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GENERAL INTRODUCTION 
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1.1. Background information on gut microbiota and associated metabolism  
Mammalian host-microbial interactions have gained substantial attention in the past decades. It is 

estimated that the number of microorganisms populating a mammalian host, such as a human body, is 

in the same order as the number of mammalian cells in the host [1]. These microbes are present in 

numerous organs of the human body, including the skin, upper respiratory tract, vagina, gastrointestinal 

(GI) tract and several others. A vast majority of these microbes are known to colonize the GI tract where 

they compete with one another for survival and co-evolve with the host species [2]. These microbes are 

known as the gut microbiota, and include bacteria, archaea and eukaryotes, out of which bacteria are 

the predominant colonizers that are known to have co-evolved with the human host for over thousands 

of years to form a stable symbiotic relationship [3].  

In the extensive analysis of human microbiota by the Human Microbiome Project (HMP), it has been 

estimated that bacteria are the predominant species dominating the human GI tract, exceeding by about 

2-3 orders of magnitude the other prokaryotes, eukaryotes and archaea present. Bacteroidetes and 

Firmicutes are the most prominent phyla in the human gut microbiota, followed by Proteobacteria, 

Verrucomicrobia, Actinobacteria, Fusobacteria and Cyanobacteria [3, 4]. The diversity and 

composition of the gut bacteria are known to be rather stable up to phylum level and more species-

specific at genus or species levels [5]. As shown in figure 1.1, several factors are known to influence 

the microbial population in the GI tract, including host diet, nutrition, host genetics, exposure to 

medications, immune system, method of delivery at birth and many others [2]. When the host is exposed 

to xenobiotics, such as antibiotics, not only harmful bacteria are targeted but also the host-associated 

‘good’ bacterial communities can be affected, hence potentially affecting host health in a negative 

manner. One of the key limitations of antibiotic therapies is the resulting decreased bacterial diversity 

in the gut microbiota and the fact that this alteration may also affect the co-dependent colonizers, 

resulting in a potential increase in colonization by opportunistic pathogens leading to loss of host 

homeostasis [6].  

 
 

Figures 1.1: Overview of different factors that influence the composition and functions of a healthy gut 
microbiota. 
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Gut bacteria are known to perform several vital bio-transformations of molecules that are ingested via 

host diet, in order to maintain host homeostasis [7]. These vital reactions include extraction of calories 

from the host diet, synthesis of essential vitamins and amino acids, bile acid and lipid metabolism, 

support of host immune functions, maintaining the energy balance and preventing infections [8]. The 

ability to perform these vital functions to maintain host health and prevent diseases have high relevance 

in the fields of toxicology, pharmacology, oncology and many others [9]. Specific microbial 

(bio)transformation reactions for xenobiotics and other dietary constituents include processes like 

reduction, hydrolysis, removal of succinate groups, dehydroxylation, (de)acetylation, reductive 

cleavage of azo bonds, proteolysis, and denitration [10-13]. These reactions may significantly alter, that 

is, increase as well as decrease, the toxicity of the respective compounds. Furthermore, some forms of 

microbial dysbiosis are associated with human diseases such as Crohn’s disease, colon cancer, diabetes, 

allergies, Alzheimer’s and Parkinson’s disease, depression, stroke, and many more [14, 15]. Therefore, 

the microbiota can significantly impact the host health, but the functional relevance of dysbiosis and 

the processes a perturbed microbiota mediates are poorly understood, since experimental systems to 

address these complex processes are also lacking. 

Further, the huge inter-individual differences in microbiota composition may also hamper the 

interpretation of the consequences of compositional changes of the microbiota. Thus, it is important to 

perform both the taxonomic profiling to capture inter- and intraspecies differences as well as to analyze 

microbial metabolic functionality [16-18]. Integrative research approaches will advance knowledge 

about how taxonomic differences drive intestinal metabolic capacity. To increase our mechanistic 

understanding of how the microbiota influences host health, there is a need to integrate knowledge of 

the composition of the gut microbiota with its functionality in terms of microbiota-mediated metabolic 

processes. Given the complexity of this system, the integration of omics technologies represents a well 

fit approach towards a functional and mechanistic understanding of the complex dynamics of host-

microbiome interactions [19].  

Aim of this thesis 
The main objective of the present thesis was to extend knowledge of the gut microbiota mediated 

production of small molecules or endogenous metabolites via metabolism, with the help of integrated 

omics approaches using young adult rat models. To address this objective, an OECD 407 guideline type 

of study design was used where rats were orally administered a variety of test compounds, from 

antibiotics to artificial sweeteners and blood and feces samplings were conducted to analyze the extent 

of the role of gut microbiota on the host metabolic patterns. The test compounds and their dosage were 

selected in order to induce perturbations in the gut microbiota but avoiding systemic toxic effects. The 

reason for doing this was to not have any interferences in the targeted metabolome profiles as a result 

of a systemic response to the administered compounds. At first, antibiotics were selected to study the 
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changes induced in the metabolism via the perturbed gut microbiota as they are known to cause an 

antibacterial response. In addition, two different non-caloric artificial sweeteners were selected to study 

their effects on the gut microbiota and the corresponding changes induced in the gut microbiota-

mediated metabolism. The effects of the compounds on the gut composition as well as on the metabolic 

output (functions) were analyzed and several key biomarkers or metabolites associated with a perturbed 

gut microbiota were identified. Furthermore, the ability of spontaneous restoration of the gut microbiota 

and associated metabolism post antibiotic exposure was investigated in order to better understand 

natural recovery of the gut microbiota and functions without any external or therapeutic intervention. 

The results obtained will contribute to the understanding of the metabolic contribution of the gut 

microbiota.  

1.2.  Impact of gut microbiota on host health 
The most frequently discussed phyla that are associated with the human gut microbiota are Firmicutes, 

Bacteroidetes, Actinobacteria, and Proteobacteria, as these four phyla constitute up to 99% of intestinal 

microbiota in healthy adults with Firmicutes and Bacteroidetes being predominant (~ 90%) [20, 21]. 

Apart from these key bacterial phyla, the homeostasis and host health are defined by the gut bacterial 

specific diversity or richness. Gut resilience acts against any deviation from the healthy state in order 

to not compromise host health and hence, any change in the levels of specific phyla or a reduction in 

species diversity could indicate a perturbed gut and potentially result in deviation from a healthy state. 

Gut bacterial homeostasis is necessary to maintain host health. As mentioned in the previous section, a 

variety of factors can induce a disruption of this homeostatic state. A shift in the gut bacterial 

composition and/or metabolic functions, is known to affect host health by contributing to many host 

diseases [22]. GI-associated diseases such and Crohn's disease and ulcerative colitis are the most 

prevalent forms of inflammatory bowel disease [10-15]. It has been shown that a reduced intestinal 

microbial diversity, including an increase in Bacteroidetes and a reduction in Firmicutes are observed 

in patients suffering from Crohn’s disease and ulcerative colitis. Furthermore, other conditions such as 

metabolic disorders, obesity, and type 2 diabetes have been associated with gut dysbiosis. In obese 

humans and rodent models, an increase in the relative abundances of Firmicutes and a reduction in 

Bacteroidetes levels have been observed, making gut dysbiosis a gold standard in prediction of 

metabolic diseases [23, 24]. A stable Firmicutes/Bacteroidetes ratio is widely accepted to have an 

overall key influence in maintaining a healthy gut homeostasis [25, 26]. A change in this ratio has been 

associated with obesity, gut inflammation, increasing the risk of systemic bacterial infections [27, 28]. 

Studies with germ-free rodent models that possess no microorganisms in or on them, showed that the 

absence of gut microbes has consequences for the regulation of fat storage and metabolism, highlighting 

the metabolic functionality of the intestinal microbiota [29, 30]. A dysbiotic state of human gut 
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microbiota has an overall impact on the metabolome of the microbial community as well as 

consequently on the host metabolome.  

Reduced levels of vital commensal bacteria (commensalism is where one species gains benefit while 

the other species neither benefits nor is harmed) may lead to open ‘niches’ available for pathogenic 

bacteria to grow, potentially leading to overgrowth of certain harmful pathogens such as Clostridium 

difficile, thereby compromising the immune functions of the host [31]. Nevertheless, doubts still persist 

whether gut dysbiosis is a direct cause for metabolic-related disorders or rather a consequence. Hence, 

further studies are necessary to understand this causal versus consequence relationship of dysbiosis and 

disease. 

1.3. Relevance of gut microbiota in the field of toxicology 
The contribution of intestinal microbial biotransformation to the overall host metabolism is not well 

studied, but nevertheless an important field for toxicology. Toxicity studies routinely investigate many 

organs/target sites including the liver, kidney, lungs, thyroid system and many others (toxicodynamics), 

while including absorption, distribution, metabolism (in most cases in the liver) and excretion of a 

compound (toxicokinetics), while the role of gut-mediated metabolism is still poorly characterized [16, 

18]. The plethora of bacterial species that colonize the gut microbiota may have important contributions 

in (de)toxification of chemical compounds and/or the production of endogenous metabolites. Therefore, 

it is important to understand the metabolic capabilities of the intestinal microbiota and to consider how 

changes in their composition could play a role in altered metabolism of chemicals and pharmaceuticals.  

Further, chemicals may be absorbed and transported to the liver, where they are conjugated and excreted 

back into the gut through bile secretion for subsequent microbial metabolism. The metabolic functions 

of intestinal microbes can influence the absorption, distribution, metabolism and excretion (ADME) of 

a specific compound [32]. The interaction of intestinal microbiota with chemical compounds is 

bidirectional. First, the chemical compound can induce changes in the gut community structure and 

second, there can be changes induced by the gut community on the compound itself. To address the 

first aspect, a combination of omics approaches would be of use [33]. 

In regulatory toxicological studies, rodents and in particular rats are commonly used to assess chemical 

safety for humans and have significantly contributed to delineating correlations between the intestinal 

microbiome and diseases [34, 35]. Analyses of rat intestinal microbiota revealed bacterial diversity 

exceeding that of the human gut by 2-3 orders of magnitude [1]. The microbiota of rats, the gold 

standard model in toxicology, appear to be more representative of the human gut microbiota than mice 

microbiota  [21, 36]. Even though there are overlaps in microbiota composition between species, it is 

not clear to which extent differences in the microbiota contribute to species differences in responses to 

toxicant exposure. The gut microbiota and its metabolic capacity can be studied by inducing an artificial 

shift in the composition through exposure to xenobiotics. Consequently, microbiota-derived metabolites 
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need to be assessed. As these mechanistic studies are generally performed on rodent models, there is a 

need to understand the inter-individual variability in the composition of the gut microbiota of rodents, 

as well as inter-species differences of the microbiome in order to extrapolate the data to humans.  

 
Figure 1.2: Schematic diagram of experimental design overview. The study design followed a 28-day repeated 
dose oral study with young adult Wistar rats where blood sampling was conducted on days 7, 14 and 28 and feces 
collection on day 28 of the study. Both the sampled matrices were used for metabolomics and feces was also used 
for 16S marker gene sequence analysis. 
 

In vivo toxicological studies, specifically short term acute and subacute studies such as for example 28 

days repeated oral dose toxicity studies compliant to OECD 407 guidelines are a practical streamlined 

setup to study the effects of orally (by gavage) administered compounds in rat models (Figure 1.2). 

Such studies may be used to analyse the impacts of orally administered test substances (such as 

xenobiotics) during a limited period of time [37]. These guidelines are specific for rats and indicate that 

at least 10 animals (five per sex) have to be used per dose group and that there should be at least three 

test groups including controls. Clinical parameters including regular measurements of body weights 

and food/water consumption need to be noted throughout the study followed by gross necropsy and 

histopathology once the 28 days of the study are over. This study design also fits well with the in-house 

database that is used to upload and analyse metabolome profiles which accepts data from a 28-day study 

design. 

1.4. Importance of multi-omics technologies 
To better understand the gut microorganisms as well as their derived metabolites necessary for host health, 

integrated omics approaches help to explain the complexities of the gut bacteria-host interactions. First of all, in 

order to understand the changes induced by a particular chemical compound on the gut community structure, Next 

Generation Sequencing (NGS) may be applied [38, 39]. Developments in NGS have aided in many breakthroughs 

of taxonomic or phylogenetic profiling of the gut microbiota. For example, the use of 16S rDNA gene sequencing 
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has been the standard to study bacterial phylogeny and taxonomy [40, 41]. Gut dysbiosis can be easily assessed 

by determining alterations in the levels of gut bacterial families via 16S rDNA gene sequencing. Using this 

method, along with bioinformatics analysis, identification of intestinal bacterial genus and/or species could be 

determined [41]. 

Further, analysis of the metabolic potential of gut microbiota is possible via identification of gut 

bacteria-derived metabolites that may alter host physiology and pathology. Metabolomics is a technique 

which involves detection of a broad range of metabolites from a biological matrix (such as urine, blood, 

tissue samples, feces among others). These metabolites could be of any class including carbohydrates, 

fatty acids, amino acids, energy metabolites, bile acids and their derivatives. Sensitive mass 

spectrometry-based methods including LC-MS and GC-MS offer the possibility to detect and quantify 

relevant metabolites [16, 19]. In the last decades, metabolomics has been regarded as a vital tool in risk 

assessment in the field of toxicology.  By using this approach in toxicology as a screening tool, various 

metabolite patterns for adverse effects on different toxicological targets (liver, kidney, thyroid system, 

testes, blood, nervous system and endocrine system) and various modes of action were established in 

the BASF MetaMapTox (MMT) database [42-45].  

The MMT database consists of metabolite profiles as well as toxicity data of over 1000 chemicals, 

agrochemicals and drugs. MMT is an in-house database that consists of metabolic profiles from highly 

standardized studies that are OECD 407 guidelines compliant. MMT has been successfully used as a 

tool for the identification and prediction of toxicological modes of action of new compounds [46]. In 

addition, applicability to improve the quality of read across cases has been shown thus reducing the 

need for animal testing [42-45, 47, 48]. Metabolic patterns have been generated using well characterized 

reference compounds and their respective toxicological endpoints which can be used to predict the 

toxicity of chemicals based on their specific metabolome [42]. In summary after exposing rats to a 

specific chemical, via the MTT database, changes in the metabolite profiles can be linked to (the 

absence of) toxicological effects. We have used this experimental set up to study the effects of various 

compounds, assumed to affect the microbiome, on subsequent changes in the fecal and plasma 

metabolome. The MMT database was used to assess if exposure to the substances investigated in this 

thesis may have produced systemic toxicity [46].     

The metabolites produced by the gut bacteria are known to be absorbed across the intestinal cell wall 

and can be further modified by the liver, ending up circulating in the blood stream of the host [49]. The 

metabolic patterns may be measured with the help of metabolomics, that can serve as a tool for assessing 

the functional output of the microbiome beyond genomics. Metabolites that are produced by the 

microbiota and are available for uptake by the host may potentially affect the host organism 

systemically. Since the blood plasma metabolite profile consists of both the microbiota-derived 

metabolites as well as the endogenous metabolites, combined metabolome analysis of both blood 

plasma and feces of control as well as antibiotic treated rats would help to find out which metabolites 
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were derived specifically from the gut bacteria and to determine their impact on the host metabolite 

profile. Using the integrative genomics and metabolomics approaches as well as the existing knowledge 

from the MMT database, gut microbial functionality may be studied after treatment with substances 

which are known to induce an artificial shift in the microbial community. 

1.5. Complex ecological dynamics of gut microbiota 
A healthy or ‘normal’ gut microbiota composition is hard to be defined due to a high inter-individual 

and inter-species variability of the bacteria colonizing the GI tract. It is known that the gut bacterial 

composition stays conserved only up to phyla levels and beyond that taxonomy, it is known to be rather 

unique to individuals. The inter- and intra-individual variability in gut microbiota composition may 

occur predominantly due to external factors as previously mentioned. Hence, analyzing the differences 

in the gut microbiota across a population and correlating this variability with variability in specific 

metabolic functions is necessary to understand the gut-mediated host metabolism. The huge inter-

individual differences in microbiota composition may further hamper the interpretation of 

compositional changes. Gut microbiota dynamics is complex and diverse across ecological 

communities which includes inter- and intra-individual fluctuations. These fluctuations may be short or 

long term and therefore it is important to understand to what extent a variation may be defined as 

‘normal’. And in case of abnormal temporal fluctuations of a specific taxa, it could be considered as a 

biomarker for any form of clinically relevant illness [50, 51]. Thus, it is important to perform both the 

taxonomic profiling to capture inter- and intraspecies differences as well as to analyze the resulting 

variability in gut microbiota-mediated metabolic functions [50].  

Antibiotic administration shifts the gut microbiota to a different state, causing a dysbiosis and a natural 

restoration of the gut microbiota after cessation of the treatment towards a healthy pre-dysbiosis state 

indicates resilience. The present knowledge on the ability of the gut microbiota to recover 

spontaneously post-antibiotic cessation is not well studied. However, it is not only necessary to 

understand this restoration patterns of gut bacterial strains following antibiotic treatment but also to 

characterize the associated metabolite recoveries in order to understand full functional restoration. This 

knowledge may be an important factor to maintain or restore long-term host health, as it lays the basis 

for rationale strategies that could reduce long-term effects of antibiotic treatment on gut health. 

Although the antibiotic treatments are normally short-term, they might shift the gut microbiota to long 

term dysbiosis states, which may consequently induce permanent loss of useful commensal bacteria and 

hence increased colonization of pathogenic bacteria and eventually promoting adverse effects on the 

host leading to diseases including colorectal adenoma [52], risk of type 2 diabetes [53], Parkinson’s 

disease [54] and several others. 
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1.6. Gut microbiota-derived metabolites 
The gut microbiota interacts with the host primarily through metabolites. These are small molecules 

produced as intermediates or end products during intestinal microbial metabolism. Bacteria may 

produce metabolites by metabolically modifying dietary substrates, or directly by modifying host 

molecules, such as bile acids [55]. The short chain fatty acids (SCFAs) are intestinally produced from 

dietary fibers. SCFAs may also be produced via protein fermentation but they are mainly derived from 

branched chain fatty acids, such as, isobutyrate and 2-methylbutyrate [56]. Acetate, propionate and 

butyrate are the highly abundant SCFAs, making up almost 95% of the total SCFAs [57]. 95% of these 

SCFAs produced in the cecum and large intestine are known to be rapidly absorbed into the systemic 

circulation, whereas the remaining 5% get eliminated from the system. Any perturbation in the gut 

microbiome may affect the concentration threshold of these vital SCFAs in the host [58].  

Other metabolites such as hippuric acid, indole derivatives and glycerol are also established as key 

plasma biomarkers of a perturbed gut microbiome [59, 60]. Indoles are metabolites from the bacterial 

tryptophan metabolism pathway and these metabolites function as signaling molecules in the gut 

homeostasis where they may regulate bacterial biofilm production, motility, antibiotic resistance 

mechanisms and secretion of virulence factors [61]. One of the indole derivatives, indole-3-propionic 

acid or IPA, is involved in both tryptophan and indole metabolism. This metabolite is known to be a 

potent antioxidant, which is produced by gut bacterial species, and is then introduced into the 

bloodstream of the host for further functions [62].  Another indole derivative, indole-3-acetic acid or 

IAA originates from dietary tryptophan metabolism by intestinal bacteria. The source of tryptophan is 

either from dietary protein degradation or directly from the intestinal bacteria [63]. The bacterial 

tryptophanase enzyme may degrade tryptophan to produce skatole and indole, where indole gets 

absorbed directly from the intestine into the bloodstream and is further metabolized in the liver [64]. 

Another indole derivative indoxyl sulfate is produced from intestinally generated indole, in the liver 

[61]. This metabolite has only been found in the serum of animals that harbor microbes and hence is a 

great candidate for a gut perturbation associated key biomarker, as a gut bacterial reduction 

subsequently leads to loss of the necessary bacterial enzymes that further aid in the production of this 

metabolite.  
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Figure 1.3: Schematic diagram showing bile acid metabolism. Bile acids in red boxes are the primary bile acids 
that are produced in the liver and/or enter into the liver via the enterohepatic circulation (portal vein). Presented 
in brown boxes are the secondary and tertiary bile acids that are produced from primary bile acids, and 95% of 
these conjugated and/or unconjugated bile acids are reabsorbed from the colon walls and re-enter the liver via 
enterohepatic circulation to tightly regulate the BA pool [65]. 
 

Secondary or tertiary bile acids are known to be produced from primary bile acids, by the gut bacteria 

via bacterial deconjugation and dehydroxylation reactions (Figure 1.3). Primary bile acids, i.e., cholic 

acid and chenodeoxycholic acid are synthesized in the liver from cholesterol and are subsequently 

conjugated with amino acids (taurine or glycine). They are further secreted into the bile and finally 

reach the small intestine for lipid metabolism and emulsification reactions. About 95% of these bile 

acids enter the enterohepatic circulation and hence are reabsorbed in the ileum while the rest (~5%) 

reach the colon and are further excreted in the feces [66, 67]  

In the intestine, taurine or glycine conjugated primary bile acids are converted by bacterial enzymes to 

their unconjugated forms and further undergo a cascade of reactions including dehydroxylation 

reactions to produce secondary (deoxycholic acid, lithocholic acid, omega muricholic acid and 

hyodeoxycholic acid) and tertiary bile acids (ursodeoxycholic acid). Bacterial bile salt hydrolases are 

enzymes that catalyze deconjugation reactions performed by obligate anaerobes that is the first step to 

convert primary to secondary bile acids [68].  

1.7. Test compounds to study the gut microbiome 
In the present thesis six different test compounds were selected to study the gut microbiota and its 

metabolic functions in Wistar rats. The selection of the antibiotics and the dose selection were 

performed based on three main criteria. First, the test compound should be known to alter the gut 
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microbiota composition. Second, the compound should have low or no systemic bioavailability and 

finally, the dosage of the compounds selected should not induce any form of systemic or organ-specific 

toxicity. Four antibiotics belonging to three different antibiotic classes were used to change the gut 

microbiome and to elucidate the consequences thereof on the gut (fecal) and the plasma metabolome in 

treated rats. Having established this test system, two different artificial sweeteners were selected to 

study their effects. The antibiotics selected for the 28-day oral study using young adult Wistar rats were 

tobramycin, colistin sulfate, meropenem trihydrate and doripenem hydrate. Further, two artificial 

sweeteners namely, acesulfame potassium and saccharin were selected because there is widespread 

human oral exposure to these substances. The effects of these noncaloric sweeteners were analyzed on 

the gut microbiota and the resulting metabolites. The dosage and form of preparation of these 

compounds are presented in Table 1.1.  

Table 1.1: List of test compounds used in this thesis, their dose levels and forms of preparation. All the compounds 
were administered orally by gavage. 

 

Treatment  Low Dose 
(mg/kg bw/d)a 

High Dose 
(mg/kg bw/d)a 

Form of 
Preparation 

Tobramycin 100 1000 in deionized water 
Colistin sulfate 10 100 in deionized water 
Meropenem trihydrate  100 300 in deionized water 
Doripenem hydrate  100 1000 in deionized water 
Acesulfame potassium 40 120 in deionized water 
Saccharin 20 100 In 0,5% CMCb 

                a mg/kg body weight/day. b carboxymethyl cellulose 

1.7.1. Antibiotics 
Antibiotics are well known and widely used in medicine for their antimicrobial properties, hence, 

making them good candidates to study consequences of effects on the gut microbiota [69]. Tobramycin 

is an aminoglycoside antibiotic which is known to be a broad spectrum antibiotic and to be active against 

Gram negative bacteria including Enterobacteriaceae spp., Escherichia coli, Klebsiella pneumoniae, 

Pseudomonas aeruginosa and several others and also against a few Gram positives including 

Staphylococcus spp., Streptococcus spp. and Mycobacterium spp. [70]. The mode of action of this 

antibiotic is via inhibition of protein synthesis in cells of Gram negative and positive bacteria. It is a 

poorly bioavailable antibiotic with almost 90% being eliminated from the system via feces [71]. Colistin 

sulfate on the other hand, is a Polymyxin antibiotic whose mode of action is by penetrating through the 

bacterial cell membrane and disrupting it. It is also a poorly bioavailable antibiotic and hence is less 

likely to be absorbed and have a systemic influence on the host [72, 73]. The two carbapenem 

antibiotics, meropenem trihydrate and doripenem hydrate are broad-spectrum antibiotics that are active 

against both Gram positive and negative bacteria [74, 75]. These antibiotics cause bacterial cell death 

after inhibiting the penicillin-binding proteins, which are bacterial enzymes that are otherwise 

responsible for peptidoglycan cross-linking during the process of bacterial cell wall synthesis [74] [76]. 

Both the carbapenems are known to be poorly bioavailable [77, 78].  



- 18 - 
 

1.7.2. Artificial sweeteners 
In recent years, the harmful effects of sugars such as obesity, diabetes, other metabolic diseases like 

non-alcoholic fatty liver disease, hypertension, to name a few are well known and this has significantly 

increased the consumption of synthetic or artificial sweeteners as the latter have no caloric value [79-

81]. Several studies have shown that these sweeteners may cause gut dysbiosis leading to inflammation 

and gastrointestinal diseases [82-84]. These compounds are also known to reduce the useful commensal 

bacteria and hereby, potentially increase the abundance of pathogenic bacteria in the gut such as for 

example of Escherichia coli leading to health risks in the host organism [85, 86]. Both acesulfame 

potassium (Ace-K) and saccharin are approved as low-caloric artificial sweeteners, where both have 

been considered as safe [87-89]. Although many studies have addressed the effects of these two 

sweeteners on the gut composition, none of those studies relate the changes in the gut composition to 

the metabolic functions of the host. 

1.8. Thesis outline 
Since the last decades, gut bacteria and their crosstalk with the host organism and related consequences 

for host health have been extensively studied using various techniques. The aim of this thesis was to 

associate changes in the gut composition with metabolic functionality in the host. This was achieved by 

altering the gut microbiome by exposure of rats to antibiotics. Given the complexity of the system, a 

combined omics approach was considered the best way to understand the complex dynamics of the 

host-microbiota interactions. The objectives of the thesis were (1) to explore the interrelationship 

between microbiome composition and host fecal and plasma metabolome, (2) to identify metabolic 

biomarkers that may govern these interactions between the gut bacteria and host, (3) to investigate 

reversibility of the gut microbiome and associated metabolites following cessation of treatment. Finally, 

the experimental set up used for the antibiotics was applied to investigate the effects of two artificial 

sweeteners as case studies.  

Chapter 1 provides an overall introduction on the topic of the thesis, which includes background 

information about the approach and methodologies used to study the metabolic potential of the gut 

microbiota in rats, as well as an overview of the importance of the gut microbiota for host health, the 

consequences of dysbiosis and the microbial metabolites that are important for the host metabolome. 

The aim of the thesis is defined, and an overview of the compounds used in the studies to address the 

aim is outlined in this chapter followed by an outline of the thesis.  

In Chapter 2, the correlations between altered gut bacterial families and fecal and plasma metabolites 

were investigated upon exposure of rats to a series of selected antibiotics. Antibiotics from different 

classes and with a different activity spectrum were used to induce an artificial shift in the gut 

composition and functions. These perturbations were then used to define correlations between altered 
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gut bacterial families and the fecal and plasma metabolites in order to elucidate which bacterial families 

are responsible for the formation of fecal or plasma metabolites.  

In Chapter 3, two additional antibiotics belonging to different classes were used to elucidate their 

effects on the fecal and host plasma metabolomes via an effect on intestinal microbial metabolic 

capacity, specifically that of the bile acids, using the same 28-day exposure rodent model. Tobramycin 

and colistin sulfate were selected based on their low bioavailability and their ability to cause a gut 

microbial perturbation. As such a comprehensive analysis of the effects on the gut microbiota as well 

as on the plasma and fecal metabolomes upon exposure to the two antibiotics was performed. These 

plasma and fecal metabolites were then used to identify key biomarkers that are indicative of an altered 

gut microbiome resulting from the broad-spectrum activity of the two antibiotics.  

In the previous chapters the rodents were orally exposed to drugs for 28 days. However, it was noted 

that the 28-day antibiotic exposure, may be longer than a real-life exposure regimen where antibiotic 

exposure duration is rather short, and thus may lead in the rat experiments to rather long-term or 

permanent effects on the gut microbiome of the host. Although post-antibiotic recovery of the gut 

microbiota has been vastly studied the restoration of the metabolite patterns post antibiotic cessation is 

rather unexplored. Hence, in Chapter 4, the ability of spontaneous restoration of the gut microbiota 

and metabolomes, one and two weeks after carbapenem antibiotic cessation, was studied. The results 

from this study will be indicative of if external or therapeutic intervention is needed to restore the gut 

and its metabolic functions post-antibiotic exposure.  

In Chapter 5 of the thesis, a different class of compounds, two non-caloric artificial sweeteners, were 

investigated for their effects on the microbiota and related metabolite patterns. The effects of the 

artificial sweeteners, acesulfame potassium and saccharin on the gut (fecal) bacterial composition and 

associated fecal and host plasma metabolomes was investigated in a 28-day rat study. Due to the 

growing human exposure to artificial sweeteners via the diet, it was of interest to characterize the effects 

of the two model sweeteners on the gut microbial population and related metabolomes.  

Finally in Chapter 6, the key results from the previous chapters are highlighted and discussed along 

with future recommendations and perspectives with regard to rodent studies on effects on gut microbiota 

and related metabolism and translation of these key findings to humans.  
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Elucidating the Relations between Gut Bacterial Composition and the 
Plasma and Fecal Metabolomes of Antibiotic Treated Wistar Rats 

Abstract: The gut microbiome is vital to the health and development of an organism, specifically in 

determining the host response to a chemical (drug) administration. To understand this, we investigated 

the effects of six antibiotic (AB) treatments (Streptomycin sulfate, Roxithromycin, Sparfloxacin, 

Vancomycin, Clindamycin and Lincomycin hydrochloride) and diet restriction (-20%) on the gut 

microbiota in 28-day oral toxicity studies on Wistar rats. The fecal microbiota was determined using 

16S rDNA marker gene sequencing. AB-class specific alterations were observed in the bacterial 

composition, whereas restriction in diet caused no observable difference. These changes associated well 

with the changes in the LC–MS/MS- and GC–MS-based metabolome profiles, particularly of feces and 

to a lesser extent of plasma. Particularly strong and AB-specific metabolic alterations were observed 

for bile acids in both plasma and feces matrices. Although AB-group-specific plasma metabolome 

changes were observed, weaker associations between fecal and plasma metabolome suggest a profound 

barrier between them. Numerous correlations between the bacterial families and the fecal metabolites 

were established, providing a holistic overview of the gut microbial functionality. Strong correlations 

were observed between microbiota and bile acids, lipids and fatty acids, amino acids and related 

metabolites. These microbiome–metabolome correlations promote understanding of the functionality 

of the microbiome for its host. 

Keywords: gut microbiome, metabolomics, antibiotics, repeated oral toxicity study, 16S gene 

sequencing, DADA2, correlation analysis, metabolic capacity 

 

1. Introduction 
The gut microbiome plays an essential role in host health and well-being by maintaining physiological 

homeostasis [1]. The human gastrointestinal tract has been known to possess more than 1014 microbial 

cells and hence over 100 times more genes than the human genome [2]. Bacterial cells are present in 

the human gut by 2–3 orders of magnitude more compared to the eukaryotes and archaea [3]. The gut 

flora is easily altered by several factors including host health, medication, environment, diet, age, host 

genetics, and immune system [4,5]. Specifically, host diet and antibiotic usage have important 

influences in altering the composition of the gut microbiome [6]. 

Bacteria carry out microbiome-associated reactions that have been well characterized including tyrosine 

and tryptophan metabolism, glycerol and mucin production, hydroxylation, glucuronidation and short-

chain fatty acid (SCFA) metabolism [6,7]. Zimmermann et al., 2019 provided an outline of the drug-

metabolizing activity of human gut bacteria and discovered that about 2/3 of the drugs are metabolized 

by at least one bacterial strain [4]. Maier et al., 2018 elucidated gut microbial compositional dysbiosis 
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influenced by non-antibiotic drugs [8]. Findings like these promote a better understanding of 

microbiome metabolism and metabolism-related microbiome–host interactions [6]. The gut bacteria 

work hand in hand with the host immune system development that in turn influences signaling pathways 

of multiple organs such as gastrointestinal tract (GI), liver, muscle, and brain. In addition to the 

production of metabolites that are advantageous for the host health and phenotype, gut bacteria also 

contribute to disease risks such as obesity, diabetes, colitis, neurodegenerative disorders and several 

other long-term health effects [9–12]. As species-specific gut microbiome contributions are highly 

likely, this research will help in identifying the modes of actions and human relevance. 

Therefore, the understanding of microbial biotransformation is essential for the field of toxicology. 

While toxicity studies predominantly consider the role of the liver [13] for metabolism, gut-mediated 

microbiome metabolism is poorly characterized. The aim of this study was to investigate how families 

and species of the intestinal microbiome contribute to the status of natural components, referred to as 

metabolites, which are subsequently available for absorption from the intestinal tract. To investigate 

this, we determined microbiome communities as well as fecal and plasma metabolites. We introduced 

changes in the microbiome by the administration of several antibiotics and correlated the induced 

community changes with the changes in the fecal metabolome. Subsequently, the fecal metabolome 

changes were compared with the plasma metabolome. The correlation analysis now provides a 

connectivity map and shows how individual microbiome communities are responsible for the formation 

of fecal metabolites and how these are connected with the plasma metabolome.  

Antibiotics are known to induce a gut compositional dysbiosis, making it possible to compare rat fecal 

and plasma metabolomes [14–17]. Targeted metabolite measurements of classes such as carbohydrates, 

amino acids, nucleic acids or fatty acids and their derivatives were used to identify specific metabolite 

patterns associated with the administration of different antibiotics [18]. 

We have used a standardized procedure to determine the metabolome of test substance since 2004. 

Metabolome data are uploaded in the MetaMap®Tox database to compare a given substance with the 

other metabolome profiles available in the database. The MetaMap®Tox or MMTox database comprises 

data for about 1000 compounds whose modes of action have been determined and is also used for 

statistical and visualization tools as described in van Ravenzwaay et al., 2016 [19]. It not only gives us 

the ability to determine the statistical significance of regulated metabolites but also allows the 

assessment of whether a specific metabolite value has ever been observed in control animals, providing 

a historical range of what is normal.  

To expand the findings from the previous work of Behr et al. [14–16], we investigated the inter-omic 

correlations between the gut community and the fecal and plasma metabolomes. The standardized study 

protocol for the correlation analysis is shown in Figure 1. Gut microbial composition of Wistar rats was 

assessed by 16S rDNA gene sequencing of fecal samples. Subsequently, the fecal metabolome was 

analyzed and correlated with the microbiome community changes. Finally, we determine the plasma 

metabolomes of the antibiotic-treated rats to establish a correlation between the gut microbial changes 
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and both metabolome profiles. As treatment with compounds such as antibiotics frequently results in a 

reduction of food consumption at higher dose levels, we include in our studies a group of rats in which 

only the food supply was reduced to take into account possible effects of reduced food consumption. 

 
Figure 1. The schematic diagram shows the overall process of a 28-day oral toxicity study with plasma and feces 
sampling. Plasma sampling was conducted on days 7, 14, and 28 of the study and feces was sampled on the day 
of necropsy, day 28. Subsequently, plasma and feces samples were subjected to metabolomics and feces to 16S 
community analysis. With both omic datasets, correlation analyses were carried out. 

2. Materials and Methods 

2.1. Ethical Statement 

The studies were approved by the BASF Animal Welfare Body, with the permission of the local 

authority, the Landesuntersuchungsamt Rheinland-Pfalz (approval number 23 177-07/G 13-3-016, 

approved on 10.02.2016). The studies were performed in an AAALAC-approved (Association for 

Assessment and Accreditation of Laboratory Animal Care International) laboratory in accordance with 

the German Animal Welfare Act and the effective European Council Directive.  

2.2. Animals and Maintenance Conditions  

Briefly, male and female Wistar rats (CrI:WI(Han)) were supplied by Charles River, Germany, and 

were 70 ± 1 days old at the beginning of the studies. The animals were single- and group-caged in the 

four studies reported in this publication. For the grouped caging conditions, the animals (5 rats per sex 

and cage in one group) were maintained in an air-conditioned room at a temperature of 20 to 24 °C, a 

relative humidity of 30 to 70%, and a 12 h light / 12 h dark cycle. Ground Kliba mouse/rat maintenance 

diet “GLP” was supplied by Provimi Kliba SA, Kaiseraugst, Switzerland. Diet and drinking water were 

available ad libitum (except 16–20 h before sampling) and regularly assayed for chemical contaminants 

and the presence of microorganisms. 

2.3. Study Design  

Four independent 28-day oral toxicity studies in Wistar rats were performed following the principles of 

the OECD 407 test guideline. Animal handling, treatment, and clinical examinations have been 
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described earlier [14,15,17]. All the animals were checked daily for any clinically abnormal signs and 

mortalities. Food consumption was determined on study days 6, 13 and 27. Additionally, body weights 

of all the animals were determined before the start of the administration period in order to randomize 

the animals and also on study days 6, 13 and 27. At the end of the treatment periods, the animals were 

sacrificed by decapitation under isoflurane anesthesia. These studies involved treatments with 

antibiotics belonging to five different classes (see Table 1). Furthermore, one group of animals was 

provided with a reduced amount of diet (approx. 20% less compared to ad libitum food intake) to 

observe their influence on gut dysbiosis and gut metabolic functions. Metabolite profiling was 

conducted on plasma, cecum and fecal samples, and microbiome profiling was conducted on the fecal 

samples. 

2.4. Treatment of Animals with Antibiotics  

Treatment groups involved 5 rats per sex and dose group. Dose levels of the antibiotics were selected 

such that the low dose (LD) and high dose (HD) would induce low yet reversible toxicity of the 

antibiotics. The antibiotics were gavaged daily using an appropriate vehicle for animals. The substances 

were administered in four separate studies (study 1: Vancomycin, Streptomycin, Roxithromycin; study 

2: Sparfloxacin, Lincomycin; study 3: single caged restricted diet (−20%) fed study; study 4: 

Clindamycin study), each with a concurrent control group of 10 animals per sex, to allow for 

comparisons. Dose-levels, grouping of animals and form of preparation of the antibiotics are 

summarized in Table 1.  

Table 1. Compounds used, dose levels, caging type and class of antibiotics. All compounds were 
administered orally by gavage. 

Study 
Number Treatment 

Low Dose 
(mg/kg 
bw/day) 

High Dose 
(mg/kg 
bw/day) 

Caging Form of Preparation Class of Antibiotics 

1–4 Control diet - - Grouped (5) - - 
1 Vancomycin 50 400 Grouped (5) in ultra-pure water  Glycopeptides 

1 Streptomycin sulfate 100 450 Grouped (5) in water containing 
0.5% CMC a  

Aminoglycosides 

1 Roxithromycin 200 600 Grouped (5) in water containing 
0.5% CMC a Macrolides 

2 Sparfloxacin 200 600 Grouped (5) in water containing 
0.5% CMC a Fluoroquinolones 

3 Restricted diet 
(−20%) - - Single (1) - - 

4 Clindamycin 
hydrochloride 200 600 Grouped (5) in ultra-pure water Lincosamides 

4 Lincomycin 
hydrochloride 300 10000 Grouped (5) in water containing 

0.5% CMC a Lincosamides 
a carboxymethyl cellulose: Tylose CB30000; Single caging = one rat per cage; kg bw = kilogram body weight  

2.5. Sampling of Plasma, Cecum and Feces for Omics Profiling 

Between 7:30 and 10:30 h, on study days 7, 14 and 28 blood samples were taken from the retro-bulbous 

sinus of all the rats under isoflurane anesthesia (1.0 mL K-EDTA blood) after overnight fasting. The 
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blood samples were centrifuged (10 °C, 20,000× g, 2 min), and the EDTA plasma was separated. The 

EDTA plasma samples were snap-frozen with liquid nitrogen gas to keep the samples devoid of oxygen 

and stored at −80 °C until metabolome profiling was performed. Cecum and feces samples were 

sampled during necropsy on day 28. Fecal samples were carefully removed from the rectum at the end 

of the study after the last administration of the test substances. The samples were collected in pre-cooled 

(dry-ice) vials, immediately snap-frozen in liquid nitrogen and stored at −80 °C until further profiling 

was performed. The blood plasma, cecum and fecal samples were used for metabolome analysis as 

standardized in Behr et al. 2017 [16]. The feces samples were additionally used for 16S bacterial 

profiling.  

2.6. DNA Isolation and Bacterial 16S rDNA Gene Amplicon Sequencing 

DNA was isolated from the fecal samples using InnuPREP stool DNA Kit (Analytik Jena GmbH, Jena, 

Thuringia, Germany) according to the manufacturer’s instructions as published in Behr et al. 2018 [15]. 

Based on observations made during the process, the incubation temperature for the cells’ lysis was 

lowered to 75 °C. DNA yield and integrity were assessed using a Nanodrop. Samples were sent to 

IMGM® laboratories (Martinsried, Germany) for PCR, library preparation and sequencing. DNA was 

amplified using 16S V3-V4 primers (Bakt_341F :5′-CCTACGGGNGGCWGCAG-3′ and Bakt_805r: 

5′-GACTACHVGGGTATCTAATCC-3′). Sequencing was performed on the Illumina MiSeq® next-

generation sequencing system (Illumina Inc., San Diego CA, USA). Signals were processed to fastq 

files, and the resulting 2 × 250 bp reads were demultiplexed using the MiSeq®-inherited MiSeq Control 

Software (MCS) v2.5.0.5. 

2.7. Metabolome Profiling of Plasma, Cecum and Fecal Matrices 

Blood plasma, cecum and fecal samples were used for mass-spectrometry based measurements of 

metabolites using GC-MS (gas chromatography-mass spectrometry) and LC–MS/MS [20]. First, 

removal of proteins from 60 μL of plasma samples was performed using 200 μL acetonitrile via 

precipitation reaction. The polar and non-polar fractions using water and a mixture of ethanol and 

dichloromethane (1:2, v/v)). Five milligrams of feces was subjected to freeze-drying and grinding prior 

to extraction and extracted with a mixture of acetonitrile, water, ethanol and dichloromethane in a 

sample tube containing a 3 mm stainless steel ball using a Bead Ruptor (Omni International Inc., 

Kennesaw GA, USA). Additionally, dichloromethane was used for phase separation. Non-polar fraction 

was treated with methanol at acidic pH to form fatty acid methyl esters from free fatty acids as well as 

hydrolyzed complex lipids. Further, oxo-groups of the polar and non-polar fractions were converted to 

O-methyl-oximes with O-methyl-hydroxylamine hydrochloride and pyridine, followed by the addition 

of a silylating agent before analysis [15,17,21]. 

Both the fractions were re-prepared in appropriate solvent mixtures for LC–MS/MS analysis. LC 

analyses were performed by gradient elution on reverse-phase separation columns and mass 
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spectrometric detection was conducted with targeted and highly sensitive MRM (Multiple Reaction 

Monitoring) profiling in parallel to a full-screen analysis as described in patent WO2003073464 [21]. 

The acquisition in scan mode m/z ratio 15–600 for polar compounds and m/z ratio 40–600 for lipid 

compounds were applied for GC-MS analysis. MRM profiles for all the detected analytes were 

determined using standard solutions. The conditions applied for GC– and LC–MS are described as 

follows: 

GC–MS conditions: CTC GC PAL, Agilent 6890 GC gas chromatograph, 5973 MSD mass 

spectrometer, gradient: 70 °C–340 °C, carrier gas: helium, acquisition in scan mode m/z 15–600 (polar 

compounds) / m/z 40–600 (lipid compounds) [15,17,21]. 

LC–MS conditions: Agilent 1100 HPLC System, AB Sciex API 4000 mass spectrometer, gradient 

elution for polar compounds with water/acetonitril/ammonium formate, gradient elution for lipid 

compounds with water/methanol/methyl tert-butyl ether/formic acid, MRM and Q3 Scan m/z 100–1000 

[15,17,21]. 

Data for GC-MS and LC–MS/MS were normalized to the medians of reference samples that were 

obtained from pooled aliquots of all the samples in order to account for inter- and intra-instrumental 

biases. About 274 semi-quantitative metabolites were measured using the single peak signals in plasma 

samples according to methods optimized in patent WO2007012643A1 [15,17,21], which resulted in 

ratios/values that represented a relative change in the metabolites w.r.t control data. About 248 of these 

274 detected metabolites were chemically identified, and 26 remain structurally unidentified. A total of 

208 semi-quantitative metabolites were measured from feces samples, out of which 177 were 

chemically identified and 31 were structurally unidentified. 

2.8. Targeted Bile Acid Profiling of Plasma and Fecal Matrices 

Blood plasma and feces samples from the low-dose groups of controls and antibiotic-treated animals 

that were stored in −80 °C were used for bile acid profiling. Measurements of bile acids were performed 

using UHPLC–ESI-MS/MS consisting of a Waters Acquity UHPLC system coupled with an SCIEX 

5500 Triple Quad™ LC–MS/MS system equipped with an ESI ion source. This facilitated successful 

measurements of 20 different bile acids. To enhance accuracy and precision of the data, the method 

provided seven calibration standards including a mixture of three isotope-labeled internal standards 

along with a quality control sample. Firstly, 5 mg of dried feces samples were extracted with 1 mL 

extraction solvent (ethanol (95%)/NaOH [0.1 N]) with an incubation of 30 min in an ultrasonic bath 

followed by a 10 min centrifugation step at 14,000 rpm, 4 °C [16,21]. The supernatant from the samples 

was removed and used for further analysis. Further, 10 µL of extracted feces/plasma samples were 

resuspended with 10 μL of internal standards mixture and added onto filter spots suspended in the wells 

of a 96-well filter plate (PALL  Corporation, Port Washington NY, USA, AcroPrepTM PTFE 0.2 µm) 

fixed on top of a deep-well plate followed by extraction with 100 μL methanol by shaking at 600 rpm 

for 20 min on an Eppendorf ThermoMixer C (Eppendorf AG, Hamburg, Germany) as stated in Behr et 
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al. 2020. The elution step after extracting using methanol was performed by centrifugation at 5700 rpm 

for 5 min onto the deep-well plate, which was then detached from the 96-well filter plate. Sixty 

microliters of Milli-Q® water was added to the eluates by shaking briefly at 600 rpm for 5 min, after 

which the samples on the plate were analyzed by LC–MS/MS [16,21]. 

