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A B S T R A C T   

This study estimates the shelf life of vacuum packed beef meat (three muscles: striploin (longissimus thoracis et 
lumborum, LTL), tenderloin (psoas major, PM) and outside chuck (trapezius thoracis, TT)) at refrigeration tem
peratures (0 ◦C–10 ◦C) based on modelling the growth of two relevant groups of spoilage microorganisms: lactic 
acid bacteria (LAB) and Enterobacteriaceae. The growth models were developed combining a two-step and a one- 
step approach. The primary modelling was used to identify the parameters affecting the growth kinetics, guiding 
the definition of secondary growth models. For LAB, the secondary model included the effect of temperature and 
initial pH on the specific growth rate. On the other hand, the model for Enterobacteriaceae incorporated the effect 
of temperature on the specific growth rate and the lag phase; as well as the effect of the initial pH on the specific 
growth rate, the lag phase and the initial microbial count. We did not observe any significant effect of the type of 
muscle on the growth kinetics. Once the equations were defined, the models were fitted to the complete dataset 
using a one-step approach. Model validation was carried out by cross-validation, mitigating the impact of an 
arbitrary division between training and validation sets. The models were used to estimate the shelf life of the 
product, based on the maximum admissible microbial concentration (7 log CFU/g for LAB, 5 log CFU/g for 
Enterobacteriaceae). Although LAB was the dominant microbiota, in several cases, both LAB and Enterobacteri
aceae reached the critical concentration practically at the same time. Furthermore, in some scenarios, the end of 
shelf life would be determined by Enterobacteriaceae, pointing at the potential importance of non-dominant 
microorganisms for product spoilage. These results can aid in the implementation of effective control mea
sures in the meat processing industry.   

1. Introduction 

Brazil is recognised as one of the biggest beef producers worldwide, 
with beef production constituting one of the main pillars of the national 
economy (Ministério da Agricultura, Pecuária e Abastecimento (MAPA), 
2020). As such, one of the focus areas of the beef industry is guaran
teeing the quality of the products during their whole shelf life. 

Fresh meat is a highly perishable food due to high content in nutri
ents and physicochemical properties that enable growth of spoilage 
microorganisms (Fung et al., 2010; Gram et al., 2002; Nychas et al., 
2007, 2008). It is common within the beef industry to use refrigeration 
and packaging technologies to extend the product shelf life, as the 

combination of these two technologies mitigate the growth of spoilage 
organisms. A diverse microbiota (mainly bacteria) is reported on meat 
after the slaughter of bovines (Broda et al., 2009; Dillon and Board, 
1991; Jay et al., 2005; Kaur et al., 2021; Hwang et al., 2020). Factors 
such as temperature, packaging atmosphere, meat pH and microbial 
interactions, can affect microbial composition during shelf-life (Doul
geraki et al., 2012; Kaur et al., 2021). 

Vacuum packaging and refrigeration temperatures (from − 1.5 ◦C to 
4 ◦C) limit the rapid development of Pseudomonas spp., Brochothrix 
thermosphacta, Acinetobacter spp., Shewanella spp., among others (Gill 
and Newton, 1978; Labadie, 1999; Pennacchia et al., 2011; Wang et al., 
2017). On the other hand, these conditions allow other microorganisms 
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presenting anaerobic and microaerophilic metabolisms, such as lactic 
acid bacteria to grow (Macedo et al., 2011). Some studies also highlight 
the growth of Enterobacteriaceae, Bacillus spp., Clostridium spp. under 
chilled conditions (Broda et al., 1996; Dainty and Mackey, 1992; Gill, 
2004; Gribble et al., 2014; Shao et al., 2021). Among these, Enterobac
teriaceae deserve special attention due to their high spoilage potential. In 
addition, Enterobacteriaceae have a variable behaviour that depend on 
the storage temperature, meat pH, and also varies among species 
(Brightwell et al., 2007). 

Besides the extrinsic factor temperature, meat pH is an intrinsic 
factor that significantly impacts microbial growth and, consequently, 
the shelf life of the product (Gill, 2004). The normal pH of beef is usually 
between 5.4 and 5.5, but it can vary depending on several factors. Meat 
cuts with pH values ≥6.1 results in a defect called dark, firm and dry 
(DFD) (Abril et al., 2001; Mekonnen, 2015). DFD cuts allow fast bac
terial growth, resulting in the reduction of the product's shelf life (Mills 
et al., 2014). Likewise, from a sensorial point of view, the ultimate pH of 
beef also affects attributes such as tenderness and colour, which are 
essential for the acceptability of the product by the consumers (Wicks 
et al., 2019). Therefore, the pH of the meat is commonly used as an 
indicator of the product quality. 

Several authors have proposed a division of beef cuts in three pH 
ranges: normal (5.4–5.8), intermediate (5.8–6.1) and high (> 6.1) (Gill 
and Newton, 1979; Hood and Tarrant, 1980; Weglarz, 2010). The Bra
zilian meat industry generally follows this division to classify the quality 
of carcasses for export. Nevertheless, the Brazilian legislation does not 
establish a microbiological quality criterion for chilled beef considering 
the pH after slaughtering. Accordingly, the exports are based exclusively 
on the sanitary requirements of the country of destination (Circular N◦

096/2004/DCI/DIPOA, Brazil; Resolution 833 Exenta, 2002, Chile). 
Microbiological and physicochemical processes comprise the main 

causes of spoilage of beef meat. In this sense, predictive microbiology 
can be a useful tool to understand the most relevant factors affecting 
spoilage, and to estimate product's shelf life. This subfield of food 
microbiology is dedicated to the development and validation of math
ematical models that describe the response of microbial populations to 
extrinsic and intrinsic factors from farm to fork (Pérez-Rodríguez and 
Valero, 2013). Shelf life of meat is defined on the basis of a range of 
increasingly subjective factors, such as colour, texture, firmness, odour, 
flavour and tenderness. Perceptible alterations in these factors (e.g., off- 
odour, off-flavour, meat discolouration), that are considered unaccept
able by consumers, determine the shelf life of meat. These sensory al
terations mainly occur due to considerable microbial growth and the 
progress of their metabolic activities, which cause a premature end of 
the product's shelf life. This fact is usually influenced by favourable 
conditions of, among others, temperature, pH, and packaging atmo
sphere (Sumner et al., 2021). Recent studies have shown that the quality 
traits provide convincing evidence to determine the shelf life of meat 
along with the microbial population, based on the analysis of the content 
of nitrogenous compounds, pH, moisture loss, colour or organoleptic 
traits of meat (Chen et al., 2020; Frank et al., 2019; Tayengwa et al., 
2020). 

Therefore, under the hypothesis that the length of the product shelf 
life is affected by a maximum microbial concentration, predictive 
microbiology can be used to estimate a food product shelf life (Kout
soumanis et al., 2021). In this work, a predictive modelling approach 
was employed to estimate the shelf life of vacuum-packaged beef meat, 
using an extensive dataset gathered within the Brazilian food chain. 

2. Materials and methods 

2.1. Sample collection 

Three different types of muscles: striploin (longissimus thoracis et 
lumborum, LTL), tenderloin (psoas major, PM) and outside chuck 
(trapezius thoracis, TT) were obtained directly from a cattle 

slaughterhouse from São Paulo, Brazil. Different muscles were selected 
based on their potential pH differences (Abril et al., 2001) and on the 
basis of potential variation of microbial contamination due to handling 
during slaughtering operations (De Filippis et al., 2013). 

