique and the choice of ratios may impact any
conclusions drawn. Note that if the analyses are done using
one selected taxon as the denominator (the equivalent of the
additive log ratio), conclusions may depend on this choice,
even though using a different denominator taxon gives a
statistically identical reparameterization (31,47). The ques-
tion of which ratios to analyze, and how many, also depends
on the inferential aim. In exploratory research, analyzing all
ratios is a good option. Alternatives are to use some prese-
lected taxon as the denominator or to use taxon pair selec-
tion (48).

As for the sparsity of the data, there are no clear rules on
how to deal with this. Learning from data is only possible
if there are data, and sparse taxa do not provide any rela-
tive information with respect to other taxa over most sam-
ples. Also, each sparse taxon added to a pairwise analysis
will add increasingly many (underpowered) sparse compar-
isons to the analysis, which in turn adds substantially to the
multiplicity burden. The combinations of low power, possi-
bly elevated type I error rates and the fundamental difficul-
ties in securing model and data trustworthiness for sparse
taxa are all reasons to favor stringent data filtering steps.
Although filtering is recommended, more research is needed
to study the impact of such techniques on results (49–51).
Sparse taxa can also be amalgamated; the resulting amal-
gamation is less subject to sparsity (32,48). Which taxa to
include into an amalgamation and the resulting interpreta-
tion should be treated with care; haphazard combinations
may lack biological relevance.

The number of ratios analyzed and equivalently the num-
ber of tests can be large. This means some form of mul-
tiple testing that corrects across all tested ratios is needed
(52–54); in the example, we used the commonly applied
Benjamini–Hochberg (36). Possibly more power can be
gained with a method that is more adapted to our appli-
cation, for example, by taking into account the structure
underlying the ratios (i.e. they share taxa). This, however,
requires more research. One way of reducing the multiplic-
ity burden is to preselect ratios, either on abundance or on
(a priori defined) biological plausibility.

CONCLUSION

In this paper, we propose a pairwise ratio approach to ana-
lyze 16S microbial sequencing data that contain high spar-
sity, extreme dispersion and nonstandardizable composi-
tionality. This approach is defined by refocusing the beta-
binomial model to the pairwise perspective, rendering anal-
ysis results comparable to standard log-ratio analyses based
on pairs of taxa. We compare the performance of the pro-
posed method to a number of alternative pairwise meth-
ods. The beta-binomial model has more power in all set-
tings, but displays some degree of type I error rate liberal-
ness in sparse settings. In practical application, we suggest
to combine the proposed method with pragmatic data re-
duction approaches (i.e. filtering and amalgamation), in or-
der to maintain high power and to avoid sparse taxon pairs
whose analysis depends heavily on zero modeling assump-
tions.
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