All the targeted isobaric bile acids were baseline-separated using ultrahigh-pressure liquid 

chromatography (UPLC) as described previously in Behr et al. 2020. UPLC systems were briefly used 

at a flow rate of 0.5–1 mL/min. Water with 0.01% formic acid and 10 mM ammonium acetate was 

mobile phase A, whereas mobile phase B was 30% (v/v) acetonitrile/methanol with 0.01% formic acid 

and 10 mM ammonium acetate [16]. The gradient program that was initially started at 35% B, was 

increased to 100% B in 3.5 min and then held at 100% B for 0.5 min, decreased to 35% B in 0.1 min, 

and then held at 35% B for 0.9 min, enabling a short runtime of 5 min. Chromatographic separation was 

performed using a reverse-phased UHPLC analytical column (Biocrates Life Sciences AG, Innsbruck, 

Austria) at 50 °C. Chromatographic performance was then enhanced using a SecurityGuard ULTRA 

Cartridge C28/ XB-C18 for 2.1 mm ID precolumn (Phenomenex Cat. No. AJ0- 8782). An injection 

volume of 5 μL was used. Mass spectrometric detection was accomplished with electrospray ionization 

in negative ion mode. Two MRM transitions were used for each target bile acid for semi-quantitative 

evaluation [16,21]. 

2.9. Statistics 

The metabolic data were analyzed by univariate and multivariate statistical methods. The sex- and day-

stratified heteroscedastic t-test (“Welch test”) was applied to compare metabolite levels of the different 

dose groups with respective controls for each matrix. For all the metabolites, changes were calculated 

as the ratio of the median of metabolite levels in individual rats in a treatment group to the median of 

metabolite levels in rats in a matched control group (time point, dose level and sex). These ratios are 

referred to as “relative abundance”. The computations were performed using the standardized routines 

setup in Java and Oracle database, and the relative abundances, p-values and t-values were collected as 

metabolic profiles and made available through MetaMap®Tox [19]. 

The Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were performed 

in R Statistical Software [22,23]. Prior to computing PCA and HCA, the data were transformed to a log 

scale, centered by subtracting the mean of the control group and scaled by the respective standard 

deviation for each metabolite. Missing data were imputed using the nearest neighbor method 

implemented in function impute.knn from the package impute [25]. The metabolites missing in more 

than 20% of samples, and subsequently, the animals missing more than 35% metabolites were removed 

from the analysis. The HCA was performed at the level of a treatment group based on the mean values 

of each metabolite within a specific dose and sex group. 

2.10. Bioinformatics 
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The Divisive Amplicon Denoising Algorithm (DADA) treats every sequence uniquely without 

clustering them, which proves advantageous as the variability of as small as one nucleotide is considered 

[26]. DADA2 v1.10 package was used to process the sequencing data using a customized workflow 

[26]. A table of amplicon sequence variants (ASV) was obtained by denoising using a customized 

DADA2 v1.10 denoising workflow. The workflow includes quality control, primer removal, denoising, 

taxonomy assignments using RDP classifier and creation of a phylogenetic tree [27] (see Figure 2). 

Forward and reverse primers were trimmed from the raw reads using cutadapt [27]. As paired-end reads 

had to be used for further analysis, the reads or sequences were merged to about 415 bp length. Quality 

checking (QC) involved checking the read lengths and the quality of the joined reads. Taxonomy was 

assigned to ASV sequences using the Naïve Bayesian classifier implemented in DADA2 using the RDP 

database [28]. This resulted in the output in the form of a BIOM table with all the information regarding 

the sequences and abundances of ASVs and the assigned taxa information. 

 
Figure 2. 16S community analysis workflow. The first step involved the preparation of fecal samples collected 
during necropsy (day 28) from the Wistar rats. Samples were subjected to DNA isolation, quantification and 
further 16S rDNA gene amplification by Polymer chain reaction (PCR) and sequencing report generation. The 
next step involved the data pre-processing where filtering, denoising and demultiplexing of the reads were 
conducted by DADA2 software and the final step was the bacterial community data analysis. 

2.11. 16S Data Normalization, Diversity and Relative Abundances Analyses 

The community analysis was conducted in R using RAM (Chen, Wen et al. “Package ‘RAM’” (2018)), 

and DESeq2 packages [29]. The raw data were checked for completeness, and empty rows were 

removed. The BIOM table contained 2,859,130 reads belonging to 31,023 ASVs from 198 samples. 

The raw reads were used for alpha diversity analysis using the group.diversity function in RAM 

package. As a part of data cleanup, ASVs or reads that did not have taxonomic assignment up to the 

family level were removed. Further, ASVs with non-zero counts in at least two samples were retained, 

and the others were removed, resulting in 2,496,649 reads belonging to 1946 ASVs. These filtered data 

were used for relative abundance analysis. Stacked bars were plotted using RAM package to determine 
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the relative bacterial abundances in the different antibiotic-treated rats. An additional stacked bar was 

plotted to estimate the group indicators, which indicate the core taxa that are specific to particular 

conditions. Parameters used for the group indicators are A = 0.975, B = 0.975, stat = 0.975, p-value = 

0.001, where A refers to the probability that the animal belongs to a combination of conditions given 

that a taxonomic family is found and B refers to the probability of finding a bacterial family given that 

the animal belongs to a combination of treatment groups. Stat refers to the association between A and 

B. 

Count normalization of the dataset and the differential abundance analysis was done using DESeq2 

workflow (via Phyloseq) [30–32]. This procedure follows custom scripts from the DESeq2 package. 

The filtered and normalized data were used for beta diversity analysis and HCA. Principle Coordinate 

Analysis (PCoA) was carried out using phylogenetic (weighted UniFrac) and non-phylogenetic (Bray-

Curtis) based distances. 

For the DESeq2 model, study (experimental batch), sex and treatment (a compositive variable of 

administered compound and dose) were used as independent variables, with an additional interaction 

term for sex and treatment. The log2 fold change values of bacterial family that are significantly present 

or absent in a particular treatment relative to the controls were estimated. An additional feature to 

include batch effects in DESeq2 was performed to include any minor study-dependent variabilities. The 

differential abundance analysis allowed us to visualize the significant changes in specific bacterial 

families in their abundances in different treatments with respect to the controls. This also allowed us to 

visualize differences between the two dose groups and sexes. These log2 fold change values were then 

used for final correlation analysis with the metabolome data. 

2.12. Correlation Analysis 

In order to enable the comparison of the metabolome data to the microbiome data, log2 fold changes 

were calculated for the two metabolome matrices. The fold change matrices were used to compute 

correlations between different metabolites and 16S bacterial families using R. Pearson correlation 

analysis was performed for fecal bacterial families with plasma and feces metabolomes, respectively. 

A separate targeted measurement was performed for the bile acids in the low-dose groups. A similar 

correlation analysis was conducted for these low-dose treatments for the bile acid metabolites. A 

correlation test was performed to determine statistical significance. Only metabolites and bacterial 

families that had correlations with p < 0.05 and absolute strength of correlation > 0.6 were retained. 

3. Results 

3.1. Clinical Signs 

There were no mortalities in any of the treatment groups, except for one animal at the beginning of the 

study in the female group with Streptomycin treatment, which was not treatment-related. No clinical 

signs of toxicity were observed in any of the animals that received Lincomycin, Sparfloxacin, 
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Streptomycin and Vancomycin. Animals treated with Roxithromycin showed slight salivation 

immediately after administration. The group of female animals treated with Clindamycin showed 

relevant clinical signs including salivation and semi-closed eyelid (four animals), and one of the animals 

showed piloerection. Similarly, males treated with Clindamycin showed slight salivation (all animals), 

semi-closed eyelid (three animals) and, two of them were in poor condition. Except for salivation, these 

findings were only observed in the individual animals on 1–3 days of the administration period out of 

28 days. Therefore, and in the absence of body weight effects, these observations were assessed as 

borderline effects indicative of marginal systemic toxicity of Clindamycin at 200 mg/kg body weight. 

Relative changes in body weight and food consumption noted upon administration of the test 

compounds are shown in Supplementary Table S1. Treated animals did not present any significant 

changes with respect to body weight when compared to the controls for both males and females.  

3.2. Diversity Analysis 

Shannon true diversity of the fecal microbiome of all the six antibiotic treatments and restricted-diet-

fed rats was compared to controls for both dose groups and sexes (Figure 3). Shannon true diversity 

indicates the diversity of different bacterial taxa present in a specific treatment [33]. The larger the 

boxes in the boxplot, the higher is the variability between the individual samples of a specific 

group/condition. The dots falling outside the boxes are outliers. A clear reduction in the diversity in the 

samples of all the antibiotic treatments was noted. Control animals had higher inter-individual 

variability in both the sexes compared to antibiotic-treated animals. The higher the diversity, the higher 

the presence of different bacterial taxa, which is highest in the controls, followed by the restricted-diet-

fed animals. Among the different antibiotic treatments tested, samples from Streptomycin-treated 

animals retained a relatively high diversity in bacterial taxa for both males and females compared to the 

other antibiotic-treated animals. Sparfloxacin and Vancomycin treated animals showed the least 

diversity in both the sexes. Overall, dose dependency was not very apparent and was quite marginal in 

both the sexes, with a possible exception of Streptomycin. Using the diversity information, the Shannon 

evenness boxplot was plotted (see Figure S1). 
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Figure 3. Shannon true diversity analysis of six antibiotic treatments, restricted-diet-fed and controls for both 
male and female Wistar rats. Boxplot shows the diversity analysis on the left for females (f) and on the right for 
males (m). The colors show different dose groups, where red refers to no dose applicable, blue box refers to high-
dose and green refers to low-dose groups. The x-axis shows the different treatment groups, and y-axis shows 
Shannon diversity value; whiskers denote standard deviations, solid lines within the boxes indicate the group 
median and dots lying outside the boxes are outliers. A closer comparison of the treated groups and dose response 
is depicted in Supplementary Figure S9. 

Consistent with the Shannon true diversity index, the Shannon evenness profiles of the antibiotics again 

showed a very marginal dose dependency for both sexes except for the Streptomycin treatments. 

Following the alpha diversity analysis, a beta diversity analysis using two different distance matrices 

was conducted. One was a rank-based Principle Coordinate Analysis (PCoA) using a non-phylogenetic 

distance matrix called the Bray–Curtis distance. The second one was a phylogenetic-based distance 

matrix called Weighted UniFrac distances. Figure 4a depicts the non-phylogenetic distance-based rank 

PCoA analysis of the bacterial taxa present in different conditions. The PCoA was also used to observe 

any exclusive sex-based clustering. Six clear clusterings of the different treatments could be observed. 

We observed one cluster with controls, restricted-diet-fed and Streptomycin treated animals; a second 

with Roxithromycin, Sparfloxacin, Vancomycin; and two clusters formed by the lincosamides treated 

groups. In addition to the four clusters, two different yet closely located clusters of the two lincosamide 

treatments (Clindamycin and Lincomycin) were evident. Thus, the Streptomycin treatment showed the 

same results as in the diversity analysis; i.e., it appeared to be more similar to the controls than to any 

other antibiotic treatment. 
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(a) (b) 

Figure 4. Principle Coordinate Analysis (PCoA) of bacterial families from different treatments. (a) The 
distance matrix used is Bray–Curtis, which is a rank-based clustering. (b) Principle Coordinate Analysis 
(PCoA) using weighted UniFrac distance matrix that is a phylogenetic-based distance that takes bacterial 
abundances into account. 

Sex-dependent clustering could not be observed in any of the treatments, whereas a clear antibiotic class 

dependency was evident. Further, a phylogenetic distance-based beta diversity analysis demonstrated 

changes as shown in Figure 4b. Consistent with our previous Bray–Curtis-based PCoA analysis, the 

weighted UniFrac distance matrix produced six visible clusters. The samples from animals belonging 

to controls and restricted diet formed a cluster together in the phylogenetic distance-based matrix, 

similar to the Bray–Curtis distance matrix. Similarly, treatments of two lincosamides, Clindamycin and 

Lincomycin, clustered together and with Sparfloxacin treatments, whereas Streptomycin, 

Roxithromycin and Vancomycin treatment groups clustered separately from others. As this analysis 

involves phylogenetic associations between the bacterial taxa, the clusters at some points appear to 

converge with nearby associated clusters, showing homology in their relations. This also explains a 

large spread in the control and Streptomycin treatments and closeness of Sparfloxacin treatments to the 

lincosamides cluster. 

3.3. Hierarchical Clustering Analysis 

The hierarchical clustering of gut (fecal) bacterial families based on both sexes and dose groups is 

shown in Figure 5. Control data from all four selected studies have been combined. The hierarchical 

clustering showed clear antibiotic-specific clustering, consistent with what was observed in the beta 

diversity analysis. A heatmap was generated with hierarchical clustering (HC) of not only the different 

treatments (taking every single sample into account and not means or medians) or conditions but also 

the bacterial families. Potential co-occurrences of bacterial families are shown in Figure 5. As dose and 

sex did not contribute very much to the changes in the microbiome, they were combined for the analysis. 

Streptomycin treated animals clustered closely with controls, whereas Vancomycin-treated animals 

clustered the farthest from the control cluster. Restricted-diet-fed animals merged together with the 

control cluster, whereas five clear antibiotic-based clusters could be observed. Both lincosamides—

Clindamycin and Lincomycin—clustered together, showing an antibiotic class-based effect. 
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The black bands on the right side of the figure represent the respective treatment that the bands 

correspond to. The bacterial families could be observed taking inter-individual variations into account. 

The presence or absence of some of these bacterial families like Paenibacillaceae, Bacillaceae and 

Eubacteriaceae also distinguish between the two lincosamides as they occur in Lincomycin- and not 

Clindamycin-treated animals. Families like Anaeroplasmataceae and Deferribacteriaceae were 

specific to only Vancomycin treatments compared to all the other treatment groups. Roxithromycin 

treatments shared some bacterial families including Rikenellaceae and Eubacteriaceae with Strepmycin 

treatments and controls. Sparfloxacin showed the highest abundances of specific families like 

Bifidobacteriaceae and Coriobacteriaceae families that could not be observed in such high abundances 

in any of the other treatment groups. Finally, the Lachnospiraceae family was prevelant in all the 

treatments and the controls except for Vancomycin-treated animals. Families like Ruminococacceae 

and Erysipelotricaceae were observed in all the treatment groups followed by Lachnospiraceae and 

Verrucomicrobiaceae, which were also present in all the treatment groups although varying in 

abundances. HC does not show any sex- or dose-based grouping, which means low dose (LD) selection 

was enough for the influencing alterations. Overall, the heatmap shows the clustering of not only the 

different treatments but also the 16S-analyses-based bacterial families. 

 
Figure 5. Hierarchical clustering analysis of 16S bacterial families in different treatments, dose groups and sexes. 
Heatmap showing occurrences of bacterial families in different antibiotic treatment groups, including hierarchical 
clustering of bacteria families and different treatments. Color coding on the right indicates the different treatment 
groups that correspond to the clustering analysis on the left. The black bands on the right show the samples from 
individual animals belonging to respective treatment groups. Dose groups and sexes showed very marginal 
differences; hence, they were not separated. 
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3.4. Relative Abundance Analysis 

Relative abundance analysis is presented as a stacked bar graph (Supplementary Figure S3), where 

every color depicts one bacterial family. The inter-individual variability could be clearly observed in 

all the conditions. Antibiotic treatments portray occurrences of bacterial families significantly 

differently compared to the controls, with the exception of Streptomycin-treated animals, which is 

consistent with respect to diversity analyses, showing that the influence of Streptomycin on fecal 

microbiome communities is rather minor such that this group shows similar bacterial abundances as the 

restricted diet and control groups. Clindamycin- and Lincomycin-treated animals behaved fairly 

similarly with greater abundance of the Ruminococcaceae family than any other treatment group. Both 

the lincosamides showed the maximum abundance of Firmicutes phyla amongst all the other treatment 

groups. A very marginal dose- and sex-specific variation in the bacterial abundances could be observed. 

Roxithromycin showed a very high abundance of Rikenellaceae compared to any other treatment. 

Vancomycin-treated animals were observed to have the highest abundance of Enterobacteriaceae, 

which could only be seen in the two lincosamide treatment groups and likely in no other. Similar to 

Sparfloxacin, the Vancomycin treatment group showed more than 50% contribution of 

Verrucomicobiaceae in the total abundance. Enterobacteriaceae family could be observed to be specific 

to Vancomycin and two lincosamide treatments (Supplementary Figure S3). 

Group indicator analysis gives the relative abundances of the taxonomic groups, which are statistical 

indicators of the experimental conditions (different treatments, in our case). The families shown in 

Figure 6 show fidelity, specificity and association strength of 0.975. This means that core bacterial 

families that are specific to a condition or a combination of conditions have been shown here. Group 

indicators are derived from the likelihood of finding a specific bacterial family in a specific treatment. 

Figure 6 also shows clear inter-individual variability in the group indicator appearances. A very clear 

inter-individual variability can be observed in the stacked bar plot. The core bacterial families that have 

high contributions in a particular treatment group have a value of about 1 or closer. Antibiotic-specific 

core bacterial families can be observed. The animals in the Streptomycin treatment group showed group 

indicators highly similar to the controls and restricted diet-fed animals. However, unlike controls and 

Streptomycin groups, the restricted diet group of animals showed an increased abundance of the 

Lactobacillaceae family. This is consistent with the previous findings that caloric restriction promotes 

increased growth of Lactobacillus species in rat fecal microbiota [34]. Verrucomicrobiaceae was not a 

core bacterial family in Roxithromycin and lincosamide treatments compared to other treatment groups 

where they contributed as a core bacterial family. Clindamycin- and lincosamide-treated animals 

showed high contributions of Enterobacteriaceae followed by Erysipelptrichaceae families, 

demonstrating antibiotic-class-specific changes. Roxithromycin treatments possessed the highest 

abundance of the Rikenellaceae family, which could not be observed in any of the other treatments. 

Similarly, contributions of Lachnospiraceae family were observed in all the treatments except for 
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Vancomycin treatment. Overall, antibiotic-specific core bacterial families could be observed well from 

the analysis. 

 
Figure 6. Stacked bar showing group indicators or core bacterial families that were detected in specific treatment 
groups, where R. diet refers to the restricted diet (−20%) group. Individual animal variability can be easily 
observed. Dose groups and sexes showed very marginal differences; hence, they were not separated. Antibiotic 
treatments clearly show class-dependent effects on the intestinal community composition. Compared to control, 
restricted diet and Streptomycin sulfate treatment groups, all the other antibiotics produced reduced/changed 
bacterial diversity and richness. 

3.5. Differential Abundance Analysis 

Differential abundance analysis was carried out using DESeq2 package, which is used to identify 

specific bacterial taxa (or families in our case) that are associated with specific treatments. This helps 

to understand more about specific bacterial families which are significantly abundant or rare in specific 

treatments compared to the controls. This provides more insight regarding the role of such specific 

bacterial taxa and eventually their influence in the metabolic activities of the different antibiotic-treated 

Wistar rats. Models were created for each treatment for each dose group and sex. This analysis was 

conducted in order to estimate the fold changes of significantly altered bacterial families in different 

treatments relative to the controls. This fold change information from DESeq2 analysis is further used 

for correlation analysis in order to compare with the fold changes of different metabolites in the three 

matrices. The results of this analysis are shown as scatter plots; see Supplementary Table S16, where 

each dot indicates individual read/amplicon sequence variant (ASV) belonging to a specific bacterial 

family. 

Streptomycin LD treatments versus controls for both the sexes (females to the left and males on the 

right) can be used to observe the specific bacterial families, such as Ruminococcaeceae, few ASVs that 

belong to this family of bacteria are present in almost 30 log2FC, and others were very less in abundance 

compared to control animals. This is the reason why the log2 fold change for most of the ASVs 

belonging to Ruminococcaceae family, as shown in Table S16, has a highly negative value when 

differential abundance analysis was conducted for female rats. Eubacteriaceae family could be 

observed to be present in very high abundance compared to controls in Streptomycin-treated female 

rats. Similarly, in males, many differentially abundant families could be observed similar to females. 
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Eubacteriaceae family could be observed to be present abundantly in males treated with Streptomycin 

compared to controls, and ASVs belonging to families like Lachnospiraceae and Ruminococcaceae 

were present in very high abundance and also low compared to controls. Other families including 

Rikenellaceae, Sutterellaceae and some others were present in lower abundance compared to controls 

for both sexes. 
For the two different antibiotic treatments, only low-dose groups from both females and males have 

been depicted in the scatter plots; for the complete data of differential abundance scatter plots for all 

the LD treatments, see Supplementary Table S16. As differential abundance analysis for LD and HD 

only marginally differed, only the LD plots are shown in order to avoid overloading of redundant data. 

In Vancomycin LD treatments (see Table S16), not much difference could be observed between the 

males and females with respect to the differential abundance analysis, except for Anaeroplasmataceae 

family, in which it was observed in higher abundances in females than males. In both the sexes, 

Enterobacteriaceae and Verrucomicrobiaceae families were very high in abundance compared to 

control animals. Most of the other represented bacterial families were observed in reduced abundance 

compared to controls in both the sexes. These results showed how rarely or abundantly certain families 

are present when there is a lack of nourishment. The results from this analysis were consistent with 

what was observed in the heatmap of hierarchical clustering analysis. 

3.6. Metabolome Data Analysis 

3.6.1. Fecal Metabolome 

A hierarchical clustering analysis was conducted for all the measured metabolites from the fecal 

samples of the controls and different treatments. The dendrogram in Figure 7a shows the clustering 

based on Euclidean distances of all the treatments and controls, based on sex and dose groups. Control 

groups from the four studies were combined into two, separating males and females. The clustering 

showed a very similar pattern as it was observed in the 16S clustering. Treatment-dependent clustering 

could be clearly observed. Controls and restricted-diet-fed animals had very similar fecal metabolome 

profiles, as they were observed to be closely clustered. Streptomycin- along with Roxithromycin-treated 

animals clustered the closest with each other and to controls compared to the other tested drugs. In 

Roxithromycin and Streptomycin treatment groups, a sex-based clustering could be observed in the 

dendrogram. Animals treated with the two lincosamides, Clindamycin and Lincomycin, clustered very 

closely but also had marginal differences between them. Clindamycin treatment group showed a dose-

dependent clustering, which could not be observed for any of the other drugs. Closest to the 

lincosamides were samples from Sparfloxacin-treated animals. Vancomycin-treated samples showed 

the most distant clustering with respect to the controls. A Principal Component Analysis using the same 

data showed a very consistent observation (see Supplementary Figure S4). Similarly, HCA and PCA 

analysis of cecum metabolome data was carried out and can be found in the supplementary data (see 

Figures S5 and S6, respectively). Both the analyses result in similar and comparable clustering. 
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(a) (b) 

Figure 7. Dendrogram showing hierarchical clustering of (a) fecal and (b) plasma metabolites of different 
treatments, dose groups and sex. Euclidean distance was used, and different treatments are depicted, and 
different colors and dotted boxes show different clusters. 

3.6.2. Plasma Metabolome 

The dendrogram shown in Figure 7b shows the clustering of plasma metabolomes of controls, 

restricted-diet-fed and six antibiotic treatments. The clustering showed restricted-diet-fed samples to be 

very different from the controls, in sharp contrast to the observations made in the fecal or cecal 

metabolome (see Figure S5 for cecum metabolome HCA analysis) and microbiome clustering analysis. 

Sparfloxacin- and Roxithromycin-treated animals showed a dose-dependent clustering, which could not 

be observed in any of the other antibiotic treatments. Vancomycin treatment showed a big separation 

based on gender. Samples from animals treated with the two lincosamides, Clindamycin and 

Lincomycin, also showed a profound difference in their plasma metabolome profiles. Overall, the 

analysis showed far less treatment-based clustering than in the fecal and microbiome analysis. The 

exceptions being restricted diet feeding and the Clindamycin treatments, which formed neat clusters. 

3.6.3. Controls vs. Restricted Diet in Plasma and Fecal Matrices 

Restricted-diet-fed animals showed no significant differences compared to evaluate similarity. There 

was, however, a huge difference in the plasma metabolome, which makes it interesting to conduct an 

ordination analysis only using restricted diet and control data. When a PCA was prepared using the 

fecal metabolome data (see Figure 8a), the restricted diet treatments did not form a cluster different 

from the controls along Principle components (PCs) 1 and 2; however, they clearly separated along PCs 

2 and 3. 



- 43 - 
 

  
(a) (b) 

Figure 8. Principal component analysis (PCA) of restricted-diet-fed and controls from all the studies. (a) 
PCA using feces metabolome (left side); (b) plasma metabolome data (right side). 

Further, when the same was done using a plasma metabolome data (see Figure 8b), a clear separation 

could be observed on the first principal component, between the controls and the restricted diet. This 

showed a clear influence of reduced nourishment on the plasma metabolome of the rats, which could 

not be observed in other matrices and in the gut bacterial community composition. This indication 

clearly means that the difference in the plasma metabolome of the 20% reduced diet does not come 

from the gut microbiome but the diet of the host itself. 

Metabolome data from plasma, fecal and cecum could be compared from our results, and very marginal 

differences between fecal and cecum metabolome were observed, whereas the plasma metabolome 

differed significantly from the other two. The microbiome data showed very consistent clustering 

compared to feces and cecum metabolome profiles. The HCA analysis of microbiome data can be found 

in Supplementary Figure S2. The concordant findings prove the comparability of the two datasets. 

Restricted-diet animals had similar gut microbial composition and fecal and cecum metabolome profiles 

as controls but showed differences in the plasma metabolomes. Compared to all the antibiotics, samples 

from animals treated with Streptomycin showed the least differences in microbiome and fecal 

metabolome profiles compared to the controls, and those from the Vancomycin treated group showed 

the highest. The two lincosamides-treated animal groups showed a very marginal influence on both 

microbial composition and fecal metabolome, showing an antibiotic class-dependent effect. After 

Streptomycin, Roxithromycin treatment groups showed the highest similar influence of microbiome 

and fecal metabolome compared to the controls. 

3.6.4. Comparison between Plasma, Feces and Cecum Metabolome Profiles 

Cecum and fecal metabolomes were compared to observe the number of overlaps or contrasts between 

the different matrices. Pearson correlation was conducted to compare the different metabolome matrices 

to understand the similarities or differences between them (see Supplementary figure S8). A boxplot 

graph was prepared to analyze the Correlation coefficients of feces vs. cecum matrix, plasma vs. cecum 

and plasma versus feces metabolomes (Supplementary figure S8). The figure shows the highest 

correlations between feces and cecum metabolomes compared to others, with a correlation coefficient 
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value as high as 0.7 approximately. Whereas, cecum versus plasma matrix and feces versus plasma 

matrix were almost near 0, indicating the least comparability between plasma metabolome with both 

feces and cecum metabolomes. There were although some biomarker metabolites observed, that 

belonged to metabolites like indole-3-acetic acid and allantoin that showed highest correlations between 

the plasma and feces and cecum metabolome (see Supplementary Figure S8). 

Cecum and feces metabolomes showed very high similarity. A diagonal line in the heat map shows the 

similarities between the metabolites that are in common between the two matrices. The straight line 

shows highly significant correlations between the cecal and fecal metabolites, proving the very slightly 

marginal difference between the two matrices. This result supports the concept of using feces as a matrix 

that can be obtained using non-invasive methods, and it also promotes a longitudinal study design (also 

known from Behr et al., 2018, comparing different gut tissue matrices). However, when plasma 

metabolome was compared with fecal and cecal metabolomes, very low correlations could be observed 

between plasma and the two matrices. Plasma metabolome appears to be an entirely different matrix 

compared to both feces and cecum based on its metabolite composition. With this, we hypothesize the 

potential reason could be that plasma metabolome comprises a crosstalk between the host and gut-

mediated metabolites, as also known from Behr et al., 2018 [15]. Not only gut and host metabolites, but 

also co-metabolites could be found in plasma; hence, it would pose as an entirely different matrix 

compared to feces and cecum. 

3.7. Correlation Analysis 

Inter-omic Pearson Correlation was conducted to compare the log2fold changes of significantly altered 

metabolites in all the three matrices compared to bacterial families, for all the treatments. The log2fold 

change values were calculated for all the treatments relative to the controls using DEseq2. These fold 

change values for every treatment were compared between the metabolome and microbiome profiles. 

Some metabolites are present in multiple numbers due to their different types of mass spectrometry 

measurements (LC or GC). In all three matrices, it was observed that the majority of the bacterial 

families correlated strongly with the amino acids, lipids and related metabolite classes. Compared to 

plasma metabolome, feces metabolomes showed a higher number of correlations between the bacterial 

families and respective metabolites.  

3.7.1. Feces Matrix 

The correlation analysis between two omics datasets shows the relationship between the 

presence/absence of a particular gut bacterial family with the presence/absence of a specific fecal 

metabolite (see Figure 9). The complexity of changes, relative to the number of antibiotics employed, 

however, did not allow us to exactly identify individual metabolite–microbiome connections. For those 

fecal metabolites that we altered by the treatment the correlation analysis heat map does show how 

strong these are correlated (positively and/or negatively) with the gut bacterial families Out of 39 

annotated bacterial families, only 12 were found to possess the strongest correlations with feces 
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metabolite levels. The resulting strength of the correlation or the value of the correlation coefficient is 

governed by the cumulative relative changes of bacterial taxa/fecal metabolite in all the treatments with 

respect to controls. The stronger the correlations are (irrespective of the direction), the more chances 

are that they originate from all the treatments. A strongly positive correlation (red box) indicates that 

both the metabolite and bacterial family change in the same direction (either both are strongly 

upregulated or strongly downregulated), while the strongly negative (blue box) indicates an inverse 

correlation, meaning if the metabolite level increases, the fold change of the corresponding bacteria 

family must decrease and vice versa. To evaluate inter-treatment effects, one can go back to the DESeq2 

data to refer to changes in the bacterial families in respective treatments and to metabolome profiles to 

refer to changes in different metabolite concentrations. 

 

Figure 9. Pearson colorations of 16S bacterial families and corresponding fecal metabolite classes. The 
heatmap shows positive (red) and negative (blue) correlations between fecal metabolites and corresponding 
bacterial families. Metabolite classes have been indicated along with the metabolite names on the horizontal 
part of the figure. Black dots within the boxes indicate p-value < 0.05 calculated using cor.test. 

Most of the amino acids such as arginine, histidine, alanine, valine, phenylalanine, glycine, asparagine, 

serine, glutamine, methionine and threonine show predominantly negative correlations with the 

bacterial families (Supplementary Figure S9). Only about 3-5 bacterial families from the list of 12 

families positively correlate with these amino acids. Amino acids like glycine, valine and leucine are 

positively correlated with families Verrucomicrobiaceae, Anaeroplasmataceae and Lactobacillaceae, 

which belong to Verrucomicrobia, Tenericutes and Firmicutes phyla, respectively. Lactobacillaceae, 

Verrucomicrobiaceae and Anaeroplasmataceae form clusters of highly positive correlations with 

amino acids such as glycine, leucine, isoleucine, phenylalanine, alanine, valine and proline, suggesting 

common functions between these bacterial families. 
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Tryptophan, being one of the most important products from dietary source and endogenous bacterial 

metabolism, correlates negatively with a majority of bacterial families except for Rikenellaceae that 

correlates towards the positive direction in the feces matrix. Ornithine, which is well known to result 

from gut bacterial metabolism, also appears to have profoundly negative correlations with the gut 

bacterial families, with only 3-4 exceptions, including Rikenellaceae, Porphyromonadaceae and 

Eubacteriaceae (See Figure S9). Most metabolites involved in energy metabolism show few strong 

correlations, irrespective of the direction, whereas 2-hydroxyburyrate and 3-hydroxyburate have some 

strongly negative correlations with bacteria belonging to mostly Bacteroidetes followed by Firmicutes 

and Proteobacteria phyla. One of the several gut-microbiomes-associated biomarkers, indole-3-acetic 

acid, appears to have slightly weak correlations irrespective of the direction, with the majority of the 

bacterial families except for three bacterial families Verrumicrobiaceae, Anaeroplasmataceae and 

Ruminococcaceae. Moreover, certain metabolites belonging to carbohydrates and related classes like 

lysine and glucuronic acid have mainly strong negative correlations, except for four bacterial taxa, 

namely, Porphyromonadaceae, Rikenellaceae, Verrucomicrobiaceae and Anaeroplasmataceae 

families (as shown in Figure 9). 

Bacterial families Verrucomicrobiaceae and Anaeroplasmataceae have a very similar correlation, 

where they mostly positively correlate with the majority of fecal metabolites. Metabolites like 

hexadecanol, octadecanol and dodecanol that belong to complex fatty acids and lipids and related class 

have positive correlations with the majority of the bacterial families except for Rikenellaceae, for which 

the correlations are very weak. Clusters of positive correlations between specific bacterial families, 

including Porphyromonadaceae, Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, 

Prevotellaceae, Bdellovibrionaceae and Peptococcaceae, could be observed with metabolites 

belonging to lipids, fatty acids and related classes, suggesting common functions between these 

bacterial families. Overall, most correlations between the intestinal bacteria and fecal metabolites 

belong to amino acids, lipids and fatty acids and energy metabolism-related metabolites. 

A correlation analysis for 16S bacterial families and the bile acid pool from feces was carried out, and 

numerous correlations were observed irrespective of the direction (see Figure 10). Cholic acid, a 

primary bile acid, showed a negative correlation with the majority of bacterial families except for 

Anaeroplasmataceae and Lactobacillaceae, which belong to Tenericutes and Firmicutes phyla, 

respectively. Ruminococcaceae showed the strongest negative correlations with five taurine-conjugated 

bile acids, namely TCA, TMCA (both α and β), TCDCA and TUDCA. Two other taurine-conjugated 

bile acids, TDCA and TLCA, showed a completely different correlation in comparison, as they correlate 

positively with all the bacterial families listed except for two, Lactobacillaceae and 

Peptostreptococcaeceae. Unconjugated secondary and tertiary bile acids that cluster the closest to each 

other, such as MCA (both α and β), HDCA, DCA and LCA, strongly and positively correlate with the 

majority of the 16S bacterial families except for Anaeroplasmataceae. A glycine conjugated bile acid 

GCA shows positive correlations only with the bacterial families Lactobacillaceae, 
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Peptostreptococcaceae and Anaeroplasmataceae compared to other bacterial families. Overall, four 

taurine-conjugated bile acids clustered together and show similar correlations with bacterial families, 

and unconjugated secondary and tertiary bile acids also clustered together and behaved similarly with 

respect to their correlations with bacterial families. 

 
Figure 10. Inter-omic Pearson correlations between 16S bacterial taxa and bile acid metabolites measured from 
feces. Black dots within the boxes indicate p-value < 0.05 calculated using cor.test. 

3.7.2. Plasma Matrix 

Inter-omic correlations between the plasma metabolites and 16S bacterial families were less profound 

and not as many as between the fecal matrix and 16S bacterial families (see Figure 11). Out of 39 

bacterial families, only 9 showed correlations with plasma metabolites. Similar to previous results, most 

of the correlated metabolites belonged to lipids and related classes, but also energy metabolites and 

amino acids and related metabolites. Lipids, fatty acids and derivatives like lysophocpohatidylcholine, 

linolenic acid, and phosphatidylcholines strongly positively correlated with specifically the 

Bdellovibrionaceae family compared to all the other bacterial families (see Figure 11). Other 

metabolites like 3-hydroxyindole were mostly positively correlated with all of the nine bacterial 

families, including the strongest positive correlation with Ruminococcaeceae. Creatine and creatinine 

strongly correlated in the negative direction particularly with four bacterial families, which are clustered 

very closely to each other in the dendrogram, namely Ruminococcaceae, Bdellovibrionaceae, 

Lachnospiraceae and Peptostreptococcaceae. Plasma metabolome does not only house gut-
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microbiome-associated metabolites but a variety of host metabolites and co-metabolites as well. Plasma 

reflects a huge crosstalk of metabolites resulting from different sources (like nutrition, microbial 

metabolism); hence, it is obvious to attain very limited or only a handful of correlations between these 

metabolites and the gut bacterial families, compared to the feces. As observed in Figure 11, one of the 

key metabolites known to have an influence on the gut microbiome-mediated metabolism, Indole-3-

acetic acid (IAA), is observed to have a few strong correlations. One of the strongest and negative 

correlations of IAA was with Anaeroplasmataceae family. Carbohydrates and related metabolites 

including hexoses produced mainly strong positive correlations with a majority of the bacterial families, 

except for Rikenellaceae (as shown in Figure 11). 

 

Figure 11. Pearson correlations of 16S bacterial families with plasma metabolite classes. The heatmap shows 
positive (red) and negative (blue) correlations between plasma metabolites and corresponding bacterial 
families. Metabolite classes have been indicated along with the metabolite names on the horizontal part of 
the figure. Black dots within the boxes indicate p-value < 0.05 calculated using cor.test. 

In contrast to feces, most correlations observed between the plasma bile acids and 16S bacterial families 

are positively correlated, with a few exceptions (see Figure 12). Primary bile acids clustering close to 

each other, cholic acid and CDCA mostly produced positive correlations with all ten of the 16S bacteria 

families. Glycine-conjugated bile acids GCA, GCDCA and also GDCA show a very similar trend with 
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the majority of positive correlations with most 16S bacterial families with the difference in correlations 

with two bacterial families Bacteroidaceae and Eubacteriaceae. GCA and GCDCA showed negative 

correlations, while GDCA showed positive correlations with the two previously mentioned bacterial 

families. Among the taurine-conjugated secondary and tertiary bile acids, TLCA and TDCA showed a 

similar behavior in contrast to TCA and TMCA (both α and β). TLCA and TDCA showed positive 

correlations with all the ten bacteria taxa, while TCA and TMCA (both α and β) possessed the majority 

of negative correlations except for the Eubacteriaceae family. For unconjugated bile acids, although 

they formed separate clusters, MCA (both α and β), LCA and DCA showed comparable correlations 

with the bacterial associates. Additionally, other plasma biomarker metabolites such as 3-indoxylsulfate 

showed predominantly positive correlations, including the strongest positive correlations with the 

Ruminococcaeae family. 

 
Figure 12. Correlation analysis using Pearson correlations between plasma bile acids and 16S bacterial families. 
Black dots within the boxes indicate p-value < 0.05 calculated using cor.test. 

4. Discussion 
The aim of this study was to understand the correlation between microbiome, fecal and plasma 

metabolomes. Our analysis now provides a connectivity map that shows how microbiome communities 

are responsible for the formation of fecal metabolites and how these are connected with the plasma 

metabolome. 
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4.1. Microbiome Analysis 

Antibiotic class-specific effects on the gut bacterial composition in Wistar rats could be clearly and 

consistently observed in diversity and relative abundance analyses. The least effective antibiotic in 

changing microbiome communities was Streptomycin sulfate. This is not entirely surprising as 

Streptomycin has its primary antibiotic action on the aerobic microbiome, whereas most of the 

facultative anaerobes that dominate the gut are resistant to this antibiotic [17]. Treatment with 

Roxithromycin, affecting Gram-positive bacteria and some Gram-negative bacteria [17], produced the 

second least compositional changes in the gut microbiome. In contrast, Vancomycin produced profound 

changes in the gut microbiome, which is concordant to its broad bactericidal activity against Gram-

positive organisms [17]. Animals treated with the lincosamide antibiotics Clindamycin and 

Lincomycin, showed very similar changes in bacterial communities, demonstrating a clear antibiotic 

class-dependent effect as they are selectively effective against staphylococci, streptococci and most 

anaerobic bacteria [36]. Dose-response was marginal for all antibiotics, with the exception of 

Streptomycin, indicating that the low doses were high enough to elicit gut dysbiosis. Sex-based 

differences at a family level were overall also marginal. However, it should be noted that at a species-

level, at least in humans, sex-specific differences in microbiome communities have been described [36–

38]. Dose-response was marginal for all antibiotics, with the exception of Streptomycin, indicating that 

the low doses were high enough to elicit gut dysbiosis. Sex-based differences at a family level were 

overall also marginal. However, it should be noted that at the species level, at least in humans, sex-

specific differences in microbiome communities have been described [37,38]. The PCA analysis using 

phylogenetic distance clustering was in- line with the above-mentioned conclusions drawn from the 

Shannon index. Shannon diversity indices have two major components: the number of species present 

(or species richness) and their relative abundances (or species evenness). The latter showed that 

Vancomycin and Sparfloxacin treatments have the least even composition compared to all the others, 

irrespective of the dose groups and sex. Both antibiotics are known to have a broad-spectrum activity 

against Gram-negative and Gram-positive microorganisms [39]. This explains why we observed the 

least diverse and highly uneven (less dominant) bacterial taxa present in these two treatment groups. 

Relative abundance analysis showed on individual animal levels a clear inter-individual variability. 

From a birds-eye perspective, treatments can be readily identified as such; nevertheless, the samples 

from control animals possess such a recognizable variability of relative abundances of bacterial families 

that the sample size of any microbiome study needs to be considered. We therefore suggest that the 

control sample size of such studies should preferably involve at least 10 animals to account for 

variability. Evaluation of core bacterial taxa respective to the treatments showed that controls, restricted 

diet and, to a slightly lesser extent, Streptomycin sulfate treatment groups had high abundances of 

Firmicutes and Bacteroidetes phyla, which was also observed by Bao et al. in mice [40]. As 

Streptomycin sulfate is not effective against the majority of the gut microbiota, very similar relative 



- 51 - 
 

abundances of bacterial families in the treated and control groups can be expected, even in different 

species. The overall diversity of both the lincosamides looked similar, consistent to what was observed 

before [15]. Both the lincosamides=treated animal groups showed high abundances of Firmicutes and 

Proteobacteria, while Bacteroidetes levels were extremely reduced similar to what was seen in Behr et 

al. [15]. Most anaerobic bacteria that otherwise dominated the gut microbiota of control animals were 

wiped off by the two lincosamides. Roxithromycin showed the highest levels of Firmicutes and 

Bacteroidetes, as also shown by Zheng et al. [41]. Sparflosxacin treatments showed maximum 

abundances of Verrucomicrobia and Firmicutes phyla. Sparfloxacin, similarly to other quinolones and 

fluoroquinolones, kills bacteria, including Gram-positive and Gram-negative bacteria and other 

anaerobes; hence, the abundances of dominant species are reduced, whereas bacteria belonging to 

families Verrucomicrobiaceae and Lactobacillaceae increased compared to control animals. Finally, 

Vancomycin treatment groups showed the highest abundances of Verrucomicrobia and Proteobacteria 

phyla compared to all the other treatment groups, also wiping out the majority of the otherwise dominant 

bacteria in control animals. This antibiotic showed the maximum activity against the gut microbiota. 

Hierarchical clustering analysis based on the gut bacterial compositions showed that controls and 

restricted diet clustered together close to Streptomycin and most distant to Vancomycin. Vancomycin 

was observed to have the maximum dysbiosis compared to all the other antibiotic treatments. Both 

lincosamides clustered together but had minute differences in the abundances of families, e.g., 

Enterococcaceae, Bacillaceae, Peptostreptococcaceae, Eubacteriaceae. Roxithromycin and 

Sparfloxacin treatments clustered together with minor differences in the abundances of Eubacteriaceae, 

Rikenellaceae, Clostridiaceae and some others. Therefore, we observe antibiotic treatment-specific and 

class-specific gut composition alterations. Differential abundance analysis showed very minute dose-

related effects and sex-dependent differences. The differential abundance results were comparable to 

the relative abundance stacked bar, where dominant/rare treatment-specific bacterial families could be 

observed, which is consistent with the hierarchical clustering analysis. 

4.2. Metabolome Analysis 

The dose levels of the antibiotics have been chosen as such as to have a significant influence on the gut 

microbiome, but not to lead to overt adverse effects in the treated animals. The absence of clinical signs 

of toxicity, effects on body weights and food consumption for most of the tested antibiotics makes it 

likely that systemic toxicity will not have played a role in the antibiotic treatments. Lincosamides, 

Roxithromycin and Sparfloxacin are known to be somewhat bioavailable [16], which could have had 

an influence on the plasma metabolome. At the very beginning of treatment, it might be possible that 

some clinical effects were noted for the high dose of clindamycin. However, after the first days of the 

study, the animals adapted to the treatment, and no more clinical signs were observed. To analyze a 

possible effect of systemic toxicity of the antibiotics on the plasma metabolome, they were administered 

at high- and low-dose levels to observe any dose-based response, the assumption being that the low and 
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high dose would result in similar effects on the microbiome—which it did—and that therefore 

additional high-dose-only-related changes in the plasma metabolome would be indicative for systemic 

or organ toxicity. The different metabolomes of the antibiotic-treated rats can be found in the 

Supplementary data (see Tables S2–S15). Plasma metabolome data did not show a profound treatment-

based effect in the clustering, suggesting that the majority of the altered metabolites had a microbiome 

origin. 

To understand the influence of restricted diet i.e., compromised nutrition on the metabolomes, PCA 

analyses were performed. Only the plasma metabolome showed a clear separation between controls and 

the reduced-diet group. This separation was not observed in the feces and cecum metabolomes and 16S 

bacterial community profile. This indicates that changes in the plasma metabolome induced by nutrition 

restrictions did not come from the gut microbial metabolism, but instead the host metabolism. Similar 

findings have been indicated in Zheng et al., who confirm that host-microbial co-metabolites in plasma 

were majorly changed due to caloric restrictions in humans [42]. 

Comparing the clustering of fecal metabolome with 16S microbiome clustering, we observed a similar 

grouping (refer to Figures 7a and S2), indicating that changes in the microbiome community are well 

correlated with the fecal metabolome profiles. This allows us to associate the 16S bacterial composition 

directly with the altered fecal metabolite levels to understand gut bacterial metabolism. Clustering 

analysis of cecum metabolome showed a bit more extensive antibiotic-treatment-specific clustering, but 

it was almost similar to the clustering of the fecal metabolome (see supplementary Figure S4). 

The overlaps or differences between the correlation analysis of plasma, feces and cecum metabolome 

showed that cecum and fecal metabolome are highly correlated in line with the results of [43]. Thus, 

the feces metabolome is as informative as cecum and is a non-invasive method facilitating easy 

sampling procedures and longitudinal study designs. Further, when plasma metabolome was compared 

with feces and cecum metabolomes, almost no overlaps were observed, indicating that many of the fecal 

metabolites are not readily absorbed from the colon. These observations are in line with previous 

research [44,45], 

We found indole-3-acetic acid to be a key biomarker metabolite (Supplementary Figure S8) [15–17]. 

This metabolite was observed to be significantly reduced in plasma, feces and cecum metabolomes of 

antibiotic-treated rats. Indole-3-acetic acid is produced either from bacterial indole production or from 

dietary tryptophan degradation by intestinal bacterial cells. The reduction of this key metabolite could 

be explained by a substantial loss of microorganisms, thereby reducing the ability to degrade tryptophan 

[15,17], and could potentially serve as a quantitative marker. 

4.3. Correlation Analysis 

Inter-omic correlation analysis between 16S bacterial families and both plasma and fecal metabolites 

were performed to elucidate the link between microbiome communities and fecal metabolites. We have 

approached the microbiome/metabolome correlation analysis from a holistic point of view, 
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demonstrating for most metabolites their correlation direction and strength. For a few selected 

metabolites, for which sufficient knowledge about their formation is available, we provide a more in-

depth analysis. Firmicutes, specifically strains belonging to the Clostridium genus, are mainly known 

as amino-acid-fermenting bacteria, which is consistent with what we see in our feces microbiome–

metabolome correlations. 