Meat collection was basically divided into four stages:  

- The first stage was the meat sampling: the meat was collected 
randomly, by the different lines of the deboning area within 48 h 
after the slaughter of the animal.  

- The second stage was the pH measurement: the pH (t = 0) was 
measured at different points of each muscle to confirm its value using 
a portable pH meter (Brand Testo 205, Brazil). Based on their pH 
values, the muscles were grouped following common industry 
practices, in normal (5.4 – 5.8), intermediate (5.8 – 6.1) and high 
(> 6.1). The obtained values were considered as the initial pH of 
beef. 

- The third stage was the sample processing: the muscles were trans
ferred to the packing room for fractionation into steaks (n = 1080), 
which were weighed (~ 250 g), vacuum packed, and stored in a cold 
chamber at 0 ◦C until their transportation to the laboratory. 

Finally, the samples were transported to the laboratory of Quanti
tative Food Microbiology (FEA, UNICAMP, São Paulo, Brazil), within 24 
h after collection, in sealed styrofoam boxes in a ratio of meat to ice 
around 1:1. Then, the samples were stored in incubators (Eletrolab, 
Brazil) at four isothermal conditions: 0 ◦C, 4 ◦C, 7 ◦C and 10 ◦C ± 1 ◦C. 

2.2. Microbiological analysis 

In this study, culture-dependent methods were employed for evalu
ating the growth of LAB and Enterobacteriaceae as affected by tempera
ture, pH and type of beef. These data were then used to assess the shelf 
life of vacuum packed beef. The selection of LAB and Enterobacteriaceae 
as microbial groups monitored for modelling purposes was based on a 
previous microbial ecology study conducted in the laboratory (data not 
yet published) that showed that these microorganisms presented a sig
nificant growth and role in the spoilage of chilled vacuum packaged 
beef. Besides, it is known that both microbial groups, LAB and Entero
bacteriaceae, can grow under chilling and low oxidation-reduction po
tential (Eh) (anaerobiosis) (Brightwell et al., 2007; Macedo et al., 2011). 

One vacuum packed steak was opened for each sampling point, and a 
portion of 10 g of meat were extracted aseptically for microbiological 
analysis. The samples were homogenised in 90 ml of Ringers Solution 
Quarter Strength (recipe prepared with laboratory ingredients based on 
Da Silva et al. (2017)) for 2 min at room temperature using a stomacher 
(Laboratory Blender Seward Stomacher 400, England) (Ercolini et al., 
2006). Afterwards, ten-fold serial dilutions were made in Ringers Solu
tion Quarter Strength, and aliquots of 1 ml of the appropriated dilutions 
were plated, twice, for enumeration of LAB and Enterobacteriaceae. 

Lactic acid bacteria enumeration was performed by pour-plating 
with a double-layer in De Man Rogosa and Sharpe Agar (MRS Agar, 
Oxoid, Basingstoke, Hampshire, England). The plates were incubated at 
30 ◦C for 48 h before enumeration. Following a similar plating meth
odology, Violet Red Bile Glucose Agar (VRBG Agar, Kasvi, Brazil) was 
used to enumerate Enterobacteriaceae after incubation at 30 ◦C for 24 to 
48 h. The results were expressed in log CFU/g. Gram staining, and tests 
of catalase and oxidase were used as confirmatory for LAB and Entero
bacteriaceae, respectively. 

2.3. Modelling of microbial growth and data analysis 

The Baranyi model (Baranyi and Roberts, 1994) was used as the 
primary model to describe the relationship between the microbial count 
of either microorganism (N(t)) and the storage time (t) at a constant 
temperature. This model is shown in Eq. 1, where μ is the maximum 
specific growth rate (ln CFU/h), N0 is the initial microbial count (CFU/ 
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g), Nmax is the microbial count in the stationary growth phase (CFU/g) 
and h0 is the “work to be done” (unitless) that is related to the duration 
of the lag phase (λ) by the identity h0 = μ⋅λ. The model was fitted by 
least-squares of the natural logarithm of the microbial concentration. 

lnN = lnN0 + μ⋅A(t) − ln
(

1+
eμ⋅A(t) − 1
elnNmax − lnN0

)

(1)  

A(t) = t+
1
μln

(
e− μt + e− h0 − e− μt− h0)

The influence on microbial growth of temperature, pH and type of 
muscle was analysed using secondary models. The relationship between 
μ and storage temperature (T) was described using the Ratkowsky model 
(Ratkowsky et al., 1982). In eq. (2), Tmin (◦C) is the (theoretical) mini
mum temperature enabling growth and b is the slope of the relationship 
between ̅̅̅μ√ and temperature. 
̅̅̅μ√
= b(T − Tmin) (2) 

On the other hand, there is no broadly accepted secondary model to 
describe the impact of pH and type of muscle on microbial growth. The 
same applies to the relationship between temperature and the other 
model parameters of the Baranyi model, such as N0, λ (or h0) and Nmax 

(Augustin et al., 2000; Delignette-Muller et al., 2005). 
Although there were pH differences at the beginning of the experi

ment among the meat cuts, making it possible to categorise the meats in 
three groups (pH < 5.8, between 5.8 and 6.1, > 6.1), these differences 
vanished shortly at the beginning of the storage. In other words, the pH 
of meat cuts with initial pH < 5.8 was not smaller than the pH of meats 
from the other groups during the whole experiment (supp. Fig. 1). 
Consequently, the effect of pH on the growth kinetics was based only on 
the initial pH of the meat, not on measurements made during the storage 
period. 

In order to identify parsimonious models that represent the bacterial 
kinetics, secondary models were proposed based on descriptive statis
tics. The Baranyi growth model was fitted to different subsets of the data 
using the R package growthrates (Petzoldt, 2020). The subsets were the 
result of grouping the data by initial pH of the meat and/or type of 
muscle (both described as categorical variables):  

A) Considering the global dataset for each temperature condition 
(no separation by pH or type of muscle);  

B) Considering the temperature and the initial pH of beef;  
C) Considering the temperature and the type of muscle;  
D) Considering the temperature, initial pH of beef and type of 

muscle. 

The effect of the initial pH of beef and type of muscle was evaluated 
visually using scatter plots and/or boxplots of the parameter estimates 
for the different datasets. The conclusions of this exploration were 
supported by ANOVA analysis with the model parameters as response 
variable and the selected factor(s) (temperature, pH and/or type of 
muscle) as explanatory variables. The plots are included as supple
mentary material to this article. 

None of the growth curves observed for LAB had a lag phase 
(checked both visually and by model fitting). Hence, the “work to be 
done” was fixed to zero (h0 = 0). Furthermore, we did not observe any 
effect of temperature, pH or type of muscle on the parameters N0 and 
Nmax were observed (supp. Fig. 2). Therefore, no secondary model was 
used for these parameters. Regarding the maximum specific growth rate, 
the effect of the initial pH of beef on the growth of both microorganisms 
was modelled using a categorical variable. Initially, the meat cuts were 
divided in three groups according to their initial pH, as commonly done 
in industry. However, no significant differences were observed between 
the model parameters estimated for meat cuts with pH between 5.8 and 
6.1 and those with pH > 6.1 (ANOVA; P > 0.05). Therefore, both ranges 

were merged, and the effect of pH was modelled using a qualitative 
variable with two categories (pHhigh, pHlow) depending on whether the 
initial pH was higher or lower than 5.8. No effects of the type of muscle 
on any of the model parameters were observed. 