4.3.1. Feces Metabolome-Microbiome 

The majority of amino acids (see Figure 9) are upregulated in treatments that have more than 10-fold 

reduced Prevotellaceae levels in animals treated with lincosamides and Sparfloxacin antibiotics. 

Fluoroquinolones such as Sparfloxacin and lincosamides including Clindamycin are known to be active 

against this bacterial family [46,47]. Most gut bacteria are known to use amino acids as a preferred N-

source. Arginine-to-ornithine conversion is also well studied in gut bacterial metabolism. In our 

correlation analysis, we see that levels of arginine are higher in Sparfloxacin treatment groups, and 

levels of ornithine are even higher in the feces of Sparfloxacin-treated animals. The Sparfloxacin 

treatment group has the highest abundance of Peptostreptociccaeae compared to controls and all the 

other treatments, which could indicate why the levels of ornithine in the feces of Sparfloxacin treated 

Wistar rats are significantly higher than in feces of all the others. We observed that amino acids such as 

glutamine, aspartate, lysine, valine (all branched-chain amino acid), threonine, serine and glycine were 

all significantly upregulated in all the treatments except for the restricted diet and Streptomycin 

treatment, indicating that reduced numbers of bacterial taxa are associated with reduced amino acid 

consumption. An overview of amino acid biosynthesis by gut microflora in humans and animals can be 

found in Dai et al. [48]. Three bacterial families, Lactobacillaceae, Verrucomicrobiaceae and 

Anaeroplasmataceae, form clusters of highly positive correlations with amino acids such as glycine, 

leucine, isoleucine, phenylalanine, alanine, valine and proline, suggesting common functions between 

these bacterial families. 

Some of the amino acid fermentation products of gut bacteria include indole compounds such as 

tryptophan and organic acids such as lactate [48]. Tryptophan concentrations in all the treatments except 

for restricted diet and Streptomycin treatment groups were significantly increased. In particular, both 

lincosamide treatment groups (Clindamycin and Lincomycin) had very high levels of tryptophan in the 

feces, indicating that they reduced the bacterial taxa responsible for the conversion of tryptophan to 

indolic metabolites. It should be noted that E. coli strains belonging to the family Enterobacteriaceae 

are involved in the production of bacterial tryptophan and that these may also have been affected [49]. 

Kynurenic acid that results from tryptophan metabolism was significantly increased in the feces of 

Roxithromycin-, Streptomycin- and Vancomycin-treated animals. This indicates that the tryptophan 

was used by bacterial taxa occurring in these treatments. The Clindamycin treatment group had 

extremely high amounts of tryptophan; we also observed that kynurenic acid levels in the feces of these 

treatments also significantly increased compared to other treatments, but the levels were lower than 
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tryptophan levels. This shows that there must be bacterial transformation from tryptophan to kynurenic 

acid occurring in Clindamycin-treated animals, and that tryptophan production is much higher than the 

bacterial conversion of Tryptophan to Kynurenic acid, as shown by [50]. Glucuronic acid, which is also 

a product of tryptophan metabolism, was observed to be significantly increased in Sparfloxacin and 

Vancomycin treatment groups. In our correlation analysis, glucuronic acid had the strongest positive 

correlation with Rikenellaceae, Verrucomicrobiaceae and Anaeroplasmataceae families, which are 

highest in abundance in Sparfloxacin- and Vancomycin-treated animals. This could mean that these 

families play a specific role in the conversion of tryptophan to glucuronic acid. Pyruvate, an energy-

related metabolite was significantly downregulated in the feces of all the treatments, whereas glucose 

levels were significantly upregulated in all the treatment groups except the restricted diet group, 

demonstrating that bacterial gluconeogenesis is altered by all the drugs. 

A key metabolite of gut microbial metabolism is indole-3-acetic acid (IAA) [17]. The correlation 

analysis shows few weakly positive and many weakly negative correlations with the majority of 

bacterial families except Verrucomicrobiaceae and Anaeroplasmataceae, with strongly negative 

correlations. IAA levels in feces only significantly increased in Clindamycin treatment groups, whereas 

they were significantly lowered in all the other treatments. Bacterial IAA is known to be biosynthesized 

by Gram-negative and Gram-positive bacteria involving decarboxylation and deamination of 

tryptophan. Tryptophan-dependent pathways for IAA production include either indole-3-pyruvic acid 

(IPA) and indole-3acetamide (IAM), or indole-3-acetonitrile (IAN) as important intermediates [51]. 

The fact that tryptophan levels were highly increased in the feces of animals treated with Lincomycin 

and Sparfloxacin, while IAA levels were significantly reduced, means that the conversion from 

tryptophan to IAA did not occur in these treatment groups. In the Clindamycin treatment groups, 

however, both tryptophan and IAA were increased in the feces, suggesting that there must be bacterial 

transformation directly from indole to IAA occurring in Clindamycin treatments unlike other 

treatments. Feces from Clindamycin-treated animals were observed to possess Enterococcaceae 

families in the highest abundance compared to all the other treatment groups, so it could be hypothesized 

that these families are responsible for the production of IAA from indole directly via a tryptophan-

independent pathway. 

Creatine and creatinine are both utilized by gut microbes for growth. Conversion of creatinine to 

creatine is not possible by mammalian metabolism, and creatinine is eliminated from the system. While 

bacteria belonging to Firmicutes and Proteobacteria phyla have been extensively studied to possess 

creatine degradation activity [50], creatinine levels in the feces were weakly correlated with almost all 

the bacterial families except Porphyromonadaceae and Prevotellaceae, which belong to Bacteroidetes 

phyla. Creatinine levels were highly significantly increased in the feces of all the treatment groups 

except for restricted diet and Streptomycin treatments, indicating that most of the facultative anaerobes 

dominating the gut of the animals belonging to these two treatment groups continue to utilize creatinine 

for further metabolism. Levels of creatine in the feces of lincosamides-and Vancomycin-treated animals 
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are not as high as creatinine, which means there is a conversion of creatinine to creatine occurring in 

these three treatment groups, but there is also accumulation of creatinine. This means that either there 

are other bacterial taxa that produce creatinine, or they do not carry out the conversion from creatinine 

to creatine in an efficient way. Relative abundances of Porphyromonadaceae and Prevotellaceae 

families are highest in restricted diet and Streptomycin treatment groups, where creatinine levels are 

not altered in the feces, suggesting that they may play a role in creatine metabolism. Metabolites that 

result from microbiome-mediated metabolism include lipids and lipoproteins, amino acids, glutamate, 

choline, acetate, butyrate and glycerol [52]. We also see similar results in our correlations analysis 

where bacterial taxa produced the strongest correlations with metabolites belonging to amino acids, 

lipids and fatty acids derivate classes in the feces. Clusters of positive correlations between specific 

bacterial families including Porphyromonadaceae, Ruminococcaceae, Lachnospiraceae, 

Bacteroidaceae, Prevotellaceae, Bdellovibrionaceae and Peptococcaceae could be observed with 

metabolites belonging to lipids, fatty acids and related classes, suggesting common functions between 

these bacterial families. All in all, the correlations showed most of the strongly correlated metabolites 

belonging to amino acids, lipids and related metabolites, in line with [53,54]. Our results on the role of 

gut bacteria in amino acid, complex lipids and fatty acid synthesis are similar to those published by 

Fujisaka et al. [45]. 

4.3.2. Plasma Metabolome-Microbiome 

Although tryptophan levels in plasma were not altered significantly in any of the treatment groups, 

glucuronic acid resulting from tryptophan metabolism is significantly upregulated in most of the 

treatment groups, except the restricted diet, Vancomycin and Streptomycin treatment groups. In the 

correlation analysis, plasma tryptophan and glucuronic acid do not show any strong correlation with the 

gut bacterial families. This could mean that these metabolites could be from dietary sources and a result 

of host metabolism. Plasma creatine and creatinine clustered together in the correlation heatmap. 

Creatinine levels in all the treatment groups did not show a large alteration, but creatine showed 

significant downregulation only in the restricted diet group. As restricted-diet-fed animals did not have 

a large influence on the gut microbial dysbiosis, it could be concluded that this increase in creatine 

levels in plasma is related to host metabolism. The gut microbiome is extensively known to metabolize 

dietary tryptophan into indole, and its derivatives, such as indole-3-acetic acid (IAA) and indole-3-

propionic acid (IPA)m which are also absorbed efficiently by the gut mucosa [55]. Plasma IAA was 

observed to be highly upregulated in the plasma of Vancomycin-treated animals. The 

Verrucomicrobiaceae family is highly abundant in this treatment group. This could potentially mean 

the higher abundance of this bacterial family contributed in the production of IAA, thereby increasing 

the levels, which is also described in Louis et al., where they identify specific colonic bacteria including 

Verrucomicrobia phyla that contribute to the production of propionate and butyrate in humans [56]. 
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3-Indoxylsulfate (IS) in plasms was downregulated in the two lincosamides treatment groups and highly 

upregulated in the Roxithromycin treatment group. This could mean that in Roxithromycin treatment, 

the bacterial production of IS was higher due to the higher abundance of bacterial taxa such as 

Eubacteriaceae, which supports this conversion [57]. Tryptophanase activity of the gut bacteria is 

known to convert tryptophan to indole, which further gets absorbed in the gut and transformed to IS in 

the liver, which leads to an increase in plasma IS levels [58]. Overall, the 16S bacterial families were 

associated more with plasma metabolites belonging to amino acid classes, but also carbohydrates, 

energy metabolites and lipids, nucleic acids and related metabolites, which is consistent with what is 

observed in Fujisaka et al. [45]. 16S bacterial families showed high numbers of strong correlations 

(irrespective of the direction) with feces and cecum metabolites, whereas very limited correlations could 

be observed with plasma metabolites (see Figure 11). 

4.4. Bile Acids 

We conducted an extensive analysis for individual antibiotics on their influences on bile acid levels and 

tried to associate them with the responsible bacterial families. A standard workflow including the 

majority of the bile acid reactions combined is shown in Figure 13, where we can see which bile acids 

are produced in the liver and which ones are produced by the gut bacteria. 

 
Figure 13. Host and gut microbiota-mediated bile acid metabolism in rodents. The schematic diagram shows 
yellow boxes for bile acids that are primarily synthesized in the liver, red boxes for secondary bile acids that are 
biotransformed from the primary bile acids by the gut microbiota and blue boxes for the tertiary bile acid that 
enters the enterohepatic circulation. Primary, secondary and tertiary bile acids are reabsorbed from the GI walls 
and re-enter the liver via enterohepatic circulation to stabilize the bile acid pool. This figure was made based on 
previous publications [59,60]. 

4.4.1. Clindamycin Hydrochloride Treatment 

CDCA is the first metabolite that is produced from CYP enzyme-mediated hydroxylation activity of 

cholesterol in the liver. Following treatment with Clindamycin, CDCA levels are observed to be 

significantly downregulated in plasma and feces. This could mean an increased conversion of CDCA 
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to its conjugated forms or a reduced production due to reduced 7-hydroxylation activity. Conjugated 

primary bile acids such as TCDCA and GCDCA are formed from CDCA as a precursor. Rodents are 

known to preferentially conjugate in the liver using taurine (almost 90%) rather than Glycine [54], and 

our findings are in line with this knowledge. CA is formed from further hydroxylation of CDCA in the 

liver. CA levels were significantly upregulated in feces but downregulated in plasma. This could mean 

either that its precursor CDCA levels are reduced in plasma (as observed in Table 2) and hence that 

there is a significant downregulation of CA in plasma, or that CA could not be converted to DCA by 

the gut bacterial enzymes due to lack of gut microflora bioactivity. These two hypotheses are in line 

with our data that both CDCA and DCA levels were indeed reduced. This is also consistent with what 

we see in our data as TCDCA is highly upregulated in the feces compared to GCDCA, as would be 

expected from the preferential conjugation with taurine amino acids in rats. This also means that 

TCDCA is not deconjugated in the gut. Despite the profound increase in conjugated bile acids in the 

feces, in plasma, TCDCA levels are only marginally upregulated, whereas GCDCA are significantly 

downregulated. Consequently, reabsorption of both conjugated bile acids would appear to be very 

limited. Two of the other primary bile acids that result from hydroxylation of CDCA are MCA alpha 

and MCA beta. The feces and plasma levels of MCA (both alpha and beta) are significantly 

downregulated. The suggested hypothesis is that the conjugation step from MCA (alpha and beta) to 

taurine-conjugated TMCA (alpha and beta) must be higher in the clindamycin treatment group. This is 

very much in line with what we observe, as the TMCA (both alpha and beta) levels are highly 

significantly increased in feces, whereas in the plasma, the TMCA (alpha and beta) levels are only 

weakly upregulated. Taurine conjugate bile acids are known to be absorbed in the gut, providing an 

explanation for the increased levels of TMCA in plasma. Other taurine- and glycine-conjugated bile 

acids that are produced from CA are TCA and GCA. GCA is observed to be downregulated in both 

plasma and feces, whereas TCA is observed to be highly significantly upregulated in feces and 

downregulated in plasma. Upregulation of TCA in feces could correspond to more rapid conjugation of 

CA to TCA than to GCA and weak reabsorption of them from the small intestine. 

Table 2. Fold changes of different bile acid levels going up (red boxes) and down (blue colored boxes) in 
the feces and plasma matrices of male and female Wistar rats of Clindamycin treatment (p-value depends on 
the shade of the colors, the darkest red is p-value <0.01, medium red is p-value <0.05; and the lightest shade 
of red is p-value <0.10 and similarly for blue coloring). F represents females, M represents males, 7 d, 14 d 
and 28 d denote blood sampling time points days 7, 14 and 28, respectively. 

Metabolite Name Analyte 
Name 

Feces 
 

Plasma 
 

F M F 7d F 14d F 28d M 7d M 14d M 28d 
Cholate CA 18.64 19.90 0.02 0.03 0.01 0.01 0.03 0.01 

Chenodeoxycholate 
(chenodeoxycholic acid) 

CDCA 0.30 0.08 0.02 0.03 0.04 0.02 0.10 0.02 

Deoxycholate (deoxycholic acid) DCA 0.00 0.00 0.35 0.00 0.01 0.10 0.36 0.01 
Glycocholate, glycocholic acid GCA 1.72 0.47 0.44 0.30 0.21 0.22 0.35 0.16 
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Glycochenodeoxycholate 
(glycochenodeoxycholic acid) 

GCDCA 2.67 0.09 0.56 0.40 0.76 0.06 0.08 0.06 

Glycodeoxycholate, -cholic acid GDCA 0.58  0.04  0.07 0.01 0.01 0.02 
Glycolithocholic aicd GLCA 0.52 0.44 0.54 0.26 0.68 0.12 0.79 0.36 

Glycoursodeoxycholic acid GUDCA 2.82 2.25 0.11 1.03   0.97 0.30 
Hyodeoxycholate, hyodeoxycholic 

acid 
HDCA 0.00 0.00 0.01 0.01  0.00 0.01 0.00 

Lithocholate, lithocholic acid LCA 0.01 0.01 1.00   0.53 1.55 0.35 
Muricholic acid (alpha) MCAa 0.59 0.16 0.03 0.06 0.06 0.01 0.02 0.01 
Muricholic acid (beta) MCAb 2.36 0.87 0.11 0.25 0.39 0.15 0.31 0.39 

Muricholic acid (omega) MCAo 0.06 0.01 0.00 0.01 0.04 0.01 0.00 0.01 
Taurocholate, taurocholic acid TCA 47.42 90.80 1.34 1.01 1.63 4.68 2.94 4.56 

Taurochenodeoxycholate TCDCA 35.03 13.64 1.38 0.99 1.54 2.46 1.46 1.25 
Taurodeoxycholate, -cholic acid TDCA 0.25 0.15 0.02 0.01 0.01 0.01 0.01 0.05 

Taurolithocholic acid TLCA 0.15 0.34 0.04  0.04 0.19 0.14 0.19 
Tauromuricholic acid (a+b) TMCA(a+b) 155.83 192.72 1.96 1.41 2.38 4.97 2.57 3.99 
Tauroursodeoxycholic acid TUDCA 22.61 28.27 6.92   0.20 0.57 0.74 

Ursodeoxycholate, 
Ursodeoxycholic acid, Ursodiol 

UDCA 0.02 0.03 0.05 0.27 0.01 0.01 0.30 0.02 

 
The most enigmatic data are the profound upregulation of CA in the feces and similarly profound 

downregulation in the plasma. This would strongly suggest that there is a lack of resorption of CA in 

the lower intestinal tract and in fact a loss of CA to the entire biological system. 

Taurine-conjugated CA was reabsorbed; hence, we see an upregulation in the plasma. Secondary bile 

acids that result from bacterial deconjugation are namely DCA, LCA, MCAo and HDCA. In our data 

DCA, MCAo and HDCA levels show significant downregulation in both plasma and feces, again 

demonstrating impairment of bacterial deconjugation reactions. This is also in line with their precursor 

bile acids TCA and TMCA (both alpha and beta) levels being significantly upregulated in the feces. 

The tertiary bile acid UDCA produced from the downregulated secondary bile acid LCA is also reduced 

in both feces and plasma of this treatment group. The literature indicates that UDCA is produced from 

LCA in the intestine [61] or in the liver [62]. In our study, we see LCA levels reduced in the feces but 

unaffected in the plasma. Therefore, it would seem more likely that UDCA is produced in the gut rather 

than the liver. This could be because this metabolite gets reabsorbed into the liver and gets readily 

conjugated into its taurine form. This is in line with the TUDCA levels highly significantly upregulated 

in the feces. This proves the increased conjugation of the tertiary bile acid and lack of deconjugation in 

the gut. Other deconjugated secondary bile acids such as DCA and LCA can also be reabsorbed and 

enter into the liver for the conjugation reaction. Due to the impairment in the production of these 

secondary bile acids by the disturbed gut bacteria, the taurine/glycine-conjugated DCA and LCA also 

appear to be significantly downregulated in both plasma and feces. Taurine deconjugation is less likely 

to have happened according to our data. Glycine-conjugated bile acids look far less affected. This proves 

that Clindamycin-treated rats have overall impaired secondary bile acid production which is exactly 

what we expect after treating the animals with an antibiotic. 
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As Clindamycin is a member of the lincosamide group, it is no surprise that Lincomycin has a similar 

anti-biotic spectrum. Lincomycin-treated animals also show a clear impairment of secondary bile acid 

production due to perturbations in the gut flora. Both the antibiotics belong to the same class of 

antibiotics called Lincosamides, and they definitely show a similar influence on the bile acid profiles. 

The table of altered bile acid metabolites in the plasma and feces of lincomycin hydrochloride treatment 

group can be seen in the supplementary data (see Table S17). This altered bile acid levels in the feces 

and plasma of the two lincosamide treatment groups could be associated with the extreme 

downregulation of Firmicutes (including bacterial families such as Lachnospiraceae, Peptpcoccaceae 

and Petptostreptococcaceae), Bacteroidetes (including bacterial families such as Prevotellaceae, 

Bacteroidaceae and Porphyromonadaceae) and Proteobacteria (including bacterial families such as 

Bdellovibrionaceae, Rhodospirillaceae, Desulfovibrionaceae) compared to the control animals (see 

DESeq2 table S16). The reduction in levels of these previously mentioned bacteria may be related to 

the impairment of secondary bile acid production in those treatment groups. 

4.4.2. Vancomycin Treatment 

CDCA levels in the feces of Vancomycin treatment group do not appear to be significantly altered, 

whereas in the plasma, we observe a consistent downregulation of CDCA, as shown in Table 3. As we 

do not see a significant change in CDCA levels in the feces, it can be expected that metabolites such as 

TCDCA, GCDCA and MCA (both alpha and beta) should not be changed in the feces of this treatment 

group either. This is in line with what we see in our data. GCDCA, TCDCA and MCA (both alpha and 

beta) do not show significant changes in the feces of vancomycin-treated animals. 

Table 3. Fold changes of different bile acid levels going up (red coloed boxes) and down (blue boxes) in the 
feces and plasma matrices of male and female Wistar rats of Vancomycin treatment (p-value depends on the 
shade of the colors; the darkest red represents p-value <0.01, medium red represents p-value <0.05 and the 
lightest shade of red represents p-value <0.10, and similarly for blue). F represents females, M represents 
males, 7 d, 14 d and 28 d denote blood sampling time points days 7, 14 and 28, respectively. 

Metabolite Name Analyte 
Name 

Feces  
 

Plasma  
 

F M F 7d F 14d F 28d M 7d M 14d M 28d 
Cholate CA 19.45 38.66 0.18 0.60 0.14 0.10 0.13 0.13 

Chenodeoxycholate 
(chenodeoxycholic acid) 

CDCA 
4.30 0.99 0.18 0.36 0.05 0.10 0.16 0.18 

Deoxycholate (deoxycholic 
acid) 

DCA 
0.00 0.00 0.01 0.42 0.01 0.00 0.18 0.00 

Glycocholate, glycocholic acid GCA 2.67 1.45 0.46 1.54 0.73 0.39 0.36 0.18 
Glycochenodeoxycholate 

(glycochenodeoxycholic acid) 
GCDCA 

1.01 1.54 0.39 0.87 0.64 0.30 0.27 0.42 
Glycodeoxycholate, -cholic 

acid 
GDCA 

0.32 0.34 0.02 0.07 0.03 0.01 0.00 0.05 
Glycolithocholic aicd GLCA 0.24 0.86 0.56 0.21 0.20 0.48 1.65 4.39 

Glycoursodeoxycholic acid GUDCA 1.44 1.44 1.65 1.18 3.31 0.43 16.34 10.13 
Hyodeoxycholate, 

hyodeoxycholic acid 
HDCA 

0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
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Lithocholate, lithocholic acid LCA 0.01 0.07 0.12 10.74 0.15 0.35 27.95 0.19 
Muricholic acid (alpha) MCAa 0.44 0.71 0.21 0.44 0.10 0.13 0.14 0.23 
Muricholic acid (beta) MCAb 0.50 0.53 0.54 1.01 1.35 0.17 0.18 0.38 

Muricholic acid (omega) MCAo 0.02 0.03 0.05 0.01 0.07 0.03 0.01 0.02 
Taurocholate, taurocholic acid TCA 4.18 7.39 2.04 6.99 3.83 2.47 2.71 2.62 

Taurochenodeoxycholate TCDCA 0.99 3.04 1.87 2.42 2.64 2.69 3.18 2.97 
Taurodeoxycholate, -cholic 

acid 
TDCA 

0.16 0.09 0.01 0.02 0.01 0.01 0.01 0.01 
Taurolithocholic aicd TLCA 0.42   0.03 0.04 0.03 0.12 0.18 1.58 

Tauromuricholic acid (a+b) TMCA(a+b) 2.86 3.89 3.10 4.02 3.59 1.93 2.71 3.11 
Tauroursodeoxycholic acid TUDCA 0.54 2.93 3.61 1.82   1.23   0.79 

Ursodeoxycholate, 
Ursodeoxycholic acid, 

Ursodiol 

UDCA 

    0.21 0.06 0.29 0.13 0.12 0.23 
 
As with the lincosamide antibiotics, for Vancomycin, we also noted a profound increase in CA in the 

feces and a downregulation in the plasma, indicating that CA is not well resorbed from the lower 

intestinal tract. As DCA levels were very much reduced in the feces, this means that 7-alpha-

dehydroxylation of CA was severely impaired, due to the change in the microbiome composition. We 

saw significant downregulation of DCA, a secondary bile acid, in both plasma and feces, again 

indicating impairment of bacterial deconjugation from TCA or GCA to DCA. Therefore, TCA as the 

preferred conjugated of CA was highly upregulated in both plasma and feces. Taurine-conjugated 

primary bile acids, including TCA, TMCA alpha and beta, are also highly upregulated in both plasma 

and feces, again in line with the lack of microbial deconjugation. As a consequence, secondary bile 

acids like DCA, LCA, MCAo and HDCA are downregulated in both plasma and feces. These secondary 

bile acids, including tertiary bile acid UDCA, can be reabsorbed in the gut and become reconjugated 

with Taurine or Glycine AA. However, as their levels are reduced, the levels of G/TDCA and G/TLCA 

are also significantly downregulated in both plasma and feces. Taking into account the microbiome 

changes induced by Vancomycin, this could be related to the downregulation of many Bacteroidetes 

and Firmicutes phyla. Qualitatively, the overall changes in the bile acid levels induced by these 

antibiotics (vancomycin and lincosamides) are similar, but quantitatively, we see marginal differences. 

4.4.3. Sparfloxacin Treatment 

Many of the changes in BAs seen following Sparfloxacin-treated animals were similar to the ones 

described for the lincosamides and vancomycin groups (see Table 4). Again, profound changes were 

noted for CA in feces, DCA in feces and plasma and upregulation of particularly taurine-conjugated 

BAs in both feces and plasma. 

Table 4. Fold changes of different bile acid levels going up (red boxes) and down (blue colored boxes) in 
the feces and plasma matrices of male and female Wistar rats of Sparfloxacin treatment (p-value depends on 
the shade of the colors; the darkest red represents p-value <0.01, medium red represents p-value <0.05 and 
the lightest shade of red represents p-value <0.10, and similarly for blue). F represents females, M represents 
males, 7 d, 14 d and 28 d denote blood sampling time points days 7, 14 and 28, respectively. 
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Metabolite Name Analyte 
Name 

Feces Plasma 
F M F 7d F 14d F 28d M 7d M 14d M 28d 

Cholate CA 27.39 22.73 1.08 0.46 0.32 0.11 0.91 0.90 
Chenodeoxycholate 

(chenodeoxycholic acid) 
CDCA 0.52  0.32 0.17 0.37 0.04 0.28 0.94 

Deoxycholate (deoxycholic acid) DCA 0.01 0.00 0.09 0.02 0.08 0.01 0.18 0.03 
Glycocholate, glycocholic acid GCA 1.88 1.57 1.02 0.53 2.05 0.42 0.59 0.71 

Glycochenodeoxycholate 
(glycochenodeoxycholic acid) 

GCDCA 1.25 2.93 0.51 0.34 1.61 0.14 0.13 0.40 

Glycodeoxycholate, -cholic acid GDCA  2.70 0.08 0.25 0.51 0.02 0.01 0.12 
Glycolithocholic aicd GLCA 8.22 1.33  0.90 0.71 0.24  1.93 

Glycoursodeoxycholic acid GUDCA 0.96 1.61     0.33 1.30 
Hyodeoxycholate, hyodeoxycholic 

acid 
HDCA 0.01 0.00 0.06 0.01  0.00 0.00  

Lithocholate, lithocholic acid LCA 0.24 0.01 0.12 0.01 13.09 0.18 9.66 0.31 
Muricholic acid (alpha) MCAa 0.58 0.16 0.67 0.24 0.57 0.05 0.38 0.73 
Muricholic acid (beta) MCAb 0.33 0.37 1.46 1.21 0.31 0.25 1.87 1.10 

Muricholic acid (omega) MCAo 0.01 0.02 0.20 0.01 0.01 0.01 0.00  
Taurocholate, taurocholic acid TCA 4.95 8.29 2.61 3.25 1.73 7.96 5.32 3.09 

Taurochenodeoxycholate TCDCA 2.29 4.99 1.21 1.44 1.77 3.85 3.63 2.08 
Taurodeoxycholate, -cholic acid TDCA 0.30 0.18 0.09 0.21 0.03 0.11 0.03 0.04 

Taurolithocholic acid TLCA 0.27 0.75  1.11 0.06 0.28 0.33 0.22 
Tauromuricholic acid (a+b) TMCA(a+b) 7.08 16.86 1.72 1.73 1.88 4.25 4.95 2.27 
Tauroursodeoxycholic acid TUDCA 2.12 9.35  10.27   7.76 1.82 

Ursodeoxycholate, Ursodeoxycholic 
acid, Ursodiol 

UDCA 0.25 0.01 0.36 0.56 0.23 0.13 1.20 1.17 

 
The upregulation of CA in the feces, similar to the lincosamides and vancomycin, could be explained 

by a negative feedback mechanism associated with the high levels of conjugated bile acids, as a result 

of the reduced deconjugation steps. As indicated earlier, the reduction of CA in the plasma can be 

explained by a lack of reabsorption from the colon. GCDCA does not show any significant change in 

its levels in feces, although it is downregulated in plasma; TCDCA, on the other hand, is highly 

upregulated in both plasma and feces. This indicates a higher production of TCDCA than GCDCA, as 

also observed for the other antibiotic treatments; it also indicates that, due to interrupted bacterial 

deconjugation activity, these get accumulated in the feces. The Taurine-conjugated bile acids are 

reabsorbed from the gut and their elevated levels also result in increased plasma levels. MCA (both 

alpha and beta) show major downregulation in both plasma and feces, indicating that they are readily 

converted to their conjugated forms. The Taurine conjugate of MCA both alpha and beta (TMCA a+b) 

show high upregulation in both plasma and feces, confirming that the Taurine conjugation of MCA, 

both alpha and beta, is high in Sparfloxacin treatment groups. Secondary bile acids, including DCA, 

LCA, MCAo and HDCA, all show downregulation in both plasma and feces, indicating impairment in 

deconjugation by bacterial enzymes, thereby reducing their levels in both plasma and feces, which is 

consistent with UDCA a tertiary BA. In our data, G/TDCA, G/TLA and GUDCA show no change in 

their levels in both plasma and feces, whereas TUDCA shows upregulation in both plasma and feces, 
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indicating that whatever UDCA levels were sent to the liver were then readily reconjugated with 

Taurine, after which further deconjugation by the gut bacteria did not occur, leading to high levels in 

the feces. This is very similar to the lincosamide treatment group and can be linked to downregulation 

of Proteobacteria and Firmicutes phyla compared to controls. 

4.4.4. Roxithromycin treatment 

This roxithromycin treatment group showed very interesting results compared to all the antibiotics (see 

Table 5). CDCA levels in the plasma of the roxithromycin treatment group showed significant 

downregulation, whereas no significant changes in the feces were observed. This is consistent with what 

was observed in the other antibiotic treatment groups. CA is significantly downregulated in feces, an 

effect not observed in any of the other antibiotic treatment groups. Comparing this observation with the 

microbiome composition following roxithromycin treatment, it is noted that there is a unique 

upregulation of the Rikenellaceae in this group. 

Table 5. Fold changes of different bile acid levels going up (red boxes) and down (blue colored boxes) in 
the feces and plasma matrices of male and female Wistar rats of Roxithromycin treatment (p-value depends 
on the shade of the colors,; the darkest red is p-value <0.01, medium red is p-value <0.05 and the lightest 
shade of red is p-value <0.10, and similarly for blue). F represents females, M represents males, 7 d, 14 d 
and 28 d denote blood sampling time points days 7, 14 and 28, respectively. 

Metabolite Name Analyte 
Name 

Feces Plasma 
F M F 7d F 14d F 28d M 7d M 14d M 28d 

Cholate CA 0.52 0.55 0.04 0.05 0.13 0.00 0.00 0.02 
Chenodeoxycholate (chenodeoxycholic 

acid) 
CDCA 0.90  0.02 0.06 0.08 0.02 0.01 0.05 

Deoxycholate (deoxycholic acid) DCA 0.49 0.70 0.75 0.58 0.86 0.15 0.11 0.20 
Glycocholate, glycocholic acid GCA 0.15 0.23 0.42 0.30 0.10 0.25 0.10 0.08 

Glycochenodeoxycholate 
(glycochenodeoxycholic acid) 

GCDCA 0.42 0.72 0.39 0.36 0.17 0.38 0.10 0.08 

Glycodeoxycholate, -cholic acid GDCA  0.49 0.51 0.37 0.07 0.14 0.05 0.07 
Glycolithocholic aicd GLCA 0.41 1.63 0.28 0.27 0.49 0.33 0.93 0.66 

Glycoursodeoxycholic acid GUDCA 1.44  1.82 0.59 1.13 0.46 1.45 0.63 
Hyodeoxycholate, hyodeoxycholic acid HDCA 0.06 0.03 0.10 0.04 0.10 0.01 0.01 0.01 

Lithocholate, lithocholic acid LCA 0.23 0.35 0.71 0.46 0.72 0.64 6.52 0.50 
Muricholic acid (alpha) MCAa 0.73 0.62 0.22 0.19 0.11 0.08 0.02 0.05 
Muricholic acid (beta) MCAb 1.33 0.84 0.71 1.30 2.28 0.16 0.05 0.22 

Muricholic acid (omega) MCAo 0.77 0.60 1.19 0.60 1.47 0.74 0.36 0.42 
Taurocholate, taurocholic acid TCA 2.41 1.58 2.59 5.55 3.14 3.35 2.19 3.77 

Taurochenodeoxycholate TCDCA 1.42 1.54 1.69 1.48 1.84 2.07 2.02 2.28 
Taurodeoxycholate, -cholic acid TDCA 9.42 4.61 2.29 3.11 1.89 2.55 1.19 2.06 

Taurolithocholic aicd TLCA 3.26 3.13 0.74 0.75 1.39 1.05 0.68 0.61 
Tauromuricholic acid (a+b) TMCA(a+b) 10.14 7.97 1.94 2.94 2.37 3.62 2.67 3.02 
Tauroursodeoxycholic acid TUDCA 3.42 2.20 9.03 1.23  1.24  0.55 

Ursodeoxycholate, Ursodeoxycholic acid, 
Ursodiol 

UDCA   0.11 0.06 0.53 0.03 0.05 0.01 
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The reduction of CA levels is in line with the reduced CDCA levels in plasma; however, as the precursor 

cholesterol was not affected (data not shown), a hypothesis could be that there is increased conjugation 

of CDCA. This is not at variance with the increased TCDCA levels in the plasma. 

Other conjugated bile acids of CDCA, namely GCDCA and TCDCA, showed contrasting levels in 

plasma and feces. GCDCA was not significantly altered in feces but was downregulated in plasma, and 

TCDCA levels were highly upregulated in both plasma and feces. This again proves that taurine 

conjugation is higher than glycine conjugation and that taurine-conjugated BAs are readily reabsorbed 

in the gut. MCA, both alpha and beta, showed no alteration in the feces but downregulation in the 

plasma matrix of Roxithromycin antibiotic treatment group. This indicates that the hydroxylation 

reaction from CDCA to MCA alpha and beta and further conjugation of MCA alpha and beta to TMCA 

alpha and beta must be regulated in a way that it does not alter the levels of MCA alpha and beta. TMA 

alpha and beta are highly upregulated in both plasma and feces, indicating no further deconjugation of 

these metabolites, leading to an increase in their levels. Secondary bile acids such as LCA, DCA and 

HDCA were downregulated in both plasma and feces, showing the impairment in bacterial 

deconjugation in the gut due to antibiotic treatment. MCAo, on the other hand, which is also a secondary 

BA, did not show a significant change in feces and plasma. These secondary bile acids were reabsorbed 

from the gut, entered the enterohepatic circulation and were reconjugated with taurine or glycine. 

Glycine conjugated secondary BA, including GDCA, GLCA and GUDCA, showed significant 

downregulation in both plasma and feces, indicating a lack of deconjugation and impairment in their 

levels in the gut before being reconjugated in the liver. In contrast, taurine-conjugated secondary and 

tertiary BA, including TDCA, TLCA and TUDCA, showed an upregulation in feces and plasma of the 

Roxithromycin treatment group. Upregulation of TDCA and TLCA in the feces and plasma has not 

been observed in any of the other antibiotic groups. Taurine conjugation of primary as well as secondary 

BAs was increased by this antibiotic. This increased taurine conjugation could also be related to an 

altered FXR signaling pathway. Three BAs including CDCA, DCA and LCA reduce the 7-hydroxylase 

activity as a negative feedback via the FXR receptor. Even though CDCA, DCA and LCA were 

significantly low in both plasma and feces of antibiotic treatment groups, in this case, the 7-hydroxylase 

activity cannot be high. This would indicate that there were more factors playing a role in the 

maintenance of BA pool ,and as we obviously disturbed them using antibiotics, these factors should be 

microbiome-derived. This could mean that further deconjugation of these taurine-conjugated secondary 

BAs are impaired, leading to an increase in their levels in feces and plasma. 

Two major conclusions that can be derived analyzing the bile acid profiles of Roxithromycin treated 

animals are that, firstly, 7α dehydroxylase activity of the gut bacterial species present in this treatment 

group must be high because CA levels are reduced in the feces and are metabolized to secondary bile 

acids. This could be associated with the highest abundances of Rikenellaceae family in this antibiotic 

treatment compared to controls and other treatments. Hence, these families of bacteria may be the 

primary source of 7α dehydroxylase activity, which is otherwise absent in the other antibiotic treatment 
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groups. Secondly, we can assume that the taurine deconjugation is still impaired in this treatment group 

due to the higher accumulation of taurine-conjugated primary and secondary bile acids in both plasma 

and feces. This could be explained by the reduced abundances of bacterial families such as 

Bacteroidaceae, Porphyromonadaceae and Prevotellaceae in this antibiotic treatment, which might be 

responsible for the taurine amino acid deconjugation in the gut. Cholesterol levels in feces do not change 

significantly, meaning that bile acids somehow maintain the pool in such a way that the source 

cholesterol levels are not altered much. 

4.4.5. Streptomycin Sulfate Treatment 

Amongst all the other antibiotics, this treatment showed the least significantly altered bile acid levels, 

as shown in Table 6. CDCA levels are only marginally altered in both plasma and feces; hence, we only 

see marginal effects in GCDCA and TCDCA levels. This nevertheless shows very consistent increases 

in CA levels in feces and decreases in plasma, which is consistent with the other antibiotic treatments 

except Roxithromycin. Taurine and Glycine conjugates of CA, namely TCA and GCA, did not show a 

profound alteration in feces. This is unique amongst all of the antibiotic treatment groups. We note a 

moderate increase of TCA in the plasma, however. Overall, this suggests that deconjugation reactions 

are far less impaired by Streptomycin treatment. As this antibiotic causes only relatively moderate 

changes in the lower intestinal tract microbiome, it can be concluded that deconjugation reactions are 

occurring at this site. Moreover, further Streptomycin-specific changes have been observed in MCA 

alpha and beta levels. Unlike all the other antibiotics, these bile acids are significantly upregulated in 

both plasma and feces. We also see an upregulation in both alpha and beta TMCA levels in both plasma 

and feces. We can deduce that Streptomycin has a specific influence on hydroxylation of CDCA to 

produce MCA alpha and beta, because of which their levels are unusually increasing compared to all 

the other antibiotic treatments. Secondary bile acid DCA shows very marginal alteration, indicating that 

their production or bacterial deconjugation is not profoundly disturbed in the case of this antibiotic 

treatment group. However, other secondary bile acids such as LCA and HDCA show significant 

downregulation in both plasma and feces, indicating that this part of the bacterial transformation is 

impaired in Streptomycin, which is consistent with all other antibiotics. On the contrary, we see an 

upregulation in MCA-omega in both plasma and feces, which is again Streptomycin-specific. This 

indicates that Muricholic acid and related conjugates and deconjugated metabolites are altered by this 

antibiotic. We also see MCAo being reabsorbed in this antibiotic treatment, which was not observed in 

any of the other treatment groups. Taurine-conjugated secondary bile acids were not altered that much, 

but Glycine-conjugated ones were significantly downregulated. In these treatment groups, Taurine 

conjugation of reabsorbed secondary bile acids did not show a prominent influence whereas, a 

downregulation in Glycine conjugated secondary bile acids have been observed in both feces and 

plasma, which is consistent with what we have observed in other antibiotic treatments. 
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Table 6. Fold changes of different bile acid levels going up (red boxes) and down (blue boxes) in the feces 
and plasma matrices of male and female Wistar rats of Streptomycin sulfate treatment (p-value depends on 
the shade of the colors, the darkest red is p-value <0.01, medium red is p value <0.05 and the lightest shade 
of red is p-value <0.10, and similarly for blue). F represents females, M represents males, 7 d, 14 d and 28 d 
denote blood sampling time points days 7, 14 and 28, respectively. 

Metabolite Name Analyte 
Name 

Feces Plasma 
F M F 7d M 7d F 14d M 14d F 28d M 28d 

Cholate CA 8.33 3.68 0.49 0.97 0.14 0.71 0.01 0.24 
Chenodeoxycholate (chenodeoxycholic acid) CDCA 17.60 0.56 0.43 1.65 0.17 0.64 0.02 0.37 

Deoxycholate (deoxycholic acid) DCA 1.15 1.56 0.67 0.68 1.22 0.62 0.15 0.31 
Glycocholate, glycocholic acid GCA 1.14 0.29 3.56 0.72 0.58 1.53 0.35 0.26 

Glycochenodeoxycholate 
(glycochenodeoxycholic acid) 

GCDCA 0.61 0.70 1.28 0.93 0.98 0.41 0.10 0.31 

Glycodeoxycholate, -cholic acid GDCA 0.39 0.21 1.54 1.02 0.49 0.23 0.05 0.10 
Glycolithocholic aicd GLCA 0.35 1.41 0.46 0.27 0.23 0.39 0.25 0.80 

Glycoursodeoxycholic acid GUDCA 0.89 0.50 1.65 0.61 1.00 1.06 1.24 0.89 
Hyodeoxycholate, hyodeoxycholic acid HDCA 0.20 0.04 0.18 0.25 0.34 0.03 0.01 0.03 

Lithocholate, lithocholic acid LCA 0.35 0.89 0.68 0.39 0.67 0.69 0.35 0.43 
Muricholic acid (alpha) MCAa 2.95 2.43 0.45 1.03 0.42 1.11 0.04 0.32 
Muricholic acid (beta) MCAb 1.07 2.79 1.89 1.81 0.77 1.89 0.53 0.87 

Muricholic acid (omega) MCAo 2.11 1.77 2.17 1.46 2.51 3.19 0.36 0.78 
Taurocholate, taurocholic acid TCA 2.07 1.13 1.73 2.97 2.05 4.50 3.28 2.67 

Taurochenodeoxycholate TCDCA 1.17 1.15 1.22 1.35 2.61 2.54 2.33 2.72 
taurodeoxycholate, -cholic acid TDCA 2.25 0.62 1.66 1.62 2.13 1.68 1.38 1.48 

Taurolithocholic aicd TLCA 0.60 1.68 1.11 0.83 1.05 0.66 0.38 0.47 
Tauromuricholic acid (a+b) TMCA(a+b) 1.86 1.79 1.60 2.44 2.59 3.01 2.64 2.64 
Tauroursodeoxycholic acid TUDCA 1.79 1.04 2.83   1.98  0.63 

ursodeoxycholate, ursodeoxycholic acid, 
ursodiol 

UDCA   1.65 0.16 0.20 1.60 0.17 0.39 

5. Conclusions 
The purpose of the study was to investigate if there are correlations between the microbiome, the fecal 

metabolome and the host’s plasma metabolome. We have clearly demonstrated (1) a close connection 

between the microbiome and the fecal metabolome. We also noted that (2) the correlation between the 

fecal and plasma metabolome is much weaker. Moreover, (3) the best correlations between microbiome, 

fecal and plasma metabolome were obtained for bile acids. In addition, this study provides an extensive 

set of data for various antibiotic treatments on the gut microbiome and the fecal metabolome. However, 

the number of all possible combinations (the total of variables) between the microbiome and the 

metabolome by far exceeds the number of experiments with antibiotics. Therefore, in most cases, a 

perfect resolution (bacterial species to fecal metabolites) of these observed correlations is not (yet) 

possible. Overall, we see a huge impact of antibiotic treatments on bacterial deconjugation from primary 

to secondary and tertiary BA in both plasma and feces. Taurine conjugation is, relative to glycine 

conjugation, the preferred pathway in all antibiotic treatment groups. Taurine-conjugated primary BAs 

were readily reabsorbed in the gut and show elevated levels in the plasma. CA levels in the feces were 

profoundly increased in all treatment groups, except for Roxithromycin, and reduced in the plasma. 
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This is considered to be related to the loss of 7α dehydroxylase activity and the lack of reabsorption of 

CA from the lower intestinal track. The reduced levels of CA in the Roxithromycin group are correlated 

with a unique increase of the Rikenellaceae family. All antibiotics resulted in increased levels of 

conjugated bile acids, indicating that they inhibit deconjugation reactions. Streptomycin, which induces 

the least feces microbiome/caecum changes, also causes only very minor accumulation of TMCA only. 

Bile acids make natural and xenobiotic compounds more bioavailable and hence increase absorption 

from the gut. An alteration of the bile acid pool is likely to lead to altered plasma concentrations of both 

endogenous metabolites as well as xenobiotics. Furthermore, bile acids themselves interact with nuclear 

receptors, such as FXR, PXR, CAR, VDR and TGR5, and alteration in the bile acid pool can be expected 

to have an effect on gene activation [16,21]. This may impact the cytochrome P450 expression and 

could interfere with drug detoxification mechanisms, finally leading to either a detoxification or 

toxification of a compound of interest. Furthermore, unconjugated BAs are in general important for 

controlling the microbial population and the integrity of the intestinal barrier function [16,21]. 

Regarding the points mentioned above, changes in the bile acid pool might have implications for 

affecting the intestinal microbiome itself, the gut-liver axis, the immune system and other systems of 

the body. 

Each individual treatment group in this study elicited perturbations in the gut bacterial composition, as 

observed in the community analysis. Treatments showed a class-specific influence in the bacterial 

community composition. Clustering analysis of the fecal metabolome showed a virtual identical 

antibiotic-specific grouping as seen with the 16S microbiome analysis, (see Figure 7a and 

Supplementary Figure S2), demonstrating that these two matrixes are highly correlated. Plasma 

metabolome showed a rather different clustering, indicating that fecal metabolome changes are not well 

correlated with plasma metabolome changes. Dietary restriction did not induce gut dysbiosis and 

showed only marginal influences on the fecal metabolome. In contrast, rather explicit effects were seen 

on the plasma metabolome. Thus, the reduction of dietary nourishment (20% reduced diet) has only 

very limited effects in the intestinal tract (microbiome and fecal metabolome), whereas the plasma 

metabolome is profoundly different. Here, we also noted significant gender-specific changes or 

adaptations. The main purpose behind adding this group of animals fed with a restricted diet was to 

understand its possible effects on the microbiome and consequently on the metabolome, and it provided 

rather interesting findings. 

Further, cecal and fecal metabolomes are highly comparable; therefore, in rats, fecal profiling should 

be preferred over cecum, as it is as informative and non-invasive. The strongest correlations obtained 

were between 16S bacterial families and fecal metabolites, that mainly belong to amino acids, lipids 

and related metabolite classes. 

Key findings from this research work include the following. 1) Administration of different classes of 

antibiotics showed different compositional effects on the rat fecal microbiome, also showing a class-

dependent effect. 2) Streptomycin sulfate and restricted diet showed the most comparable microbiota 



- 67 - 
 

compared to the rest of the treatments. 3) Compared to plasma metabolome, feces metabolome showed 

a clear antibiotic-treatment-specific separation, whereas restricted diet separated clearly in the 

clustering analysis of plasma metabolome, thereby highlighting the fact that dietary restriction changes 

the host metabolism without significantly altering the gut microbiota. 4) We conclude that the plasma 

metabolome responds entirely differently to antibiotic treatment compared to both feces and cecum 

metabolome, for which various correlations with the microbiome could be established. 5) We 

highlighted several metabolites like Indole derivatives and bile acids as being associated with the 

presence/absence of specific bacterial families. 6) We associated the accumulation of taurine conjugated 

bile acids and lack of secondary bile acid formation with antibiotic treatments. The least effective 

antibiotic was Streptomycin sulfate, which is in line with its antibiotic mode of action. The correlations 

obtained in this study act as a holistic collection for all the possible bacterial correlations with 

fecal/plasma metabolites, involving not only already known ones but also some novel or unexplored 

ones too. Many of these correlations just hint towards a potential relationship, since there are multiple 

bacterial strains involved in specific biological functions, so it is not just a simple one-to-one 

correlation, as currently analyzed. Further steps would involve direct network construction using a 

larger dataset that would explain the correlations in more detail, understanding further the inter-bacterial 

co-metabolic capacities, which would give a deeper insight into gut microbial metabolism. 

Understanding the underlying signaling cascades and the gene expression data would give us deeper 

knowledge about the gut microbiota and host-associated metabolism. An additional step in the future 

could be to have a use-case with the 16S, metabolome and metagenome data of different samples from 

animals treated with different substances that are known to perturb the gut microbiota and eventually 

their associated biological functions. The importance of advancing the field of microbiome-mediated 

metabolism and the formation of small molecules is not only of academic interest; most of the safety 

studies with biologically active ingredients and chemicals are done using the rat as the golden standard 

system. Differences in toxicity outcomes between humans and rats are frequently considered to be 

related to toxico-dynamic differences, particularly if liver metabolism in both species is assumed to be 

similar. However, the contribution of the gut microbiome to metabolism, and the potential species 

differences, have so far been largely ignored. Thus, a database containing the connection between 

bacterial composition and metabolic capacity for rats would need to be complemented by a similar 

connectivity for humans. It is of interest to note that despite the profound microbiome and fecal 

metabolome changes induced by the antibiotics, the effects on the plasma metabolome are rather 

limited. This, in combination with the mild or absent clinical signs of toxicity, would suggest that at 

least from a short-term perspective, even profound microbiome changes do not immediately affect its 

host’s heath. However, such microbiome changes may indeed interfere with the metabolic capacity of 

its host and could very well change, for instance, the intestinal metabolism of drugs when co-

administered in a situation of microbiome dysbiosis. Overall, a combination of 16S bacterial community 
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analysis along with metabolome profiling could allow us to unravel the influence of antibiotics on the 

gut bacterial composition and metabolism. 
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Connecting gut microbial diversity with plasma metabolome and fecal bile 
acid changes induced by the antibiotics tobramycin and colistin sulfate  

1. Abstract 
The diversity of microbial species in the gut has a strong influence on health and development of the 

host. Further, there are indications that the variation in expression of gut bacterial metabolic enzymes 

is less diverse than the taxonomic profile, underlying the importance of microbiome functionality, 

particularly from a toxicological perspective. To address these relationships, the gut bacterial 

composition of Wistar rats was altered by a 28-day oral treatment with the antibiotics tobramycin or 

colistin sulfate. On the basis of 16S marker gene sequencing data, tobramycin was found to cause a 

strong reduction in the diversity and relative abundance of the microbiome, whereas colistin sulfate had 

only a marginal impact. Associated plasma and fecal metabolomes were characterized by targeted mass 

spectrometry-based profiling. The fecal metabolome of tobramycin-treated animals had a high number 

of significant alterations in metabolite levels compared to controls, particularly in amino acids, lipids, 

bile acids, carbohydrates and energy metabolites. The accumulation of primary bile acids and 

significant reduction of secondary bile acids in the feces indicated that the microbial alterations induced 

by tobramycin inhibit bacterial deconjugation reactions. The plasma metabolome showed less, but still 

many alterations in the same metabolite groups, including reductions in indole derivatives and hippuric 

acid, and furthermore, despite marginal effects of colistin sulfate treatment, there were nonetheless also 

systemic alterations in bile acids. Aside from these treatment-based differences, we also uncovered 

inter-individual differences particularly centering on the loss of Verrucomicrobiaceae in the 

microbiome, but with no apparent associated metabolite alterations. Finally, by comparing the dataset 

from this study with metabolome alterations in the MetaMapTox® database, key metabolite alterations 

were identified as plasma biomarkers indicative of altered gut microbiomes resulting from a wide 

activity spectrum of antibiotics.   

2. Keywords 
Metabolomics, gut microbiome, tobramycin, colistin sulfate, 16S data analysis, repeated dose oral study 

3. Introduction 
Gut microbiota are vital to host metabolism and consequently for host health and disease1. Bacteria in 

the gastrointestinal tract (GIT) outnumber eukaryotes and archaea by 2–3 orders of magnitude, and they 

produce thousands of metabolites that influence host homoeostasis and health2.  The bacterial 

composition of the GIT, as determined by 16S amplicon sequencing, is altered in various diseases such 

as colon cancer, ulcerative colitis, Crohn’s disease, Alzheimer’s disease, obesity, and diabetes3, 4, 5. 

Moreover, the microbiome appears to be required for producing 71% of fecal and 15% of blood 

metabolites, as supported by comparative metabolomes of colonized vs germ-free (GF) animals6. 
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Finally, when examining the fecal metabolomes of twins, Zierer et al., 2018 demonstrated only a modest 

influence of host genetics on metabolome characteristics5.  

The gut microbiota is intrinsically highly variable and can be altered by environmental factors, such as 

diet and use of antibiotics7, 8. Animal and human studies have also revealed that antibiotics are 

associated with health risks such as diarrhea, colitis, cholestasis, various other gastrointestinal disorders 

and multiple other off-target effects9 10 11. Further, prolonged exposures of humans and animals to some 

broad-spectrum antibiotics are also known to induce organ-specific toxicity such as nephrotoxicity, 

ototoxicity and others12 13. Apart from that, extensive use of antibiotics in humans and/or food-

producing animals also lead to acquired resistance14 15.  

The intestinal microbiota performs several essential functions including fermentation of indigestible 

food components, synthesis of important vitamins, amino acids, secondary (2°) bile acids and short-

chain fatty acids (SCFAs), elimination of toxic compounds, regulation of the immune system, 

production of mucosal L-ornithine, and many others7, 16. Furthermore, gut bacteria produce 2° bile acid 

(BA) metabolites from primary (1°) BAs via bacterial deconjugation and dehydroxylation reactions17.  

It is important to define, therefore, how diet and drug-induced alterations in gut microbiota can lead to 

functional outcomes via altered metabolites and the physiological processes they regulate. 

The metabolic capabilities of gut microbes are a basis of the functional crosstalk between the gut 

microbiota and the host and can be addressed by large scale quantification of dynamic changes in 

microbial metabolites as an informative complement to community profiling (or taxonomics) analysis. 

Thus, about 250 blood plasma and about 600 fecal metabolites can be measured via targeted 

metabolomics analysis of in non-invasive biospecimens such as urine and feces, as well as i.e.  blood, 

cecum content, or gut sections of the intestines of experimental animals18-20.  Analytes include amino 

acids, bile acids, carbohydrates, lipids, vitamins, hormones, energy metabolites, nucleobases and their 

derivatives. Thus, while metabolomics data reveal a functional basis for host phenotypes5 it is not 

possible to well predict how shifts in gut microbial diversity translate to altered metabolite profiles. 

Several factors can perturb the gut microbiota, such as the use of antibiotics21, and they are well known 

to  functionally alter the gut microbiota22. Antibiotics are broadly classified on the basis of their activity 

spectrum or mode of action. For example, aminoglycosides are broad spectrum antibiotics active against 

Gram-negative bacteria, including Enterobacteriaceae, Escherichia coli, Klebsiella pneumoniae, 

Pseudomonas aeruginosa and many others. In addition to Gram-negatives, aminoglycosides are also 

active against some Gram-positive bacteria such as Staphylococcus spp., including methicillin-resistant 

(MRSA) and vancomycin-resistant strains, Streptococcus spp., and Mycobacterium spp.23. They are 

generally not absorbed from the gut and function by inhibiting protein synthesis by binding 16S rRNA 

near the A site of the 30S ribosomal subunit, and also bind to bacterial membranes, such as 

lipopolysaccharides and phospholipids within the outer membrane of Gram-negative bacteria and to 
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teichoic acid and phospholipids within the cell membrane of Gram-positive bacteria24. Tobramycin, an 

aminoglycoside derived from the actinomycete Streptomyces tenebrarius, has poor bioavailability with 

90% being eliminated and only about 10% becoming systemically bioavailable25. Colistin sulfate is a 

polymyxin antibiotic that penetrates into and disrupts the bacterial cell membrane through a detergent-

like mechanism. The bioavailability of colistin is very low as it was very poorly absorbed after oral 

administration according to the summary report published on colistin by the Committee for veterinary 

medicinal products. Low bioavailability of the administered antibiotics is important because if 

antibiotics are absorbed from the gut, they have a strong influence on host metabolism and, 

consequently, the metabolomes20, 26, 27. 
To better understand the relationship between shifts in gut microbiota families and the consequent 

effects on metabolite profiles either in the fecal metabolome or in systemic circulation, we used the 

aminoglycoside antibiotic tobramycin, and the Polymyxin E antibiotic colistin sulfate to perturb the gut 

composition of male and female Wistar rats in a 28-day oral study. Microbial alterations were 

characterized by quantitative taxonomic 16S profiling of the fecal microbiome. To connect changes in 

the microbiome with changes in the fecal and plasma metabolome28, 29. Blood plasma was sampled on 

days 7, 14 and 28 of the study and feces were sampled on day 28 of the study and profiled by targeted 

LC-MS/MS-based metabolomics. Alterations in several metabolite classes, including amino acids, 

carbohydrates, fatty acids, bile acids, energy metabolites and their derivatives, were measured following 

treatment with a high versus low dose of each drug.  

 
4. Materials and methods 
The 28-day oral study with Wistar rats was carried out based on the OECD 407 Principles of Good 

Laboratory Practice and the GLP provisions of the German Chemicals Act. 

4.1. Ethical statement 

The animal study was performed in an AAALAC-approved (Association for Assessment and 

Accreditation of Laboratory Animal Care International) laboratory in compliance with the German 

Animal Welfare Act and the effective European Council Directive. The study was approved by the 

BASF Animal Welfare Body, with the permission of the local authority, the Landesuntersuchungsamt 

Koblenz, Germany (approval number 23 177-07/G 18-3-098).  

4.2 Animals and maintenance conditions 

Male and female Wistar rats (CrI:WI(Han)) of the age group 70 ± 1 days were supplied by Charles 

River, Germany, before the beginning of the planned study. The rats (5 per sex and cage, per treatment 

group) were acclimatized for a week, in an air-conditioned room at a temperature of 20–24 °C, a relative 

humidity level of 30–70%, and a 12 h light / 12 h dark cycle. The lights were turned off from 6 PM to 

6 AM and the animals were sacrificed on day 28 of the study between 7AM to 9AM. Ground Kliba 
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mouse/rat maintenance diet “GLP” by Provimi Kliba SA, Kaiseraugst, Switzerland, was supplied for 

the feeding throughout the course of the study. Diet and drinking water were available ad libitum (except 

16–20 hours before sampling. In order to reduce any variation based on the diet consumption and as a 

standard procedure used in clinical chemistry and metabolomics, the animals were fasted overnight 

before the sample collection. Diet and drinking water were regularly assessed for chemical 

contaminants and the presence of microorganisms. 

4.3 Treatment of animals with drugs 

Tobramycin or colistin sulfate were administered daily by gavage to five rats per treatment group per 

sex (see Figure 1). The selected doses of the antibiotics were such that they were expected to induce 

gut dysbiosis. The high doses were selected to be as high as possible without inducing systemic toxicity 

and the low doses were ten times lower than the high doses30 31, 32 32. The high dose was never above 

1,000 mg/kg bw as this is the limit dose for oral administration according to OECD guidelines. Because 

there were no indications in the literature of toxicity, tobramycin was prepared in deionized water for 

oral administration at doses of 100 mg/kg body weight/day and 1000 mg/kg body weight/day 

respectively. For colistin sulfate, literature indicated that, oral administration in Wistar rats with 1000 

mg/kg bw/day dose, resulted in significant changes in organ weights and hence a No-observed-effect 

level (NOEL) was established to be 200 mg/kg bw, furthermore, in a 90-day rat day, an oral dose of up 

to 60 mg/kg bw/d of colistin had no adverse effects. Whereas, in Sprague-Dawley rats, significant 

changes in organ weights were observed at a dose of 120 mg/kg bw/day and hence a NOEL was 

established at 40 mg/kg bw/day33. Hence, in our study a high dose of colistin sulfate of 100 mg/kg 

bw/day and a ten times lower low dose of 10 mg/kg bw/day, were selected. An antibiotic suspension 

(10 ml/kg bw/day) was administered to five rats per treatment group per dose group for each sex, with 

a concurrent control group of 10 animals per sex.  
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Figure 1: Schematic representation of the study design for plasma and fecal metabolite profiling and the 
corresponding 16S bacterial community analysis of 28-day orally administered antibiotic-treated male and female 
Wistar rats. MMT refers to the in-house database MetaMapTox® that consists of toxicity data of more than 1000 
different compounds and is extensively used for metabolome data analyses.  

4.4 Clinical examination 

All the animals were checked daily for any signs of clinical signs, abnormal macroscopic findings, and 

mortalities. Standard operating procedures as described in the Organization for Economic Co-operation 

and Development (OECD) 407 guidelines were used for all clinical- and pathological examinations.  

Parameters including food consumption and body weights were determined before the start of the 

treatment administration period, in order to randomize the animals, and further on the study days 6, 13 

and 27. Food consumption was measured by weighing the food at the start of the experiment and after 

24h, and by calculating the difference between the weights of the rats before and after the 24 h period.  

 

4.5 Blood and fecal sampling for metabolite profiling 

On days 7, 14 and 28, after a fasting period of 16-20 hours, blood samples were collected between 

7:30AM and 10:30AM from the retro-orbital sinus of all the rats (including controls and all treatment 

groups) under isoflurane anesthesia (1.0 ml K-EDTA blood). Blood samples were subjected to 

centrifugation (10 °C, 2000 x g, 10 min) and the EDTA plasma was separated. These EDTA plasma 

samples were then snap-frozen with N2 and stored at −80 °C until metabolite profiling was performed. 

Feces were carefully retrieved from the rectum after gentle massaging, and when no feces were present, 

samples were then scraped from the colon during necropsy on day 28 after a fasting period of 16-20 
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hours. The samples were collected in pre-cooled (dry-ice) vials, snap-frozen in liquid nitrogen and 

stored at −80 °C until further processing for fecal dry weight measurements, DNA isolation, 16S gene 

PCR amplification and sequencing.   

4.6 DNA extraction and 16S rRNA amplicon sequencing 

Dry weights of stored fecal samples from all controls and antibiotic-treated rats were measured, 

transferred to labeled pre-cooled (dry-ice) DNA/RNA Shield-Lysis collection tubes (BIOZOL 

Diagnostica Vertrieb GmbH, Eching, Germany) avoiding excess thawing of the frozen fecal pellets. 

Fecal slurries kept on dry ice and their measured weight details were sent to IMGM® laboratories 

(Martinsried, Germany) for DNA isolation, amplicon-based 16S rRNA gene sequencing plus an 

additional qPCR assay for bacterial gDNA load quantification using an Illumina MiSeq sequencing 

platform. DNA isolation from the fecal slurries was conducted using the QIAamp Fast DNA Stool Mini 

Kit (Qiagen) followed by quantification with Qubit (ThermoFisher). In brief, 1 µl of each sample was 

used to determine the dsDNA concentration (ng/µl) in comparison to a given standard provided with 

the kit. The DNA concentration was determined by creating a linear trend line and applying the 

mathematical equation of linear regression by IMGM® laboratories. DNA was amplified using universal 

primer pair 341F/805R of the V3-V4 region of the 16S gene. An aliquot of each final PCR product 

including the positive and negative controls was run on a 2% agarose gel (Midori Green-stained) to 

analyze the quality of the generated amplicons and to evaluate the expected amplicon size. Next 

Generation Sequencing (NGS) was performed on the Illumina MiSeq® next generation sequencing 

system (Illumina Inc.) resulting in 250bp paired end reads with a minimum of 10,000 reads per sample. 

An additional bacterial DNA quantification analysis was carried out by amplification using qRT-PCR 

analysis by the VII7 System. The produced raw data were processed, de-multiplexed and went to QC 

for final report generation. The final report was then used for further bioinformatic analyses. 

4.7 Metabolite profiling of plasma and feces matrices  
 

Mass spectrometry-based metabolite profiling of blood plasma was performed by extracting metabolites 

from 60 µl rat plasma by adding 1500 µl extraction buffer (methanol, dichloromethane, water and 

toluene (93:47:16,5:1, v/v) buffered with ammonium acetate) using a ball mill (Bead Ruptor Biolab). 

Internal standards were added to the extraction mixture. After centrifugation, (15294 × g, 10min, 12°C) 

a 100 µl aliquot of the extract was subjected to LC-MS/MS. Thus, 2.5 µl of the extract were injected 

each for reversed-phase and hydrophilic interaction liquid chromatography (ZIC - HILIC, 2.1 x 10mm, 

3.5 µm, Supelco) followed by MS/MS detection (AB Sciex QTrap 6500+) using the positive and 

negative ionization mode. For reverse-phase high performance liquid chromatography (RP-HPLC, 

Ascentis Express C18, 5cm x 2.1mm, 2,7µm Supelco), gradient elution was performed with 

water/methanol/0.1 M ammonium formate (1:1:0.02 w/w) and methyl-tert-butylether/2-
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propanol/methanol/0.1M ammonium formate (2:1:0.5:0.035 w/w) with 0.5% (w%) formic acid (0 

min 100% A, 0.5 min 75% A, 5.9 min 10% A, 600 µl/min). HILIC gradient elution was performed with 

(C) acetonitrile/water (99:1, v/v) and 0.2 (v%) acetic acid and (D) 0.007 M ammonium acetate with 0.2 

(v%) acetic acid (0 min 100% C, 5 min 10% C, 600 µl/min).  

A second aliquot of the extract was mixed with water (3,75:1, v/v) resulting in a phase separation. The 

polar (upper phase, 400 µl) and lipid (lower phase, 90 µl) were used for GC analysis. Both phases were 

analyzed with gas chromatography-mass spectrometry (GC7890-5975 MSD, Agilent Technologies) 

after derivatization as described in Green et al.34. Briefly, the non-polar fraction was treated with 

methanol under acidic conditions (that is, 1mol/l HCl) to produce fatty acid methyl esters that were 

derived from both free fatty acids and hydrolysed complex lipids. The polar and non-polar fractions 

were further derivatized with O-methyl-hydroxylamine hydrochloride to convert oxo-groups to O-

methyloximes, and subsequently with a silylating agent (N-methyl-N-(trimethylsilyl) 

trifluoroacetamide). For GC analysis, 0.5 µl of the derivatized phase-separated extract were used each 

for analysis of the polar and lipid fractions. BAs analysis approach was based on a kit from Biocrates35. 

All samples were analyzed once in a randomized analytical sequence design to avoid artificial results 

with respect to analytical shifts. For GC-MS and LC-MS/MS profiling, data were normalized to the 

median of reference samples which were derived from a pool formed from aliquots of all samples to 

account for inter- and intra-instrumental variation. In plasma, 272 semiquantitative metabolites could 

be analyzed using the single peak signal of the respective metabolite and a normalization strategy 

according to the patent WO2007012643A136 resulting in ratio values representing the metabolite 

changes in treated versus control animals37. Of these 272 metabolites, the chemical structures of 246 

were identified and 26 remained unknown.  

Similarly, the stored fecal samples were subjected to a freeze-drying process. The product temperature 

and the vapor pressure at the beginning of the freeze-drying process were -40 °C and 0.120 mbar 

respectively changing to +30 °C and 0.01 mbar for a total running time of 42 h. About 10 mg of freeze-

dried rat feces were used from the controls and different antibiotic-treated animals for extraction with 

1400 µl of a mixture of methanol and dichloromethane (2:1, v/v) with formic acid (0.6 v%) including a 

stainless-steel ball for homogenization with a ball mill (Bead Ruptor Biolab). After centrifugation 

(15294 × g for 10 min @12°C, an aliquot of the extract was subjected to LC-MS/MS analysis as 

described above for the plasma metabolite analyses. As with the GC-MS method applied for plasma 

samples, 750 µl of the polar (upper phase) and 90 µl of lipid (lower phase) were used for GC analysis. 

The same LC-MS/MS method used to analyze fecal samples was used for plasma matrix. In feces, 632 

semiquantitative metabolites could be analyzed, of which the chemical structures of 348 were identified 

and 284 were unknown. 
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4.8 16S data processing 

A standardized in-house 16S marker gene sequencing data processing using DADA2 algorithm was 

used as described previously in Murali et al., 202128. The customized workflow involved data quality 

control (QC), primer removal, denoising, taxonomy assignments using the RDP classifier and creation 

of a phylogenetic tree. Forward and reverse primers were trimmed from the raw reads using cutadapt 

software. As paired-end reads were to be used for further analysis, the reads were merged to about 415 

bp length. The QC step involved checking the read lengths and the quality of the joined reads. 

Taxonomy was assigned to the individual Amplicon Sequence Variants (ASVs) using the Naïve 

Bayesian classifier implemented in DADA2 with the RDP database. This resulted in the output of a 

BIOM table with all the information regarding the sequences and abundances of ASVs and the assigned 

taxa information28. 

4.9 Statistical analysis of microbiome data 

Post-processing of the 16S marker gene data was performed for bacterial community analysis in R 

software using the RAM and Phyloseq packages38, as described previously in Murali et al., 202128. The 

processed data were checked for completeness, and empty rows were removed. The BIOM table 

contained 501535 reads belonging to 26552 ASVs from 57 samples. The raw reads were used for alpha 

diversity analysis using the group.diversity function in the RAM package. As a part of data clean-up, 

amplicon sequence variants (ASVs) or reads that did not have taxonomic assignment up to the family 

level were removed. Further, ASVs with non-zero counts in at least two samples were retained, and the 

others were removed, resulting in 436521 reads belonging to 970 ASVs. These filtered data were used 

for relative abundance analysis. Stacked bars were plotted using RAM package to determine the relative 

bacterial abundances in the different antibiotic-treated rats. Count normalization of the dataset was done 

to the sum of counts per sample. The filtered and normalized data were used for beta diversity analysis. 

Principle Coordinate Analysis (PCoA) was carried out using Bray-Curtis distances28. Differential 

abundance analysis was performed on the filtered ASV counts using the R package DESeq239. PCoA 

plots with Hotelling’s ellipses were drawn with the ggplot::stats_ellipse function with default settings 

modified from Fox et al., 201140. 

4.10  Statistical analysis of metabolome data 

Analysis of the metabolite data was performed by uni- and multivariate statistical methods. A sex and 

day-stratified heteroscedastic t-test (Welch test) was applied to compare the levels of different 

metabolites from different doses of antibiotics relative to controls for both plasma and feces matrices. 

Relative fold changes for all the metabolites were calculated as the ratio of the medians of metabolite 

levels in individual animals per treatment group to the medians of metabolite levels in individual 

corresponding control animals (for each sampling time point, dose level and sex). These ratios are 

referred to as relative fold change levels. Computational work was conducted using standardized scripts. 
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Finally, the relative fold change values, p- and t-values of metabolites were uploaded as metabolite 

profiles and made available on the in-house database MetaMapTox® (or MMT)41-43. For the 

multivariate analysis of these profiles, the data were log-transformed, centered, and scaled by unit 

variance for each metabolite and then used for Principal Component Analysis (PCA). Any missing data 

present were imputed using the nearest neighbor method implemented in function impute.knn from the 

R package impute28. PCA analysis was performed in R Statistical software28. Treatment related effects 

were evaluated on MMT using the standardized procedure of comparing resulting metabolite levels of 

different antibiotics against the control group42. 

5. Results  
 

5.1  Body weight and food consumption is not largely altered by tobramycin or colistin 
sulfate 

Tobramycin was orally administered at doses of 100 mg/kg body weight/day (LD) and 1000 mg/kg 

body weight/day (HD) and the doses selected for colistin sulfate for oral administration was 10 mg/kg 

body weight/day (LD) and 100 mg/kg body/day weight (HD) respectively. No mortalities were noted 

in any of the treatment groups. The male animals which received the HD of tobramycin showed clinical 

toxicity, that is, soft feces, whereas no clinical signs of toxicity were observed for the animals treated 

with colistin sulfate. All animals treated with tobramycin HD showed also a discoloration in the kidneys 

at necropsy. Body weight development and food consumption were not affected by any treatment except 

for the tobramycin HD group in which a reduced BW gain (not significant) of male rats at day 13 was 

observed (Figure 2, Table S1). 

(A)                                                                              (B) 
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(C)                                                                              (D) 

 

Figure 2: Plots representing food consumption (in grams) and body weight (in grams) of the controls and different 
antibiotics treatment groups on days 0, 6, 13 and 27, in male (A, C) and female (B, D) animals, respectively. 
Changes in body weight and food consumption could be compared with control group and baseline values at day 
0. The differences were not statistically significant. LD means low dose and HD means high dose groups. 

5.2 Tobramycin, but not colistin sulfate, induces large shifts in bacterial communities  

Shannon true diversity of the fecal microbiota of samples from the different antibiotic treatments was 

compared to controls for both dose groups and sexes (see Figure 3). Shannon true diversity indicates 

the diversity of different bacterial taxa present in a specific treatment, as a key index reflecting the 

species richness of a particular ecosystem28. The alpha diversity in the control groups in both male and 

female rats were similar. However, a reduction in the variability in the samples of the tobramycin groups 

was noted, except for the LD group in female animals. Dose-dependent differences were marginal and 

less apparent in the colistin- vs tobramycin-treated animals. 

 

Figure 3: Shannon true diversity analysis of tobramycin and colistin sulfate treatments for both male and female 
Wistar rats.  The colors show different dose groups, where blue refers to the high (HD), green to the low dose 
(LD) and red refers to the control diet group.  
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Having established alterations in the microbial communities of the individual samples by alpha diversity 

analysis, we probed the diversity changes from one environment (treatment) to another by beta diversity 

analysis using a rank-based Principal Coordinate Analysis (PCoA) using a non-phylogenetic distance 

matrix called Bray-Curtis distance. By comparing the non-phylogenetic distance-based rank PCoA 

analyses of the bacterial taxa present in samples from controls and antibiotic treatments, we observed a 

clear separation of the tobramycin treatment group from control (Figure 4). While the colistin group 

separated in a dose-dependent manner from the control cluster on Principal component 1 (PC1), the 

separation was weak compared to the tobramycin treatment. These observations are consistent with the 

broad-spectrum activity of tobramycin. PCoA plots with Hotelling ellipses for both males and females 

separately show a clear separation between the groups (see Figure S5).  

 
 

Figure 4: Principal Coordinate Analysis (PCoA) of bacterial families from controls and different antibiotic 
treatments using Rank-based clustering with Bray–Curtis distance matrix. Dark grey points indicate samples from 
controls, while samples from tobramycin high (HD) and low (LD) dose groups are indicated in dark and light 
green, respectively and those from colistin HD and LD are indicated in dark and light blue colors, respectively, 
where dots represent samples from female rats and triangles from males. 
 
By relative abundance analysis, we analyzed the distribution of major microbial taxa in each community 

and identified variations for both antibiotic treatments (Figure 5). For tobramycin, consistent with the 

alpha diversity analysis, the bacterial families were significantly different than controls whereby 

Lachnospiraceae, Porphyromonadaceae, Prevotellaceae, Bacteroidaceae and Erysipelotrichaceae 

were present in all cases, and females treated with LD tobramycin exceptionally included also 

Ruminococcaceae. To understand in more detail the specific bacterial taxa associated with the treatment 

that were either significantly abundant or rare, we also performed a differential abundance analysis 

using the DESeq2 package. As evident from Log2FC (log2 fold change) values for bacterial families 

(Figures 6A and 6B), there were clear changes in specific bacterial families after tobramycin treatment. 

These were consistent for both dose levels and were characterized by a substantial reduction in 
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Anaeroplasmataceae and Peptococcaceae and an increase in Prevotellaceae and Erysipelotrichaceae. 

Slight reductions in Ruminococcceae and Rikenellaceae could also be observed in samples from both 

the dose groups of tobramycin-treated male and female rats.  

 

Figure 5: Relative abundance stack bar plot of bacterial families that were detected in samples from controls and 
all antibiotic treatment groups. Inter-individual variability in the 16S bacterial abundances can be easily observed. 
Clear antibiotic-specific effects were observed on the intestinal community composition. Most individual control 
animals had higher levels of Verrucomicrobiaceae family, whereas these were absent in one female and two male 
control animals out a total of twenty control animals. LD means low dose and HD means high dose groups. 

For colistin, results were similar to controls, however there was a pronounced exception: Most 

individual control animals had higher levels of Verrucomicrobiaceae family bacteria, whereas these 

were absent in the colistin treatment groups. Verrucomicrobiaceae were also absent in one female and 

two male control animals out a total of twenty control animals. Furthermore, relative abundance analysis 

of a much larger sample size with data that was not used in this publication (Figure S1) suggests highly 

irregular and unexplainable occurrences of Verrucomicrobiaceae families in certain fecal samples from 

controls and antibiotic-treated animals. In the differential abundance analysis (Figure 6A), this 

consistent treatment-associated reduction of the Verrucomicrobiaceae family was pronounced, with an 

almost 2.3-fold (or ca. 60%) reduction on average. Notably for the tobramycin-treated animals, there 

also was a significant reduction in the Verrucomicrobiaceae family however this significant reduction 

was in addition to several reductions in the abundances of other previously mentioned bacterial families. 

Finally, in contrast to males, samples from females treated with HD or LD colistin had slightly increased 

numbers of Anaeroplasmataceae. Overall, the alterations in abundances of specific families of bacteria 
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were antibiotic-specific, influenced to some extent by drug concentrations and sex, and the 

Verrucomicrobiaceae was particularly sensitive to both drugs, but with large interindividual variability.  

(A) (B) 

  
 

Figure 6: Differential abundances in dominant bacterial families in the low (LD) and high (HD) dose groups of 
tobramycin and colistin sulfate antibiotic treatments relative to controls in males (A) and females (B). Differential 
abundance analysis using log2FC (log2 fold change) values of bacterial families in samples from male and female 
rats of specific treatments relative to controls was performed 

5.3 Tobramycin strongly alters fecal metabolomes   

Given the significant changes observed by 16S compositional analysis of fecal samples for tobramycin 

but not colistin, we anticipated that metabolite profiles in the feces of tobramycin-treated animals would 

be extensive. Indeed, PCA plots of the fecal metabolome profiles of controls and antibiotic-treated 

groups indicated a strong separation of the tobramycin group from both control and colistin clusters for 

both sexes (Figures 7A and 7B). The PCAs provide a bird’s eye perspective of the effects of the two 

antibiotics on fecal metabolomes for both dose levels and in both sexes. Clear effects of tobramycin 

were observed in the fecal metabolome. However, regarding colistin, the data points of the fecal 

metabolome overlap with the controls, indicative of a substantial similarity. 
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(A) Males (B) Females 
 

Figure 7: Principal component analysis (PCA) of the fecal metabolome profiles of controls and antibiotic 
treatments.  PCA for male Wistar rats at day 28 of the study (A) and for females (B). The data points are sized by 
the PC3 value. PCAs were plotted with the feces metabolome data of controls (in red), colistin treatment (in blue) 
and tobramycin treatment (in green). The low dose groups of both the antibiotics are indicated by triangles and 
high dose groups by circles. 

Out of 621 different fecal metabolites measured in the samples from control and antibiotic-treated 

groups at day 28 of the study, about 350 metabolites significantly changed upon tobramycin HD 

treatment in both sexes. This included metabolites predominantly belonging to amino acids and related 

class. Specific metabolites like taurine, succinate and creatinine show strong increase in tobramycin-

treatment group compared to controls in both sexes (see Supplementary table S2). 

5.4 Tobramycin causes significant changes in the fecal metabolites specifically the bile acids 

Given the sheer amount of metabolite changes and because the effect of bile acid class was observed to 

be the strongest, here we focused on important metabolites strongly associated with the microbiome-

related bile acids (BAs). However, we observed not only many BAs being changed following 

tobramycin treatment - 16 of 22 BAs in feces of tobramycin HD were significantly increased or 

decreased for the tobramycin-treated females of both dose groups (p value < 0.05). For the male rats 

treated with HD tobramycin, of 22 BAs measured from the feces, about 14 were significantly changed, 

irrespectively of the direction of change at p value < 0.05 (see Table 1B). Fecal 1° BAs including CA, 

CDCA, α- and β-MCA were significantly increased in both sexes (Table 1A and 1B). Further, an 

increase in the taurine conjugated 1° BAs could be seen whereas glycine conjugated 1° BA, GCA, were 

significantly decreased. On the other hand, 2° BAs including conjugated 2° BAs were consistently 

decreased in the feces of tobramycin-treated females. Further, the 2° BAs including the conjugated 2° 

BAs are consistently decreased in the feces of tobramycin treated animals in both sexes. Overall, the 
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fecal metabolome of tobramycin-treated animals appeared to have strongly and significantly changed 

compared to the control group, which included significant changes in the BAs.  

Table 1: Tobramycin-induced bile acid metabolite level fold changes in feces of (A) female (f) and (B) male (m)  
Wistar rats. 

(A) 

    
Tobramycin 

HDc 
Tobramycin 

LDc 

Metabolite Class f28 f28 
α-Muricholic Acid (αMCA) 1° BAa 2.39 2.90 
β-Muricholic Acid (βMCA) 1° BA 6.01 9.30 
Chenodeoxycholic acid (CDCA) 1° BA 9.60 6.60 
Cholic acid (CA) 1° BA 92.87 9.75 
Glycocholic acid (GCA) Glycine conjugated 1° BA 0.30 0.75 
Tauro-β-muricholic Acid (TβMCA) Taurine conjugated 1° BA 12.18 21.03 
Taurochenodeoxycholate (TCDCA) Taurine conjugated 1° BA 2.14 2.00 
Taurocholic acid sodium salt (TCA) Taurine conjugated 1° BA 6.12 4.15 
Deoxycholic acid (DCA) 2° BAb 0.00 1.14 
Hyodeoxycholic acid (HDCA) 2° BA 0.00 0.03 
isoLCA 2° BA 0.02 0.38 
Lithocholic acid (LCA) 2° BA 0.00 0.31 
ω-Muricholic Acid (ωMCA) 2° BA 0.05 0.52 
Glycolithocholic Acid (GLCA) Glycine conjugated 2° BA 0.07 0.24 
Taurodeoxycholate (TDCA) Taurine conjugated 2° BA 0.14 24.07 
Taurolithocholic Acid (TLCA) Taurine conjugated 2° BA 0.06 5.16 

Cholesterol, total 
Complex lipids, fatty 
acids and related 4.15 4.02 

 
(B) 

    
Tobramycin 

HDa 
Tobramycin 

LDa 

Metabolite Class m28 m28 
Cholic acid 1° BA 87.02 3.91 
Chenodeoxycholic acid 1° BA 12.41 3.88 
Taurocholic acid sodium salt  Taurine conjugated 1° BA 6.28 2.42 
Tauro-β-muricholic Acid Taurine conjugated 1° BA 4.39 11.88 
Taurochenodeoxycholate Taurine conjugated 1° BA 2.43 1.80 
Deoxycholic acid  2° BA 0.00 1.24 
Lithocholic acid 2° BA 0.00 0.56 
Hyodeoxycholic acid 2° BA 0.00 0.02 
ω-Muricholic Acid 2° BA 0.05 0.20 
isoLCA 2° BA 0.02 0.41 
Glycolithocholic Acid Glycine conjugated 2° BA 0.27 0.63 
Glycodeoxycholate  Glycine conjugated 2° BA 0.08 0.43 
Taurolithocholic Acid Taurine conjugated 2° BA 0.19 12.09 
Taurodeoxycholate Taurine conjugated 2° BA 0.04 19.86 
Cholesterol, total Complex lipids, fatty acids and related 4.13 4.57 
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a Wistar rats (N=5 per group) treated with tobramycin (100 (LD) and 1000 (HD) mg/kg bw/day) for 28 days (f28 
or m28). Statistically significant changes (Welch-t-test; p value < 0.05) are shown in bold numbers where red 
boxes mean an increase in the respective fecal bile acids. 

 
5.5 Colistin sulfate induces only marginal changes in the fecal metabolites including bile acids 

Out of 621 fecal metabolites measured, the metabolite patterns of the colistin HD treated female, but 

not male, animals revealed significant changes in only about 10% of the metabolites, including amino 

acids, lipids, bile acids and related, compared to the control group. (see Table S3 for complete list). 

Amongst BAs, there were only three significant changes (Table 2, p value < 0.05) and the magnitude 

of change was minor compared to the tobramycin treatment group. Finally, there were not many altered 

fecal metabolites upon colistin treatment, which is consistent with the PCA analysis, and the notion that 

this antibiotic has a minimal effect on the fecal metabolome. 

Table 2: Colistin sulfate-induced few bile acid metabolite level fold changes in feces of female (f) Wistar rats. 

    Colistin HDa Colistin LDa 

Metabolite Class f28 f28 
α-Muricholic Acid 1° BA 2.38 2.30 
ω-Muricholic Acid 2° BA 2.37 2.37 
Hyodeoxycholic acid 2° BA 0.18 0.46 

a Female Wistar rats (N=5 per group) treated with tobramycin (100 (LD) and 1000 (HD) mg/kg bw/day) for 28 
days (f28). Statistically significant changes (Welch-t-test; p value < 0.05) are shown in bold numbers where red 
boxes mean an increase in the respective fecal bile acids. 

 
5.6 Plasma metabolome analyses show clear effects of tobramycin treatment 

To understand potential systemic influences of drug-induced microbiome shifts, plasma metabolome 

profiles were characterized using the same method as for the fecal metabolomes. Moreover, we could 

expand the evaluation to include temporal dynamics by sampling blood on days 7, 14 and 28 of the 

study. Thus, on analyzing the PCA plots of the plasma metabolome profiles (including plasma bile 

acids) of controls and antibiotic-treated groups (Figure 8A), we observed a strong separation of the 

tobramycin group in PC2 vs. PC3 from controls and colistin, however, this took time to develop and 

was evident at day 28 (Figures 8A and 8B) but not days 7 or 14 (Figure S4). The separation of the 

tobramycin group in PC1 vs. PC2 was not as clear as in PC2 vs. PC3, and for the colistin sulfate group 

there was simply nothing separated out (Figure S3). Therefore, consistent with the fecal metabolome 

data, tobramycin has a uniquely strong functional influence, compared to colistin, on the plasma 

metabolome.  
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(A) Day 28, males (B) Day 28, females 
Figure 8: Principal component analysis (PCA) of the blood plasma metabolome profiles of controls and antibiotic 
treatments. The figure includes PCAs for samples from male Wistar rats (A) at day 28 of the study and PCAs for 
samples from female Wistar rats (B) at day 28 of the study. Principal component 2 (PC2) vs PC3 is shown here. 
The sample points are sized by the PC3 value. PCAs were plotted with the blood plasma metabolome data of 
controls (in red), colistin treatment (in blue) and tobramycin treatment (in green). The low dose groups of both 
the antibiotics are indicated by triangles and high dose groups by circles. 

5.7 Tobramycin causes significant changes in the plasma metabolites including the key gut 
microbiome biomarkers and bile acids 

Following the observation by PCA analysis of diverse plasma metabolite alterations in both tobramycin 

treatment groups, a more in-depth analysis of the most significantly changed (p value < 0.05) plasma 

metabolites including amino acids, carbohydrates, fatty acids, BAs and their derivatives was conducted 

(Tables 3(A) and (B)). Indole derivatives (indole-3-acetic acid, indole-3-proprionic acid and 3-

indoxylsulfate) and hippuric acid were significantly reduced by HD tobramycin (Table S5). These were 

established as key metabolites associated with a gut-dysbiosis in a previous study of lincosamide 

antibiotics administration, where the levels of these plasma metabolites were strongly and significantly 

reduced when compared to the samples from control animals in both sexes and dose groups27. A higher 

number of different classes of plasma metabolites was changed in the tobramycin HD group of male 

rats than females. In males, too, a significant regulation in the key metabolites including indole-3-

propionic acid and hippuric acid was noted (see Supplementary table S6).  

Table 3: Tobramycin-induced blood plasma bile acid level fold changes of (A) female (f) and (B) male (m) Wistar 
rats. 

(A) 

    Tobramycin HDa Tobramycin LDa 

Metabolite Class f7 f14 f28 f7 f14 f28 

Glycocholic acid Glycine conjugated 1° 
BA 0.91 0.34 0.35 1.35 0.32 0.62 

Glycochenodeoxycholic 
acid 

Glycine conjugated 1° 
BA 1.64 0.20 0.38 3.12 0.14 0.35 

Tauro-β-muricholic 
Acid 

Taurine conjugated 1° 
BA 2.60 1.77 1.62 1.16 1.42 1.20 

Deoxycholic acid  2° BA 0.01 0.00 0.00 0.31 0.43 0.15 
Lithocholic acid 2° BA 0.03 0.02 0.02 0.18 0.31 0.04 
Hyodeoxycholic acid 2° BA 0.06 0.00 0.00 0.03 0.02 0.01 
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ω-Muricholic Acid 2° BA 0.21 0.01 0.00 0.39 0.16 0.16 
isoLCA 2° BA 0.27 0.20 0.20 0.42 0.42 0.11 

Glycolithocholic Acid Glycine conjugated 2° 
BA 0.14 0.07 0.08 0.16 0.17 0.33 

Glycodeoxycholate  Glycine conjugated 2° 
BA 0.06 0.03 0.04 1.12 0.30 0.20 

Glycoursodeoxycholic 
acid  

Glycine conjugated 2° 
BA 2.37 0.71 1.94 3.08 1.35 1.32 

Taurolithocholic Acid Taurine conjugated 2° 
BA 0.01 0.02 0.01 0.18 0.19 0.23 

Tauroursodeoxycholic 
Acid 

Taurine conjugated 2° 
BA 1.74 14.18 9.57 1.49 5.09 2.12 

Taurodeoxycholate Taurine conjugated 2° 
BA 0.00 0.00 0.00 0.48 1.13 0.39 

 

(B) 

    Tobramycin HDa Tobramycin LDa 

Metabolite Class m7 m14 m28 m7 m14 m28 
α-Muricholic Acid 1° BA 0.19 0.13 0.30 0.42 0.47 0.12 
Deoxycholic acid  2° BA 0.00 0.00 0.00 0.12 0.11 0.43 
Lithocholic acid 2° BA 0.01 0.10 0.08 0.11 0.08 0.3 
Hyodeoxycholic acid 2° BA 0.01 0.00 0.00 0.01 0.00 0.01 
ω-Muricholic Acid 2° BA 0.15 0.03 0.00 0.08 0.01 0.03 
isoLCA 2° BA 0.03 0.10 0.53 0.03 0.28 0.49 
Glycodeoxycholate  Glycine conjugated 2° BA 0.00 0.00 0.00 0.31 0.19 0.09 
Taurolithocholic Acid Taurine conjugated 2° BA 0.01 0.02 0.08 0.03 0.06 0.42 
Taurodeoxycholate Taurine conjugated 2° BA 0.00 0.01 0.00 0.14 0.28 1.31 

a Metabolite fold changes in plasma bile acids of Wistar rats (N=5 per group) dosed with tobramycin (100 (LD) 
and 1000 (HD) mg/kg bw/day) for 7, 14 and 28 days (f7, f14 and f28 or m7, m14 and m28). Statistically significant 
changes (Welch-t-test; p-value < 0.05) are shown in bold numbers where red boxes mean an increase and yellow 
boxes mean a reduction in the respective plasma bile acids 

Out of 22 BAs measured from the blood plasma of tobramycin HD treated female rats, 14 were 

significantly changed relative to controls (see Table 3A). A HD-specific response on the BAs could be 

observed in tobramycin-treated female rats, which showed a significant reduction in the 2° BAs 

including DCA, LCA, ωMCA reducing them to very low levels. A significant increase in taurine-

conjugated primary BA including TβMCA could be observed. Glycine-conjugated 1° and 2° BAs also 

showed a significant reduction in the HD group in females. Overall, an accumulation of taurine-

conjugated 1° BAs and a significant reduction in 2° BAs could be observed in the blood plasma of 

tobramycin-treated female rats. 

Out of 22 measured plasma BAs from samples from tobramycin HD treated male rats, 9 showed 

significant alteration compared to controls (see Table 3B). Consistent to females, a significant reduction 

in the 2° BAs and conjugated 2° BAs including DCA, LCA, ωMCA and their conjugated forms could 

be observed. Additionally, taurine conjugated BAs are also significantly decreased, including TLCA 

and TDCA in males. However, unlike females, males did not have any significant changes in the plasma 

glycine conjugated BAs, except for GDCA, which is observed to be significantly decreased in 

tobramycin HD group in males. Overall, these changes in the plasma BAs showed a clear dose-response 

relationship. 
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5.8 Colistin sulfate induces only marginal changes in the plasma metabolites including bile 
acids 

By in-depth analysis of significantly changed plasma metabolites resulting from treatment with colistin, 

amino acids, carbohydrates, fatty acids and related metabolites were evident for LD and HD treated 

animals, but nonetheless, the number of altered metabolites was lower in blood plasma than had been 

observed for the corresponding fecal metabolomes. The list of significantly changed metabolites also 

included one of the known key metabolites that are associated with an altered microbiota – Indole-3-

acetic acid – that was observed to be significantly decreased compared to controls. Unlike tobramycin, 

not many (~ 10% significantly changed metabolites at p value < 0.05) plasma metabolites are strongly 

altered in the colistin-treated females (Table S7). 7 out of 22 measured plasma BAs from colistin HD 

treated female rats were significantly changed relative to controls (see Table 4A). A clear dose-

dependent effect could be observed as in the LD group only one BA was changed at a single time point. 

The altered BAs exhibited significant reduction in the 7 and 14 colistin HD groups but at day 28, the 

effect was insignificant, except for Hyodeoxycholic acid, the most sensitive BA. Overall, the effect of 

this antibiotic on BA metabolism in female animals is weak compared to tobramycin and minimal 

antibiotic effects could be observed on the typical gut associated BA metabolites in females. 