Therefore, the most parsimonious model among those tested for the 
growth of LAB was the one that included the effect of the pH on both 
parameters of the Ratkowsky model (b and Tmin), as shown in Eq. (3) 
where the values b[i] and Tmin[i] depend on whether the initial pH equals 
pHhigh or pHlow. To improve identifiability, the value of b2

[i] was estimated 
instead of b[i]. 

̅̅̅μ√
= b[i]

(
T − Tmin[i]

)
(3) 

Regarding Enterobacteriaceae, the exploratory analysis resulted in the 
same model for μ (Eq. 3). Unlike for LAB, the growth curves for 
Enterobacteriaceae had a noticeable lag phase for the meats with initial 
pH < 5.8. The sequential modelling approach showed that the work to 
be done (h0) depended on the storage temperature (supp. Fig. 3). 
Therefore, a linear relationship between them has been proposed as 
shown in Eq. (4), where hT0[low] and a[low] are respectively the intercept 
and the slope of the line. 

h0 = hT0 [low] − a[low]⋅T; if initial pH < 5.8 (4) 

h0 = 0; otherwise. 
Moreover, a relationship between the initial count of Enterobacteri

aceae (N0) and the initial pH of the meat cuts was observed (ANOVA; P 
> 0.05). Considering that meat cuts with lower initial pH had higher N0, 
this may be due to microbial growth lowering the meat pH, although this 
needs to be validated using independent complementary studies. 
Therefore, N0 was described as a categorical variable, N0[i], which can 
take two values depending on whether the initial pH is lower than 5.8 or 
not. 

N0 =

{
N0[low], pH0 < 5.8
N0[high], pH0 ≥ 5.8 (5) 

Once the complete growth model (primary and secondary models) 
was defined, it was fitted to the complete dataset for either LAB or 
Enterobacteriaceae following a one-step approach using non-linear 
regression (nls function in R) using the Gauss-Newton algorithm with 
default control parameters. The goodness of the fit of each model was 
evaluated using the Root Mean Square Error (RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
logNfit − logNobs

)
2/n

√

; where n is the number of observations). All the 
calculations were implemented in R version 3.5.3 (R Core Team, 2016). 
The code is available upon request from the corresponding author of the 
manuscript. 

2.4. Model (cross-)validation 

In order to avoid an arbitrary division between data used for model 
fitting and for model validation, the growth models were validated by 
cross-validation (Balsa-Canto et al., 2020; James et al., 2013). Two types 
of cross-validation were used in this study. The first one was based on 
the type of meat cut. According to the exploratory analysis, the type of 
meat cut did not affect the growth kinetics of either microorganism. 
Therefore, the models were fitted to the data obtained for two of the 
meat types, using the remaining data for validation. In order to avoid an 
arbitrary division between training and validation sets, this process was 
applied three times by cross-validation (i.e., using each one of the meats 
for validation once). 

The second method of cross-validation used in this study was k-fold 
cross-validation. Briefly, this approach begins by dividing the data in k 
groups by random sampling. Next, the growth model is fitted k times, 
each time removing one of the k groups from the dataset. The model 
validation is performed by comparing the predictions of each fitted 
model against the data in the group not included in model fitting. Both 
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for the validation of the LAB and Enterobacteriaceae models, the data was 
divided in k = 5 groups. The analysis was repeated for different values of 
k without observing any relevant impact on the conclusions of the 
analysis (not shown). 

2.5. Shelf life estimation 

Consumer shelf life can be defined on subjective sensory factors such 
as colour, texture, firmness, odour, flavour, and tenderness. Obvious 
alterations of these factors, which are considered unacceptable by con
sumers, define the end of the shelf life of the product. These sensory 
alterations occur, especially, as a result of considerable microbial 
growth and the development of their metabolic activities, that are 
usually influenced by favourable conditions of temperature, pH, and 
packaging atmosphere (Sumner et al., 2021). 

Once the fitted models were validated, they were used to estimate 
the shelf life of the meat products analysed in this study. This was done 
under the hypothesis that the end of shelf life is reached when the 
maximum threshold of the specific spoilage microorganisms is achieved. 
This is a reasonable hypothesis for meat products, whose spoilage is 
mostly associated with microbial growth (Bruckner et al., 2013; Doul
geraki et al., 2012). A concentration of 7 log CFU/g was considered as 
the concentration of LAB defining the end of the product shelf life 
(Kreyenschmidt et al., 2010), and 5 log CFU/g for Enterobacteriaceae 
(Regulations, S.I. no 243/1996 – European Communities Minced Meat 
and Meat preparations). The growth models developed in the study were 
used to estimate the storage time required to reach these concentrations. 
Uncertainty was included by forward uncertainty propagation by Monte 
Carlo simulation (Garre et al., 2017; Vásquez and Buuschaert, 2014). 

Briefly, normal distributions for each fitted parameter were defined 
based on the parameter estimates and their standard errors. Then, a 
random sample of the parameters was generated, resulting in a family of 
growth curves. For each one of them, the storage time required to reach 
the target microbial count (7 log CFU/g for LAB; 5 log CFU/g for 
Enterobacteriaceae) was estimated by linear interpolation. The conver
gence of the algorithm was assessed by repeating the calculations for 
different seeds of the pseudo-random number generator, requiring 5000 
Monte Carlo iterations per condition. 

3. Results 

3.1. Growth of LAB in refrigerated vacuum packed beef 

3.1.1. Model fitting for growth of LAB 
Fig. 1 illustrates the growth of LAB observed in vacuum packed beef 

at storage temperatures between 0 ◦C and 10 ◦C. The concentration of 
LAB reached values higher than 7 log CFU/g at 836 h and 386 h (0 ◦C), 
432 h and 205 h (4 ◦C), 294 h and 141 h (7 ◦C) and 213 h and 103 h 
(10 ◦C) at low (< 5.8) and high pH (> 5.8), respectively (Supplementary 
Tables 1 and 2). Nevertheless, the growth kinetics depended on both the 
storage temperature and the initial pH of the meat cuts. Meats with 
initial pH higher than 5.8 had faster LAB growth than meats with lower 
initial pH. This is evidenced by the former reaching the stationary 
growth phase approximately at the middle of the experiment for every 
temperature, whereas meat cuts with initial pH lower than 5.8 do not 
show a clear stationary phase (although the microbial count seems to 
stabilise at concentrations close to the Nmax observed for meats with 
initial pH > 5.8). 

Fig. 1. Growth of LAB in refrigerated vacuum packed beef meat. The dots represent the observed microbial counts, whereas the lines the fitted models (using a one- 
step approach). The colours represent the initial pH of the meat, and the shapes the type of muscle. The data has been divided in subplots according to the storage 
temperature. 
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Table 1 reports the model parameters of the growth model for LAB in 
refrigerated vacuum packed beef meat fitted using a one-step approach. 
As already mentioned, the model did not consider a lag phase because 
the microbial population entered directly in the exponential growth 
phase (Fig. 1). Moreover, it accounts for the effect of temperature and 
initial pH on the maximum specific growth rate, but not on Nmax nor N0. 
As illustrated in Fig. 1, the model fitted the data effectively, with the 
fitted curve describing the overall trend observed in the experiments 
(RMSE = 0.87 log CFU/g). Note that the estimated values of Tmin 
(− 10.2 ◦C at low pH; − 10.7 ◦C for high pH) is a notional estimate and 
thus a theoretical value that should not be considered representative of 
the minimum temperature allowing bacterial growth. 