Table 4: Colistin-induced plasma bile acid level fold changes of (A) female (f) and (B) male (m) Wistar rats. 

(A) 

    Colistin HDa Colistin LDa 

Metabolite Class f7 f14 f28 f7 f14 f28 
α-Muricholic Acid 1° BA 0.27 0.19 1.17 0.39 0.91 1.37 
Taurocholic acid sodium salt  Taurine conjugated 1° BA 2.33 2.09 1.23 0.82 1.09 0.93 
Hyodeoxycholic acid 2° BA 0.20 0.04 0.14 0.33 0.45 0.53 
Taurodeoxycholate Taurine conjugated 2° BA 2.53 1.98 1.14 1.04 1.15 1.34 

 

(B) 

    Colistin HDa Colistin LDa 

Metabolite Class m7 m14 m28 m7 m14 m28 
ω-Muricholic Acid 2° BA 0.10 0.20 0.71 0.24 0.16 0.83 

a  Metabolite fold changes in plasma bile acids of Wistar rats (N=5 per group) dosed with colistin (10 (LD) and 
100 (HD) mg/kg bw/day) for 7, 14 and 28 days (f7, f14 and f28 or m7, m14 and m28). Statistically significant 
changes (Welch-t-test; p-value < 0.05) are shown in bold numbers where red boxes mean an increase and yellow 
boxes mean a reduction in the respective plasma bile acids. 

On the other hand, the majority of the significantly changed metabolites in HD colistin-treated males 

belong to amino acids, carbohydrates, energy metabolism and related classes. None of the previously 

established key metabolites associated with antibiotic treatment were altered in the colistin-treated 

males unlike females (see Supplementary Table S8). In males treated with colistin HD, out of 22 

measured plasma bile acids, only 1 BA, ωMCA (see Table 4B), was found to be significantly reduced 
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on days 7 and 14 of both doses, whereas the effect was not significant at day 28. Overall, only minimal 

effects on the BAs, if any, were observed in the colistin groups in both sexes. 

5.9 Comparative analysis of fecal and plasma metabolome profiles 

By comparing plasma vs fecal metabolome data, it was evident that for the fecal metabolome, there 

were strong metabolite alterations induced by especially tobramycin treatment, including a dose-

response relationship (HD > 55% of all measured metabolites were significantly changed, LD ca. 38%, 

Table 5), but that these alterations were highly dampened in the plasma metabolome (Table 5). 

Moreover, despite the profound difference between in fecal metabolite profiles arising from tobramycin 

vs. colistin treatment, the plasma metabolites from both were quantitatively almost the same. The 

similarity in plasma metabolomes suggests that some systemic metabolic effects may arise independent 

of the microbiome. 

Table 5: Percentages of total number of significantly changed metabolites in plasma (light blue) and feces (light 
orange) resulting from tobramycin treatment at (A) high (HD) or (B) low dose (LD) and from colistin treatment 
at (C) HD or (D) LD respectively.  

(A) 
Tobramycin HD, males* Tobramycin HD, females* 

Plasma Feces Plasma Feces 
7d 14d 28d 28d 7d 14d 28d 28d 

% of total sig. changed 
metabolites 16.55 27.03 15.2 55.95 21.28 22.63 13.85 58.04  

(B) 
Tobramycin LD, males* Tobramycin LD, females* 

Plasma Feces Plasma Feces 
7d 14d 28d 28d 7d 14d 28d 28d 

% of total sig. changed 
metabolites 13.85 15.54 9.12 39.71 16.89 14.53 13.18 37.14 

*p value < 0.05  
 
6 Discussion 
We investigated how tobramycin and colistin sulfate, two antibiotics of different classes, alter the 

intestinal (fecal) microbiota community composition and how these changes are associated with 

changes in the fecal and plasma metabolomes of male and female Wistar rats in a 28-day oral study. 

Major findings of our research include the following: (1) Tobramycin altered gut composition and 

strongly reduced bacterial diversity. (2) Tobramycin significantly changed the fecal metabolome, 

  Colistin sulfate HD, males* Colistin sulfate HD, females* 
(C) Plasma Feces Plasma Feces 
  7d 14d 28d 28d 7d 14d 28d 28d 
% of total sig. changed 
metabolites 17.9 19.26 7.43 9.65 9.46 15.2 10.13 10.29 

(c) 
Colistin sulfate LD, males* Colistin sulfate LD, females* 

Plasma Feces Plasma Feces 
7d 14d 28d 28d 7d 14d 28d 28d 

% of total sig. changed 
metabolites 16.22 10.13 5.74 10.93 12.5 9.46 8.45 10.29 
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particularly the BAs, indicating reduced bacterial deconjugation and dehydroxylation reactions which 

potentially are a result of bacterial dysbiosis induced by the antibiotic. (3) Colistin had comparatively 

less influence on the gut composition, without clear changes in bacterial diversity. (4) Colistin had 

minimal effects on the fecal metabolome, suggesting no change in the gut. And (5) additionally, 

tobramycin, but not colistin, altered levels of plasma biomarkers known to be connected to microbiome 

shifts, such as hippuric acid and indole derivatives. 

6.1 Microbiome analysis 

The tobramycin-treated groups stood out from the colistin-treated groups in terms of alpha and beta 

diversity, demonstrating a reduction in the 16S bacterial diversity and indicating that the LD of 

tobramycin was already enough to substantively perturb the gut microbiota of male and female Wistar 

rats. All investigated phyla, except for families belonging to phyla Firmicutes (Lachnospiraceae and 

Erysipelotrichaceae) and Bacteroidetes (Prevotellaceae and Bacteroidaceae), were reduced by 

tobramycin, consistent with its broad-spectrum anti-bacterial activity against various Gram-negative 

and some Gram-positive bacteria23. With colistin, on the other hand, there was higher bacterial diversity 

particularly in females. The increase is consistent with a previous report by Guo et al., who also 

observed higher diversity in the microbiota communities of samples from 30-day old piglets fed with 

basic diet supplemented with 20 g colistin sulfate per day. These data suggest  colistin may induce 

expression of antibiotic resistance genes44. Interestingly, only in one specific family was reduced by 

colistin, namely the Verrucomicrobiaceae. Moreover, Bray-Curtis based beta diversity analysis 

confirmed that the changes were related to this reduction of the Verrucomicrobiaceae. However, there 

was also Verrucomicrobiaceae family in selected control animals, suggesting potential high inter-

individual differences, which has been reported previously also for rabbits45. Finally, when 

Verrucomicrobiaceae was excluded from the relative abundance and alpha diversity analyses, it was 

apparent that for moth classifiers, bacterial families in the samples from controls and colistin were 

similar, but the tobramycin groups were different (Figure 9). 
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(A)                                                                   (B) 

 
 
 

Figure 9: Stacked bar plot showing relative abundances of bacterial families excluding Verrucomicrobiaceae (A) 
and Alpha diversity plot (B) of samples from controls and all antibiotic groups. Tobramycin-specific effects were 
observed on the intestinal community composition. LD means low dose and HD means high dose groups. 

6.2 Metabolome Analysis 

6.2.1  Tobramycin treatment 

The substantial effects of tobramycin on the gut composition are well reflected in fecal metabolome 

profiles, such that of 621 measured fecal metabolites, for the HD, about 56% and 58% of metabolites 

were significantly changed, and for the LD about 40% and 37% were changed for male or female rats, 

respectively, relative to control. Amongst these, we evaluated bile acids in detail as they have a well-

known strong association with intestinal bacteria and well-characterized transformation relationships 

(Figure 10). Thus, 1° BAs (cholic acid, CA and chenodeoxycholic acid, CDCA) are synthesized in the 

liver from cholesterol and are conjugated with either taurine (T) or glycine (G), thereby gaining their 

amphiphilic properties, before they are further secreted into the bile and finally into the small intestine 

to promote lipid absorption46, 47. BAs (about > 95%) are actively reabsorbed in the ileum while a 

minority manages to escape reabsorption, reaching the colon followed by excretion47. When reaching 

the intestine, 1° BAs are further metabolized by unique microbial enzymes to unconjugated forms, 2° 

and 3° BAs acids (such as deoxycholate (DCA), tauro- and glycodeoxycholate (GDCA, TDCA), ω-

muricholate (ω-MCA), hyodeoxycholate (HDCA), ursodeoxycholate (UDCA), tauro- and 

glycoursodeoxycholic acid (TUDCA, GUDCA), lithocholate (LCA), tauro- and glycolithocholic aicd 

(TLCA, GLCA))47, 48. Bacterial bile salt hydrolase (BSH) enzymes modify BAs by cleaving the peptide 

linkage between the amino acid (T or G) and the 1° bile acids. Furthermore, certain microbes, 

predominantly anaerobes, possess a 7α-dehydroxylation activity to further convert 1° BAs into 2° BAs. 

The BAs can enter the enterohepatic circulation via active or passive transport, are recycled and re-

conjugated in the liver, and then re-excreted into the bile and the intestine28, 47, 48. 
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In all tobramycin-induced fecal metabolomes, 1° BAs, such as CA and TCA, as well as taurine- and 

glycine-conjugated 1° BAs increased. On the other hand, tobramycin induced a consistent strong 

reduction in 2° BAs, specifically DCA, HDCA and LCA. Together, these effects are consistent with a 

lack of utilization of 1° BA to produce 2° or 3° BAs. Additionally, gut bacteria are known to deconjugate 

taurine- or glycine-conjugated 1° BAs and further dehydroxylate them to produce 2° BAs. This 

inhibitory effect was also observed in vitro49, supporting that tobramycin significantly reduced those 

bacteria  responsible for these reactions. Taurine- and glycine-conjugated 2° BAs are also reduced in 

the feces of both the sexes, demonstrating the attenuation of 2° BAs conjugation with taurine or glycine 

amino acid. The accumulation of taurine conjugated 1° BAs in the fecal samples of tobramycin-treated 

male and female rats shows that the deconjugation of these taurine-conjugated 1° BAs is reduced in 

these treatment groups. Moreover, the profound increase in TCA appears to be related not only to 

reduced deconjugation but is also associated with reduced passage through the intestinal wall mediated 

by downregulation of genes coding for bile acid transporters49. Finally, the 1° BA fecal accumulation 

appears to be a robust characteristic response of microbiome disruptions, as it has been observed also 

for other antibiotics, such as clindamycin, lincomycin, and vancomycin27, 37 and this has been seen in 

other situations such as in disease states like cancer, lupus, non-alcoholic fatty liver disease, cirrhosis 

and many others50. 

 

Figure 10: Host and gut microbiota-mediated bile acid metabolism in rodents. The schematic diagram shows red 
boxes for bile acids that are primarily synthesized in the liver and/or enter into the liver via the enterohepatic 
circulation (portal vein), brown boxes for 2° BAs that are produced from the 1° BAs by the gut microbiota and 3° 
BAs, and other residual bile acids enter the ileum. 95% of these conjugated and/or unconjugated 1°, 2° and 3° 
BAs are reabsorbed from the GI walls and re-enter the liver via enterohepatic circulation to stabilize the bile acid 
pool. Figure adapted from Murali et al. 202128.  

Given the strong effects of tobramycin on fecal 16S composition metabolic functions, it was interesting 

to find by ordination analysis of changes in the blood plasma metabolites that previously established 
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plasma metabolites known to be associated with perturbations in the gut microbiome were altered, but 

that the fold-change levels were moderate. Thus, hippuric acids and indole derivatives (incl. indole-3-

acetic acid, indole-3-propionic acids and 3-indoxylsulfate) and glycerol were significantly reduced in 

both sexes, however, these fold-changes were lower than observed previously for vancomycin and 

lincosamide antibiotic treatments20, 28, 48. Other important metabolites, such as plasma bile acids, also 

showed concordant findings between fecal and plasma metabolomes, including significant reductions 

in 2° BAs (DCA, LCA and HDCA were all very low in the HD tobramycin groups). These observations 

are consistent with reduced levels of these 2° BAs result from reduced deconjugation by gut bacteria. 

Finally, glycine- and taurine-conjugated 2° BAs were likewise significantly reduced in the plasma of 

the tobramycin groups. Thus, tobramycin is not only changing the fecal 16S composition but also the 

fecal metabolome and subsequently, the plasma metabolome, hereby indicating a strong influence on 

the gut metabolic functionality. The major mechanism observed was the disturbance in the 

enterohepatic circulation of the BAs via reduced production of 2° BA and higher accumulation of the 

conjugated 1° BAs. This is in line with already observed findings of other antibiotics belonging to 

aminoglycosides, fluoroquinolones and lincosamides28, 37.  

The MetaMapTox® or MMT database was used to compare the plasma metabolome profile of 

tobramycin with all other compounds in the database, following the standard protocol as published by 

van Ravenzwaay et al.19, 51, 52. The database consists of metabolite profiles of several thousand 

compounds including more than thousand chemical entities indicative for toxicological modes of action. 

The top matches (applying the 95th percentile cut-off) included other antibiotics belonging to classes 

including aminoglycosides and carbapenems (Table S4). Based on these analyses, a threshold value of 

0.40 of Pearson's correlation coefficient for male animals and 0.50 for female animals displays 

approximately the 95th percentile of all correlation coefficients obtained by the profile comparison41, 52. 

In males, the plasma metabolome profile of the tobramycin HD treatment correlated strongly with that 

of other aminoglycosides antibiotics and with that in females treated with antibiotics belonging to the 

carbapenems. The results indicate that antibiotics, even if they have a different mode of action, form a 

specific and selective group of compounds with respect to their effects on the plasma metabolome. The 

lesser the absorption of these antibiotics in the gut, the lesser is their impact on the host plasma 

metabolomes. In specific, the host plasma metabolite profile is dependent on the bactericidal/-static 

efficacy spectrum of the antibiotic, its bioavailability, and consequently its potential systemic effect. 

We also used the MMT database to compare the plasma metabolome of HD tobramycin-treated animals 

with more than 110 pre-defined patterns for toxicity including various types of liver and kidney toxicity, 

but found no association19, 41, 42, 53.  The ability of the metabolomics in combination with the MMT 

database to detect various forms of liver toxicity has shown by54, 55 55, and for the kidney by56. 

Additionally, no clinical observations were seen in any of the tobramycin treated groups. For the 

tobramycin HD group, plasma creatinine levels were also overall not relevantly altered (data not 
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shown), indicating a lack of potential kidney-associated toxicity. The fact that consistent changes in 

plasma metabolite patterns emerged amongst the antibiotics, suggests plasma metabolome profiling as 

a strategy to identify and characterize substances that may have gut microbiome-altering properties.  

6.2.2 Colistin sulfate treatment 

Taking into account the marginal effects of colistin on the microbiome composition, and the absence of 

an effect on the fecal metabolome, it appears that this antibiotic does not alter the gut microbiome 

functionality at the doses assessed. This is likely related to an intrinsically reduced activity of colistin 

rather than attributable to differences in the doses of the drug since the LD level of tobramycin (100 

mg/kg bw/day) induced more changes than the HD level of colistin (100 mg/kg bw/day), Additionally, 

when the fecal metabolome profiles of samples from controls with and without high abundances of 

Verrucomicrobiaceae family were compared, they were similar, suggesting that the presence or absence 

of this family is on one hand highly variable, but neither influences metabolism.  The lack of effects on 

the plasma metabolome may be a result of the low oral bioavailability of colistin and the fact that it 

only targets Gram negative bacteria, whereas broad-spectrum antibiotics tike tobramycin, vancomycin 

and lincomycin, elicited strong responses in the plasma metabolome26, 27, 33. Nonetheless, indole-3-acetic 

acid was reduced in male rats, but very little, and no changes were seen in female rats, which has been 

observed previously for other broad-spectrum antibiotics26, 28, 48. The generally less pronounced effects 

of colistin, relative to tobramycin, are likely to be related to an intrinsically reduced potential of this 

antibiotic and not due to differences in dose levels. This conclusion is based on the fact that the LD 

level of tobramycin (100 mg/kg bw/day) induced more changes than the HD level of colistin (100 mg/kg 

bw/day), reflecting effects of the same dose level. 

6.3 Microbiome-Metabolome correlation analyses 

As the current knowledge regarding microbial bile acid transformations and related capabilities of the 

gut bacterial species is limited, the results of this study extend the list of bacterial families known to 

perform bile acid transformations. The reduced abundances of Prevotellaceae and Anaeroplasmataceae 

bacterial families (see Figure 6) in the tobramycin LD and HD groups, along with the significant 

reduction in the bacterial deconjugation and dehydroxylation reactions suggest that they are not 

involved in biotransformation of 1° to 2° BAs. On the other hand, an increase in bacterial families 

including Erysipelotrichaceae and Peptococcaceae potentially indicates their lack of bacterial 

deconjugation and dehydroxylation reactions. Weakly reduced Rikenellaceae and Ruminococcaceae 

bacterial families in the tobramycin groups suggests a potential bile acid transformation activity of these 

families. Most strains with potential bile acid-transforming capabilities were found in the Bacteroidetes 

and Firmicutes phyla. This relationship is in line with the observations of Lee et al. 2020 and Lucas et 

al. 20213, 57. A Pearson-based correlation analysis may be performed between these changed bacterial 

families and the respective plasma or feces metabolites in order to associate specific or set of microbes 
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with their metabolic functions (Supplementary figures S7 & S8). However, there are a few limitations 

of such an analysis, including low sample size in our study, lack of high resolution 16S sequencing data, 

which restricts us to use bacterial family level taxonomic classification instead of species or strain level 

and lastly a correlation analysis may not necessarily mean causality so these correlations can not be 

directly interpreted but they rather should be taken as a hint of a potential relationship. 

The Verrucomicrobiaceae family was reduced in a few samples from controls and in all antibiotic 

treatment groups. We identified the bacterial species that belong to the Verrucomicrobiaceae family in 

fecal samples from the control group and observed that more than 75% were from a single species, 

Akkermansia muciniphila. A relative abundance bar plot of this analysis is included in the 

Supplementary data (see Figure S2). As there were two male and one female control animal which did 

not show any Verrucomicrobiaceae in the relative abundance analysis (see figure 5), we compared the 

fecal metabolome of these particular control animals with the other controls, in which the 

Verrucomicrobiaceae played a dominant role, and they had similar metabolite profile to the rest of the 

controls. This finding suggests that the Verrucomicrobiaceae, and in particular Akkermansia 

muciniphila, do not contribute much to the measured metabolites. This conclusion is confirmed by the 

observation that the overall fecal metabolome of the colistin-treated animals, which lacked 

Verrucomicrobiaceae, was also rather similar to controls. Ganesh et al. 2013 demonstrated 

Akkermansia muciniphila to be a mucin-degrading commensal bacteria that dominates the human 

intestine in early-life and is not harmful to the host58. The capacity to degrade mucin by Akkermancia 

muciniphila seems to not influence metabolic outputs measured herein. Furthermore, variable 

fluctuations in the abundances of the Verrucomicrobiaceae bacterial family require further investigation 

to understand the potential relevance. Another aspect of combined microbiome and metabolome 

research would be to investigate resilience and reversibility following discontinuation of antibiotic 

treatment. 

 

6.4 Comparative analysis of tobramycin and previously published antibiotics  

Tobramycin, an aminoglycoside antibiotic used in the present study, induced prominent changes in the 

feces and plasma BA pool as well as key plasma biomarkers. To evaluate similarities between the modes 

of action of Tobramycin and other classes of antibiotics including lincosamides (clindamycin, 

lincomycin), macrolide (roxithromycin), glycopeptide (vancomycin) and fluoroquinolone 

(sparfloxacin), the feces and plasma metabolomes changes at p value < 0.05 were compared and 

analyzed20, 28, 48. In the plasma metabolome indole-3-acetic acid and hippuric acid are remarkable as 

they are reduced in most of the AB classes. Consistent to tobramycin, a clear reduction of IAA was 

observed in HD groups of streptomycin sulfate, vancomycin and Sparfloxacin and a significant 

reduction in HA was observed in HD groups of streptomycin, roxithromycin, clindamycin and 

vancomycin respectively of both male and female Wistar rats. As none of the mentioned antibiotics 
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other than streptomycin belongs to the same class of antibiotics as tobramycin, this confirmed these 

plasma metabolites as essential biomarkers associated with altered gut microbiota.  

Further similarities between tobramycin and the other previously tested antibiotics were found in the 

regulation of the BA pool. Profound accumulation of CA (except in roxithromycin treatment) and other 

taurine conjugated 1° BAs, especially TCA, was observed consistently in the feces of all the antibiotic-

treated rats except for streptomycin sulfate. It should be noted that streptomycin was reported to have 

an overall minimal effect on the fecal bacterial composition. Compared to the rest of the antibiotics, 

tobramycin shows the highest accumulation of fecal CA, which indicates a strongly reduced gut 

bacterial capability of converting CAs to 2° BAs as well as a reduced conjugation activity of CA in the 

liver. In contrast, several unconjugated and glycine conjugated BAs were significantly reduced in the 

blood plasma of all antibiotic treatments where slight sex-specific differences was observed as the 

effects were even more pronounced in the females of tobramycin treatment. 2° BAs including DCA, 

LCA, ωMCA, HDCA and their conjugates were significantly reduced in both plasma and feces of male 

and female animals of all antibiotic treatments, due to loss of potential gut bacteria that transform 1° to 

2° BAs by bacterial deconjugation and dehydroxylation reactions. In conclusion, antibiotics possessing 

different activity spectra against gut bacteria, including lincosamides, macrolides, fluoroquinolones, 

glycopeptides and aminoglycosides lead to consistent impairment of deconjugation and 

dehydroxylation reactions, indicating a strong deregulation in the host BA pool, an altered BA reuptake 

via the enterohepatic circulation and that this impairment in microbiome function can be diagnosed via 

analysis of plasma metabolites.  

6.5 Limitations and suggestions for further research 

Even though the 28-day antibiotic administration period in this study is longer than the typical 5-day 

treatment of humans, no adverse effects on the health of the rats were observed. It cannot be excluded 

however, that humans may respond differently and that consequences for human health may become 

apparent despite the absence of effects on rats. Xiao et al 2018 highlighted that the administration of 

gentamycin and vancomycin, significantly decreased the intestinal microbiota diversity and 

subsequently altered the BA composition in mice59. Alterations in BA composition were described to 

contribute to cholestasis in paediatric intestinal failure patients by regulating FXR signalling. Li et al 

2017 demonstrated that six different antibiotics inhibited the bile salt export pump (BSEP) resulting in 

hepatic bile acid accumulation and liver injury60. They also indicated that antibiotic associated gut 

perturbations disturb bile acid homeostasis. This may lead to drug-induced liver injury in both humans 

and rodents. Furthermore, Edwards et al 1988 indicated that antibiotics such as fluoroquinolones hinder 

drug clearance by inhibiting their metabolism61. Hence, it is not unlikely that changed metabolic 

capacity, in particular changes related to deconjugation reactions, may alter bioavailability of drugs 
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with potentially significant consequences for human health, if drugs and antibiotics are taken 

simultaneously. 

One of the limitations of this study was a lack of feces sampling at days 7 and 14 which would have 

extended the possibilities for a direct comparison with the plasma metabolome data beyond 28-day time 

point. Multiple sampling points for feces and metabolome can be included in future studies. 

Additionally, in this study, microbiota data were limited to family-level assignments and a dataset with 

a much higher resolution, genus- or species-level assignments would be even more informative. Any 

adverse or toxicological outcomes of the metabolome changes and their consequences for host health 

either with or without co-administration with other drugs is not known. To address this, further studies, 

need to be performed49. Further, taking into account the observed variations in control animals, the 

establishment of a baseline analysis of the inter-individual variability in the intestinal microbiota is 

highly recommended to understand if changes are within biological variation or not. To establish 

pertinent correlations between particular micro-organisms and metabolites, the number of antibiotics in 

the present study was too low to account for the number of variables (gut microbiome as well as the 

number of fecal and plasma metabolites) was too small to derive correlations which would pass a 

statistical test. An extensive correlation analysis of the microbial and metabolomic changes with a far 

greater number of compounds is part of the goal of the CEFIC LRI ELUMICA project. 

 

7 Conclusions  
We highlight the following key observations:1) Changes in the gut microbiota induced by tobramycin 

treatment are linked to changes in fecal BAs and particularly a reduction of deconjugation reactions. 2) 

Indole-3-acetic acid, indole-3-propionic acid, 3-indoxylsulfate and hippuric acid are plasma biomarkers 

for gut microbiome dysbiosis. 3) The effects of tobramycin on the metabolome aligned well with 

previously published studies on other antibiotics. 4) Colistin, only showed a marginal effect on gut 

bacterial composition and fecal metabolome but did elicit changes in some BAs in the plasma, 

suggesting a potential systemic effect. The use of antibiotics with different modes of action is vital to 

deduce the potential functions of intestinal bacteria on bile acid metabolism. Further studies are needed 

to better understand the importance of fluctuations in the abundances of the Verrucomicrobiaceae 

bacterial family. Another aspect of combined microbiome and metabolome research would be to 

investigate resilience and reversibility following discontinuation of antibiotic treatment. 
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Gut Microbiota as well as Metabolomes of Wistar Rats Recover within Two 
Weeks after Doripenem Antibiotic Treatment 

Abstract: An understanding of the changes in gut microbiome composition and its associated metabolic 

functions is important to assess the potential implications thereof on host health. Thus, to elucidate the 

connection between the gut microbiome and the fecal and plasma metabolomes, two poorly bioavailable 

carbapenem antibiotics (doripenem and meropenem), were administered in a 28-day oral study to male 

and female Wistar rats. Additionally, the recovery of the gut microbiome and metabolomes in 

doripenem-exposed rats were studied one and two weeks after antibiotic treatment (i.e., doripenem-

recovery groups). The 16S bacterial community analysis revealed an altered microbial population in all 

antibiotic treatments and a recovery of bacterial diversity in the doripenem-recovery groups. A similar 

pattern was observed in the fecal metabolomes of treated animals. In the recovery group, particularly 

after one week, an over-compensation was observed in fecal metabolites, as they were significantly 

changed in the opposite direction compared to previously changed metabolites upon 28 days of 

antibiotic exposure. Key plasma metabolites known to be diagnostic of antibiotic-induced microbial 

shifts, including indole derivatives, hippuric acid, and bile acids were also affected by the two 

carbapenems. Moreover, a unique increase in the levels of indole-3-acetic acid in plasma following 

meropenem treatment was observed. As was observed for the fecal metabolome, an overcompensation 

of plasma metabolites was observed in the recovery group. The data from this study provides insights 

into the connectivity of the microbiome and fecal and plasma metabolomes and demonstrates 

restoration post-antibiotic treatment not only for the microbiome but also for the metabolomes. The 

importance of overcompensation reactions for health needs further studies. 

Keywords: metabolomics; gut microbiome; carbapenems; gut microbiota and metabolome recovery; 

repeated dose oral study 

 

1. Introduction 
The human gut harbors thousands of different species of bacteria, fungi, archaea, and viruses, where 

bacteria exceed eukaryotes and archaea by 2–3 orders of magnitude, forming a complex community 

known as the gut microbiota [1, 2]. While intestinal microbiota performs several vital metabolic 

functions crucial to the host [3, 4], its composition is highly variable and susceptible to dysbiosis, which 

results from pressures such as diet, immune function, environmental chemical exposures, and the use 

of drugs. Furthermore, microbial dysbiosis is associated with human diseases such as Crohn’s disease, 

colon cancer, diabetes, allergies, Alzheimer’s and Parkinson’s disease, depression, and stroke [5-7]. 

Moreover, the ability of the gut microbiota to (bio)transform molecules is relevant for pharmacology 

and toxicology [8]. 
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Antibiotics, in particular, are known to compositionally as well as functionally (metabolism-wise) affect 

the gut microbiota [9, 10]. This makes antibiotics ideal compounds to induce a temporary shift in the 

gut composition and to determine the changes in metabolic output. In previous studies, we have shown 

how different classes of antibiotics, including aminoglycosides, fluoroquinolones, lincosamides, and 

polymyxin E, induce selective changes in the gut microbiome of experimental animals and how these 

are reflected by antibiotic class-specific changes in the fecal and plasma metabolomes [1, 11-13]. 

Several antibiotics belonging to classes including aminoglycosides, fluoroquinolones, lincosamides, 

and polymyxin E have been studied to understand their effects on the gut microbiota composition as 

well as the related metabolic outputs [1, 14, 15]. 

Two antibiotics belonging to the carbapenem class have been selected for the present study as this class 

has not been investigated before. Both meropenem and doripenem are broad-spectrum carbapenem 

antibiotics that are active against Gram-positive and Gram-negative bacteria, and these antibiotics have 

poor oral bioavailability from the gastrointestinal tract [16-18]. To selectively identify metabolome 

changes in the plasma because of changes in the microbiome, antibiotics with low bioavailability are 

preferred to avoid plasma metabolome changes related to the potential systemic toxicity of the 

antibiotics. Several clinical trials have previously demonstrated that carbapenems have low oral 

bioavailability and hence must be administered intravenously because they cannot cross gastrointestinal 

membranes readily [17, 19]. The shift in the gut microbiota composition induced by antibiotics can be 

determined using 16S marker gene sequencing of fecal samples and the corresponding changes in 

metabolites can be assessed using metabolomics. Highly sensitive mass spectrometry-based (MS) 

techniques allow for the detection of a broad range of metabolites, such as amino acids, bile acids, 

carbohydrates, lipids, vitamins, energy metabolites, hormones, and their derivatives. In the current 

study, we have used an optimized procedure to determine the fecal and plasma metabolome upon 

antibiotic-induced microbiome changes. 

Currently, the existing knowledge on the ability of the gut bacterial communities to spontaneously 

recover after antibiotic treatment is stopped is not very well defined [20, 21]. In both humans and mice, 

Suez et al., 2018 observed faster spontaneous recovery of the indigenous stool/mucosal microbiome 

when administering a probiotic. Legrand et al., 2020, also observed strain-specific recovery of the 

human gastrointestinal tract after antibiotic treatment is stopped [21, 22]. It is important to not only 

understand this recovery pattern of gut bacterial strains following antibiotic treatment but also to 

characterize the associated metabolite recoveries as they may be an important factor for long-term host 

health. Understanding the restoration abilities of intestinal and metabolic homeostasis are necessary to 

be understood in the context of dysbiosis resulting from broad-spectrum antibiotics, as it lays the 

groundwork for potential strategies that could reduce the long-term adverse effects of antibiotic 

treatment on the gut health [23, 24]. Furthermore, there is a lack of knowledge in the direction of 

metabolite recovery, and the consequences of microbiome recovery on fecal and plasma metabolomes 

are also not known, hence they are essential to be understood. 
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In previously published works, the antibiotic classes aminoglycosides, fluoroquinolones, lincosamides, 

and macrolides and their effects on the gut microbiome were studied [1, 11, 12, 15]. Here, we expand 

the previous work by investigating the effects of the carbapenem class. The main objective of this study 

is to understand the contribution of gut bacterial communities to metabolite production by addressing 

large-scale quantification of dynamic changes in microbial metabolites as a functional component to 

community profiling (or taxonomics) analysis. Antibiotics were selected to induce a shift in the gut 

composition and functions, and the criteria for selection included their ability to induce perturbation in 

the gut microbiota, low or no systemic bioavailability, and a low/no systemic toxicity. The latter two 

points were important to avoid systemic toxicity influencing the plasma metabolome profiles. 

We assessed perturbations in the gut composition by orally administering meropenem trihydrate and 

doripenem hydrate to young adult male and female rats in a 28-day study and its consequences on fecal 

and plasma metabolomes. Young adult Wistar rats have been selected for this study because rodent 

models are widely used in the assessment of chemical safety assessments for humans and have 

significantly contributed to delineating correlations between the intestinal microbiome and associated 

diseases [25]. Finally, we characterized the capacity of the microbiome and its associated plasma and 

fecal metabolomes to spontaneously recovery after one or two weeks following the cessation of 

doripenem exposure. These findings show that not only the gut microbiota but also the metabolomes 

can be restored post-antibiotic treatment, evidencing the interconnection between the gut microbiome 

and metabolome. 

2. Materials and Methods 
A 28-day oral study using Wistar rats with two further weeks of recovery for the doripenem-exposed 

animals was carried out based on the OECD 407 guidelines under the principles of Good Laboratory 

Practice of the German Chemicals Act. 

2.1. Ethics Statement 

This animal study was performed in an AAALAC-approved (Association for Assessment and 

Accreditation of Laboratory Animal Care International) laboratory in compliance with the German 

Animal Welfare Act and the effective European Council Directive. This study was approved by the 

BASF Animal Welfare Body, with the permission of the local authority, the Landesuntersuchungsamt 

Koblenz, Germany (approval number 23 177-07/G 18-3-098) [13]. 

2.2. Animals and Maintenance Conditions 

Wistar rats of both sexes (CrI:WI(Han)) of the age group 70 ± 1 days were purchased from Charles 

River, Germany, prior to the start of the planned study. The handling of the animals, acclimatization, 

conditions of the animal test facility, and other related information regarding the study have been 

presented and published by Murali et al., 2022 [13]. 
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2.3. Treatment of Animals with Drugs 

In this study, five rats per treatment group per sex were exposed (orally, with gavage) to the two 

antibiotics (meropenem trihydrate and doripenem hydrate) on a daily basis (see Table 1 and Figure 1). 

Meropenem was prepared for oral administration by resuspending it in deionized water at doses of 100 

mg/kg body weight/day and 300 mg/kg body weight/day. Doripenem was also prepared in deionized 

water for oral administration at doses of 100 mg/kg body weight/day and 1000 mg/kg body/day weight. 

Antibiotic dose levels were selected, based on the available literature, to alter the targeted microbiome 

population without causing systemic toxicity. An antibiotic suspension of 10 mL/kg bw/day was 

administered orally to five rats per treatment group per dose group per sex each with a corresponding 

control group of ten rats per sex, to allow direct comparisons. 

Table 1. Compounds used, dose levels, and form of preparation. All compounds were administered orally using 
gavage. 

Treatment Low Dose 
(mg/kg bw/d a) 

High Dose 
(mg/kg bw/d a) 

Meropenem trihydrate 100 300 
Doripenem hydrate 100 1000 

a mg/kg bw/d means milligrams per kilogram body weight of rat per day 

 
Figure 1. Schematic representation of the study design for plasma and fecal metabolome analyses and the 
corresponding gut (fecal) 16S bacterial profiling in a 28-day oral gavage study using meropenem- and doripenem- 
(administered at high and low doses) treated male and female young adult Wistar rats. Note: For doripenem, an 
additional one- and two-week recovery period, as indicated by the orange dashed boxes, was included to analyze 
the reversibility. The top row indicates sampling timeline. 

2.4. Clinical Examination 



- 116 - 
 

All the animals were checked daily for any signs of clinical toxicity, abnormal macroscopic findings, 

and mortalities. Standard operating procedures following the Organization for Economic Co-operation 

and Development (OECD) 407 guidelines were used for all clinical and pathological examinations. 

Details related to regular examinations have been followed based on our previous publication, Murali 

et al., 2022 [13]. 

2.5. Blood and Fecal Sampling for Metabolite Profiling 

On days 7, 14, and 28, and additionally on days 42/43 for the doripenem groups only, after a fasting 

period of 16–20 h, collection of blood samples was performed between 7:30 and 10:30 h from the retro-

orbital sinus of all the rats (including controls and all treatment groups) under isoflurane anesthesia (1.0 

mL K-EDTA blood). After centrifugation (10 °C, 20,000× g, 2 min), EDTA plasma was separated from 

the collected blood samples. After snap-freezing the EDTA plasma samples with N2, they were stored 

at 80 °C for metabolite profiling. Following gentle massaging of the rectum, feces were collected from 

rats exposed to different antibiotic exposures on days 7, 14, and 28; from the doripenem-recovery group, 

feces were collected from females on days 35 and 42 and from males on day 43. Following 16–20 h of 

fasting, if no feces samples could be obtained, then the samples were simply taken by scraping from the 

rat colons on the day of necropsy, i.e., on days 28 and 42/43. Pre-cooled (dry ice) vials were filled with 

these samples, which were then snap-frozen in liquid N2 and stored at 80 °C until processing for fecal 

dry weight measurements, and further to perform DNA isolation and 16S gene PCR amplification and 

sequencing. 

2.6. DNA Isolation and 16S Marker Gene Sequencing 

Dry weights of stored fecal samples collected on days 1, 7, 28, 35, and 42/43 from all controls and 

antibiotic-treated rats were measured and then transferred to labeled pre-cooled (dry-ice) DNA/RNA 

Shield-Lysis collection tubes (BIOZOL Diagnostica Vertrieb GmbH, Eching, Germany) avoiding 

excess thawing of the frozen fecal pellets. The processing of fecal slurries for further DNA isolation, 

quantification, sequencing, and the final report produced was based on the process previously published 

by Murali et al., 2022 [13]. 

2.7. Metabolomics of Plasma and Feces Matrices and Statistical Analysis 

Mass spectrometry-based metabolite profiling of blood plasma and feces samples collected from the 

controls, antibiotic-treated, and recovery groups was performed according to the protocol published 

previously by Murali et al., 2022 [13, 26, 27]. 

In plasma, 272 semiquantitative metabolites were analyzed using the single peak signal of the respective 

metabolite and a normalization strategy according to the patent [28] resulting in fold change ratios 

representing the metabolite changes in treated versus control animals [1]. Of these 306 metabolites, the 

chemical structures of 280 were identified and 26 remained unknown. In feces, 632 semiquantitative 
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metabolites could be analyzed, out of which the chemical structures of 348 were identified and 284 

were unknown. 

Furthermore, statistical analysis of the metabolome data of plasma and feces matrices, as well as the 

uploading of these data into our in-house database MetaMapTox® (or MMT), followed by a PCA 

analysis were performed following the protocol published by Murali et al., 2022 [1, 12, 13, 29]. 

2.8. The 16S Data Processing and Statistical Analysis of the Data 

The data processing pipeline used was an in-house standardized algorithm using DADA2 for 16S 

marker gene data as published in Murali et al., 2022 [12]. The customized workflow and further steps 

including a quality check (QC) followed by taxonomic assignments were conducted based on the 

previous publication by Murali et al., 2022 [13]. The overall methods used followed the publication by 

Murali et al., 2022. 

Furthermore, post-processing of the 16S data was performed using different packages, as presented in 

Murali et al., [12]. The entire raw data used for the study consisted of 5,027,882 reads belonging to 

5533 taxa from a total of 251 samples. Reads with non-zero counts on at least two samples were 

retained, and the rest were removed as a part of the cleaning up of the raw data, which resulted in 

4,429,863 reads belonging to 2053 taxa from a total of 251 samples. Furthermore, reads that were not 

assigned to a minimum of the family level of taxonomy were removed, resulting in 4,429,863 reads 

belonging to 2053 taxa from 251 samples. Further analysis including diversity, relative, and differential 

abundance analyses following the protocol published by Murali et al., 2022 [13, 30]. 

3. Results 
3.1. No Visible Signs of Toxicity or Change in the Body Weight or Food Consumption after 

Administering Carbapenems 

After administering meropenem and doripenem to male and female rats for 28 days, there were no 

mortalities nor signs of clinical toxicity, except for one male rat (no. 55) receiving doripenem LD. This 

animal developed a lower jaw lesion and lost body weight; therefore, it was excluded from the study on 

day 7. All sampled feces had a normal consistency. Food consumption and body weight values of male 

(A,C) and female (B,D) animals from the two antibiotic treatment groups relative to the control animals, 

respectively, have been presented (Figure 2). During the 28-day study, both control and antibiotic-

treated animals maintained roughly the same body weights and food consumption rates. Animals 

belonging to the group that was administered doripenem and then allowed a recovery period without 

daily antibiotic administration for a period of two weeks, i.e., the doripenem-recovery group, also 

consumed a similar amount of food and gained a similar amount of weight as the control animals. 
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(A) (B) 

  
(C) (D) 

Figure 2. Line plots representing food consumption (in grams) and body weight (in grams), in male (A,C) and 
female (B,D) animals, respectively, compared to the controls and different antibiotics treatment groups on days 
0, 6, 13, and 27 and additionally on days 35 and 42/43 for the doripenem-recovery groups. The end of meropenem 
treatment and the start of doripenem-recovery groups have been highlighted with black arrows. Changes in body 
weight and food consumption were compared between control and treated groups and showed no significant 
differences (p-value < 0.05). 

3.2. Bacterial Diversity Was Reduced by Carbapenem Treatment and Returned to Control Levels in 

the Doripenem-Recovery Group 

Alpha diversity, representing the diversity of bacterial taxa present in a specific condition or treatment 

group, was evaluated using the Shannon true diversity algorithm (Figure 3). The size of the boxes in 

the plot represents the variability between the samples from individual animals of a specific group. The 

higher the diversity, the greater the presence of different bacterial taxa. The increase in alpha diversity 

of microbiota from fecal samples collected from day 1 of the study to day 42/43 in both sexes 

demonstrated a greater presence of differential taxa over the course of the study. As anticipated, 

compared to the microbiota from the controls, the alpha diversity of the microbiota from animals 

belonging to all the antibiotic groups from days 1 to 28 shows a clear reduction. There was no clear 

dose-dependent effect concerning the two dose levels of the antibiotics. Furthermore, after the animals 

administered with doripenem were allowed a drug-free recovery period of one or two weeks, there was 

a corresponding increase in alpha diversity to a level similar to that in the control animals for both sexes 

(Figure 3). 

Start of recovery phase for doripenem and end of meropenem treatment 

Start of recovery phase for doripenem and end of meropenem treatment 

Start of recovery phase for doripenem and end of meropenem 
treatment 

Start of recovery phase for doripenem and end of meropenem treatment 
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Figure 3. Shannon true diversity analysis of the antibiotic treatments, meropenem, doripenem, and controls for 
both male and female Wistar rats. The top row shows data for females (f) and the bottom row shows data for 
males (m). Doripenem treatment time points (days 1, 7, and 28) and recovery time points (days 35 and 42/43) are 
indicated with black and blue lines, respectively, on the x-axis. Whiskers denote standard deviations, and solid 
lines within the boxes indicate the group medians. The dots falling outside the boxes demonstrate the most extreme 
values. 

To compare the diversity between different ecosystems, as might be present in the different treatment 

groups, a rank-based Principal Coordinate Analysis (PCoA) was carried out using a non-phylogenetic 

Bray-Curtis distance matrix. The results of this analysis were consistent with observations for alpha 

diversity, including the emergence of treatment-specific clusters (Figure 4), irrespective of the dose of 

the two antibiotics. Overall, at least three distinct clusters were apparent in the PCoA plot for males and 

females. All control microbiota from all time points clustered together, whereas day 1 microbiota from 

animals treated with antibiotics formed a separate cluster. The days 7 and 28 microbiota from animals 

treated with antibiotics clustered together and separated both from controls and day 1 treated animals 

for both sexes. These observations have several implications: (1) Doripenem and meropenem have 

similar effects on bacterial taxa, confirming their common mode of action. (2) Beta diversity 
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composition on day 1 is different from days 7 and 28, suggesting that the treatment effects had not yet 

emerged on day 1. (3) A fourth cluster was observed, which was more distinct in females, that consisted 

of day 1 microbiota from the doripenem HD group and indicated a possible dose-response one day after 

the administration of doripenem HD. Upon prolonged exposure, this dose-dependency could no longer 

be observed. (4) Finally, microbiota from control animals on days 35 and 42/43 clustered together with 

the doripenem-recovery groups one and two weeks after the cessation of doripenem treatment. 

  
(A) (B) 

Figure 4. Principal Coordinate Analysis (PCoA) of bacterial families from controls, meropenem, and doripenem 
antibiotic-treated rats at different time points. Rank-based clustering with Bray-Curtis distance matrix of samples 
from (A) males and (B) females are presented. 

3.3. Reduced Relative Bacterial Abundances Following Carbapenem Treatment is Reversible 

Having established a general comparison of bacterial diversity between the control and different 

treatment groups, the relative abundances of different dominant bacterial families were evaluated 

(Figure 5). This revealed a profound inter-individual variability in relative levels of different bacterial 

families in all treatment and control groups. Bacterial abundance was reduced after day 1 treatment with 

both meropenem and doripenem and increased on days 7 and 28. Bacterial families including 

Lactobacillaceae, Porphyromonadaceae, and Prevotellaceae showed a strong depletion in microbiota 

from days 7 and 28 for all carbapenem treatment groups. For day 1 microbiota from the meropenem 

LD group, the start of a dysbiosis in the bacterial communities was observed in both sexes, whereas on 

days 7 and 28, the microbiota of the females reached a new and stable gut composition, whereas this 

took longer for males. Furthermore, the day 1 doripenem LD microbiota also exhibited an intermediate 

dysbiosis, whereas an altered but stable bacterial composition was observed on days 7 and 28 for both 

sexes. Such a transition or intermediate composition of the gut microbiome was not observed for the 

animals administered high doses of carbapenems. 
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Figure 5. Stacked bar diagram showing relative abundances of the detected bacterial families in the different 
experimental groups. Inter-individual variability in the composition can be observed. Dose groups and sexes 
showed significant differences specifically in samples from days 1, 7, and 28 relative to the controls. Antibiotic-
specific effects were observed on the intestinal community composition. For the doripenem group, treatment time 
points, i.e., days 1, 7, and 28, and recovery time points, i.e., 35 and 42/43, are highlighted with black and blue 
lines on the x-axis, respectively. 

In the doripenem-recovery groups, bacterial abundances were comparable to the microbiota from the 

control group, whereas the microbiota on day 35 (one week after the stop of doripenem treatment) still 

showed minor differences. This observation was more pronounced in female animals (Figure 6). 

Overall, the analysis suggested that the bacterial abundances in microbiota after one and two weeks of 

the cessation of doripenem treatment in male rats may completely recover to have a 16S composition 

comparable to the control group. The doripenem-recovery groups also indicated a recovery two weeks 

after doripenem treatment was stopped in female animals. 
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Figure 6. Stacked bar diagram showing relative abundances of bacterial families that were detected in the controls 
and doripenem-recovery groups. An indication of the recovery of abundant bacterial families one and two weeks 
post-doripenem treatment was observed and resulted in abundances comparable to the controls. 

3.4. Differential Abundance Analyses Confirmed Spontaneous Recovery Post-Doripenem Cessation 

Differential abundance analysis using the DESeq2 package was performed to identify whether increases 

or decreases in specific bacterial families were associated with specific treatment groups compared to 

the controls. The differential abundance analyses of both meropenem- and doripenem-treated 

microbiota on days 1, 7, and 28 of the study from both male and female animals can be found in the 

Supplementary Materials (Figure S2). The differential analyses confirmed an absence of differences 

compared to controls for the male rats given a recovery period, i.e., days 35 and 43 of the study (Figure 

7A,B, respectively). These results indicated recovery of the previously altered bacterial families 

including Lactobacillaceae, Porphyromonadaceae, and Prevotellaceae, to their original or baseline 

levels after one week for males and persisting two weeks post-doripenem cessation. On the other hand, 

for females, after one-week post-doripenem cessation, there were still a few changes in bacterial 

families, including Enterococcaceae and Aneroplasmataceae, which both recovered fully two weeks 

post-doripenem cessation. 
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(A) (B) 

Figure 7. Differential abundances in dominant bacterial families one and two weeks post-doripenem-treated 
samples from the low- (LD) and high- (HD) dose groups relative to the controls for males (A) and females (B). 
Differential abundance analysis was performed using log2FC (log2 fold change) values. 