3.1.2. Model (cross-)validation for LAB 
In order to validate the model, we used two types of cross–validation, 

using two different criteria for dividing the data. Fig. 2 illustrates the 
results when the division is based on the type of meat cut. As shown in 
Fig. 2A, there are no significant differences between the parameter es
timates obtained for each validation set. Fitting the model to the com
plete dataset (red in Fig. 2), results in parameter estimates that can be 
seen as an average of those obtained when the model is fitted omitting 
the data of one type of muscle. Furthermore, the model fitted to the 
complete dataset has slightly smaller parameter uncertainty because it 
uses every point in the dataset. Furthermore, as shown in Fig. 2B, the 
fitted curves are practically the same regardless of the data used for 
model fitting. As expected based on the parameter estimates being “an 
average” of those obtained in cross-validation, the model fitted to the 
whole dataset is approximately in the mean of those fitted to each 
validation set. Nonetheless, there are small differences due to model 
non-linearities and the data not being perfectly balanced. 

In a similar way, Fig. 3 illustrates the result of the cross-validation 
when the model is validated by 5-fold cross-validation. The results are 
similar to those obtained when cross-validation is based on the type of 
meat cut, with the variation in parameter estimates being smaller than 
parameter uncertainty. However, for 5-fold cross-validation the varia
tion between sets is smaller and more balanced than when it is based on 
the type of meat cut. This is due to k-fold cross-validation dividing the 
data by random sampling, not any specific attribute of the data (e.g., the 
type of meat cut). Consequently, it is reasonable that k-fold validation 
will result in smaller deviations in the parameter estimates between the 
different models than when cross-validation is based on some attribute 
of the data (e.g., by strain or sampling date). 

Regardless of the validation approach, Figs. 2 and 3 show that the 
dataset used to build the model has little influence in the model pre
dictions. Furthermore, the model fitted to the complete dataset is “an 
average” of the models fitted to smaller datasets and has lower uncer
tainty. Therefore, it was considered that the model fitted to the complete 
dataset (i.e., the “Global model”) is validated to describe the growth of 
LAB in refrigerated vacuum packaged beef meat under the conditions 
included in this study. 

3.2. Growth of Enterobacteriaceae in refrigerated vacuum packed beef 

3.2.1. Model fitting for growth of Enterobacteriaceae 
Fig. 4 illustrates the observed microbial growth of Enterobacteriaceae 

in beef meat cuts. Although the initial count of Enterobacteriaceae was 
higher in meat cuts with initial pH < 5.8, the growth was slower than in 
meats with initial pH > 5.8, and a lag phase was apparent. Therefore, in 
a similar way as for LAB, the stationary growth phase was reached by the 
middle of the experiment in meats with initial pH > 5.8 for all the 
storage conditions tested, whereas the stationary phase was not reached 
in meat cuts with initial pH < 5.8. This is partly because the growth 
curves of Enterobacteriaceae in meat cuts with initial pH < 5.8 had a lag 
phase and partly due to a lower growth rate. Regardless of this, at every 
storage temperature tested, the Enterobacteriaceae count exceeded 5 log 
CFU/g at 397 h (0 ◦C), 444 h and 221 h (4 ◦C), 261 h and 155 h (7 ◦C) 
and 161 h and 115 h (10 ◦C) at low (< 5.8) and high pH (> 5.8), 
respectively, except for storage at 0 ◦C with initial pH < 5.8 as indicated 
in Supplementary Tables 1 and 2. 

The parameters of the model fitted to the growth data of Enterobac
teriaceae in vacuum packed beef using a one-step approach are reported 
in Table 2. Based on the exploratory analysis, this model includes the 
effect of the initial pH of the meat on the initial microbial count, as well 
as on the parameters of the Ratkowsky model. Furthermore, it considers 
a lag phase for meat products with initial pH < 5.8. As illustrated in 
Fig. 4, these hypotheses are supported by the data, with the fitted model 
being able to describe the overall trend of the observations, although the 
RMSE of the model (1.00 log CFU/g) is higher than for LAB. This is 
reasonable considering that this data set has more noise than the ob
servations for LAB. 

3.2.2. Model (cross)validation for growth of Enterobacteriaceae 
Figs. 5 and 6 illustrate the results of the cross-validation for the 

growth model of Enterobacteriaceae when the split is based on, respec
tively, the type of meat or 5-fold cross-validation. The results are similar 
to those observed for LAB. In general, the uncertainty of the parameter 
estimates is larger than their variation between the individual models 
(Figs. 5A and 6A). Furthermore, the growth curve predicted by the 
model fitted to the complete dataset is quite comparable to the pre
dictions of the individual models (Figs. 5B and 6B). 

Only in two cases there are differences between the curve fitted by 
the global model and the cross-validated ones. Not including the data on 
trapezius thoracis (TT) for model fitting results in slightly larger esti
mates for Nmax and Tmin (although not significantly different at α =
0.05). Therefore, the model fitted to this subset of the data predicts 
higher microbial concentration during the stationary growth phase than 
the others. However, removing this information also doubles the un
certainty of parameter ln Nmax (Fig. 5A). The second case whose fitted 
curve deviates with respect to the general trend is observed when the 
model is fitted to the data excluding the data points for longissimus 
thoracis et lumborum (LTL). In this case, the model predicts faster 
growth than the rest for meat cuts with initial pH < 5.8. Nevertheless, 
removing this data also increases in almost 2-fold the uncertainty of 
parameter b[low]; the slope of the Ratkowsky model for meat cuts whose 
initial pH is in this range. Therefore, in both cases, the omission of the 
data increases the uncertainty of a parameter that is tightly related to the 
deviation with respect to the global model. Hence, it is reasonable to 
attribute these deviations to the noise in the data, not to an effect of the 
type of muscle in the growth kinetics. 

In the case of 5-fold cross-validation, the results are similar as for the 
other cross-validation method, although the deviations are smaller. As 
already argued, this is likely due to the random sampling used in k-fold 
cross-validation. Therefore, regardless of the way the data is split in 
training and validation sets, the growth model is practically the same. 
For this reason, it was concluded that the growth model for Enterobac
teriaceae is validated to describe the growth kinetics of this microor
ganism in refrigerated vacuum packed meat within the parameters of 

Table 1 
Estimated parameters of the growth model for LAB in vacuum packaged beef 
meat under refrigeration conditions (0–10 ◦C).  

Parameter Estimated value Standard error 

b2[low](ln CFU/h/◦C) 1.5 × 10− 4 1.3 × 10− 5 

b2[high](ln CFU/h/◦C) 3.0 × 10− 4 2.6 × 10− 5 

Tmin[low]
(◦C) − 10.2 0.6 

Tmin[high] (◦C) − 10.7 0.6 
log Nmax (log CFU/g) 7.6 0.1 
log N0 (log CFU/g) 1.3 0.0  

RMS = 0.87 log CFU/g  
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this study. 

3.3. Shelf life estimation based on growth models 

The growth models developed in this study were used to estimate the 
shelf life of the beef meats in the study based on a maximum microbial 
concentration (7 log CFU/g for LAB; 5 log CFU/g for Enterobacteriaceae). 
Fig. 7 illustrates the shelf life estimated based on each spoilage micro
organism for different storage temperatures and initial pH of the meat. 
The estimated product shelf life for each condition is reported as supp. 
Tables 1 and 2. 

A clear effect of the initial pH of the meat on the product shelf life has 
been observed (supp. Tables 1 and 2). According to the models, meat 

with initial pH < 5.8 would have a shelf life (34.8 days at 0 ◦C, 18 days at 
4 ◦C, 10.9 at 7 ◦C, 6.7 days at 10 ◦C) almost twice to that estimated for 
meat cuts with higher initial pH (16.1 days at 0 ◦C, 8.5 days at 4 ◦C, 5.9 
days at 7 ◦C, 4.3 days at 10 ◦C). The calculations also reflect the un
certainty associated with these estimations, including the confidence 
interval of the mean. In this case, uncertainty was higher for conditions 
with longer shelf life. For instance, the 90 % confidence interval for meat 
cuts with initial pH < 5.8 stored at 0 ◦C spans 3 days, whereas the CI for 
the same meat stored at 10 ◦C only spans 0.8 days. 

It is worth noting that, although the growth of LAB is faster than the 
one of Enterobacteriaceae for every condition tested (Figs. 1 and 4), this 
group would not be responsible for spoilage in every refrigeration con
dition included in the study according to the models. In the case of meat 

Fig. 2. Cross-validation by type of meat of the growth model for LAB developed in this study. (A) In grey, parameter estimates (estimated value represented as a dot, 
standard errors as error bars) when the data points belonging to one type of meat are not used for model fitting (x-axis). The parameter estimates when the model is 
fitted to the complete dataset is shown in red. (B) Growth curves fitted for each sub-model at 4 ◦C for meats with initial pH > 5.8 (solid lines) and initial pH < 5.8 
(dashed lines). The growth curve corresponding to the model fitted to the complete dataset is shown in red. 

Fig. 3. Cross-validation by 5-fold cross validation of the growth model for LAB developed in this study. (A) Parameter estimates (estimated value represented as a 
dot, 95 % confidence intervals as error bars) when the data points belonging to one type of meat is not used for model fitting (x-axis). The parameter estimates when 
the model is fitted to the complete dataset is shown in red. (B) Growth curves fitted for each sub-model at 0 ◦C for meats with initial pH > 5.8 (solid lines) and initial 
pH < 5.8 (dashed lines). The growth curve corresponding to the model fitted to the complete dataset is shown in red. 
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with initial pH > 5.8 (Fig. 7B), both microbial populations would reach 
the critical concentration at practically the same time. On the other 
hand, for meats with pH < 5.8, the microorganism responsible for the 
spoilage would vary depending on the storage temperature. For tem
peratures >5 ◦C, Enterobacteriaceae would define the end of the product 
shelf life. This change in the main spoiler can be explained based on the 
secondary models for temperature fitted for each microorganism. As 
illustrated in Fig. 8, a change in the initial pH of the meat introduces a 
shift in the secondary model for Enterobacteriaceae, but it barely impacts 
the slope of the relationship. On the other hand, for LAB, a change in the 
initial pH of the meat affects both the intercept and the slope of the 
secondary model (the same conclusion can be drawn analysing the 
values of b and Tmin reported in Tables 1 and 2). This is the reason why 
the shelf life estimates based on both indicators are parallel for meats 
with low initial pH, whereas they cross for meats with high initial pH. 

This figure also shows the model parameters reported by previous 
scientific studies that analysed the growth of LAB and Enterobacteriaceae 
in beef meat. Cayré et al. (2003) reported maximum specific growth 
rates of 0.412, 0.640 and 1.158 ln CFU/day for LAB at 0 ◦C, 8 ◦C and 
15 ◦C respectively. Li et al. (2013) estimated rates of 0.648 and 2.304 ln 
CFU/day at 7 ◦C and 10 ◦C. Regarding Enterobacteriaceae, Skandamis 
and Nychas (2002) studied the growth kinetics of this species in beef 

packed under modified atmosphere. At 0 ◦C, they observed a lag phase 
of 167 h and a maximum specific growth rate of 0.21 ln CFU/day at 0 ◦C, 
and at 10 ◦C they observed a lag phase of 51 h with a maximum specific 
growth rate of 0.72 ln CFU/day (parameters estimated using ComBase). 
These values are close to the ranges estimated in this study (Fig. 8). The 
variation in the results reported in the literature can be attributed to the 
fact that meat spoilage is strongly affected by variability at different 
levels. This includes but is not limited to differences in the physico
chemical properties of different meat cuts, the use of different 
manufacturing practices between industries and the natural variation of 
the product microbiome. This has been further evidenced in our study, 
where the initial pH of the meat had a significant impact on the growth 
kinetics (Figs. 1, 4 and 8). Consequently, the study of the causes of these 
variations and their quantification, as well as their impact on the 
product shelf life, are still an active research topic. 

4. Discussion 

4.1. Growth of LAB and Enterobacteriaceae in refrigerated vacuum 
packed beef with low and high pH 

The growth of LAB in vacuum packed beef stored at refrigerated 
temperatures have been widely described (Da Silva et al., 2018; Gian
nuzzi et al., 1998; Leisner et al., 1995; Zamora and Zaritzky, 1985). 
Under anaerobic conditions, the competitive nature of LAB is based on 
its antibacterial and antioxidant activities (Signorini et al., 2006; Zhang 
et al., 2018), which explains its predominance in beef compared to other 
spoilage populations included the Enterobacteriaceae (Macedo et al., 
2011). The genera mostly identified as spoilage population in chilled 
vacuum-packed meat are LAB (Lactobacillus spp., Leuconostoc spp.) and 
Carnobacterium (Labadie, 1999; Macedo et al., 2011). The initial pH of 
meat was another factor that also influenced the growth of LAB. 

A growth pattern of LAB related to the initial pH of meat that is 
characterized by rapid growth at higher pH conditions has been 
described (Blixt and Borch, 2002; Saraiva, 2008; Weglarz, 2010). This 
LAB response is consistent with the results found in this study since the 
lower pH condition (< 5.8) contributed to a delayed growth of LAB in 

Fig. 4. Growth of Enterobacteriaceae in refrigerated vacuum packed beef meat. The dots represent the observed microbial counts, whereas the lines the fitted models 
(using a one-step approach). The colours represent the initial pH of the meat, and the shapes the type of muscle. The data has been divided in subplots according to 
the storage temperature. 

Table 2 
Estimated parameters of the growth model for Enterobacteriaceae in vacuum 
packaged beef meat under refrigeration conditions (0–10 ◦C).  

Parameter Estimated values Standard error 

log N0[low] (log CFU/g) 1.4 0.2 
log N0[high] (log CFU/g) 0.7 0.1 
log Nmax (log CFU/g) 6.4 0.1 
b2low(ln CFU/h/◦C) 1.6 × 10− 4 0.3 × 10− 4 

b2high(ln CFU/h/◦C) 1.8 × 10− 4 0.2 × 10− 4 

Tmin[low]
(◦C) − 9.8 1.6 

Tmin[high] (◦C) − 11.7 0.8 
h0[low]

(⋅) 6.9 1.8 
alow (1/◦C) 0.55 0.17  

RMSE = 1.00 log CFU/g  
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beef meat compared to the higher pH (> 5.8). 
The growth of Enterobacteriaceae in meat with normal pH conditions 

(<5.8) is affected by factors such as the lactic acid content in the muscle 
(Grau, 1980), the selective effect exerted by CO2 when the beef meat is 
vacuum-packed (Grau, 1980) and the subsequent inhibitory effect 

caused by the predominance of the LAB during meat storage (Ercolini 
et al., 2006; Nychas et al., 2008). These could be the reasons why, in this 
study, the Enterobacteriaceae had the higher values of N0 (~ 3 log CFU/g) 
but a more extended h0 at low pH (< 5.8). 