3.5. Fecal Metabolomes Are Altered by Carbapenems and Spontaneously Recover after Doripenem 

Treatment Is Stopped 

Principal Component Analysis or PCA plots of fecal metabolome data from days 7, 14, and 28 (Figure 

8) indicated a clear separation between the controls and the antibiotic-treated animals in PC1. In the 

doripenem HD females, a further separation (separating in PC2) could be observed particularly for fecal 

metabolomes on days 14 and 28. The metabolome profiles of feces from the doripenem-recovery groups 

clustered together with the controls indicating full recovery of the fecal metabolome within one week 

after the cessation of treatment. This observation is in line with the conclusions from the 16S community 

analyses, specifically for the male rats where a full recovery was observed one week after doripenem 

cessation. 

  



- 124 - 
 

(A) (B) 

Figure 8. Principal component analysis (PCA) of the fecal metabolome profiles of controls (red), meropenem- 
(blue), and doripenem- (green) treated rats. PCA for fecal metabolome profiles of (A) female and (B) male Wistar 
rats on days 7, 14, and 28 of the study and days 35 and 42/43 for the doripenem-recovery group. The data points 
are sized by the PC3 value. Different shapes of the data points represent respective sampling time points. Dose 
group-specific effects were marginal, so the groups were not separated based on the dose levels. 

3.5.1. Meropenem Trihydrate Treatment alters Fecal Bile Acids 

The analysis of 620 different metabolites in feces revealed significant alterations upon antibiotic 

treatment. Of these, approx. 300 were significantly altered by the meropenem HD treatment in both 

sexes. The complete list of significantly changed fecal metabolites in meropenem-treated male and 

female animals is presented in the Supplementary Materials (Tables S1 and S2), where, for females in 

particular, the majority of the significantly changed fecal metabolites were amino acids, bile acids 

(BAs), lipids, energy metabolites, vitamins, and related metabolite classes. The list of significantly 

changed BAs in meropenem-treated female rats is presented in Table 2 using the HD group as reference 

for change against the controls. Of the 22 measured BAs, 11 were significantly changed compared to 

the control group, including the secondary (2°) BAs, deoxycholic acid (DCA), lithocholic acid (LCA), 

ω-muricholic acid (ωMCA), hyodeoxycholic acid (HDCA), and isoLCA. These 2° BAs were 

significantly reduced in the fecal metabolomes from almost all the sampling time points from both the 

meropenem LD and HD treatment groups. Several taurine-conjugated primary (1°) and 2° BAs were 

significantly increased; particularly, TCA (taurocholic acid sodium salt and taurocholic acid-3-sulfate) 

(TCA) was strongly and significantly increased in fecal metabolomes from all the time points from both 

the meropenem LD and HD treatment groups. 
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Table 2. Meropenem-induced BA fold changes in feces of female (f) Wistar rats (N = 5 per group) dosed with 
100 (LD) and 300 (HD) mg/kg bw/day observed on days 7, 14, and 28 (f7, f14, and f28). Statistically significant 
changes (Welch t-test; p-value < 0.05) are shown where red boxes mean a significant increase, yellow boxes mean 
a significant decrease, and white boxes indicate an insignificant change in the respective fecal BAs. 

  Meropenem Trihydrate HD Meropenem Trihydrate LD 
Metabolite Class f7 f14 f28 f7 f14 f28 

Deoxycholic acid  2° BA * 0.01 0.01 0.06 0.09 0.16 0.17 
Cholic acid 1° BA * 10.78 9.57 7.33 17.48 1.14 0.91 

Lithocholic acid 2° BA 0.02 0.03 0.02 0.08 0.15 0.15 
Taurocholic acid sodium salt  Taurine-conjugated 1° BA 4.70 2.04 3.85 3.41 1.87 1.14 

Taurolithocholic Acid Taurine-conjugated 2° BA 0.04 0.12 0.15 0.41 0.61 0.78 
Taurocholic Acid 3-sulfate Taurine-conjugated 1° BA 185.39 197.22 280.09 40.98 81.49 6.10 
Tauro-b-muricholic Acid Taurine-conjugated 1° BA 3.51 2.01 3.42 2.14 1.30 1.10 
Taurochenodeoxycholate Taurine-conjugated 1° BA 2.08 1.43 2.60 1.71 1.56 1.17 

Hyodeoxycholic acid 2° BA 0.01 0.01 0.01 0.02 0.01 0.04 
o-Muricholic Acid 2° BA 0.19 0.04 0.03 0.60 0.12 0.13 

isoLCA 2° BA 0.01 0.01 0.01 0.08 0.28 0.31 
* 1° BA means primary bile acids, and 2° BA means secondary bile acids. 

In males, almost 300 fecal metabolites were significantly changed, the majority of which belonged to 

amino acids, BAs, lipids, carbohydrates, energy metabolites, nucleobases, vitamins, and their 

derivatives. Similar to females, 11 out of the 22 measured fecal bile acids were observed to be 

significantly altered at a p-value < 0.05 (Table 3). In males, a significant reduction was observed in the 

2° BAs, including DCA, LCA, ωMCA, HDCA, and isoLCA in both the meropenem LD and HD groups 

compared to the controls. A significant increase was observed in a few 1° BAs including CA, α-

muricholic acid (αTMCA), and β-muricholic (βMCA) and also in some of the taurine-conjugated 1° 

BAs such as TCA and tauro-β-muricholic acid (TβMCA) on almost all sampling time points in both the 

meropenem LD and HD treatment groups. 

Table 3. Meropenem-induced BA fold changes in feces of male Wistar rats (N = 5 per group) dosed with 100 
(LD) and 300 (HD) mg/kg bw/day observed on days 7, 14, and 28 (m7, m14, and m28). Statistically significant 
changes (Welch t-test; p-value < 0.05) are shown where red boxes mean an increase, yellow boxes mean a 
significant decrease, and white boxes indicate an insignificant change in the respective fecal BAs. 

  Meropenem Trihydrate HD Meropenem Trihydrate LD 
Metabolite Class m7 m14 m28 m7 m14 m28 

Deoxycholic acid  2° BA 0.01 0.01 0.00 0.20 0.21 0.24 
Cholic acid 1° BA  13.78 22.75 33.78 4.61 5.80 7.61 

Lithocholic acid 2° BA 0.02 0.03 0.02 0.13 0.10 0.08 
Taurocholic acid sodium salt  Taurine-conjugated 1° BA 4.49 110.41 12.63 8.93 19.40 0.33 
Taurocholic Acid 3-sulfate Taurine-conjugated 1° BA 15.24 921.65 113.19 83.21 759.51 0.13 
Tauro-b-muricholic Acid Taurine-conjugated 1° BA 3.50 26.50 12.70 10.01 12.34 2.03 

a-Muricholic Acid 1° BA 23.88 2.53 2.28 18.70 5.85 2.13 
b-Muricholic Acid 1° BA 8.16 2.43 2.13 5.03 1.73 3.48 

Hyodeoxycholic acid 2° BA  0.02 0.00 0.00 0.01 0.00 0.01 
o-Muricholic Acid 2° BA 0.35 0.05 0.05 0.14 0.15 0.07 

isoLCA 2° BA 0.01 0.01 0.01 0.14 0.19 0.14 

Overall, the fecal metabolome of the meropenem-treated rats appeared to have strongly and 

significantly changed compared to the control group, which included significant changes in the BAs. 
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3.5.2. Doripenem Hydrate Treatment Significantly Alters Fecal BA Metabolites, Which Recover after 

the Cessation of Treatment 

About 620 metabolites were measured in the fecal samples from the doripenem-treated Wistar rats, out 

of which about 350 fecal metabolites were significantly changed at a p-value < 0.05 in all groups. The 

majority of these fecal metabolites belong to amino acids, BAs, lipids, carbohydrates, nucleobases, 

vitamins, and their related classes. The complete list of fold changes in fecal metabolites is presented 

in the Supplementary Materials (Tables S3 and S4). Out of the 22 measured fecal BAs, 14 were 

significantly altered at a p-value < 0.05 in the HD-treated female rats (Table 4). This consisted of 

significantly reduced 2° BAs such as DCA, LCA, HDCA, ωMCA, and isoLCA. Consistently, taurine-

conjugated 1° BAs including TCA, TβMCA, and taurochenodeoxycholate (TCDCA) were all 

significantly increased in fecal metabolomes from almost all time points, which was more prominent in 

the HD-treated females. Some taurine and glycine-conjugated 2° BAs such as taurolithocholic acid 

(TLCA), taurodeoxycholate (TDCA), glycolithocholic acid (GLCA), and glycodeoxycholate (GDCA) 

were observed to be significantly reduced in both the LD and HD treatment groups. 

In the female doripenem-recovery group, recovery of the formerly significantly changed fecal BAs 

could be observed, specifically in the LD recovery group (Table 4). However, a few of the BAs that 

were significantly decreased during the doripenem treatment period, i.e., LCA, isoLCA TCA, GLCA, 

and TCA, were still significantly altered after the recovery period and were actually increased. 

Likewise, there were examples in the opposite direction, i.e., some BAs that were significantly increase 

during the treatment period were significantly reduced compared to the controls after the recovery 

period. This overcompensation effect observed for the fecal metabolomes may relate to a possible 

metabolic feedback mechanism. 

Table 4. Doripenem-induced BA fold changes in feces of female Wistar rats (N = 5 per group) dosed with 100 
(LD) and 1000 (HD) mg/kg bw/day observed on days 7, 14, and 28 (f7, f14, and f28) and on days 35 and 42 (f35 
and f42) for the recovery group. Statistically significant changes (Welch t-test; p-value < 0.05) are shown where 
red boxes mean an increase, yellow boxes mean a significant decrease, and white boxes indicate an insignificant 
change in the respective fecal BAs. 

  Doripenem HD Doripenem HD 
Recovery Doripenem LD Doripenem LD 

Recovery 
Metabolite Class f7 f14 f28 f35 f42 f7 f14 f28 f35 f43 

Deoxycholic acid  2° BA 0 0 0 0.85 0.5 0.01 0 0.03 1.04 0.68 
Cholic acid 1° BA 3.44 2.81 5.6 1.15 1.08 15.5 15.76 15.61 1.23 0.88 

Lithocholic acid 2° BA 0.01 0.01 0.01 2.23 1.13 0.02 0.01 0.03 1.68 1.11 
Taurocholic acid sodium 

salt  
Taurine-

conjugated 1° BA 
8.1 6.65 5.78 0.09 0.37 3.83 2.12 2.46 0.28 0.85 

Glycolithocholic Acid 
Glycine-

conjugated 2° BA 
0.2 0.13 0.06 6.89 5.76 0.56 0.09 0.29 5.39 0.63 

Taurolithocholic Acid 
Taurine-

conjugated 2° BA 
0.03 0.02 0.01 0.9 2.66 0.2 0.03 0.4 1.25 0.89 

Taurocholic Acid 3-
sulfate 

Taurine-
conjugated 1° BA 

395.06 302.06 28.52 1.03 0.91 139.94 156.93 16.82 2.13 1.32 
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Tauro-b-muricholic Acid 
Taurine-

conjugated 1° BA 
6.8 4.47 2.27 0.39 0.82 2.02 1.59 1.73 0.82 0.85 

Taurochenodeoxycholate 
Taurine-

conjugated 1° BA 
1.65 1.94 1.95 0.92 0.86 1.63 1.18 1.87 0.98 0.77 

Taurodeoxycholate 
Taurine-

conjugated 2° BA 
0.54 0.46 0.49 0.66 0.64 0.55 0.48 0.46 0.66 0.69 

Glycodeoxycholate  
Glycine-

conjugated 2° BA 
0.46 0.33 0.35 1.48 1.28 0.45 0.26 0.39 1.05 0.93 

Hyodeoxycholic acid 2° BA 0 0 0 6.9 3 0.03 0 0.01 1.82 0.49 
o-Muricholic Acid 2° BA 0.01 0 0.01 0.74 0.08 0.28 0.08 0.08 1.3 1.25 

isoLCA 2° BA 0 0 0.01 3.18 1.5 0.01 0 0.02 1.63 1.2 

The doripenem-treated male rats showed significant changes in about 320 fecal metabolites at a p-value 

< 0.05. The majority of these metabolites belonged to amino acids, BAs, carbohydrates, lipids, energy 

metabolites, nucleobases, vitamins, and their derivatives. The list of significantly changed fecal BAs in 

samples from the doripenem LD- and HD-treated males and from the doripenem-recovery group 

relative to the controls at a p-value < 0.05 is presented in Table 5. A total of nine significantly changed 

BAs were observed in males which includes 2° BAs such as DCA, LCA, HDCA, ωMCA, and isoLCA, 

consistent with females treated with the doripenem antibiotic. Compared to females, a lower number of 

changes in the conjugated 1° and 2° BAs were observed in males. The 1° BA, CA, and a few taurine-

conjugated 1° BAs including TCA and TβMCA were significantly increased in the doripenem LD- and 

HD-treated male rats compared to the controls. Other than in females, the fecal metabolome of the 

doripenem-recovery males showed a virtually full recovery on day 43. The observed statistically 

significant decrease in isoLCA is of questionably nature as such an effect was not seen on day 35 (Table 

5). In addition, in the doripenem HD day 35 recovery group, two fecal BAs, HDCA and ωMCA, were 

significantly changed. 

Table 5. Doripenem-induced BA fold changes in feces of male Wistar rats (N = 5 per group) dosed with 100 (LD) 
and 1000 (HD) mg/kg bw/day observed on days 7, 14, 28 (m7, m14 and m28) and on days 35 and 42 (m35 and 
m43) for the doripenem-recovery group. Statistically significant changes (Welch t-test; p-value < 0.05) are shown 
where red boxes mean an increase, yellow boxes mean a significant decrease, and white boxes indicate an 
insignificant change in the respective fecal BAs. 

  Doripenem HD  Doripenem HD 
Recovery Doripenem LD Doripenem LD 

Recovery 
Metabolite Class m7 m14 m28 m35 m43 m7 m14 m28 m35 m43 

Deoxycholic acid  2° BA 0.01 0 0.01 0.77 1.15 0.01 0 0 0.91 0.78 
Cholic acid 1° BA 14.31 26.92 5.47 0.98 0.87 15.34 20.97 14.38 1 0.47 

Lithocholic acid 2° BA 0.02 0.02 0.02 1.09 1.07 0.02 0.02 0.02 1.07 0.74 
Taurocholic acid 

sodium salt  
Taurine-conjugated 

1° BA 16.62 73.02 11.51 0.5 0.2 6.14 15.13 4.85 0.76 0.38 

Taurocholic Acid 3-
sulfate 

Taurine-conjugated 
1° BA 142.02 1738.7 129.59 2.24 0.37 20.83 85.11 43.38 1.52 0.12 

Tauro-b-muricholic 
Acid 

Taurine-conjugated 
1° BA 20.19 148.81 40.8 0.7 0.67 4.03 6.14 2.65 0.64 0.45 

Hyodeoxycholic acid 2° BA 0.01 0 0.01 0.23 0.84 0.01 0 0.01 0.58 0.45 
o-Muricholic Acid 2° BA 0.08 0 0 2 1.32 0.14 0.03 0.02 1.05 0.6 

isoLCA 2° BA 0.01 0 0 0.78 0.89 0 0 0.01 0.96 0.55 
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3.6. Plasma Metabolome Analysis Also Shows Some Effects of Both Carbapenems on Key Plasma 

Metabolites and Plasma Bile Acid Levels Followed by a Recovery in the Doripenem-Recovery Group 

The plasma metabolome profiles of the controls and antibiotic treatment groups were analyzed using 

PCA (Figure 9). Although the separation between the different treatments and controls was not very 

strong, the plasma metabolome of the control group formed a separate cluster. For males, a good 

separation between both the treatments and controls (in PC2) can be observed. In addition, there is also 

some form of separation between the doripenem and meropenem treatment groups (PC1 / PC2). For 

females, a separation of both treatments from the controls can be seen (in PC2) with, however, a few 

exceptions (all related to meropenem). For both sexes overall, the doripenem groups are better separated 

from the controls indicating a possible stronger effect of doripenem on the plasma metabolome profiles 

of the male and female Wistar rats. There is no clear separation on PC1 for both treatments. The samples 

from the doripenem-recovery group (i.e., on day 42/43 of the study) clustered together with the controls, 

which is consistent with the results of the 16S community analysis and fecal metabolome analysis, 

indicating recovery from the treatment-related changes.  

  
(A) (B) 

Figure 9. Principal component analysis (PCA) of the blood plasma metabolome profiles of controls (red), 
meropenem- (blue), and doripenem- (green) treated rats. PCA for plasma metabolome profiles of (A) female and 
(B) male Wistar rats on days 7, 14, and 28 of the study and on day 42/43 for the doripenem-recovery group. The 
data points are sized by the PC3 value. Different shapes of the data points represent respective sampling time 
points. Dose group-specific effects were marginal, so the groups were not separated based on the dose levels. 

3.6.1. Meropenem Trihydrate Treatment Alters Key Plasma Biomarkers of Microbiota Alterations 

An in-depth analysis of individual plasma metabolites, including BAs that were significantly altered in 

the meropenem group (p-value < 0.05), was performed. Of 294 measured blood plasma metabolites, 27 

were significantly altered in the meropenem HD treatment groups in females and 25 in males (Tables 6 

and 7). These were determined by comparing the HD group with the controls and subsequently 
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analyzing the values of these metabolites for the LD. Most of these altered metabolites belonged to 

amino acids, BAs, carbohydrates, energy metabolites, hormones, and their derivatives. 

Table 6. Meropenem-induced plasma metabolite fold changes in female (f) Wistar rats (N = 5 per group) dosed 
with 100 (LD) and 300 (HD) mg/kg bw/day observed on 7, 14, and 28 days (f7, f14, and f28). Statistically 
significant changes (Welch t-test; p-value < 0.05) are shown where red boxes mean a significant increase in the 
respective plasma metabolites and yellow boxes mean a significant reduction compared to control levels. 

  Meropenem Trihydrate 
HD 

Meropenem Trihydrate 
LD 

Metabolite Class f7 f14 f28 f7 f14 f28 
Threonine Amino acids 0.87 0.80 0.84 0.93 0.99 1.05 
Glycine Amino acids 0.92 0.89 0.87 0.86 0.87 0.97 

Threonine Amino acids 0.83 0.82 0.84 0.99 0.94 1.03 
Cysteine Amino acids 0.85 1.03 0.93 0.92 1.11 1.08 

3-Hydroxyindole Amino acids-related 0.11 0.10 0.24 0.86 0.45 0.97 
Indole-3-acetic acid Amino acids-related 5.60 4.82 5.66 1.68 2.44 1.94 

3-Indoxylsulfate Amino acids-related 0.10 0.15 0.27 0.87 0.59 1.10 
Deoxyribonucleic acids, total Carbohydrates and related 0.81 0.93 1.06 0.79 0.91 0.73 

Xylitol Carbohydrates and related 1.64 1.52 1.54 0.84 0.76 1.41 
3-Hydroxybutyrate Energy metabolism and related 1.30 1.23 0.97 1.13 1.04 0.96 
3-Hydroxybutyrate Energy metabolism and related 1.41 1.32 1.15 1.29 1.12 1.02 
3-Methoxytyrosine Hormones, signal substances and related 1.43 1.44 1.44 1.18 1.20 1.24 

17-Hydroxypregnenolone Hormones, signal substances and related 0.02 0.01 0.03 0.02 0.03 0.02 
Hippuric acid Miscellaneous 0.24 0.24 0.43 0.48 0.53 0.99 

Cytosine Nucleobases and related 0.78 0.77 1.08 0.76 0.78 0.78 

 

Table 7. Meropenem-induced plasma BA fold changes in female (f) Wistar rats (N = 5 per group) dosed with 100 
(LD) and 300 (HD) mg/kg bw/day observed on 7, 14, and 28 days (f7, f14, and f28). Statistically significant 
changes (Welch t-test; p-value < 0.05) are shown where red boxes mean a significant increase in the respective 
plasma BAs and yellow boxes mean a significant reduction compared to control levels. 

  Meropenem Trihydrate HD Meropenem Trihydrate LD 
Metabolite Class f7 f14 f28 f7 f14 f28 

Deoxycholic acid  2° BA 0.04 0.04 0.24 0.49 0.82 1.03 
Lithocholic acid 2° BA 0.01 0.02 0.05 1.04 0.72 1.82 

Taurolithocholic Acid Taurine-conjugated 2° BA 0.01 0.03 0.07 0.07 0.19 0.26 
Tauroursodeoxycholic Acid Taurine-conjugated 2° BA 3.49 1.83 6.66 5.30 2.14 8.83 

Taurodeoxycholate Taurine-conjugated 2° BA 0.00 0.00 0.04 0.08 0.14 0.32 
Glycocholic acid Glycine-conjugated 1° BA 4.30 1.82 5.16 2.28 3.68 3.61 

Glycochenodeoxycholic acid Glycine-conjugated 1° BA 8.51 2.62 13.20 10.69 16.07 12.32 
Glycodeoxycholate  Glycine-conjugated 2° BA 0.05 0.14 0.39 0.57 2.94 3.19 

Glycoursodeoxycholic acid  Glycine-conjugated 2° BA 22.25 11.61 35.10 10.72 32.78 24.98 
Hyodeoxycholic acid 2° BA 0.03 0.03 0.03 0.14 0.05 0.18 

o-Muricholic Acid 2° BA 0.20 0.16 0.29 0.88 0.23 1.21 
isoLCA 2° BA 0.06 0.48 0.34 0.07 0.35 0.72 

In the plasma metabolomes of female animals, some of the gut microbiome-associated key plasma 

biomarkers, as determined in previous studies, were observed to be significantly changed [11, 14, 15]. 

These biomarkers include indole-3-acetic acid (IAA), 3-indoxylsulfate (3IS), hippuric acid (HA), and 

3-hydroxybuturate. In particular, 3IS and HA were significantly reduced in the meropenem HD- and 
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LD-treated females, especially in plasma metabolomes on days 7 and 14. IAA showed a slight yet 

significant increase in the meropenem treatment groups at almost all sampling time points, while 3-

hydroxybutyrate showed only a significant increase in plasma metabolomes on days 7 and 14 in the 

meropenem HD treatment group relative to the controls. Other essential gut microbiome-associated 

metabolites, such as BAs, were significantly changed in the meropenem treatment group relative to the 

controls. Overall, a stronger effect on plasma metabolites was seen in the HD group. The list of 12 

significantly altered plasma BAs out of the 22 measured BAs in the meropenem-treated females is listed 

in Table 6. 

The 2° BAs including DCA, LCA, HDCA, ωMCA, and isoLCA were all significantly reduced 

specifically in all the samples from the meropenem HD-treated females. Taurine-conjugated 2° BAs 

including TLCA and TDCA were significantly reduced, whereas tauroursodeoxycholic acid (TUDCA) 

was significantly increased in the treated females. Unlike feces, plasma did not show any significant 

changes in TCA. Three of the four glycine-conjugated 1° and 2° plasma BAs were increased and one 

was decreased, none of which were changed in the feces of the treated females. 

As indicated earlier, for males treated with meropenem, 25 out of the 294 measured plasma metabolites 

were significantly altered. The majority of these plasma metabolites belonged to amino acids, BAs, 

lipids, energy metabolites, hormones, and relative classes (Tables 8 and 9). In males, three of the plasma 

key metabolites were significantly changed, including 3IS, IAA, and HA, where HA and 3IS were 

reduced and IAA was increased in the meropenem-treated males compared to the controls. However, 

none of the other key biomarkers appeared on the list. In addition, 14 out of the 22 measured plasma 

BAs were significantly changed in the meropenem-treated males (Table 9). For males, a dose–response 

relationship was also noted. 

Table 8. Meropenem-induced plasma metabolite fold changes in male (m) Wistar rats (N = 5 per group) dosed 
with 100 (LD) and 300 (HD) mg/kg bw/day observed on 7, 14, and 28 days (m7, m14, and m28). Statistically 
significant changes (Welch t-test; p-value < 0.05) are shown where red boxes mean a significant increase in the 
respective plasma metabolites and yellow boxes mean a significant reduction compared to control levels. 

  Meropenem trihydrate 
HD 

Meropenem trihydrate 
LD 

Metabolite Class m7 m14 m28 m7 m14 m28 
Threonine Amino acids 0.86 0.82 0.75 0.90 1.04 0.97 
Threonine Amino acids 0.93 0.78 0.75 0.89 0.98 0.92 

Methionine Amino acids 0.97 0.88 0.88 1.02 0.98 1.05 
3-Indoxylsulfate Amino acids-related 0.11 0.11 0.09 0.74 0.63 0.46 

Indole-3-acetic acid Amino acids-related 3.02 6.51 9.41 5.03 4.17 6.45 
3-Hydroxyindole Amino acids-related 0.12 0.11 0.14 1.07 0.64 0.48 

Lysophosphatidylcholine 
(C18:2) 

Complex lipids, fatty acids and 
related 

1.07 0.96 1.14 0.97 0.96 1.17 

Citrate Energy metabolism and related 1.09 1.17 1.17 1.04 1.11 1.28 

Cortisol Hormones, signal substances and 
related 3.36 2.72 4.95 1.43 1.69 2.21 

Corticosterone 
Hormones, signal substances and 

related 2.68 1.64 1.65 2.90 2.15 2.34 
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18-Hydroxy-11-
deoxycorticosterone 

Hormones, signal substances and 
related 

2.16 1.52 1.27 2.44 2.61 2.40 

Hippuric acid Miscellaneous 0.52 0.33 0.53 0.27 0.41 0.32 

Consistent with the observations for females, the 2° BAs including DCA, LCA, HDCA, ωMCA, and 

isoLCA were all significantly reduced specifically in the plasma metabolomes on days 7 and 14 for the 

meropenem HD- and day 28 for the meropenem LD-treated males. Several taurine-conjugated 1° (TCA, 

TβMCA, and TCDCA) and 2° plasma BAs (TCA, TDCA, and TUDCA), and one glycine-conjugated 

2° BA, GDCA, were significantly changed specifically in males treated with meropenem HD relative 

to the controls. TLCA, TDCA, and GDCA were significantly reduced specifically in the plasma 

metabolomes on days 7 and 28 of the meropenem HD-treated males compared to the controls, whereas 

TβMCA and TCDCA were significantly increased at all time points for the meropenem HD-treated 

males. Compared to females, marginal changes were observed in the plasma BAs in the meropenem 

LD- and HD-treated males at all sampling time points.  

Table 9. Meropenem-induced blood plasma BA fold changes in male (m) Wistar rats. Metabolite fold changes in 
plasma BAs of male Wistar rats (N = 5 per group) dosed with meropenem (100 (LD) and 300 (HD) mg/kg bw/day) 
observed on 7, 14, and 28 days (m7, m14, and m28). Statistically significant changes (Welch t-test; p-value < 
0.05) are shown where red boxes mean a significant increase in the respective plasma BAs and yellow boxes mean 
a significant reduction compared to control levels. 

  Meropenem Trihydrate HD Meropenem Trihydrate LD 
Metabolite Class m7 m14 m28 m7 m14 m28 

Ursodeoxycholic acid 2° BA 1.54 8.42 3.22 2.41 4.27 2.23 
Deoxycholic acid  2° BA 0.01 NA 0.02 0.46 1.84 0.29 
Lithocholic acid 2° BA 0.02 0.14 0.02 0.14 0.59 0.07 

Taurolithocholic Acid Taurine-conjugated 2° BA 0.05 0.08 0.08 0.16 0.16 0.31 
Taurocholic Acid 3-sulfate Taurine-conjugated 1° BA 0.22 1.10 0.31 0.65 0.30 0.34 
Tauro-b-muricholic Acid Taurine-conjugated 1° BA 1.73 4.06 1.96 0.95 1.03 1.10 

Tauroursodeoxycholic Acid Taurine-conjugated 2° BA 1.25 7.42 5.90 1.44 1.18 0.63 
b-Muricholic Acid 1° BA 1.45 3.56 2.23 1.51 1.65 1.88 

Taurochenodeoxycholate Taurine-conjugated 1° BA 2.42 3.53 2.05 1.17 0.68 1.22 
Taurodeoxycholate Taurine-conjugated 2° BA 0.02 0.00 0.03 0.10 0.21 0.10 
Glycodeoxycholate  Glycine-conjugated 2° BA 0.01 NA 0.01 0.64 3.02 0.09 

Hyodeoxycholic acid 2° BA 0.01 0.03 0.01 0.03 0.01 0.00 
o-Muricholic Acid 2° BA 0.11 1.23 0.07 0.12 0.14 0.09 

isoLCA 2° BA 0.26 2.59 0.12 0.29 0.44 0.35 

3.6.2. Doripenem Hydrate Treatment Significantly Alters Plasma Metabolites during Treatment and 

the Metabolites Recover after Doripenem Administration is Stopped 

Significant changes (p < 0.05) in plasma metabolites of doripenem-treated animals were observed on 

days 7, 14, and 28 of treatment (Tables 10 and 11). Among the several measured metabolites, the 

majority of the significantly changed ones belonged to amino acids, BAs, carbohydrates, lipids, energy 

metabolites, signal substances, nucleobases, and their derivatives. These also included key plasma 

biomarkers associated with the perturbed gut microbiota, that have been previously reported. Among 
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the known plasma biomarkers, indole-3-propionic acid (IPA), 3IS, and HA were observed to be 

significantly reduced in plasma metabolomes from days 7, 14, and 28 [11, 14, 15]. 

Plasma metabolites on day 42 doripenem-recovery group in females (two weeks of no exposure), 

recovered after the doripenem administration was stopped. Although the metabolites from the LD group 

recovered fully, in the HD group, there were two metabolites that were not fully recovered. Two further 

metabolites, HA and TCA, were changed in the opposite direction in the HD group two-weeks post-

doripenem cessation as compared to the doripenem-treated HD groups. 

Table 10. Doripenem-induced plasma metabolite fold changes in female (f) Wistar rats (N = 5 per group) dosed 
with 100 (LD) and 1000 (HD) mg/kg bw/day observed on days 7, 14, and 28 (f7, f14, and f28) and on day 42 
(f42) from the doripenem-recovery group. Statistically significant changes (Welch t-test; p-value < 0.05) are 
shown where red boxes mean a significant increase, yellow boxes mean a significant decrease, and white boxes 
indicate an insignificant change in the respective plasma metabolites compared to control group. 

  Doripenem HD 
Doripenem 

HD 
Recovery 

Doripenem LD 
Doripenem 

LD 
Recovery 

Metabolite Class f7 f14 f28 f42 f7 f14 f28 f42 
Tyrosine Amino acids 1.11 0.79 0.75 0.84 0.83 0.83 0.97 1.12 

Threonine Amino acids 0.83 0.77 0.80 1.06 0.92 0.90 0.90 1.02 
Tyrosine Amino acids 0.88 0.82 0.80 0.84 0.86 0.86 0.95 0.98 

trans-4-Hydroxyproline Amino acids-related 0.90 0.81 0.89 1.07 1.11 0.93 0.93 1.14 
3-Hydroxyindole Amino acids-related 0.09 0.09 0.06 0.79 0.31 0.55 0.63 0.72 

Ketoleucine Amino acids-related 0.67 0.76 0.71 0.79 0.81 0.74 0.88 0.96 
Indole-3-propionic acid Amino acids-related 0.85 0.87 0.66 0.77 1.74 0.93 0.93 0.90 

3-Indoxylsulfate Amino acids-related 0.06 0.04 0.03 0.96 0.24 0.37 0.66 0.93 
Deoxyribonucleic acids, 

total Carbohydrates and related 0.76 0.92 0.72 0.99 0.79 0.80 0.78 0.91 

Ceramide (d18:1,C24:1) Complex lipids, fatty acids and related 0.80 0.71 0.74 1.27 1.20 1.29 1.37 1.06 
Ceramide (d18:1,C24:0) Complex lipids, fatty acids and related 0.73 0.68 0.62 1.25 1.02 1.25 1.19 1.09 

Citrate Energy metabolism and related 1.09 1.26 1.26 1.09 1.05 1.10 1.12 0.98 
2-Hydroxybutyrate Energy metabolism and related 1.55 1.60 2.09 1.17 1.37 1.52 1.14 0.73 

3-Methoxytyrosine Hormones, signal substances and 
related 1.10 1.22 1.2 1.26 1.38 1.41 1.05 1.10 

17-Hydroxypregnenolone Hormones, signal substances and 
related 0.01 0.01 0.02 0.83 0.01 0.04 0.53 1.25 

beta-Sitosterol, total Miscellaneous 0.62 0.74 0.74 1.12 1.01 1.07 0.80 1.13 
Hippuric acid Miscellaneous 0.23 0.25 0.48 1.58 0.39 0.32 0.52 1.00 

Cytosine Nucleobases and related 0.86 0.77 0.71 0.88 0.89 0.64 0.83 0.75 
Allantoin Nucleobases and related 0.75 0.89 0.86 1.01 0.73 0.82 1.01 0.97 

Cholesterol, total  0.84 0.99 0.69 1.32 1.04 1.30 0.83 1.15 

Of the 22 measured plasma BAs in the HD doripenem-treated female rats, 12 were significantly altered 

at a p < 0.05 (Table 11). The 2° BAs including DCA, HDCA, ωMCA, and isoLCA were significantly 

changed at all time points. The list also consisted mostly of the taurine-conjugated 1° and 2° BAs, 

including significant increases in TCA, TβMCA, and TCDCA and a reduction in TLCA, TUDCA, and 

TDCA in the HD-treated female animals. Plasma BAs in the doripenem-recovery group also 

recovered. As also noted in the females, a few BAs in the males, i.e., GLCA, TLCA, HDCA, and 
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isoLCA, were increased in the HD-recovery group, while they were reduced during the treatment phase. 

In the LD group, only GLCA showed this overcompensation, whereas all other BAs in the LD-recovery 

group were not significantly different from the controls. This dose-response observation confirmed that 

this overcompensation is a real effect.  

Table 11. Doripenem-induced plasma BA fold changes in female (f) Wistar rats (N = 5 per group) dosed with 
100 (LD) and 1000 (HD) mg/kg bw/day observed on days 7, 14, and 28 (f7, f14, and f28) and on day 42 (f42) 
for the doripenem-recovery group. Statistically significant changes (Welch t-test; p-value < 0.05) are shown 
where red boxes mean a significant increase, yellow boxes mean a significant decrease, and white boxes 
indicate an insignificant change in the respective plasma BAs compared to control groups. 

  Doripenem HD 
Doripenem 

HD 
Recovery 

Doripenem LD 
Doripenem 

LD 
Recovery 

Metabolite Class f7 f14 f28 f42 f7 f14 f28 f42 
Deoxycholic acid  2° BA 0.02 0.02 0.03 3.41 0.02 0.06 0.32 2.57 

Taurocholic acid sodium salt  Taurine-conjugated 1° BA 0.99 3.46 1.88 0.44 0.68 0.66 0.76 0.49 
Glycolithocholic Acid Glycine-conjugated 2° BA 0.11 0.12 0.33 9.27 0.04 0.37 1.26 13.31 
Taurolithocholic Acid Taurine-conjugated 2° BA 0.01 0.01 0.04 3.43 0.01 0.03 0.18 1.32 

Taurocholic Acid 3-sulfate Taurine-conjugated 1° BA 1.68 2.09 2.41 0.98 1.26 1.83 2.24 1.62 
Tauro-b-muricholic Acid Taurine-conjugated 1° BA 1.24 6.05 2.74 0.78 1.48 1.52 1.22 1.21 

Tauroursodeoxycholic Acid Taurine-conjugated 2° BA 14.68 7.45 17.31 3.88 5.43 2.66 11.53 0.97 
Taurochenodeoxycholate Taurine-conjugated 1° BA 1.29 2.94 1.91 1.30 1.38 1.33 1.28 1.12 

Taurodeoxycholate Taurine-conjugated 2° BA 0.00 0.00 0.01 0.65 0.00 0.00 0.05 0.68 
Hyodeoxycholic acid 2° BA 0.02 0.01 0.01 19.38 0.05 0.01 0.02 2.55 

o-Muricholic Acid 2° BA 0.11 0.08 0.14 0.66 0.16 0.13 0.45 1.98 
isoLCA 2° BA 0.08 0.27 0.23 3.90 0.07 0.10 0.13 3.06 

In the HD males, 40 out of the 294 measured plasma metabolites were significantly changed in samples 

on days 7, 14, and 28 (Table 12). These included metabolites belonging to amino acids, BAs, 

carbohydrates, lipids, energy metabolites, signal substances, nucleobases, vitamins, and their 

derivatives and a dose-response was observed. Furthermore, among the significantly changed plasma 

metabolites, some of the key biomarkers including 3IS and HA were observed to be reduced at all time 

points in the doripenem HD males. Plasma metabolites on day 42 from the doripenem-LD recovery 

males showed complete recovery without any over-compensation. In the doripenem-HD recovery 

group, 3 metabolites did not fully recover (tyrosine, glucose, and xylitol), whereas two other 

metabolites, 3-hydroxyindole and HA, showed an over-compensation as they were significantly 

changed in the opposite direction (i.e., were increased in the recovery group, while decreased under 

treatment). 

Table 12. Doripenem-induced plasma metabolite fold changes in male (m) Wistar rats (N = 5 per group) dosed 
with 100 (LD) and 1000 (HD) mg/kg bw/day observed on days 7, 14, and 28 (m7, m14, and m28) and on day 42 
(m42) for the doripenem-recovery group. Statistically significant changes (Welch t-test; p-value < 0.05) are shown 
where red boxes mean a significant increase, yellow boxes mean a significant decrease, and white boxes indicate 
an insignificant change in the respective plasma metabolites compared to control group. 

  Doripenem HD 
Doripenem 

HD 
Recovery 

Doripenem LD 
Doripenem 

LD 
Recovery 
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Metabolite Class m7 m14 m28 m43 m7 m14 m28 m43 
Tyrosine Amino acids 0.71 0.95 0.8 0.86 0.83 1.07 0.82 0.93 
Alanine Amino acids 0.76 0.9 1 0.90 0.9 0.86 0.96 0.96 
Glycine Amino acids 0.87 0.94 0.81 1.00 0.89 0.82 0.77 0.97 

Threonine Amino acids 0.77 0.99 0.81 1.05 0.84 0.83 0.78 0.89 
Tyrosine Amino acids 0.75 0.77 0.76 0.97 0.83 1 0.92 0.94 

3-Hydroxyindole Amino acids-related 0.12 0.08 0.1 1.40 0.2 0.59 0.58 1.18 
3-Hydroxyisobutyrate Amino acids-related 0.99 0.83 0.72 0.95 0.86 0.92 0.76 1.12 

Ketoleucine Amino acids-related 0.67 0.68 0.86 0.80 0.84 0.82 0.9 0.74 
3-Indoxylsulfate Amino acids-related 0.2 0.05 0.18 1.08 0.18 0.73 0.48 0.88 

Deoxyribonucleic acids, total Carbohydrates and related 0.85 0.8 0.8 1.01 1.09 0.88 0.9 1.06 
Glucose Carbohydrates and related 0.68 0.59 0.68 0.68 0.91 0.72 0.81 1.06 
Xylitol Carbohydrates and related 0.69 0.4 0.69 0.60 0.93 0.62 0.52 1.03 

Taurocholic acid Complex lipids, fatty acids and related 4.45 6.15 4.22 0.51 1.67 1.41 0.95 1.41 
Docosapentaenoic acid (C22:cis 

[7,10,13,16,19]5) 
Complex lipids, fatty acids and related 0.86 0.65 0.58 1.13 0.8 0.67 0.64 0.49 

Lysophosphatidylcholine (C20:4) Complex lipids, fatty acids and related 0.94 0.77 0.84 1.13 0.95 0.9 0.85 0.84 
Pyruvate Energy metabolism and related 1.5 2.23 1.25 1.17 2.03 2.18 1.27 1.53 
Pyruvate Energy metabolism and related 1.52 2.26 1.06 1.43 2.49 2.87 1.32 1.62 
Lactate Energy metabolism and related 0.59 0.8 0.74 0.97 0.83 0.99 0.91 1.01 

3-Phosphoglycerate (3-PGA) Energy metabolism and related 0.43 0.27 0.72 0.83 0.56 0.35 0.92 0.94 

Pregnenolone 
Hormones, signal substances and 

related 
0.52 0.49 0.38 0.77 1.04 0.89 1.04 0.78 

Hippuric acid Miscellaneous 0.31 0.31 0.46 1.67 0.38 0.42 0.32 0.99 
Uric acid Nucleobases and related 0.8 0.81 0.91 0.83 0.8 0.75 0.94 0.94 
Cytosine Nucleobases and related 0.78 0.81 0.85 0.97 1.03 0.93 0.95 1.06 
Uric acid Nucleobases and related 0.71 0.59 0.76 0.74 0.72 0.72 0.89 0.88 

Threonic acid Vitamins, cofactors and related 0.5 0.58 0.71 0.84 0.68 0.68 0.84 1.11 
Phosphatidylcholine (C18:0,C20:3)  0.85 0.72 0.64 1.28 0.78 0.64 0.7 0.79 

Seventeen out of the twenty-two measured plasma BAs were significantly altered in the doripenem-

treated males (p < 0.05). The list consisted of several 2° Bas, including ursodeoxycholic acid (UDCA), 

DCA, HDCA, and ωMCA, that are observed to be significantly reduced specifically in the HD-treated 

males (Table 13). Three 1° BAs, CA, chenodeoxycholic acid (CDCA), and α-muricholic acid (αMCA), 

were significantly reduced in the HD group. Additionally, many conjugated BAs including taurine- and 

glycine-conjugated 1° and 2° BAs were also significantly altered in the doripenem-treated males, 

specifically in the HD group. 

Table 13. Doripenem-induced plasma BA fold changes in male (m) Wistar rats (N = 5 per group) dosed with 100 
(LD) and 1000 (HD) mg/kg bw/day observed on days 7, 14, and 28 (m7, m14, and m28) and on day 42 (m42) for 
the doripenem-recovery group. Statistically significant changes (Welch t-test; p-value < 0.05) are shown where 
red boxes mean a significant increase, yellow boxes mean a significant decrease, and white boxes indicate an 
insignificant change in the respective plasma metabolites compared to the control group in the respective plasma 
BAs. 

  Doripenem HD 
Doripenem 

HD 
Recovery  

Doripenem LD Doripenem 
LD Recovery 

Metabolite Class m7 m14 m28 m43 m7 m14 m28 m43 
Ursodeoxycholic acid 2° BA 0.09 0.38 0.18 0.55 1.11 5.52 2.15 0.13 

Deoxycholic acid  2° BA 0 0 0.01 1.28 0.01 0.02 0.01 0.32 
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Cholic acid 1° BA 0.03 0.06 0.03 1.13 0.77 1.5 0.6 0.09 
Chenodeoxycholic acid 1° BA 0.05 0.05 0.05 0.91 0.55 1.12 0.56 3.64 

Taurocholic acid sodium salt  Taurine-conjugated 1° BA 3.6 3.71 4.27 0.68 2.27 0.86 0.83 1.41 
Glycolithocholic Acid Glycine-conjugated 2° BA 0.08 0.24 0.23 0.69 0.2 0.24 0.12 0.21 
Taurolithocholic Acid Taurine-conjugated 2° BA 0.06 0.1 0.21 1.16 0.06 0.06 0.07 0.69 

Tauro-b-muricholic Acid Taurine-conjugated 1° BA 4.21 4.48 4.86 0.90 2.46 1.4 1.19 1.39 
Tauroursodeoxycholic Acid Taurine-conjugated 2° BA 5.01 2.21 4.79 0.85 1.71 1.38 1.66 0.99 

a-Muricholic Acid 1° BA 0.05 0.07 0.04 2.08 0.52 2.79 0.95 0.29 
Taurochenodeoxycholate Taurine-conjugated 1° BA 3.13 3.6 3.24 0.63 2.47 1.1 1.26 0.94 

Taurodeoxycholate Taurine-conjugated 2° BA 0.02 0.02 0.03 1.39 0.02 0.02 0.02 1.15 
Glycocholic acid Glycine-conjugated 1° BA 0.37 0.16 0.31 1.63 0.65 0.74 0.72 0.28 

Glycochenodeoxycholic acid Glycine-conjugated 1° BA 0.32 0.12 0.2 0.78 0.62 0.76 0.55 0.41 
Glycodeoxycholate  Glycine-conjugated 2° BA 0 0 NA 0.45 0 0 0 0.30 

Hyodeoxycholic acid 2° BA 0.04 0 0 0.48 0.01 0.01 0 0.72 
o-Muricholic Acid 2° BA 0.14 0.02 0.01 0.81 0.11 0.28 0.08 0.54 

Taurine-conjugated 1° BAs, TCA, TβCA, and TCDCA, were significantly increased whereas taurine-

conjugated 2° BAs including TLCA, TUDCA, and TDCA were significantly decreased in the HD 

treatment group. Glycine-conjugated 1° BAs including glycocholic acid (GCA) and 

glycochenodeoxycholic acid (GCDCA) and 2° BAs, GLCA and GDCA, also were all observed to be 

significantly reduced, indicating a sex-specific response as these were not affected in this pattern in 

females. BA plasma levels in both doripenem-LD and -HD males recovered completely on day 42. 

3.7. Comparative Analysis of the Metabolome Suggests Stronger Effects of Carbapenem Antibiotics 

on Feces Than Plasma Metabolomes 

There was a stronger effect of the antibiotic treatments on the fecal metabolites (35–59% significantly 

changed metabolites at p-value < 0.05) compared to plasma (only 10–21%) (Table 14). Upon comparing 

the percentage changes in the plasma and fecal metabolomes in the doripenem-recovery groups to 

previously changed levels upon doripenem treatment, it can be concluded that the recovery of altered 

metabolites was faster in males than in females. Additionally, it was noted that the feces metabolome 

recovered faster than the plasma, as more than 50% of the previously changed fecal metabolites reversed 

back to normal control values on day 42/43 (two weeks after no exposure to the antibiotic). Furthermore, 

with the false discovery rate at a p-value of 0.05 being 5%, the plasma metabolomes of the doripenem-

HD recovery males and the doripenem-LD recovery females also suggested complete recovery. 