On the contrary, at high initial pH of beef (> 5.8), the ideal 

Fig. 5. Cross-validation by type of meat of the growth model for Enterobacteriaceae developed in this study. (A) Parameter estimates (estimated value represented as a 
dot, 95 % confidence intervals as error bars) when the data points belonging to one type of meat are not used for model fitting (x-axis). The parameter estimates when 
the model is fitted to the complete dataset is shown in red. (B) Growth curves fitted for each sub-model at 7 ◦C for meats with initial pH > 5.8 (solid lines) and initial 
pH < 5.8 (dashed lines). The growth curve corresponding to the model fitted to the complete dataset is shown in red. 

Fig. 6. Cross-validation by 5-fold cross validation of the growth model for Enterobacteriaceae developed in this study. (A) Parameter estimates (estimated value 
represented as a dot, 95 % confidence intervals as error bars) for each k-fold model (x-axis). The parameter estimates when the model is fitted to the complete dataset 
is shown in red. (B) Growth curves fitted for each sub-model at 0 ◦C for meats with initial pH > 5.8 (solid lines) and initial pH < 5.8 (dashed lines). The growth curve 
corresponding to the model fitted to the complete dataset is shown in red. 
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conditions for developing of Enterobacteriaceae are created. Previous 
studies indicated that, under these conditions, Enterobacteriaceae can 
reach considerable levels (> 5 log CFU/g) and may, even, be able to 
compete against LAB (Blixt and Borch, 2002; Coll-Cárdenas et al., 2008; 
Gill and Newton, 1979). This could explain the findings of this study in 
meat with high pH. Bacteria from the genera Serratia, Hafnia, 

Enterobacter, Rahnella are commonly identified in meat with pH > 5.8 
stored at refrigerated temperatures (Brightwell et al., 2007; Grau, 1983; 
Macedo et al., 2011). The capability of Enterobacteriaceae to grow at 
refrigerated temperatures have been informed to vary between species 
(Coll-Cárdenas et al., 2008; Doulgeraki et al., 2012; Gribble et al., 2014; 
Labadie, 1999), and also is dependent on the initial contamination levels 

Fig. 7. Estimated shelf life for refrigerated vacuum packed beef meat based on the microbial count of LAB (red triangles) or Enterobacteriaceae (grey dots) for meats 
with initial pH < 5.8 (A) and > 5.8 (B) based on a maximum microbial concentration (5 log CFU/g of Enterobacteriaceae; 7 log CFU/g of LAB). The error bars 
represent 90 % confidence interval of the mean. 

Fig. 8. Estimated growth rate of LAB and Enterobacteriaceae in vacuum packed meat with initial pH > 5.8 (blue, dashed lines) and < 5.8 (red, solid line).  
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(Brightwell et al., 2007). 

4.2. Relevant aspects for the development and validation of the growth 
models 

Model validation, understood as an assessment of the predictive 
power for conditions not included in the experimental design, is an 
essential step in the development of empirical growth models. It must be 
admitted that model validation is also subjective and open to interpre
tation. Probably the most common practice in predictive microbiology is 
the division of the data in two groups: a training set that is used to build 
the model, and a validation set that is kept for model validation (Hwang 
and Huang, 2019). When analysed in detail, this approach raises several 
conceptual concerns. The first one is the multitude of criteria that can be 
followed to split a dataset in training and validation sets. For instance, in 
this study, the data was divided by temperatures, meat types, repeti
tions. Moreover, there were no definite guidelines about the best size for 
the validation and training sets (e.g., use 1 or 2 temperatures for vali
dation). As evidenced in Figs. 2 and 3, and Figs. 5 and 6, different 
training sets will result in different parameter estimates and model 
predictions. Therefore, this approach introduces an element of subjec
tivity in the model, where a division between training and validation 
sets that can be ambiguous and subjective has an impact on the fitted 
model. 

The second limitation of this approach for model validation is the 
presence of study effects in both the training and validation sets. The 
term “study effect” is commonly used in meta-analyses to refer to some 
factors specific to a study and that may introduce a bias in the model 
parameters or predictions (Felson, 1992). In the case of microbial 
growth, study effects include, among others, the effect of the experi
mental protocols (e.g., media preparation, culture preparation, recov
ery, equipment) and other aspects of data gathering (e.g., microbiome in 
the geographical area, properties of the meat, industry practices, factors 
regarding the abattoir). Regardless of how the data from a scientific 
study is divided between training and validation set, the study effects 
will be present in every data point. In other words, the model would 
always be validated for the particular conditions of the study. This is in 
clear contradiction with the goal of model validation as an assessment of 
the predictive power of the model for conditions not included in the 
analysis (i.e., with different study effects). 

In this article the application of alternative approaches for model 
validation based on cross-validation has been illustrated. Instead of 
fitting the mathematical model to a single dataset, this methodology 
repeats the fit for several subsets of the data before applying the usual 
validation criteria, mitigating the subjectivity of the division between 
the training and validation set. However, this method still requires the 
definition of the attribute to select for the division. In this article, two 
types were illustrated: random division (k-fold cross validation) and 
division by a data attribute (type of meat cut). Both approaches have 
advantages and disadvantages. From a statistical point of view, a 
random division of the sets reduces the correlation of the data points 
within the training and validation sets. On the other hand, this approach 
is less likely to identify attributes of the data that have a significant 
impact on the microbial response that would otherwise be identified 
through a separation by attributes, a result that is often of great interest 
in growth studies. Nevertheless, this can be mitigated if an individual 
analysis of the growth curves is performed before model fitting (e.g., 
using the two-step approach prior to fitting by one-step) to identify 
factors that may potentially influence the microbial response. 

The advantage of using several combinations of training and vali
dation sets instead of one is illustrated in Fig. 6. The plot represents the 
growth models fitted for Enterobacteriaceae when the data from one type 
of meat is omitted from the analysis. Removing the data on trapezius 
thoracis (TT) from the training set has a strong impact on the estimated 
value of Nmax, affecting model predictions. Therefore, if the common 
approach for model validation that fits the model to a single training set 

had been followed, a bias might have been introduced in the parameter 
estimates. As illustrated here, because cross-validation repeats the fit for 
several subsets of the data, it mitigates the risk of introducing a bias in 
parameter estimates due to a singular division of the data in training and 
validation sets. Note, however, that cross-validation cannot mitigate the 
second limitation of model validation mentioned above: the prevalence 
of study effects in both the validation and training data. Because every 
data point is affected by them, the only way to validate for more general 
conditions is by including data not gathered in the study. In this study, 
the data were obtained by random sampling in food industries from a 
relatively big geographical area through different seasons. Therefore, 
the study effects should be smaller than in studies where the data is 
obtained under laboratory conditions using (a cocktail of) reference 
strains. 

Regardless of the approach for model validation, it is important to 
consider that discrete model predictions (i.e., growth curves) are un
likely to describe the actual microbial response in the food chain. It is 
well known that genetic differences between strains of the same species 
will affect their growth and inactivation kinetics (Den Besten et al., 
2018). With the current technology, it is impossible to predict the 
particular strain that will contaminate a food product. Furthermore, 
empirical models are built based on experimental data, affected by 
experimental error. Therefore, in order to make more realistic risk and 
shelf life estimations, parameter estimates and model predictions should 
account for variability and uncertainty (Garre et al., 2020). As illus
trated in this study, the application of Monte Carlo simulations can assist 
in the calculation of credible (or confidence) intervals for the variables 
of interest. 

Besides model validation, another relevant aspect for model building 
that was evidenced in this article is how the one-step and two-step model 
fitting approaches can complement each other. It is generally accepted 
that the one-step approach results in more robust parameter estimates, 
accounting better for the uncertainty in the data (Fernández et al., 
1999). However, checking the hypotheses of the primary and secondary 
models with this approach is not straightforward. This may be a minor 
issue for simple models (e.g., those considering only the effect of tem
perature), but many case studies aim at describing the effect of other 
factors that have not been studied in so much detail (e.g., the type of 
muscle or the initial pH). In these situations, the two-step approach can 
be insightful. As shown in this article (details in supp. Figs. 2 and 3), 
fitting a primary model to different subsets of the data can support the 
definition of the hypothesis of the secondary models, identifying the 
factors that should be included in the model and the model equations to 
use (e.g., linear, log-linear). Once the model has been defined based on 
the two-step method, robust model parameters can be estimated using 
the one-step approach. 

One aspect to consider carefully when comparing the results of this 
study against others in the literature is the interpretation of the 
maximum microbial count in the stationary phase (Nmax). Although 
there are some conflicting observations in the scientific literature, the 
effect of bacterial interactions in the stationary phase of mixed microbial 
cultures has been broadly reported (Bolívar et al., 2021; Cornu et al., 
2011; Costa et al., 2020; Gonzales-Barron et al., 2020; Guillier et al., 
2008). In many cases, mixed cultures show the Jameson effect: every 
species enters the stationary phase at approximately the same time, even 
when they would be able to reach higher concentrations in mono- 
culture. Hence, the value of Nmax observed in this study for Enterobac
teriaceae may not be due to the carrying capacity of the media for this 
species. As shown in Figs. 1 and 4, both populations reach the stationary 
phase at approximately the same time. Hence, it is feasible that the 
observed stationary phase of Enterobacteriaceae is the result of the 
Jameson effect. 

Another aspect of the model worthy of discussion is the impact of pH 
on the growth kinetics. Although the initial pH of the meat cuts was 
different, it converged to similar values before the end of the exponential 
growth phase in this study. Therefore, the effect of the pH on the 
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bacterial kinetics is unlikely to be due to the direct effect of this factor. 
Instead, the initial pH of the meat can be an indicator of other aspects 
that may influence microbial growth, such as the composition of the 
microbiome or the physical properties of the meat and substrate avail
ability. Also in this line, in this empirical study significant differences in 
the growth kinetics of meat products with pH higher or lower than 5.8 
have been identified (Fig. 8). However, it is unreasonable to assume that 
a change from pH 5.79 to pH 5.81 will have a dramatic effect in the 
growth kinetics, and that the effect of pH will be limited to this narrow 
pH range. Therefore, future scientific studies should focus on the effect 
of the initial pH of the meat on the microbial growth kinetics. 

4.3. The limitations of the estimates of product shelf life 

Shelf life estimates based on the growth kinetics of spoilage species 
are strongly dependent on the maximum microbial concentration 
marking the end of the product shelf life. Admittedly, there are still large 
knowledge gaps regarding these limits. The results of experimental 
studies focused on product spoilage can be affected by a variety of fac
tors (e.g., bacterial strains, type of product, definition of spoilage) in a 
manner that is not well understood yet. This makes it hard to compare 
between studies and extrapolate their empirical results. Therefore, due 
to their relevance for the estimated shelf life, the association between 
microbial concentration and food spoilage should be a main aim of 
future scientific studies, as a way to reduce the uncertainty in shelf life 
estimation. In this sense, it is worth noting that the confidence intervals 
in Fig. 7 only include the uncertainty of the mean of the microbial 
concentration. As illustrated in Figs. 1 and 4, the inherent variability 
between individual replicates is large, and would introduce a relevant 
increase in the variance of the shelf life estimates. On top of that, a 
precise representation of uncertainty should account for the uncertainty 
in the microbial concentrations determining food spoilage. 

When designing studies to associate microbial concentration and 
product spoilage, it is important to account for the fact that, unlike for 
food safety where a disease is directly linked to a microbial species (e.g., 
listeriosis and Listeria monocytogenes), food spoilage can be caused by 
different species (or combinations of them) whose predominance on 
food and contribution to sensory changes depend on extrinsic and 
intrinsic factors such as the storage temperature, meat pH, packaging 
atmosphere, microbial interactions, among others (Kaur et al., 2021; 
Zhang et al., 2015). Therefore, the fact that a microbial species is 
dominant in a population does not necessarily imply it is the one 
responsible for food spoilage; non-dominant species can also be rele
vant. As illustrated in this study, according to the fitted models, both 
LAB and Enterobacteriaceae would reach their critical concentration at 
approximately the same time. This makes it impossible to identify which 
of these species would actually be responsible for the spoilage of the 
product without additional, independent, experiments (or, if spoilage is 
the result of the combination of both species). Furthermore, according to 
the model prediction herein, for meat with low initial pH, the microbial 
species causing the spoilage of the product would depend on the storage 
temperature. This points out at the complexity of the association be
tween the concentration of spoilage microorganisms and the spoilage of 
a food product, which is still to be unravelled. 

Regardless of these limitations, the results of this study are of rele
vance for the beef industry, especially those operating in Brazil. The 
results of this study emphasise the impact of the initial pH of the meat on 
the product shelf life. However, no significant differences between the 
growth rates on meats with pH > 6.1 and pH between 5.8 and 6.1 were 
observed. These results could point out the need to revise the categori
zation commonly used by meat industries. Moreover, the description of 
product spoilage based on the principles from predictive microbiology 
also needs the incorporation of variability and uncertainty (Den Besten 
et al., 2018; Koutsoumanis et al., 2021). Therefore, the results of this 
study could be part of future meta-regression models (Van Asselt and 
Zwietering, 2006), contributing to the implementation of more general 

models for the microbial response accounting for different sources of 
variability. 

5. Conclusions 

Predictive microbiology can assist in shelf life estimation of food 
products. Nevertheless, there are still challenges when it comes to model 
building, model validation and the association between maximum mi
crobial counts and product spoilage. In this article, the shelf life of 
vacuum packed refrigerated meat was estimated based on mathematical 
models describing the growth of LAB and Enterobacteriaceae. The 
methodology for model building illustrated in this study (the use of 
cross-validation and the incorporation of uncertainty in model pre
dictions) can be used as a reference in future studies. Furthermore, the 
conclusions of the model can be of use for the beef industry, as well as for 
the design of future studies; especially the fact that spoilage may not 
always be caused by the dominant microbial species. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijfoodmicro.2023.110345. 
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Pérez-Rodríguez, F., Valero, A., 2013. In: Hartel, R.W. (Ed.), Predictive Microbiology in 
Foods. Springer, New York Heidelberg Dordrecht London, pp. 1–127. https://doi. 
org/10.1007/978-1-4614-5520-2_1. 