Comparing the percentages of significantly altered plasma and feces metabolites in the meropenem-

treated animals, the number of changes in the fecal metabolomes was about 4–5 times higher than that 

in the plasma. This observation is similar in both the carbapenem treatment groups and in both sexes, 

indicating consistent antibiotic-class based effects on the metabolomes, and both antibiotics show a 

similar strength (Table 14C,D). 
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Table 14. Percentages of the total number of significantly changed plasma (in light blue) and fecal (in light orange) 
metabolites at a p-value < 0.05 for the (A) HD and (B) LD groups of doripenem treatment plus the doripenem-
recovery group and (C) HD and (D) LD groups of meropenem treatment in both sexes, respectively. 

(A) 

Doripenem HD, males   Doripenem HD, females   

Plasma Plasma 
Recovery Feces  Feces 

Recovery Plasma Plasma 
Recovery Feces  Feces 

Recovery 
7d 14d 28d 42d 7d 14d 28d 35d 42d 7d 14d 28d 42d 7d 14d 28d 35d 42d 

% of 
total sig. 
changed 
metabolit

es 

20.2
7 

16.8
9 

19.
59 7.43 47.7

5 
48.5

5 
49.0

4 18 14.95 19.59 12.16 18.9
2 18.58 58.54 54.5 54.5 24.76 22.5 

(B) 

Doripenem LD, males   Doripenem LD, females   

Plasma Plasma 
Recovery Feces  Feces 

Recovery Plasma Plasma 
Recovery Feces  Feces 

Recovery 
7d 14d 28d 42d 7d 14d 28d 35d 42d 7d 14d 28d 42d 7d 14d 28d 35d 42d 

% of 
total sig. 
changed 
metabolit

es 

14.8
6 

14.1
9 

15.
2 18.92 42.7

6 
46.7

8 
40.3

5 12.06 6.27 16.89 14.86 10.8
1 7.78 54.66 49.03 36.65 18 12.54 

(C) 
Meropenem HD, males Meropenem HD, females 

Plasma Feces  Plasma Feces  
7d 14d 28d 7d 14d 28d 7d 14d 28d 7d 14d 28d 

% of total sig. 
changed 

metabolites 
10.54 11.9 14.97 44.69 50.48 47.27 15.31 10.2 13.6 56.91 43.25 42.93 

(D) 
Meropenem LD, males Meropenem LD, females 

Plasma Feces  Plasma Feces  
7d 14d 28d 7d 14d 28d 7d 14d 28d 7d 14d 28d 

% of total sig. 
changed 

metabolites 
6.8 7.82 12.24 46.46 34.73 32.96 9.86 12.24 8.5 49.36 45.18 31.51 

4. Discussion 
We investigated how two carbapenem antibiotics, meropenem trihydrate and doripenem hydrate, alter 

the gut (fecal) microbiota composition and the derived plasma and fecal metabolites of male and female 

Wistar rats, as well as the recovery of these parameters one and two weeks after ending the 

administration of doripenem (Figure 10). The major findings of this research include the following: 1. 

Meropenem and doripenem induced significant changes in the gut (fecal) microbiota composition with 

antibiotic-specific changes. 2. There were significant changes in the fecal metabolic profiles, 

particularly including alterations in BA levels. 3. Additionally, there were significant changes in the 

levels of plasma metabolites previously identified as key markers of microbiota shifts, as well as BAs. 

4. When animals were allowed a period of recovery following doripenem treatment, the changes in the 

16S bacterial composition as well as fecal metabolites reversed after 2 two weeks. 5. A few plasma 

metabolites in the doripenem-HD recovery group showed incomplete recovery or overcompensation. 
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(A) (B) 

Figure 10. Schematic diagrams of the recovery processes of (A) gut or fecal microbiota and (B) plasma and feces 
metabolomes before and after doripenem antibiotic treatments. Baseline state indicates the original or ‘normal’ 
state of the gut microbiota or metabolomes prior to antibiotic administration, which becomes altered upon 28 days 
of antibiotic administration. Further, post-antibiotic treatment, a recovery or overcompensation takes place where 
the gut bacteria as well as the host metabolomes try to return to the ‘normal’ state. 

4.1. Microbiome Analysis 

The effects of the two carbapenem treatments on the gut microbiome composition was different from 

other antibiotic classes, i.e., aminoglycosides, lincosamides, and fluoroquinolones, analyzed by Behr et 

al., 2017 and 2018, de Brujin et al., 2020, and Murali et al., 2021. As carbapenems exhibit a broad 

spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria, treatment groups 

consistently showed a reduced bacterial Shannon true diversity. Overall, in the control groups, the 

bacterial Shannon true or alpha diversity gradually increases with time from day 1 until day 42/43 of 

the study. This is consistent to Hoffmann et al., 2017, who also observed a higher Shannon diversity in 

older mice compared to younger ones [31]. The beta diversity analysis shows that samples of both 

treatment groups cluster together, with day 1 samples clearly separated from the rest of the sampling 

time points. This could be because of a yet incomplete elimination of less susceptible bacteria, with a 

subsequent further reduction in diversity at later time points which appears to be complete on day 7. 

Furthermore, the changes in 16S bacterial compositions on days 7 and 28 in the carbapenem groups 

were sex specific. A similar observation was noted in previously published studies using 

aminoglycosides, fluoroquinolones, lincosamides, and polymyxin E antibiotics. The factors responsible 

for these albeit subtle differences are still not very well established [12, 13, 32]. A few publications 

have highlighted potential reasons including the differences in hormone dynamics, host genetics, body 

mass index as some of the factors [33, 34]. Overall, however, compared to the sex specific differences 

observed in rats, the species strain and environmental conditions of the animals have a more significant 

influence on its gut microbiota composition. 

In the doripenem hydrate recovery group, the diversity analysis showed rapid recovery. The alpha 

diversity following one week of stopping the exposure in the doripenem-recovery LD and HD groups 

were comparable to the corresponding controls. Interestingly, in females of the doripenem-recovery LD 
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group on day 42, the bacterial diversity appeared to be slightly higher than in the corresponding control 

group. 

An inter-individual variability could be observed in the relative abundance analysis, particularly in the 

Verrucomicrobiaceae, as seen in previous investigations, where this high variability in 

Verrucomicrobiaceae in the control animals was already noted. To assess the long-term variability in 

controls, further studies would be helpful and needed to attain a historic range of the bacterial families 

for a better interpretation of results (similar to historical control data in clinical or histopathology). 

Consistent with the diversity analysis, the relative abundance analysis also showed a distinct bacterial 

composition on day 1 of the antibiotic treatment groups compared to the rest of the sampling time points. 

The meropenem and doripenem HD groups showed a more pronounced reduction in bacterial diversity 

than the LD group in both sexes, resulting in increased relative abundances of Enterococcaceae, 

Anaeroplasmataceae, Erysipelotrichaceae, and Peptostreptococcaceae compared to the controls 

indicating that these are highly likely to be resistant to carbapenem antibiotics. In both the meropenem 

and doripenem LD groups, the bacterial abundances changed with the time of exposure to the respective 

antibiotics, which indicates that the bacteria that are resistant to the activity of the respective antibiotics 

start to colonize and fill niches that are made available by the selected antibiotic, and hence, on day 1, 

this overgrowth with the above mentioned four strains was less evident than the succeeding sampling 

time points [35]. Furthermore, samples from recovery time points, that is, one and two weeks after the 

doripenem treatment was stopped, showed comparable bacterial abundances (observed in both relative 

and differential abundance analyses) as controls, which again demonstrates that the gut microbiota 

repopulation one week after antibiotic exposure was stopped. Similar observations were noted upon the 

cessation of other antibiotics such as ciprofloxacin and vancomycin in humans where gut bacterial 

communities began to return to their initial state after one and two weeks post-antibiotic cessation, 

respectively [36, 37]. 

4.2. Metabolome Analysis 

4.2.1. Both Carbapenems Altered Gut-Derived BAs and Plasma Biomarkers 

The PCA analysis of the fecal metabolome showed a strong effect of meropenem. From the 620 

measured fecal metabolites, as many as 47% and 43% metabolites were significant in the HD males 

and females, while in the LD groups, these values were 33% and 32%, respectively. Fecal 1° BAs 

including taurine-conjugated 1° BAs significantly increased in fecal metabolomes from all the time 

points (days 7, 14, and 28) of all the meropenem groups. Strong increases in CA suggest the lack of 

utilization of the 1° BAs for further bacterial dehydroxylation reactions to produce corresponding 2° or 

3° BAs. The accumulation of taurine-conjugated 1° BAs, specifically TCAs, also indicates reduced 

deconjugation activity of the remaining intestinal bacterial communities. This observation is in line with 

the antibiotics from other classes, such as the lincosamide antibiotics (clindamycin and lincomycin) and 

vancomycin [11, 12, 15]. Furthermore, TCA was observed to be actively transported from the intestine, 
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and it was shown that TCA uptake is increased in the ileal epithelium of Germ-free rats [38]. Therefore, 

although meropenem trihydrate, vancomycin, lincomycin, and clindamycin are antibiotics with a 

different spectrum of activity, their interference with bacterial BA metabolism appears to be rather 

similar. 

Strong reductions in 2° BAs, specifically in DCA, HDCA, ωMCA, and LCA, were observed in the 

meropenem treatment groups. This substantial reduction in these 2° BAs confirms the lack of an ability 

to convert 1° BAs into 2° BAs by gut bacteria. Gut bacteria are known to deconjugate the taurine- or 

glycine-conjugated 1° BAs and further dehydroxylate them to produce respective 2° BAs. The majority 

of gut bacteria are anaerobes, and mainly anaerobic bacteria possess a 7α- dehydroxylation activity to 

convert 1° BAs into 2° BAs [39]. Consequently, it can be assumed that meropenem trihydrate 

significantly reduced those essential gut (or fecal) bacteria that are responsible for these reactions. The 

PCA analyses of the plasma metabolome showed only some alterations compared to the controls. 

Among the 294 measured plasma metabolites, only about 15% and 13% were significantly changed in 

the samples from day 28 of meropenem HD-treated males and females, respectively. In the LD group, 

these values were 12% and 8.5% in male and female rats, respectively. These values are above the false 

discovery rate but far less compared to the changes in the fecal metabolites. 

Some of the previously established plasma biomarkers that are known to be associated with 

perturbations in the gut microbiome include HA, indole derivatives (incl. IAA, IPA, and 3-

indoxylsulfate), and glycerol [11]. From these, a significant reduction in 3-IS and HA was observed in 

both sexes of the meropenem treatment groups, confirming their usefulness as general indicators of 

disturbed gut microbiome composition and metabolic functionality. Surprisingly, one of the indole 

derivatives, IAA, which was previously found to be significantly reduced during treatments with 

antibiotics belonging to the aminoglycosides, lincosamides, and fluoroquinolones classes [11, 12, 32, 

40], was significantly increased in the meropenem treatment group, specifically in the HD group (Table 

S5). This observation suggests a meropenem-specific effect on this specific plasma key metabolite in 

both sexes. A potential cause of this significant increase of this otherwise reduced plasma biomarker 

could be the loss of essential gut bacteria that normally utilize these metabolites. 

Plasma BAs at all sampling time points showed significant alterations compared to the controls, 

including significant reductions in 2° BAs. Plasma 2° BAs including DCA, LCA, HDC, ωMCA, and 

isoLCA were all very low in the HD meropenem groups, indicating either reduced deconjugation 

reactions by gut bacteria consistent with the fecal BAs or a reduced conversion of deconjugated 1° into 

2° BAs. Similarly, almost all the conjugated 2° BAs were also significantly reduced in the plasma of 

the meropenem groups. Thus, meropenem is observed to not only alter the fecal 16S composition but 

also consequently the fecal metabolome and the plasma metabolome, hereby indicating a potential 

influence on gut metabolic functionality. This is in line with previous observations from other 

antibiotics belonging to aminoglycosides, fluoroquinolones, and lincosamides, as published by de 

Bruijn et al., 2020 and Murali et al., 2021 [1, 12]. Finally, to evaluate the observed effects of meropenem 
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on the different metabolites including BAs as a potential systemic effect, we investigated if any form 

of liver toxicity could have been involved. We used the MetaMapTox database to compare the plasma 

metabolome of meropenem HD-treated animals with the pre-defined patterns for liver toxicity, as 

previously published [41-43]. This comparison did not indicate any association with liver toxicity. 

Similar to meropenem, samples from rats treated with doripenem had significantly altered fecal 

metabolites consequent to the changes in the gut 16S composition. The PCA analysis showed strong 

changes in the treatment groups in both sexes. From the 620 measured fecal metabolites, about 50% 

and 54.5% were significantly changed in the HD-treated male and female rats, respectively, and about 

40% and 37% in the LD, respectively. 

The 1° BAs and several conjugated 1° BAs were significantly increased in feces samples from all the 

animals treated with doripenem, specifically in the HD group. Amongst these, TCA was strongly 

increased in the feces of these samples in both sexes. Such high accumulation of 1° as well as conjugated 

1° BAs indicates a reduction in gut bacteria that have the ability to perform the conversion of 1° as well 

as conjugated 1° BAs into their respective 2° and 3° forms via dehydroxylation and deconjugation 

reactions, as discussed previously for meropenem. Furthermore, 2° BAs including DCA, LCA, HDCA, 

ωMCA, and isoLCA were significantly reduced in all the samples from the doripenem treatment group 

relative to the controls, confirming the lack of bacterial deconjugation and 7α-dehydroxylation 

activities. Furthermore, conjugated 2° BAs were also consistently reduced. This could be the result of 

the reduction in gut bacteria possessing special enzymes necessary for deconjugation, which also 

explains that further conjugation of these 2° BAs in the liver is highly unlikely to take place. Unique 

bacterial enzymes called the bile salt hydrolases (BSH) are known to transform 1° into 2° BAs by 

cleaving the peptide linkage between the amino acid and the primary bile acid. Moreover, and in 

contrast to males, females treated with the doripenem antibiotic showed a significant decrease in 

glycine-conjugated 2° BAs, GLCA, and GDCA, highlighting the sex-specific effects of the antibiotic 

on these fecal BAs. 

Similar to meropenem, far fewer changes in the plasma metabolome were observed for the doripenem 

treatment. Amongst the 294 measured blood plasma metabolites, about 20% and 19% were significantly 

changed in HD-treated male and female rats, respectively, and about 15% and 11% in the LD groups, 

respectively. Key plasma biomarkers including 3IS and HA were consistently reduced in all treatment 

groups. In females, IPA was significantly reduced in all the plasma metabolomes from the doripenem 

HD treatment. Significant reduction in these biomarkers is known to be associated with gut-dysbiosis 

based on the observations published by Behr et al., 2018, where a temporary shift in the gut microbiota 

was induced as well as the associated fecal metabolites using antibiotic of different classes including 

aminoglycosides, lincosamides, and fluoroquinolones [11, 14, 15]. This observation is similar to that of 

the meropenem treatment, strongly indicating a carbapenem class-specific response. 

Several conjugated 1° BAs were significantly increased in the plasma of the doripenem treatment group 

in both sexes. This substantiates the observation in the fecal metabolome upon the antibiotic treatment 
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and indicates impairment of bacterial deconjugation activity and further accumulation of these 

conjugated BAs in the system. In males, additionally, 1° BAs, CA, and CDCA as well as some of the 

glycine-conjugated 1° BA were significantly reduced specifically in the HD group. Reduced levels of 

CDCA in the plasma of the HD group males in the absence of any significant change in CDCA in the 

feces suggests a possible increase in the conjugation activity of CDCA to TCDCA. This reduction in 

CA and CDCA in the plasma of antibiotic-treated rats is not unique as it was also observed upon 

roxithromycin treatment [12, 32, 40]. Furthermore, a significant reduction in 2° BAs including DCA, 

HDCA, and ωMCA could be consistently observed in all HD treatment groups. The 2° BAs isoLCA 

and UDCA were significantly reduced in females and males treated with doripenem HD, respectively. 

This decrease suggests an impairment in the bacterial dehydroxylation and deconjugation activity. In 

line with this observation, conjugated 2° BAs were also significantly reduced indicating the lack of 2° 

BAs to further undergo conjugation reaction in the liver. 

4.2.2. Doripenem Hydrate Showed Indication of Recovery of Significantly Changed Metabolites 2-

Weeks Post Doripenem Cessation 

In females, the fecal metabolome from one-week post-doripenem high-dose cessation still showed 

significant changes in almost 57% of the previously changed BAs. The majority of these BAs changed 

in the opposite direction compared to the antibiotic-treated group. Similarly, in the LD group, fecal 

doripenem recovery metabolome from one-week post-antibiotic cessation (day 35) still showed 

significant changes in 36% of the previously changed BAs, out of which the majority of the changes 

were in the opposite direction. These observations suggest that a mechanism of overcompensation 

occurred in the fecal metabolome one week after doripenem treatment was stopped. This could be a 

potential feedback mechanism of the body in order to attain metabolic homeostasis one-week post-

doripenem cessation. This can be further observed in the fecal metabolome from two-weeks post-

doripenem cessation, as the changes in these samples are lower than on day 35, therefore, suggesting 

advancement towards full recovery. In males, the recovery seems to be faster than in females. This 

observation again indicates subtle differences between the sexes extending beyond the microbiome to 

the associated metabolites. During antibiotic administration, the effects on the fecal BA levels was also 

stronger in females, and this may explain why recovery in females was slower than in males. 

The recovery of the plasma metabolome was analyzed with samples from two-weeks post-doripenem 

cessation. There was full recovery of the plasma metabolome of the LD group for males and females. 

For one metabolite (HA) there was overcompensation in the HD group females, i.e., the direction of 

change was reversed in the doripenem-recovery groups compared to control group. Interestingly, there 

were four bile acids for which an overcompensation was noted. In the HD group males, two metabolites 

(3-hydroxyindol and HA) were still increased despite the two weeks of recovery time, whereas none of 

the BAs were significantly changed two weeks after doripenem treatment was stopped in both LD and 

HD males. Similarly, for the HD group females, a longer duration than two weeks would ideally be 



- 142 - 
 

needed for a full recovery. In males, there were three metabolites, tyrosine, glucose, and xylitol, and 

two metabolites in females, citrate and 3-methoxytyrosine, which had not fully recovered. These 

metabolites that remained significantly altered two-weeks post-doripenem antibiotic cessation could 

either mean that they need more time to go back to their normal or baseline state or that they could be 

potential markers of disturbance, which may help provide therapeutic targets for microbiota recovery 

following antibiotic treatment [44]. Further, in contrast to females, all bile acids had returned to levels 

comparable to controls. 

4.3. Associations between the Changes in Gut Microbiota and Associated Metabolites 

Based on our observations, we hypothesize possible functions of gut bacteria, specifically with respect 

to BA metabolism. Several published studies on the species that have 7α-dehydroxylating activity 

(resulting in secondary bile acids) have focused on Clostridium sp, Bifidobacterium sp., Bacteroides 

sp., and Bifidobacterium sp. [45], whereas many other dominant facultative anaerobes of the intestinal 

bacteria have been less explored regarding their abilities to perform dehydroxylation and deconjugation 

reactions. Our research indicated other bacterial families also to be involved in BA pool regulation. 

Drastic reduction in two specific bacterial families, Bacteroidaceae and Prevotellaceae (belonging to 

Proteobacteria and Bacteroidetes phyla, respectively), were observed in all antibiotic treatment groups 

compared to controls for both sexes. As a significant reduction in the 2° BAs (in both plasma and feces) 

was also found in these antibiotic treatment groups, this suggests a role of these two bacterial families, 

which are normally rather abundant, in bacterial deconjugation and dehydroxylation reactions 

transforming 1° into 2° BAs. Moreover, increases in the relative abundances of the Enterococcaceae 

family were consistently observed in both the meropenem and doripenem treatment groups suggesting 

that they do not contribute to BA-related metabolism. Other rather weakly reduced bacterial families in 

the meropenem LD and HD treatment groups were observed to be Lachnospiraceae, Ruminococcaceae, 

and Porphyromonadaceae in both sexes of antibiotic treatments, also indicating a potential bile acid 

transformation activity of the two families [39]. Overall, all these changed bacterial families recovered 

to levels comparable to the controls in microbiota from one and two weeks after doripenem treatment 

was stopped, which was also consequently observed in the metabolomes (both blood plasma and feces), 

further validating these associations between the altered gut microbiota and its associated metabolites 

(specifically, BAs). 

5. Conclusions 
In this 28-day oral feeding study on Wister rats, we observed that broad spectrum carbapenem 

antibiotics induced significant changes in the gut microbiota and related fecal metabolome profiles, 

specifically concerning the BA pool. Additionally, there was an efficient recovery and reconstitution in 

the 16S bacterial composition as well as in fecal metabolites following alterations induced by 

doripenem. In plasma metabolomes, however, specifically for animals administered doripenem HD, the 
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recovery was slower and there were indications of overcompensation of several metabolites that either 

were overly increased or decreased from their perturbation levels during the treatment itself, suggesting 

an ongoing recovery process. The plasma metabolites were consistent with changes in metabolites 

previously established as key biomarkers of microbiota shifts including BAs, but a unique observation 

was that one of the key metabolites, indole-acetic acid (IAA), increased following meropenem treatment 

but not doripenem or any other antibiotics tested under the same experimental conditions. While further 

studies are needed to understand whether there are any adverse or toxicological consequences to host 

health due to the measured changes in the metabolites, and how this might be influenced by co-

administration with other drugs, the results suggest a relatively efficient recovery of the gut bacterial 

communities as well as their associated metabolic/functional output. The effective spontaneous 

recovery suggests that there may be little need for therapeutic interventions for restoration of the 

microbiome. Furthermore, due to apparent inter-species differences in the gut microbiota composition 

between rodents and humans, these results may not be directly applied or translated to human beings. 

This study also challenges the use/requirement for probiotics to restore gut communities. Whether 

overcompensated metabolites will return to their normal state, although likely, would require an 

extension beyond two weeks after antibiotic cessation. 
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Investigating the gut microbiome and metabolome following treatment with 
artificial sweeteners acesulfame potassium and saccharin in young adult 
Wistar rats 

Abstract  
To elucidate if artificial sweeteners modify fecal bacterial composition and the fecal and plasma 

metabolomes, Wistar rats from both sexes were treated for 28 days with acesulfame potassium (40 and 

120 mg/kg body weight) and saccharin (20 and 100 mg/kg body weight). Targeted MS-based 

metabolome profiling (plasma and feces) and fecal 16S gene sequencing were conducted. Both 

sweeteners exhibited only minor effects on the fecal metabolome and microbiota. Saccharin treatment 

significantly altered amino acids, lipids, energy metabolism and specifically, bile acids in the plasma 

metabolome. Additionally, sex-specific differences were observed for conjugated primary and 

secondary bile acids. Acesulfame potassium treated male rats showed larger alterations in glycine 

conjugated primary and secondary bile-acids than females. Other changes in the plasma metabolome 

were more profound for saccharin than acesulfame potassium, for both sexes. Changes in conjugated 

bile-acids in plasma, which are often associated with microbiome changes, and the absence of similarly 

large changes in microbiota suggest an adaptative change of the latter, rather than toxicity. Further 

studies with a high resolution 16S sequencing data and/or metagenomics approach, with particular 

emphasis on bile acids, will be required to explore the mechanisms driving this metabolic outcome of 

saccharin in Wistar rats.  

Keywords 
Metabolomics, repeated dose toxicity, gut microbiota, artificial sweeteners, metabolite profiles, 16S 

rRNA gene sequencing  

1. Introduction 
The interplay between gut microbiota and host metabolism has gained a lot of attention in the recent 

decades [1-3]. Gut microbiome is profoundly involved in host metabolism and plays a vital role in host 

physiology. It is known to influence not only host well-being but also the health risks such as glucose 

tolerance, obesity, hyperinsulinemia, cardiovascular disease, and other ailments [4-6]. Apart from host 

development and well-being, it is regarded as an important component in the fields of toxicology, 

pharmacology, neurology, and others [7]. The significance of the co-evolving intestinal microbes on 

host health and disease is well studied [8-10] but the underlying biological mechanisms remain vastly 

unclear [7, 11, 12]. While Next-Generation Sequencing (NGS) technologies have been extensively used 

for a better understanding of gut microorganisms as well as their associations with the host health, 

integrated omics approaches help further unravel the complex host-microbiome interactions [13]. 

Metabolic profiles of various matrices, such as urine, blood, feces, gut tissues, etc., are used to study 

the metabolic functions of the gut microbiota, the host, and the crosstalk between the two [1, 2]. Changes 
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in blood and fecal metabolites have been predominately investigated to understand this interplay. Blood 

metabolome, besides including host metabolites, is also known to reflect metabolites that largely result 

from gut microbes-host co-metabolism whereas the fecal metabolome is known to directly compliment 

the 16S sequencing-based approaches with a functional readout of the gut microbiome [14]. 

Using the metabolome profiles of different compounds (including antibiotics, drugs, agro- and 

industrial-chemicals, etc.), treatment-specific metabolic patterns have been established over the last 15 

years at BASF SE – Germany and stored in a database called MetaMap®Tox (MMT). This database 

consists of metabolite profiles from several different matrices of more than 1000 different treatments. 

MMT has been used for the identification and prediction of toxicological modes of action of new test 

compounds [7, 12, 15-18]. In previous studies, metabolic profiling of several different classes of 

antibiotics has been performed using different matrices including blood plasma, cecum content, feces 

and gut tissue sections (ileum, jejunum, duodenum). Several key gut microbiota-associated metabolites 

or biomarkers including indole-derivates (indole-3-acetic acid, indole-3-propionic acid, hippuric acid, 

3-indoxylsulfate), glycerol and bile acids have been identified in blood plasma and feces matrices on 

administering antibiotics in two different dose levels to male and female Wistar rats [12, 19, 20]. The 

clear comparability between microbiome composition and fecal metabolome indicates that feces can be 

used as a non-invasive, yet informative matrix compared to cecum content or gut tissue, promoting a 

longitudinal study design [7, 19, 20].  

There are some reports indicating an effect of artificial sweeteners (AS) on gut microbiome and 

subsequent changes in host well-being, which include glucose tolerance, obesity, hyperinsulinemia and 

cardiovascular disease [4-6]. The association between microbiome and host health has become general 

knowledge and the potential detrimental effects of sugar consumption has increased the exposure to 

these sweeteners. Therefore, the aim of our study was to investigate the effects of AS on the gut 

microbiota and its association with fecal and plasma metabolomes of Wistar rats. Acesulfame potassium 

and saccharin are both US Food and Drug Administration approved low-caloric artificial sweeteners [5, 

21]. Acesulfame potassium has not been associated with any toxicity and saccharin is also considered 

as safe. The carcinogenic effect of saccharin was downgraded from possible carcinogen to not 

classifiable as a carcinogen to humans in 1998. The acceptable daily intake (ADI) is 5 mg/kg body 

weight for saccharin [22, 23] and 15 mg/kg body weight for acesulfame potassium [23, 24]. Changes 

to the gut microbial composition upon administration of the substances have been earlier studied [6], 

but the interplay with the host has not been investigated for an effect on fecal or plasma metabolomes. 

To investigate this, the aim of the present study was to characterize the effects of these two model 

artificial sweeteners on the gut microbiota and the fecal and plasma metabolomes of Wistar rats.  

Here we report the results of a 28-day oral toxicity study to quantify the potential effects of different 

doses of acesulfame potassium and saccharin on the gut bacterial composition and metabolomes of male 
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and female Wistar rats. Targeted MS-based metabolome profiling of plasma and feces and community 

analysis via Illumina-based 16S marker gene sequencing of feces were conducted. With the evaluation 

of changes in the fecal microbiota and blood and feces metabolomes, a comprehensive understanding 

of how gut microbial changes upon treatment with the artificial sweeteners influences its metabolic 

functions and consequently its influence on the host was gained. 

2. Materials and methods 
A 28-day oral toxicity study was carried out in compliance with the OECD 407 Principles of Good 

Laboratory Practice and the GLP provisions of the German Chemicals Act. 

2.1 Ethical statement 

The animal study was performed in an AAALAC-approved (Association for Assessment and 

Accreditation of Laboratory Animal Care International) laboratory in accordance with the German 

Animal Welfare Act and the effective European Council Directive. This study was approved by the 

local authorizing agency for animal experiments (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, 

Germany) on 14 January 2019, as referenced by the approval number 23 177-07/G 18-3-098. For the 

study design, reference was made to the official OECD guideline 407, which requires the use of 5 

animals per sex and dose group. 

2.2 Animals and maintenance conditions 

Male and female Wistar rats (Crl:WI(Han)) of the age group 70 ± 1 days, were supplied by Charles 

River, Germany, before the beginning of the planned study. The rats (5 per sex and cage per treatment 

group) were acclimatized for a week, in an air-conditioned room at a temperature of 20–24 °C, a relative 

humidity level of 30–70%, and a 12 h light / 12 h dark cycle. The lights were turned off from 6PM to 

6AM and the animals were sacrificed on day 28 of the study between 7Am to 9AM. Ground Kliba 

mouse/rat maintenance diet “GLP” by Provimi Kliba SA, Kaiseraugst, Switzerland, was supplied for 

the feeding throughout the course of the study. Diet and drinking water were available ad libitum (except 

16–20 hours before sampling. In order to reduce any variation based on the diet consumption and as a 

standard procedure used in clinical chemistry and metabolomics, the animals were fasted overnight 

before the sample collection Diet and drinking water were regularly assessed for chemical contaminants 

and the presence of microorganisms.  

2.3 Treatment of animals with compounds 

The artificial sweeteners, acesulfame potassium and saccharin were administered daily by gavage to 

five rats per treatment group per sex (see Table 1 and Figure 1). Acesulfame potassium was prepared 

in deionized water for oral administration at dose levels of 40 mg/kg body weight/day and 120 mg/kg 

body weight/day, respectively. These dose levels selected were 2.5 and 8 times higher than the ADI for 
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acesulfame potassium. Similarly, saccharin was prepared in a 0.5% carboxymethyl cellulose (CMC) 

suspension at dose levels of 20 mg/kg body weight/day and 100 mg/kg body/day weight, respectively. 

The dose levels selected were 4 and 20 times higher than the ADI for saccharin. The dose levels for 

both the sweeteners, low dose (LD) and high dose (HD) were set based on previous literature data [22-

24]. 10 mL/kg bw/day of the sweeteners were administered from the prepared concentrations to five 

rats per treatment group per dose group per sex each with a concurrent control group of 10 animals per 

sex, to allow comparisons. All the animals were checked daily for any clinically abnormal signs and 

mortalities. Food consumption was determined on study days 6, 13 and 27. Additionally, body weights 

of all the animals were determined before the start of the administration period in order to randomize 

the animals and also on study days 6, 13 and 27. At the end of the treatment periods, the animals were 

sacrificed by decapitation under isoflurane anesthesia. 

Table 1: Treatments, dose levels and form of preparation of the treatments. All treatments were administered 
orally by gavage. 

Treatment Low dose 
(mg/kg bw/da) 

High Dose 
(mg/kg bw/da) Form of preparation 

Acesulfame potassium 40 120 In deionized water  

Saccharin 20 100 In 0,5% CMCb  
amg/kg body weight/day, bcarboxymethyl cellulose 

 

Figure 1: Schematic presentation of the study design for plasma and fecal metabolite profiling and the 
corresponding 16S bacterial community analysis of 28-day orally gavaged artificial sweetener-treated male and 
female Wistar rats. 
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2.4 Blood and feces sampling for metabolite profiling 

On days 7, 14 and 28, after a fasting period of 16-20 hours, blood samples were collected between 7:30 

and 10:30 h from the retro-orbital sinus of all the rats (including controls and both treatment groups) 

under isoflurane anesthesia (1.0 ml K-EDTA blood). The collected blood samples were subjected to 

centrifugation (10 °C, 20,000 x g, 2 min) and the EDTA plasma was separated. These EDTA plasma 

samples were then snap-frozen into liquid N2 and stored at −80 °C until the metabolite profiling was 

performed. Feces were carefully sampled by removing them from the rectum after gentle massaging, 

and when no feces were present, samples were then scraped from the colon during necropsy on day 28 

after a fasting period of 16-20 hours. The samples were collected in pre-cooled (dry-ice) vials, snap-

frozen in liquid nitrogen and stored at −80 °C until further processing for fecal dry weight 

measurements, DNA isolation, 16S gene PCR amplification and sequencing.   

2.5 Clinical examination 

All the animals were checked regularly for any abnormal macroscopic findings and mortalities. 

Standard operating procedures as described in the Organization for Economic Co-operation and 

Development (OECD) 407 guidelines were used for all clinical- and pathological examinations.  

Parameters such as food consumption and body weights were determined before the start of the 

treatment administration period in order to randomize the animals and on the study days 6, 13 and 27. 

Food consumption was measured by weighing the fixed amount of food and re-weighing after 24h and 

by calculating the difference between the weights of the rats before and after the 24h period. At the end 

of the study period, on day 28, animals were decapitated under isoflurane anesthesia. Metabolite 

profiling of blood plasma and feces as well as fecal 16S rRNA gene sequencing and further community 

analysis were performed for samples from all controls and sweetener-treated animals. 

2.6 DNA extraction and 16S rRNA amplicon sequencing 

Dry weights of stored rectum fecal samples from all controls and artificial sweetener-treated rats were 

measured, transferred to labeled pre-cooled (dry-ice) DNA/RNA Shield-Lysis collection tubes 

(BIOZOL Diagnostica Vertrieb GmbH, Eching, Germany) avoiding excess thawing of the frozen fecal 

pellets. Fecal slurry samples on dry ice and their measured weight details were sent to IMGM® 

laboratories (Martinsried, Germany) for DNA isolation, amplicon-based 16S rRNA gene sequencing 

plus an additional qPCR assay for bacterial gDNA load quantification using Illumina MiSeq sequencing 

platform. DNA isolation from the fecal slurries was conducted using QIAamp Fast DNA Stool Mini 

Kit (Qiagen) followed by quantification with Qubit (ThermoFisher In brief, 1 µl of each sample was 

used to determine dsDNA concentration (ng/µl) in comparison to a given standard provided with the 

kit. The DNA concentration was determined by creating a linear trend line and applying the 

mathematical equation of linear regression by IMGM® laboratories. DNA was amplified using universal 

primer pair 341F/805R of V3-V4 region of the 16S gene. An aliquot of each final PCR product 



- 155 - 
 

including the positive and negative controls was run on a 2% agarose gel (Midori Green-stained) to 

analyze the quality of the generated amplicons and to evaluate the expected amplicon size. Next 

Generation sequencing (NGS) was performed on the Illumina MiSeq® next generation sequencing 

system (Illumina Inc.) resulting in 250bp paired end reads with a minimum of 10,000 reads per sample. 

An additional bacterial DNA quantification analysis was carried out by amplification using qRT-PCR 

analysis by VII7 System. The produced raw data were processed, de-multiplexed and went to QC for 

final report generation. The final report was then used for further bioinformatics analysis. 

2.7 Metabolite profiling of plasma and feces matrices  

 

Mass spectrometry-based metabolite profiling of blood plasma and feces matrices was performed 

according to a standardized protocol described below. 

Targeted metabolites were measured from 60 µl rat plasma extracted by adding 1500 µl extraction 

buffer (methanol, dichloromethane, water and toluene (93:47:16,5:1, v/v) buffered with ammonium 

acetate) using a ball mill (Bead Ruptor Biolab). Internal standards were added to the extraction mixture 

to enhance reproducible analysis. After centrifugation, (12000 rpm 10min@ 12°C) a 100 µl aliquot of 

the extract was subjected to LC-MS/MS. Here, 2.5 µl of the extract were injected each for reversed-

phase and hydrophilic interaction liquid chromatography (ZIC - HILIC, 2.1 x 10mm, 3.5 µm, Supelco) 

followed by MS/MS detection (AB Sciex QTrap 6500+) using the positive and negative ionization 

mode. For reverse-phase high performance liquid chromatography (RP-HPLC, Ascentis Express C18, 

5cm x 2.1mm, 2,7µm Supelco), gradient elution was performed with water/methanol/0.1 M ammonium 

formate (1:1:0.02 w/w) and methyl-tert-butylether/2-propanol/methanol/0.1M ammonium formate 

(2:1:0.5:0.035 w/w) with 0.5% (w%) formic acid (0 min 100% A, 0.5 min 75% A, 5.9 min 10% A, 600 

µl/min). HILIC gradient elution was performed with (C) acetonitrile/water (99:1, v/v) and 0.2 (v%) 

acetic acid  and (D) 0.007 M ammonium acetate with 0.2 (v%) acetic acid (0 min 100% C, 5 min 10% 

C, 600 µl/min).  

A second 1200 µl aliquot of the extract was mixed with water (3,75:1, v/v) resulting in a phase 

separation. 400 µl of the polar (upper phase) and 90 µl of lipid (lower phase) were taken for GC analysis. 

Both phases were analyzed with gas chromatography-mass spectrometry (GC7890-5975 MSD, Agilent 

Technologies) after derivatization as described in Grossmann et al. [25]. Briefly, the non-polar fraction 

was treated with methanol under acidic conditions to produce fatty acid methyl esters that were derived 

from both free fatty acids and hydrolyzed complex lipids. The polar and non-polar fractions were further 

derivatized with O-methyl-hydroxylamine hydrochloride to convert oxo-groups to O-methyloximes, 

and subsequently with a silylating agent (N-methyl-N-(trimethylsilyl) trifluoroacetamide). For GC 

analysis, 0.5 µl of the derivatized phase-separated extract were used each for analysis of the polar and 

lipid fractions. Bile acids analysis approach was based on a kit from Biocrates [26]. 
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All of the samples were analyzed once in a randomized analytical sequence design to avoid artificial 

results with respect to analytical shifts. For GC-MS and LC-MS/MS profiling, data were normalized to 

the median of reference samples which were derived from a pool formed from aliquots of all samples 

to account for inter- and intra-instrumental variation. In plasma, 272 semiquantitative metabolites could 

be analyzed using the single peak signal of the respective metabolite and a normalization strategy 

according to the patent WO2007012643A1[27] resulting in ratio values representing the metabolite 

change in treated versus control animals [13]. Of those 272 metabolites, 246 are chemically identified 

and 26 are structurally unknown.  

Similarly, the stored fecal samples were subjected to a freeze-drying process for further measurements. 

The product temperature and the vapor pressure at the beginning of the freeze-drying process were -

40°C and 0.120 mbar respectively changing to +30°C and 0.01 mbar for a total running time of 42 h. 

About 10 mg of freeze-dried rat feces were used from the controls and different sweetener-treated 

animals for extraction with 1400 µl of a mixture of methanol and dichloromethane (2:1, v/v) with formic 

acid (0.6 v%) including a stainless-steel ball for homogenization with a ball mill (Bead Ruptor Biolab). 

After centrifugation (12000 rpm 10 min @12°C, an aliquot of the extract was subjected to LC-MS/MS 

analysis as described above.  

In accordance to the GC-MS method applied for plasma samples, 750 µl of the polar (upper phase) and 

90 µl of lipid (lower phase) were taken for GC analysis. Furthermore, the method applied for fecal 

samples was the same method as used for plasma matrix. In feces, 632 semiquantitative metabolites 

could be analyzed, of which 348 are chemically identified and 284 are structurally unknown. 

2.8 Statistics 

Analysis of the metabolite data was performed by uni- and multivariate statistical methods. A sex and 

day-stratified heteroscedastic t-test (Welch test) was applied to compare the levels of different 

metabolites from different doses of sweeteners relative to controls for both plasma and feces matrices. 

Relative fold changes for all the metabolites were calculated as the ratio of the medians of metabolite 

levels in individual animals per treatment group to the medians of metabolite levels in individual 

corresponding control animals (for each sampling time point, dose level and sex). These ratios are 

referred to as relative fold change levels. Computational work was conducted using standardized scripts. 

Finally, the relative fold change values, p- and t-values of metabolites were uploaded as metabolite 

profiles and made available on the in-house database MetaMapTox® (or MMT) [15, 17, 28]. For the 

multivariate analysis of these profiles, the data were log-transformed, centered, and scaled by unit 

variance for each metabolite and then used for Principal Component Analysis (PCA). Any missing data 

present were imputed using the nearest neighbor method implemented in function impute.knn from the 

R package impute [7]. PCA analysis was performed in R Statistical software [7]. Treatment related 
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effects were evaluated on MMT using the standardized procedure of comparing resulting metabolite 

levels of different treatments against the control group [17]. 

2.9 Bioinformatics  

A standardized in-house 16S marker gene data processing using DADA2 algorithm was used as 

presented in Murali et al., 2021 [7]. The customized workflow involves data quality control (QC), 

primer removal, denoising, taxonomy assignments using the RDP classifier and creation of a 

phylogenetic tree. Forward and reverse primers were trimmed from the raw reads using cutadapt 

software. As paired-end reads were to be used for further analysis, the reads were merged to about 415 

bp length. The QC step involved checking the read lengths and the quality of the joined reads. 

Taxonomy was assigned to the individual Amplicon Sequence Variants (ASVs) using the Naïve 

Bayesian classifier implemented in DADA2 with the RDP database. This resulted in the output of a 

BIOM table with all the information regarding the sequences and abundances of ASVs and the assigned 

taxa information [7]. 

2.10 16S data handing and analysis 

Post-processing of the 16S marker gene data was performed for bacterial community analysis in R 

software using RAM package library, as published in Murali et al., 2021 [7]. The processed data were 

checked for completeness, and empty rows were removed. The BIOM table contained 501535 reads 

belonging to 26552 ASVs from 57 samples. The raw reads were used for alpha diversity analysis using 

the group.diversity function in the RAM package. As a part of data cleanup, ASVs or reads that did not 

have taxonomic assignment up to the family level were removed. Further, ASVs with non-zero counts 

in at least two samples were retained, and the others were removed, resulting in 436521 reads belonging 

to 970 ASVs. These filtered data were used for relative abundance analysis. Stacked bars were plotted 

using RAM package to determine the relative bacterial abundances in the different artificial sweetener-

treated rats. Count normalization of the dataset was done based on the qPCR values. The filtered and 

normalized data were used for beta diversity analysis. Principle Coordinate Analysis (PCoA) was 

carried out using Bray-Curtis distances [7]. 

 

3. Results 
 

3.1 Clinical examination 

No mortality and abnormalities were observed in any of the animals from both the dose groups of the 

sweetener- treated groups as well as the controls. No signs of clinical toxicity were observed in animals 

receiving LD and HD of the two artificial sweeteners. Feces sampling showed normal fecal consistency. 

Figure 2 presents the food consumption and body weight values of female (A, C) and males (B, D) 
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animals from the different sweetener treatment groups relative to control animals respectively. The 

body weights of the animals and food consumption rate remained roughly the same throughout the 28-

day study. The table with body weights and food consumption values can be found in the Supplementary 

material (see Supplementary Table S3. 

 

(A) (B) 

 

(C)  (D) 

Figure 2: Line plots representing food consumption (g) and body weight gain (g) in female (A, C) and males (B, 
D) animals respectively, from the controls and different sweetener treatment groups from days 0, 6, 13 and 27. 
Changes in body weight and food consumption could be compared with control group and baseline values or day 
0. Please refer to the legend to interpret the color coding of the samples from controls and the two sweeteners’ 
treatments groups.  

3.2 Diversity Analysis  

Results from alpha and beta diversity analysis for the fecal samples from controls and artificial 

sweetener-administered rats are shown in Figures 3(A) and 3(B) respectively. Alpha diversity analysis, 

performed using the Shannon true diversity algorithm, was separated for both the sexes and dose levels 

for each sweetener treated group and controls. Shannon true diversity (see boxplot) depicts the diversity 

of different bacteria taxa that are prevalent in a specific condition or treatment group. The bigger the 

boxes in the plot, the higher is the variability between the samples from individual animals of a specific 

treatment group. Also, the higher the diversity in a specific treatment group, the higher is the presence 
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of different bacterial taxa. The dots falling outside the boxes demonstrate the most as extreme values, 

which are however accepted as normal high variations. In control groups from males and females, the 

variability in males was larger than in females. 

 

Figure 3: Diversity analysis of bacterial families from different treatments; (A) Alpha diversity analysis using 
Shannon true diversity index showing differences in bacterial diversity within a treatment group/condition. Dose 
groups are indicated in different colors, where HD is coded in red, LD in green and NA in blue (B) PCoA/Beta 
diversity analysis using Bray–Curtis distance matrix, showing limited differences in bacterial diversities between 
controls (in red), acesulfame potassium (in blue) and saccharin (in green) and the dose levels are indicated in 
different shapes. 

Samples from female rats treated with acesulfame potassium show a similar alpha diversity compared 

to the control group irrespective of the dose levels. The same was observed for samples from male HD 

group, whereas samples from males treated with acesulfame potassium LD showed higher alpha 

diversity and higher variability compared to the corresponding control group as shown in Figure 3(A). 

Samples from female animals treated with both doses of saccharin showed higher variability than male 

animals. The males of the saccharin treatment groups possessed a similar alpha diversity as the control 

groups. In contrast to females, saccharin treated males possessed higher diversity compared to control 

group. Overall, only a slight increase in alpha diversity of males treated with both the sweeteners were 

observed and interestingly more in the LD group. Overall, it can be stated that few if any treatment 

related changes were observed. 

Bray-Curtis distance-based beta diversity analysis, as depicted in the PCoA plot in Figure 3(B), are 

consistent with the observations from the alpha diversity analysis. Bray-Curtis is a rank-based PCoA 

analysis using a non-phylogenetic distance matrix, that represents different bacterial taxa that are 

present between different treatment groups or conditions. The clustering analysis, as shown in the PCoA 

plot in Figure 3(B), indicates that no treatment-specific clusters can be observed irrespective of the dose 

groups of the two artificial sweeteners. No distinct clusters were observed in the two treatment groups 

compared to controls, although the spread of the data points is large. According to the beta diversity 

analysis, the bacterial diversity in the sweeteners treatment group and control group seem similar. 
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3.3 Relative Abundance Analysis 

A stacked bar plot was used to represent the relative abundances of different dominant bacterial families 

across the samples from the two dose groups of the artificial sweetener-treated groups and the controls 

(shown in Figure 4). Every color in the stacked bar plot depicts a specific bacterial family. The stacked 

bar plot shows the relative levels of different gut (fecal) bacterial families with respect to one another. 

The inter-individual variability can be distinctively observed in all the treatment and control groups. 

From a bird’s eye view, a clear difference in the relative levels of the presented bacterial families 

between the two sexes in both control group and sweeteners-treated group is visible. 

Figure 4: Stacked bar plot showing group indicators or core bacterial families that were detected in specific 
treatment groups. Individual animal variability can be easily observed. Dose groups and sexes for controls and 
each treatment were separated. In treatment groups with sample size of less than 5 rats, fecal sample collection 
was not possible from all the five animals, hence for example in saccharin females LD and acesulfame potassium 
HD females, only three and four bars can be seen respectively, as samples from only three and four rats could be 
obtained from the respective treatment groups. 