Petzoldt, T., 2020. Growthrates: estimate growth rates from experimental data. R 
package version 0.8.2. https://CRAN.R-project.org/package=growthrates. 

R Core Team, 2016. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.  

Ratkowsky, D.A., Olley, J., McMeekin, T.A., Ball, A., 1982. Relationship between 
temperature and growth rate of bacterial cultures. J. Bacteriol. 149, 1–5. https://doi. 
org/10.1128/jb.149.1.1-5.1982. 

Saraiva, C.M.T., 2008. Influence of the final pH and type of packaging on the 
conservation of beef from the Maronesa breed: microbiological, physical-chemical, 
sensory parameters and volatile fraction. PhD thesis. Veterinary Sciences, 
Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal. Available at. htt 
p://hdl.handle.net/10348/126.  

Shao, L., Chen, S., Wang, H., Zhang, J., Xu, X., Wang, H., 2021. Advances in 
understanding the predominance, phenotypes, and mechanisms of bacteria related 
to meat spoilage. Trends Food Sci. Technol. 118, 822–832. https://doi.org/10.1016/ 
j.tifs.2021.11.007. 

Signorini, M.L., Ponce-Alquicira, E., Legarreta, G.I., 2006. Effect of lactic acid and lactic 
acid bacteria on growth of spoilage microorganisms in vacuum-packaged beef. 
J. Muscle Foods 17, 277–290. https://doi.org/10.1111/j.1745-4573.2006.00050.x. 

Skandamis, P.N., Nychas, G.J.E., 2002. Preservation of fresh meat with active and 
modified atmosphere packaging conditions. Int. J. Food Microbiol. 79, 35–45. 
https://doi.org/10.1016/s0168-1605(02)00177-0. 

Sumner, J., Vanderlinde, P., Kaur, M., Jenson, I., 2021. The changing shelf life of chilled, 
vacuum-packed red meat. Chapter 8. In: Taormina, P.J., Hardin, M.D. (Eds.), Food 

Microbiology and Food Safety. Practical Approaches. Food Safety and Quality-Based 
Shelf Life of Perishable Foods. Springer, Jacksonville, FL, USA.  

Tayengwa, T., Chikwanha, O.C., Gouws, P., Dugan, M.E.R., Mustvangwa, T., Mapiye, C., 
2020. Dietary citrus pulp and grape pomace as potential natural preservatives for 
extending beef shelf life. Meat Sci. 162, 108029 https://doi.org/10.1016/j. 
meatsci.2019.108029. 

Van Asselt, E.D., Zwietering, M.H., 2006. A systematic approach to determine global 
thermal inactivation parameters for various food pathogens. Int. J. Food Microbiol. 
107, 73–82. https://doi.org/10.1016/j.ijfoodmicro.2005.08.014. 

Vásquez, G.A., Buuschaert, P., Haberbeck, L.U., Uyttendaele, M., Geeraerd, A.H., 2014. 
An educationally inspired illustration of two-dimensional quantitative 
microbiological risk assessment (QMRA) and sensitivity analysis. Int. J. Food 
Microbiol. 190, 31–43. https://doi.org/10.1016/j.ijfoodmicro.2014.07.034. 

Wang, H., Zhang, X., Wang, G., Jia, K., Xu, X., Zhou, G., 2017. Bacterial community and 
spoilage profiles shift in response to packaging in yellow-feather broiler, a highly 
popular meat in Asia. Front. Microbiol. 8, 258. 

Weglarz, A., 2010. Meat quality defined based on pH and colour depending on cattle 
category and slaughter season. Czech J. Anim. Sci. 12, 548–556. https://doi.org/ 
10.17221/2520-CJAS. 

Wicks, J., Beline, M., Gomez, J.F.M., Luzardo, S., Silva, S.L., Gerrard, D., 2019. Muscle 
energy metabolism, growth, and meat quality in beef cattle. Agriculture. 9, 195. 
https://doi.org/10.3390/agriculture9090195. 

Zamora, M.C., Zaritzky, N.E., 1985. Modeling of microbial growth in refrigerated 
packaged beef. J. Food Sci. 50, 1033–1066. https://doi.org/10.1111/j.1365- 
2621.1985.tb12998.x. 

Zhang, P., Baranyi, J., Tamplin, M., 2015. Interstrain interactions between bacteria 
isolated from vacuum-packaged refrigerated beef. Appl. Environ. Microbiol. 81, 
2753–2761. 

Zhang, Y., Zhu, L., Dong, P., Liang, R., Mao, Y., Qiu, S., Luo, X., 2018. Bio-protective 
potential of lactic acid bacteria: effect of Lactobacillus sabkei and Lactobacillus 
curvatus on changes of the microbial community in vaccum-packed chilled beef. 
Asian-Australas J Anim Sci. 31 (4), 585–594. https://doi.org/10.5713/ajas.17.0540. 

M.Y. Rodriguez-Caturla et al.                                                                                                                                                                                                                

http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0280
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0280
https://doi.org/10.1016/j.fm.2010.08.010
https://doi.org/10.1007/978-1-4614-5520-2_1
https://doi.org/10.1007/978-1-4614-5520-2_1
https://CRAN.R-project.org/package=growthrates
https://www.R-project.org/
https://doi.org/10.1128/jb.149.1.1-5.1982
https://doi.org/10.1128/jb.149.1.1-5.1982
http://hdl.handle.net/10348/126
http://hdl.handle.net/10348/126
https://doi.org/10.1016/j.tifs.2021.11.007
https://doi.org/10.1016/j.tifs.2021.11.007
https://doi.org/10.1111/j.1745-4573.2006.00050.x
https://doi.org/10.1016/s0168-1605(02)00177-0
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0325
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0325
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0325
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0325
https://doi.org/10.1016/j.meatsci.2019.108029
https://doi.org/10.1016/j.meatsci.2019.108029
https://doi.org/10.1016/j.ijfoodmicro.2005.08.014
https://doi.org/10.1016/j.ijfoodmicro.2014.07.034
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0345
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0345
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0345
https://doi.org/10.17221/2520-CJAS
https://doi.org/10.17221/2520-CJAS
https://doi.org/10.3390/agriculture9090195
https://doi.org/10.1111/j.1365-2621.1985.tb12998.x
https://doi.org/10.1111/j.1365-2621.1985.tb12998.x
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0365
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0365
http://refhub.elsevier.com/S0168-1605(23)00261-1/rf0365
https://doi.org/10.5713/ajas.17.0540

	Shelf life estimation of refrigerated vacuum packed beef accounting for uncertainty
	1 Introduction
	2 Materials and methods
	2.1 Sample collection
	2.2 Microbiological analysis
	2.3 Modelling of microbial growth and data analysis
	2.4 Model (cross-)validation
	2.5 Shelf life estimation

	3 Results
	3.1 Growth of LAB in refrigerated vacuum packed beef
	3.1.1 Model fitting for growth of LAB
	3.1.2 Model (cross-)validation for LAB

	3.2 Growth of Enterobacteriaceae in refrigerated vacuum packed beef
	3.2.1 Model fitting for growth of Enterobacteriaceae
	3.2.2 Model (cross)validation for growth of Enterobacteriaceae

	3.3 Shelf life estimation based on growth models

	4 Discussion
	4.1 Growth of LAB and Enterobacteriaceae in refrigerated vacuum packed beef with low and high pH
	4.2 Relevant aspects for the development and validation of the growth models
	4.3 The limitations of the estimates of product shelf life

	5 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