Relative abundances of control group males and females show apparent inter-individual variability in 

the 16S bacterial compositions. In females at the HD level, a small change in bacterial relative 

abundances could be observed for both artificial sweetener treatments compared to control. For males, 

such a response was not clearly visible. The Verrucomicrobiaceae family seems to be an influential 

factor as it appeared to be highly fluctuating between males and females and also within samples from 

individual animals. This also resulted in relative impact on the other dominant bacterial families. All in 

all, the occurrence of different bacterial families in the acesulfame potassium and saccharin treatment 

groups seem comparable to controls with an exception of one specific bacterial family. This has also 

been confirmed by plotting a differential abundance analysis volcano plot for the treatment groups 

relative to controls with p-value < 0.05 (see Supplementary figure S2). No obvious effect on the 16S 

bacterial composition in both artificial sweetener treatment groups could be observed in males, whereas 
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in females a clear variability in the bacterial abundances could be observed, predominantly in the 

Verrucomicrobiaceae family.  

3.4 Fecal Metabolome analyses 

PCA for samples from male and female Wistar rats treated with different doses of acesulfame potassium 

(in green) and saccharin (in blue) along with control groups (in red) are shown in Figures 5(A) and 

5(B). The two dose levels have been represented in different shapes (i.e., LD in triangles and HD in 

circles) and the control groups as ‘NA’ or square symbol, for easier identification. In neither males nor 

females, a clear treatment-specific cluster could be observed. Both artificial sweetener treatment groups 

fall in the same space as samples from the control group for both the sexes. Both principal components 

PC1 and PC2 do not demonstrate sweeteners-treatment specific clusters compared to the control group. 

The spread of the data points is large in all the treatment and control groups. 

 

Figure 5: Principal component analysis (PCA) of fecal metabolomes of samples from day 28 of (A) males and 
(B) females of different treatments, dose groups and sex. Acesulfame potassium (in green) and saccharin (in blue) 
along with control groups (in red) are shown. The two dose levels have been represented triangles for LD group, 
circles for HD and the control groups as ‘NA’ or squares. 

As PCA only represents a holistic overview of effects of the treatment groups, further analysis of the 

fecal metabolite profiles for both sweetener treatment groups for both sexes was performed. 

3.4.1 Fecal metabolite profiles of acesulfame potassium treatment 

Further analysis of several metabolites that were measured in the fecal samples of controls and both the 

doses of acesulfame potassium and saccharin treated rats, revealed altered metabolites for each of the 

sexes. Tables 2(A) and 2(B) represent the list of metabolites that were significantly altered (p-value < 

0.05) in acesulfame potassium treated male and female animals, respectively, relative to the 

corresponding control group, keeping the HD group as standard for the search as it is expected to find 

most changed metabolites in the HD group.  

Only a small number of significantly changed metabolites was observed in fecal samples from both the 

sexes treated with acesulfame potassium. Minor differences in the metabolite classes that were 
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significantly altered in males and females could be observed. In males, metabolites predominantly 

belonging to amino acids, carbohydrates, lipids, fatty acids and related classes were changed at p-value 

< 0.05. Compared to females, males show a slightly stronger effect on the fecal metabolite levels and 

more apparent differences between the two sexes were observed in metabolites belonging to 

carbohydrates and their derivative classes. The acesulfame potassium HD group clearly shows more 

significant changes in the metabolites than the acesulfame potassium LD group. 

Table 2: Overall/total statistically significantly downregulated (yellow) and upregulated (red) fold change values 
of measured feces metabolites compared to the diet controls in feces (day 28, p-value < 0.05) of (A) male (d28) 
and (B) female (d28) Wistar rats after acesulfame potassium LD and HD treatment for 28 days and p values of 
individual metabolites have been added in separate columns. 

(A) 

    Acesulfame K HD Acesulfame K LD 
Metabolite Class m28 p value m28 p value 

Tryptophan Amino acids 0.57 0.02 0.84 0.15 
Creatinine Amino acids related 0.26 0.01 0.32 0.09 
Sarcosine Amino acids related 0.55 0.01 0.45 0.04 
Dehydroalanine Amino acids related 0.62 0.04 0.59 0.11 
myo-Inositol Carbohydrates and related 0.44 0.03 0.40 0.34 
Xylose Carbohydrates and related 0.55 0.00 0.66 0.57 
Glucose-1-phosphate Carbohydrates and related 0.41 0.00 0.58 0.21 
Glucuronic acid Carbohydrates and related 0.67 0.05 0.46 0.17 
1,2-Anhydroribose Carbohydrates and related 1.72 0.01 1.06 0.41 
2-Hydroxypentacosanoic acid  Complex lipids, fatty acids and related 1.10 0.02 0.83 0.25 
Succinate Energy metabolism and related 0.54 0.02 0.58 0.20 
Glycerol-2-phosphate Miscellaneous 0.55 0.03 0.67 0.18 
bis-Glyceryl phosphate Miscellaneous 0.52 0.00 0.49 0.06 
Cytosine Nucleobases and related 0.73 0.01 0.98 0.38 
Cucurbitacin Unknown 1.59 0.03 0.83 0.99 
Glutamate Unknown 1.77 0.04 1.60 0.00 
Kynurenic acid Unknown 0.25 0.04 0.86 0.70 
Creatinine Unknown 0.51 0.04 0.59 0.22 

 

(B) 

    Acesulfame K HD Acesulfame K LD 
Metabolite Class f28 p value f28 p value 

Serine Amino acids 2.98 0.01 2.33 0.14 
Octadecanol Complex lipids, fatty acids and related 0.70 0.03 0.92 0.75 
Hexadecanol Complex lipids, fatty acids and related 0.56 0.03 1.06 0.70 
Tetradecanol Complex lipids, fatty acids and related 0.46 0.05 0.79 0.54 
Serotonin  Hormones, signal substances and related 1.84 0.02 1.12 0.23 
Stigmastanol, total Miscellaneous 0.55 0.02 0.78 0.19 
Glycine, lipid fraction Miscellaneous 0.80 0.03 0.76 0.06 
Adenine Nucleobases and related 0.56 0.03 0.48 0.02 
2,3-Dimethyl-5-phytylquinol Unknown 0.65 0.04 1.22 0.46 
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1,25-Dihydroxy-vitamin D3 Unknown 0.80 0.01 1.17 0.08 
Pipecolic acid Unknown 3.23 0.01 3.82 0.02 
Pyridoxal Unknown 1.49 0.01 1.61 0.14 
N2-Acetylhistidine Unknown 3.32 0.02 0.90 0.41 
Carnosine Unknown 2.72 0.03 1.41 0.06 
N-Acetylcytidine Unknown 4.06 0.01 2.76 0.03 
Uric acid Unknown 2.39 0.03 3.42 0.06 
p-Hydroxybenzoic acid Vitamins, cofactors and related 3.39 0.04 1.50 0.16 

 

3.4.2 Fecal metabolite profiles of saccharin treatment  

The list of significantly altered fecal metabolites from samples belonging to saccharin LD and HD 

treated males and females are shown in Tables 3(A) and 3(B), using the changes observed in the HD 

group as standard for the search. In the saccharin HD group of males, more metabolites were statistically 

significantly changed compared to controls than in the saccharin HD female group. Further, statistically 

significant changes in saccharin LD groups of both sexes were smaller compared to the respective HD 

groups. The majority of the significantly changed metabolites belonged to the classes of amino acids, 

complex lipids and fatty acids and their derivatives in both the sexes upon saccharin treatments. The 

difference between the two sexes lies in the significant alteration of bile acids in female but not male 

rats upon saccharin HD treatment. As shown in Table 3(A), clearly a larger number of significantly 

changed metabolites was obtained after the administration of saccharin in males than females.  

Table 3: Overall/total statistically significantly downregulated (yellow) and upregulated (red) fold change values 
of measured feces metabolites compared to the diet controls in feces (day 28, p-value < 0.05) of (A) male (d28) 
and (B) female (d28) Wistar rats after saccharin LD and HD treatment for 28 days and p values of individual 
metabolites have been added in separate columns. 

(A)  

    Saccharin HD 
Saccharin 

LD 

Metabolite Class m28 

p 
valu

e m28 
p 

value 
Glutamate Amino acids 0.45 0.04 1.39 0.16 
beta-Alanine Amino acids related 2.91 0.02 1.15 0.13 
Fucose Carbohydrates and related 0.43 0.04 1.07 0.38 

2-Hydroxypalmitic acid  
Complex lipids, fatty acids and 
related 2.14 0.04 3.13 0.06 

Myristic acid 
Complex lipids, fatty acids and 
related 1.40 0.02 1.47 0.23 

Eicosaenoic acid  
Complex lipids, fatty acids and 
related 0.78 0.03 1.15 0.95 

Eicosadienoic acid  
Complex lipids, fatty acids and 
related 0.61 0.03 0.55 0.19 

Azelaic acid (Dicarboxylic acid; C9:0) 
Complex lipids, fatty acids and 
related 0.55 0.01 1.45 0.28 

Fucosterol, total Miscellaneous 1.52 0.05 1.20 0.09 
Resorcinol Miscellaneous 1.38 0.04 1.20 0.27 
threo-Sphinganine 3TMS Unknown 1.42 0.05 1.36 0.40 
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18-Hydroxy-11-deoxycorticosterone Unknown 1.90 0.04 1.07 0.36 
2,3-Dimethyl-5-phytylquinol Unknown 1.50 0.05 1.54 0.08 
beta-/gamma-Tocotrienol Unknown 1.21 0.03 1.78 0.00 
Hexoses and Inositol + Chlorid-
Addukt Unknown 1.80 0.02 1.21 0.02 
N-Acetylserine Unknown 0.09 0.03 0.73 0.28 
epsilon-Acetyllysine Unknown 0.56 0.01 0.92 0.61 
gamma-Carboxyglutamate Unknown 1.61 0.04 1.49 0.48 
Nicotinamide Vitamins, cofactors and related 0.62 0.05 0.93 0.65 

 

(B) 

    Saccharin HD Saccharin LD 
Metabolite Class f28 p value f28 p value 

Tyrosine Amino acids 0.52 0.04 1.14 0.83 
Ornithine Amino acids related 0.68 0.04 1.73 0.12 
1,2-Anhydroribose Carbohydrates and related 1.79 0.02 2.33 0.14 
Eicosadienoic acid Complex lipids, fatty acids and related 1.55 0.04 1.16 0.91 
Serotonin Hormones, signal substances and related 1.88 0.05 0.99 0.78 
Ethanolamine Miscellaneous 0.78 0.02 0.92 0.74 
Adenosine Nucleobases and related 2.01 0.04 6.43 0.04 
Deoxycholic acid  Bile acids and related 2.22 0.00 1.28 0.55 
Lithocholic acid Bile acids and related 1.65 0.01 1.09 0.29 
α-Muricholic Acid Bile acids and related 3.69 0.00 1.50 0.47 
β-Muricholic Acid Bile acids and related 2.83 0.01 2.28 0.34 
ω-Muricholic Acid Bile acids and related 4.03 0.00 1.67 0.22 
putative Lithocholic acid OTMS ME Unknown 1.21 0.04 1.09 0.23 
putative Deoxycholylglycine  Unknown 1.86 0.00 1.25 0.26 
putative β-Muricholic acid 3TMS ME  Unknown 2.63 0.01 2.58 0.63 
Pipecolic acid Unknown 2.77 0.02 3.39 0.07 
Asparagine Unknown 0.48 0.01 1.12 0.84 
N-Methylglutamate Unknown 0.45 0.00 0.89 0.16 
Pregnenolone sulfate Unknown 1.61 0.04 1.70 0.37 

 

As males, similar change in the fecal metabolome could be observed in the saccharin-treated female 

animals. However, different to males, an upregulation in the levels of certain primary bile acids (alpha 

and beta-muricholic acid) and secondary bile acids (omega-muricholic acid, lithocholic acid) in 

saccharin HD treated females, was observed.  

3.5 Plasma Metabolome Analysis 

To investigate the possible effects of the artificial sweeteners on the plasma metabolite profiles of rats 

treated with acesulfame potassium or saccharin, samples from the study days 7, 14 and 28 were 

analyzed. PCA conducted similar to the fecal metabolome data, showed minimal treatment-based 

clustering compared to controls in both sweetener groups for both sexes (supplementary figure S1). To 
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examine the data for subtle changes fold change levels of individual plasma metabolites that were 

significantly altered upon the administration of artificial sweeteners, were examined in detail.  

3.5.1 Plasma metabolite profiles of acesulfame potassium treatment  

A list of significantly altered plasma metabolites, their respective metabolite classes and their relative 

fold change levels compared to controls is shown in Table 4(A) for acesulfame potassium treated males, 

using the changes observed in the HD group as the basis for comparison with the LD as it is expected 

to find most changed metabolites in the HD group. Compared to the rest of the metabolite classes, a 

metabolite of the bile acid group show clear and significant change in acesulfame potassium treated 

male animals, in particular the glycine conjugated bile acids. Primary glycine conjugated bile acid (i.e. 

glycochenodeoxycholic acid), secondary glycine bile acid conjugates (i.e. glycodeoxycholate and 

glycoursodeoxycholic acid) as well as the secondary bile acids (i.e. omega-muricholic acid) show a 

significant downregulation at both day 14 and day 28 of the acesulfame potassium HD treatment group.  

Table 4: Overall/total statistically significantly downregulated (yellow) and upregulated (red) fold change values 
of measured plasma metabolites compared to the diet controls in blood plasma (days 7, 14 and 28, p-value < 0.05) 
of (A) male (d7, d14 and d28) and (B) female (d7, d14 and d28) Wistar rats after acesulfame potassium treatment 
LD and HD for 7, 14 and 28 days and p values of individual metabolites have been added in separate columns. 

(A)  

 

    Acesulfame K  HD Acesulfame K LD 

Metabolite Class m7 
p 

value m14 
p 

value m28 
p 

value m7 
p 

value m14 
p 

value m28 
p 

value 
Alanine Amino acids 0.87 0.03 0.87 0.00 1.05 0.54 0.99 0.52 0.93 0.36 0.99 0.91 
Phenylalanine Amino acids 0.89 0.04 0.90 0.00 1.02 0.93 0.83 0.00 0.85 0.04 0.90 0.33 
Indole-3-propionic acid Amino acids related 0.88 0.01 0.85 0.03 1.00 0.87 0.97 0.42 1.02 0.36 0.92 0.51 
Glycodeoxycholate  Bile acids and related 0.28 0.20 0.16 0.01 0.09 0.01 0.60 0.35 0.65 0.57 0.32 0.09 
Glycoursodeoxycholic acid  Bile acids and related 0.78 0.99 0.15 0.03 0.21 0.01 0.50 0.42 0.52 0.23 0.19 0.00 
ω-Muricholic Acid Bile acids and related 0.10 0.04 0.18 0.01 0.49 0.10 0.45 0.27 0.30 0.10 0.74 0.64 
Glycochenodeoxycholic acid Bile acids and related 0.51 0.25 0.17 0.03 0.08 0.01 0.51 0.28 0.77 0.88 0.32 0.10 
Glucuronic acid Carbohydrates and related 0.53 0.02 0.66 0.02 0.79 0.16 0.86 0.51 1.05 0.67 0.79 0.30 
Hexoses Carbohydrates and related 1.63 0.03 1.59 0.03 0.92 0.24 1.47 0.01 1.30 0.02 0.87 0.48 
Dodecanol Complex lipids, fatty acids and related 1.35 0.02 1.04 0.49 2.63 0.04 1.07 0.40 0.73 0.57 1.14 0.44 
Adrenaline (Epinephrine) Hormones, signal substances and related 2.08 0.02 1.52 0.01 6.13 0.02 2.49 0.01 1.93 0.02 2.83 0.02 

 

(B) 

    Acesulfame K HD Acesulfame K LD 

Metabolite Class f7 
p 

value f14 
p 

value f28 
p 

value f7 
p 

value f14 
p 

value f28 
p 

value 

Lysine Amino acids 0.82 0.01 0.94 0.23 0.78 0.01 0.92 0.27 0.90 0.21 0.92 0.68 
Ketoleucine Amino acids related 0.76 0.03 0.83 0.03 1.01 0.98 0.93 0.60 0.85 0.06 0.79 0.61 
Ethanolamine plasmalogen (C39:5) Complex lipids, fatty acids and related 1.05 0.43 1.21 0.00 1.13 0.04 0.88 0.13 0.97 0.53 0.96 0.37 
Succinate Energy metabolism and related 0.87 0.43 0.90 0.01 0.88 0.02 0.93 0.95 0.85 0.22 0.96 0.58 

 

The list of significantly regulated plasma metabolites upon acesulfame potassium administration in 

female rats can be seen in Table 4(B). The acesulfame potassium HD group showed a higher number 

of altered metabolites in the plasma matrices in both males and females compared to the acesulfame 
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potassium LD group. But the changes at both dose levels are so few that they are below the false 

discovery rate or FDR. Inconsistent to males, plasma bile acids levels did not change in females upon 

acesulfame potassium administration. No treatment related effect is observed for the LD groups.  

3.5.2 Plasma metabolite profiles upon saccharin treatment  

Shown in Table 5(A) is the list of significantly changed plasma metabolites in male animals at d7, d14 

and d28 of the study. Amino acids and related metabolites show a significant downregulation in 

saccharin HD treated males, more apparent in samples from days 7 and 14. Amongst the other classes 

that were observed to be significantly altered by saccharin treatment in males, bile acids show a 

significant and strong downregulation in both HD and LD groups. Primary bile acids (alpha-muricholic 

acid), secondary bile acids (lithocholic acid) as well as conjugated primary bile acids 

(glycochenodeoxycholic acid) showed a significant downregulation in HD and LD groups. Plasma 

hippuric acid, which is a known key-metabolite for gut microbiota associated metabolism, showed a 

significant decrease in both LD and HD saccharin treatment groups [11, 19, 20]. Additionally, 

carbohydrates and signal substances and related classes appeared to be significantly influenced by HD 

saccharin administration including in males an increase in histamine. Overall, compared to all the other 

significantly altered plasma metabolites upon saccharin administration, a clear and strong effect in fold 

changes of plasma bile acid levels was observed in males. 

Table 5: Overall/total statistically significantly downregulated (yellow) and upregulated (red) fold change values 
of measured plasma metabolites compared to the diet controls in blood plasma (days 7, 14 and 28, p-value < 0.05) 
of (A) male (d7, d14 and d28) and (B) female (d7, d14 and d28) Wistar rats after saccharin LD and HD treatment 
for 7, 14 and 28 days and p values of individual metabolites have been added in separate columns. 

(A) 

(B) 

  
  Saccharin HD Saccharin LD 

Metabolite Class f7 
p 

value f14 
p 

value f28 
p 

value f7 
p 

value f14 
p 

value f28 
p 

value 
3-Hydroxyisobutyrate Amino acids related 0.78 0.14 0.77 0.02 0.77 0.02 0.90 0.54 0.75 0.01 0.86 0.00 
Cholic acid Bile acids and related 0.19 0.04 0.28 0.28 0.00 0.03 1.16 0.56 0.57 0.79 0.38 0.35 
Chenodeoxycholic acid Bile acids and related 0.27 0.05 0.17 0.23 0.01 0.02 0.56 0.25 0.30 0.26 0.27 0.32 
Taurocholic acid sodium salt  Bile acids and related 1.74 0.05 2.92 0.00 1.18 0.39 2.70 0.02 1.75 0.02 1.73 0.26 
α-Muricholic Acid Bile acids and related 0.08 0.01 0.15 0.07 0.13 0.03 0.79 0.39 0.21 0.05 0.30 0.29 

  
  Saccharin HD Saccharin LD 

Metabolite Class m7 
p 

value m14 
p 

value m28 
p 

value m7 
p 

value m14 
p 

value m28 
p 

value 
Alanine Amino acids 0.85 0.02 0.68 0.00 1.12 0.38 1.02 0.50 1.18 0.07 1.02 0.58 
Methionine Amino acids 0.82 0.03 0.79 0.03 1.01 0.54 0.94 0.30 0.94 0.79 1.07 0.05 
Phenylalanine Amino acids 0.83 0.02 0.85 0.00 1.03 0.57 0.85 0.06 0.90 0.13 0.99 0.54 
Phosphocreatine Amino acids related 0.70 0.01 0.45 0.00 0.74 0.00 0.71 0.05 0.57 0.05 1.05 0.76 
Ornithine Amino acids related 0.85 0.01 0.77 0.00 0.90 0.80 0.81 0.25 1.00 0.62 1.04 0.75 
Indole-3-lactic acid Amino acids related 1.41 0.02 0.94 0.94 1.15 0.02 1.20 0.12 0.96 0.98 0.93 0.83 
Lithocholic acid Bile acids and related 0.45 0.04 0.50 0.01 0.53 0.01 0.52 0.05 0.44 0.02 0.59 0.03 
α-Muricholic Acid Bile acids and related 0.40 0.01 0.15 0.02 0.10 0.11 0.47 0.18 0.09 0.10 0.03 0.01 
Glycochenodeoxycholic acid Bile acids and related 0.30 0.49 0.17 0.01 0.25 0.02 0.13 0.00 0.09 0.03 0.12 0.01 
Xylitol Carbohydrates and related 1.65 0.01 1.21 0.08 1.64 0.03 1.51 0.13 1.88 0.00 2.09 0.10 
Lysophosphatidylcholine (C20:4) Complex lipids, fatty acids and related 0.87 0.91 0.79 0.00 0.86 0.03 0.83 0.26 0.72 0.02 0.79 0.00 
Pyruvate Energy metabolism and related 0.74 0.05 0.39 0.00 1.11 0.71 1.16 0.64 1.47 0.21 0.62 0.66 
Histamine Hormones, signal substances and related 2.42 0.02 2.68 0.00 1.29 0.09 1.65 0.04 3.39 0.03 0.66 0.88 
Phosphate (inorganic and from organic phosphates) Miscellaneous 0.88 0.00 0.83 0.00 1.07 0.49 0.89 0.48 0.99 0.38 0.99 0.71 
Hippuric acid Miscellaneous 0.73 0.04 0.56 0.00 0.66 0.03 0.69 0.36 0.66 0.08 0.55 0.01 
Uracil Nucleobases and related 0.86 0.02 0.81 0.01 0.89 0.54 1.00 0.22 1.01 0.75 0.78 0.28 
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The list of significantly altered plasma metabolites in female Wistar rats treated with saccharin HD and 

LD is shown in Table 5(B). Compared to males, females showed no apparent changes in metabolites 

belonging to hormones and related classes, highlighting sex-specific effects. Nevertheless, consistent 

changes were observed in plasma bile acid levels in females. Especially primary bile acids (cholic acid, 

chenodeoxycholic acid and alpha-muricholic acid) were observed to be significantly downregulated in 

saccharin HD treated females, whereas taurine conjugated primary (taurocholic acid) and secondary 

(taurodeoxycholate) bile acids were observed to be significantly upregulated at days 7 and day 14 of 

saccharin HD treated females. Apart from the bile acid class of metabolites, metabolites belonging to 

complex lipids, fatty acids, energy metabolites, vitamins and their derivatives showed significant 

changes upon saccharin treatment in females albeit only marginally but significantly. Overall, saccharin 

affected plasma metabolite levels in both males and females to a larger extent than what was observed 

upon acesulfame potassium treatment with especially the bile acid levels in both sexes being affected. 

Table 6: Tables 6(A) and 6(B) show percentage levels of significantly altered plasma and fecal metabolites from 
acesulfame potassium HD and saccharin HD treated animals respectively at p-value <0.05, from a total number 
of 620 and 253 total fecal and plasma metabolites respectively.  

(A) 

 
 

Acesulfame potassium HD, males Acesulfame potassium HD, females 

Plasma Feces Plasma Feces 

7d 14d 28d 28d 7d 14d 28d 28d 

Total metabolites 253 253 253 620 253 253 253 620 
% of sig. changed 
metabolites  9.49 12.64 9.09 7.90 4.74 8.30 4.74 3.70 

  

(B) 

 
Saccharin HD, males Saccharin HD, females 

Plasma Feces Plasma Feces 

7d 14d 28d 28d 7d 14d 28d 28d 

Total metabolites 253 253 253 620 253 253 253 620 
% of sig. changed 
metabolites 13.04 22.13 15.02 8.55 10.28 15.41 6.32 6.12 

 

4 Discussion 
We investigated if two well-known artificial sweeteners, acesulfame potassium and saccharin, alter the 

intestinal (fecal) microbiota community composition and/or the plasma and fecal metabolomes of male 

and female Wistar rats in a 28-day oral toxicity study. Major findings of our research include the 

Taurodeoxycholate Bile acids and related 2.83 0.00 2.46 0.00 1.35 0.12 1.64 0.01 1.39 0.15 1.70 0.49 
1,5-Anhydrosorbitol Carbohydrates and related 0.54 0.01 0.66 0.04 0.68 0.03 0.61 0.04 0.83 0.17 0.64 0.08 
Phosphatidylcholine (C16:1,C18:2) Complex lipids, fatty acids and related 0.77 0.02 0.70 0.05 1.17 0.79 0.77 0.04 0.72 0.02 1.11 0.94 
Pyruvate Energy metabolism and related 0.55 0.00 0.48 0.00 0.62 0.39 0.65 0.23 0.58 0.32 0.74 0.19 
Lactate Energy metabolism and related 0.73 0.02 0.57 0.01 0.80 0.42 1.01 0.55 0.80 0.79 0.94 0.49 
beta-Sitosterol, total Miscellaneous 0.62 0.03 0.69 0.01 0.90 0.52 0.68 0.14 0.68 0.06 0.85 0.48 
Campesterol, total Miscellaneous 0.67 0.02 0.66 0.01 0.90 0.63 0.73 0.11 0.62 0.07 0.83 0.74 
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following: 1. The sweeteners did not appear to induce changes in the gut microbiota and consequently 

fecal metabolic profiles also showed very few alterations. 2. Plasma metabolites showed minimal 

changes in all the measured metabolite classes except for a number of bile acids that were significantly 

changed, particularly in the Saccharin treatment group. 3. Sex-specific differences were observed for 

conjugated primary and secondary bile acids in the Saccharin treatment group. 4. In Ace K treated 

males, reductions in glycine conjugated bile acids were observed. 5. Key metabolites (incl. hippuric 

acid and indole derivatives) that are known to be associated with gut microbiome showed no relevant 

change in both the sweetener treatments. 7. Overall, there were no changes in the plasma metabolome 

considered to be adverse, rather indicating an adaptation to the sweeteners. 

4.1 Microbiome analysis 

From the alpha and beta diversity analyses, we could not observe any treatment-specific influence of 

both the dose groups of acesulfame potassium in both male and female rats compared to the respective 

controls. This finding is in line with the work from Lobach et al. 2019 and Uebanso et al. 2017 who 

demonstrated that acesulfame potassium at the maximum acceptable daily intake (ADI) levels of 15 

mg/ kg body weight (8 times lower that the highest dose tested in the present study) did not alter the gut 

microbiota [24, 29]. Likewise, the selected doses for saccharin treatment, being 4 and 20 times higher 

than the ADI of 5 mg/ kg body weight established by Serrano et al. 2021 and Ruiz-Ojeda et al. 2019 

[22, 23], also did not alter the bacterial diversity compared to the controls. Serrano et al. 2021 made a 

similar observation when an even higher dose of saccharin (250 mg/kg body weight) was supplemented 

and did not induce any gut microbiota changes in both mice and humans [22]. Consistently, the work 

of Ruiz-Ojeda, et al. 2019 also showed lack of alteration in the total numbers of anaerobic microbes 

upon dosing ∼90 mg saccharin to rats, but they did observe a depletion in specific anaerobic microbes 

in the cecal content [23]. Consistent to this finding, our study demonstrated very few significant 

alterations in the 16S bacterial compositions. We did observe however an overall increased intra-group 

variability in the artificial sweetener-treatment groups. It is uncertain if higher levels of fluctuation in 

the bacterial family Verrucomicrobiaceae are treatment related, as this bacterial family is also observed 

to be highly variable in the controls. Similar to our observations, Eshar et al. 2014 also observed a high 

inter-individual variability in Verrucomicrobiaceae family in rabbits [30]. However, for other bacterial 

families, high variability has not been extensively explored.  

With respect to the limitations of the research work presented here, it need to be taken into account that 

there is a lack of high resolution 16S sequencing data up to species or genus taxonomic levels Such data 

would have enabled us to look deeper into potential causes of metabolic changes in saccharin treatment 

group and their possible associations with the gut composition. Another minor disadvantage would be 

the low sample size in two of the treatment groups, including saccharin female LD and acesulfame 

females HD groups with only 3 and 4 fecal samples obtained out of 5.  
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4.2 Metabolome analysis 

When working with a high content technology such as metabolomics, a certain number of changes 

relative to the controls are expected to occur by chance. Therefore, changes in metabolites are not 

always necessarily indicative of a causal relationship with the treatment. Table 6 lists the percentage of 

changed metabolites for all HD treatment groups. Using a p-value of 0.05, it can be expected that up to 

5% of the metabolites may be changed by chance. Our data thus indicate that for the HD acesulfame 

potassium and saccharin males, a weak treatment related effect on both fecal and plasma metabolite is 

likely. Interestingly, for females the number of changes in the plasma metabolome were only higher on 

days 7 and 14, which may suggest an adaptation or reversibility. This is in line with the observation that 

the number of changes in the 28-day fecal metabolome was also not higher than what could have been 

expected based on natural variation. However, as we know that some metabolite classes are more 

predictive for microbiome related changes in the metabolome than the others, an in-depth analysis of 

the type of metabolites that were changed was performed.  

In males treated with acesulfame potassium, fecal metabolites predominantly belonging to amino acids, 

carbohydrates, lipids, fatty acids and related classes were changed. When comparing these metabolites 

with previously identified key indicators of microbiome-associated changes in rats (based on 

administering different classes of antibiotics in 28-day studies using Wistar rats, as published in Murali 

et al. 2021, Behr et al. 2018 and Behr et al. 2019), we observed that in our present study that none of 

these metabolites were significantly altered at p value < 0.05 in acesulfame potassium treated rats. It 

would therefore seem that acesulfame potassium treatment has only a small influence, if any, on the 

fecal metabolome of Wistar rats.  

Samples from animals treated with acesulfame potassium consisted of plasma metabolome profiles 

showed a higher number of significantly altered metabolites compared to feces (>10% of total 

significantly changed metabolites), with clearer effect in the HD group. In both males and females, the 

dominant classes of plasma metabolites that showed significant changes are amino acids, complex 

lipids, fatty acids and their derivatives. Bile acids, however, were significantly changed only in 

acesulfame potassium treated males. Primary glycine conjugated bile acids (i.e., 

glycochenodeoxycholic acid), secondary glycine bile acid conjugates (i.e., glycodeoxycholate and 

glycoursodeoxycholic acid) as well as the secondary bile acid (i.e., omega-muricholic acid) show a 

significant downregulation at both day 14 and day 28 of the acesulfame potassium HD treatment group 

at p value < 0.05. Glycine conjugated bile acids show a more prominent and significant effect in plasma 

than feces of males treated with acesulfame potassium HD and in male than female plasma. This clear 

alteration in glycine-conjugated bile acids in males over females highlight a potential sex-dependent 

effect of the treatment. This could suggest a reduction of gut bacterial deconjugation of glycine-

conjugated primary and secondary bile acids to their respective unconjugated forms. This could be 
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explained by a reduced dehydroxylation reaction, leading to lower levels of secondary bile acids o-

MCA in the plasma of acesulfame potassium treated males. The work published by Bian et al. 2017 

report a pronounced impact of Saccharin on the mouse gut metabolites with pro-inflammatory effects 

in liver, with the help of metabolomics [5]. It is, however, also possible that the changes in bile acids 

observed in the plasma are related to a reduced reabsorption as a consequence of treatment. 

Additionally, the altered glycine conjugated bile acids could also mean potential impairment in 

conjugation activity of the liver. As acesulfame potassium is bioavailable, it cannot be excluded that 

the observed changes in the plasma metabolome could have been caused by liver toxicity. Therefore, 

using the in-house database MetaMapTox, the plasma metabolome of acesulfame potassium was 

compared with the predefined patterns for liver toxicity [18, 31]. Based on this comparison, no hits for 

liver toxicity could be observed (data not shown) and an intestinal-related effect appears to be more 

likely.  

In addition to the above-mentioned bile acids, indole-3-propionic acid (IPA), one of the key gut 

microbiome-derived metabolites, has been observed to be reduced in the plasma of acesulfame 

potassium HD treated males [11, 19, 20]. In this study we noted that this metabolite was also reduced 

in plasma samples from days 7 and 14 but not on day 28. This may be interpreted as evidence for a real, 

albeit temporary, effect on microbiome functionality during the initiation of treatment which is 

gradually changed towards the end of the study. In females, however, none of the typical key 

metabolites were altered upon treatment and the number of significantly changed plasma metabolites 

with a p-value of 0.05 in females was below the FDR (false discovery rate). Our observations could be 

explained by assuming a potential gut microbiota change which was not observable by the currently 

used community analysis method (e.g., more subtle microbiome changes at species level), or by a 

change of metabolic competence of the gut bacterial communities present. This also indicates higher 

sensitivity of the metabolomics approach compared to the 16S (V3-V4 region) gene sequencing method. 

The majority of significantly changed fecal metabolites in HD saccharin treated rats belonged to the 

classes of amino acids, complex lipids and fatty acids and their derivatives. The difference between the 

two sexes lies in the significant alteration of bile acids. An upregulation in the levels of certain primary 

bile acids (alpha and beta-muricholic acid (α & β-MCA)) and secondary bile acids (omega-muricholic 

acid (Ω-MCA), lithocholic acid (LCA) and deoxycholic acid (DCA)). Compared to controls a slight 

increase in certain primary bile acids and secondary bile acids could be observed in feces of saccharin 

treated females. Accumulation of secondary bile acids in the feces, which are products of gut bacterial 

deconjugation of primary bile acids and a further dehydroxylation reaction, shows a possible 

impairment in the reabsorption of the secondary bile acids DCA and LCA. Furthermore, an 

accumulation of MCA-α and -β could potentially mean a slight impairment of conjugation activity in 

the liver, which apparently must have led to their higher levels in the feces of saccharin HD treated 

female rats. This significant effect on the fecal bile acids in females combined with the absence of a 
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change of gut microbial composition could indicate a systemic/host specific change, or a more subtle 

adaptation of gut microbiome functionally. Overall, however, from a quantitative point of view when 

compared to previously published work in Behr et al. 2018 and Behr et al. 2017 using antibiotic 

administration on Wistar rats, fecal bile acid levels in saccharin treated rats showed only a low 

magnitude of change. In conclusion, saccharin treatment HD group showed a clear sex-dependent effect 

but overall did not show a prominent impact on the fecal metabolomes in both sexes.  

Compared to feces, the plasma metabolome of saccharin treated rats showed a more prominent impact 

as a larger number of metabolites (above the false discovery rate) were significantly changed compared 

to controls. Changes were observed in metabolites belonging to the following classes: amino acids, bile 

acids, lipids, fatty acids, carbohydrates, energy metabolism and their derivatives. Amongst the typical 

microbiome-associated key metabolites known from Behr et al. 2019 and Murali et al. 2020, bile acids, 

hippuric acid and indole derivative show a significant alteration in the plasma of saccharin HD treated 

males, however, compared to antibiotic administration, the fold change levels of these metabolites are 

rather low. This indicates that saccharin had a more prominent effect on the gut microbiota and 

associated metabolites than acesulfame potassium, which points at different mechanisms and also dose 

levels. Amongst the other classes that were observed to be significantly altered in plasma of saccharin 

treatment in males, bile acids show a clear and strong downregulation in both HD and LD groups. 

Primary bile acids (α-MCA), secondary bile acids (LCA) as well as conjugated primary bile acids 

(glycochenodeoxycholic acid) and conjugated secondary bile acid (taurolithocholic acid) showed a 

significant downregulation in HD and LD groups. A clear reduction in conjugated bile acids in the 

plasma of males suggests a potential impairment in bacterial deconjugation activity and a consequent 

downregulation in secondary bile acids also indicate an additional impairment of gut bacterial 

dehydroxylation activity. Another potential cause could be an impairment in reabsorption of 

deconjugated and secondary bile acids. Significant alterations in these bile acids show a potential impact 

of saccharin on the gut microbial functions, although certainly not as high as upon antibiotic 

administration [7, 12, 13]. Although the fecal microbiota of saccharin treatment showed no clear 

difference compared to controls, subtle changes in their biochemistry may be responsible. In addition, 

our current research focused on the colon microbial communities so there is a possibility that the 

microbial population and metabolomes of small intestines may have been altered. Additionally, we have 

not determined the gut microbial population up to species level, which may reveal more subtle changes.  

Compared to males, plasma metabolomes of females show lesser alterations upon saccharin 

administration. Significantly changed metabolites such as bile acids and 3-hydroxyisobutyrate are 

known to be associated with gut microbial functionality, and for females, too, a small but appreciable 

effect is observed. Primary bile acids and some taurine conjugated primary and secondary bile acids 

were increased on days 7 and 14.  
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Taking into account these clear albeit limited changes in the plasma metabolome, the question needs to 

be answered if these are associated with the microbiome or could have a systemic origin. Both 

sweeteners are bioavailable but are rapidly excreted and not metabolized [32-34]. To evaluate a 

potential systemic contribution to the plasma metabolome, we investigated, also for saccharin, if any 

form of liver toxicity could have been involved in the results obtained. Therefore, we used the 

MetaMapTox database to compare the plasma metabolome of saccharin treated animals with the pre-

defined patterns for liver toxicity, as published by van Ravenzwaay et al. 2012, van Ravenzwaay et al. 

2016, Kamp et al. 2012 and Sperber et al. 2019 [17, 18, 28, 31]. This comparison did not indicate any 

association with liver toxicity. This is in line with the work reported by Jo et al. 2017, in which no 

significant effect could be observed in mice treated with saccharin up to dose levels of 4,000 mg/kg for 

7 days [35]. It is of interest to note that similar small alterations in plasma bile acid levels, also with 

sex-specific differences, were observed in Behr et al. 2019 upon oral administration of 0.5% 

carboxymethyl cellulose (CMC) in a similar experimental set-up (28-day study using Wistar rats) [12]. 

In this case, too, there were no obvious changes in the microbiome composition and there were no signs 

or indications of liver toxicity. 

5 Conclusions 

The results indicate that overall, the artificial sweeteners induce very minor changes in the gut 

microbiota according to the diversity- and relative abundance analyses. In line with this, fecal metabolic 

profiles of sweeteners treated animals also showed very limited alterations. In contrast, the plasma 

metabolomes of the sweeteners showed more profound alterations, saccharin being more potent than 

acesulfame potassium. Both compounds have specific effects on especially bile acids. Differences 

between males and females in acesulfame potassium treated group, were observed for conjugated 

primary and secondary bile acids, an upregulation in these plasma metabolites was observed in females, 

a downregulation in males. In acesulfame potassium treated males, larger alterations in glycine 

conjugated primary and secondary bile acids were observed compared to females. Previously 

established plasma biomarkers known to be associated with altered gut composition (indole derivatives, 

hippuric acid) did not show any change, in principle confirming the findings of our gut bacterial 

composition analysis [7, 12, 19]. Thus, in absence of any overall changes in the fecal- microbiota and 

fecal metabolome, there was a clear change particularly in conjugated bile acid levels in plasma. The 

MetaMapTox database used to compare and predict associations of the two sweeteners with any form 

of liver toxicity and did not indicate any liver-specific mode of action, nor in fact with any toxicological 

mode of action metabolome profile in MetaMapTox. Overall, there were no indications that the plasma 

metabolome changes observed should be considered as adverse. It remains to be elucidated if the 

observed changes are related to a subtle change in the biochemistry of the gut microbiome, minor 

changes of the microbiome at species level, or perhaps associated with the reabsorption of bile acids. 

Taking this into consideration, follow up studies using the 16S sequencing data with an in-depth 
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metagenomic analysis would promote a better resolution and a higher degree of information to ascertain 

a potential cause for the observed changes in the plasma metabolome and if these could be associated 

with subtle changes in the microbiome. This would not only provide better compositional data but it 

would also give insight into the functional aspects of both gut microbiota and their gene expression 

profiles as well as elucidate the importance of such changes for the host.   
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6.1. Overview results and key findings 
Bacteria make up the majority of the intestinal microbiota, outnumbering eukaryotes and archaea by 2-

3 orders of magnitude [1]. It is estimated that in a typical human host the most prominent bacterial phyla 

are Bacteroidetes and Firmicutes, followed by Proteobacteria, Verrucomicrobia and Actinobacteria [1]. 

Because rodents, specifically rats, are at the present state-of-the-art still used as the gold standard to 

assess chemical safety for humans, it is of importance to note that the rat and human gut microbiota are 

rather similar, allowing comparison [2, 3]. There are, however, inter-species differences in the gut 

composition, which may result in differences in gut metabolic function, making it necessary to 

understand the underlying relationships between gut microbiota composition and gut metabolic 

functionality. Currently, most research on chemically induced dysbiosis focuses exclusively on 

microbiota composition as an indicator of potential adversity [4], while metabolic endpoints (such as 

metabolic activity and metabolite production) may in fact be more relevant to assess potential adverse 

effects related to changes of the microbiota.  

As a first step in elucidating the relationships between gut microbiota composition and metabolic 

functionality in the host, a comprehensive correlation analysis between the gut bacterial communities 

and fecal or plasma metabolites was performed to elucidate their interdependence. In Chapter 2, the 

effects of six different antibiotics and a 20% diet restriction, on the gut microbiome in a 28-day oral 

study with young adult Wistar rats were described. The antibiotics studied (streptomycin sulfate, 

roxithromycin, sparfloxacin, vancomycin, clindamycin and lincomycin hydrochloride) belong to 

different classes and hence represent diverse activity spectra inducing different changes in the 

composition of the gut microbiota. This study demonstrated a close connection between the gut 

microbiota and the fecal metabolome while the correlations between the gut (fecal) bacterial families 

and rat plasma metabolites were much weaker. Bile acids had the most significant and strongest 

correlations with the gut microbial families [5]. Dietary restriction did not induce any gut microbial 

perturbations and showed very marginal influence on the fecal metabolome.  

Several plasma biomarkers that are associated with gut microbial perturbations, such as, indole 

derivatives and hippuric acid could be associated with the presence or absence of commensal bacterial 

families [6-8]. The correlations obtained in the study are comprehensive but also very complex and 

indicate several possible microbiota-metabolite relationships as there are multiple bacterial strains 

responsible for a specific metabolic function. Overall, this study showed that gut microbiome changes 

may indeed interfere with metabolism and could conceivably change how drugs or other chemicals are 

metabolized in the intestine when administered in such a situation [5]. Hence, a combination of 16S 

bacterial community analysis and metabolome profiling could help to unravel the consequences of 

microbiota changes and modifications for metabolism and metabolite production.  
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In Chapter 3, two additional antibiotics, tobramycin and colistin sulfate were orally administered to 

young adult Wistar rats for a period of 28 days to address their effects on the gut microbiome. The 

antibiotics were selected to induce gut dysbiosis [9]. The selected high doses were as high as possible 

without inducing systemic toxicity and the low doses were selected to be ten times lower than the high 

doses. Particularly, tobramycin had a strong and significant impact on the gut composition as well as 

the fecal metabolome, whereas colistin has much weaker effects. Significant changes in the levels of 

fecal bile acids upon tobramycin exposure indicated a clear dysbiosis induced by both doses of this 

antibiotic. The plasma metabolome showed far less alterations compared to the fecal metabolome, but 

the plasma biomarkers associated with a perturbed gut microbiota were all significantly changed, 

including indole derivatives, hippuric acid and bile acids. These metabolites were only marginally 

changed upon exposure of the rats to colistin sulfate, overall validating less impact of both the doses of 

colistin sulfate administered, on the gut microbiome and associated metabolites.  

The significant microbiota and metabolome changes observed following tobramycin treatment, 

however, were not associated with apparent adverse effects, and showed no form of organ-specific 

toxicity. This conclusion was based on BASF’s in-house database, MetaMapTox (MMT), which was 

used to compare the plasma metabolome of tobramycin-treated rats with more than a hundred pre-

defined plasma metabolome patterns for toxicity including various types of liver and kidney toxicity 

and found no apparent association [10, 11]. The results of this study indicate that it is possible to identify 

and characterize substances that may alter the gut microbiome using plasma metabolome profiling, 

based on consistent changes in plasma metabolite patterns among the antibiotics. Another key finding 

from this study was a high variability of one specifically abundant bacterial family, 

Verrucomicrobiaceae, within the control animals. This observation has been previously noted by 

several other researchers and has been pointed out in previously published work [12]. However, further 

investigations and comparison of fecal metabolomes of control animals with and without this bacterial 

family, confirmed that this family has no apparent associated metabolite alterations, proving their 

commensal nature.  

To understand the long-term consequences of antibiotic exposure on the gut microbiome it is essential 

to investigate its potential ability of spontaneous restoration following cessation of antibiotic treatment 

without any therapeutic interventions. The results of studies on this recovery are presented in Chapter 
4. Two poorly bioavailable carbapenem antibiotics (meropenem trihydrate and doripenem hydrate) 

were orally administered for 28 days to young adult Wistar rats to elucidate the connection between the 

perturbed microbiota and metabolites [13]. Clear effects on the microbiota and associated fecal 

metabolites could be observed for both antibiotic treatments, with clear alterations in the fecal bile acids, 

indicating gut dysbiosis. Furthermore, the plasma metabolome, including previously established plasma 

key biomarkers, showed significant changes in these key metabolite levels upon exposure to both the 
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antibiotics. In addition, the spontaneous recovery of the gut microbiota and metabolomes in doripenem-

exposed rats was studied at one and two weeks after the treatment was stopped.  

Bacterial diversity fully recovered two weeks post doripenem antibiotic cessation, which was 

consequently also observed for the fecal metabolites. However, in the plasma metabolome, specifically 

in the high dose group, several metabolites showed indications of overcompensation, resulting in 

changes in the opposite direction than what was observed during the treatment itself, suggesting an 

ongoing recovery or a newly established stable state. Thus, this study provides insights into the 

connections between the microbiome and metabolome and demonstrates that both microbiome and 

metabolome can spontaneously recover from antibiotic treatment. 

In further studies we applied the established technologies to assess the effects of two artificial 

sweeteners on the gut microbiota as well as on fecal and plasma metabolomes.  Chapter 5 presents the 

effects of acesulfame potassium and saccharin on the fecal bacterial composition and metabolomes of 

young adult Wistar rats following 28 days of oral administration [14]. Both sweeteners overall had only 

minor effects on the microbiota and fecal metabolome indicating that the doses given appear not to 

affect the gut microbiome. However, few alterations in the plasma metabolome, specifically in the bile 

acid levels were observed upon exposure of the rats to both sweeteners, with more pronounced effects 

for saccharin. Based on comparison to the pre-defined metabolic patterns on BASF’s in-house database, 

MMT, none of these changes in the plasma metabolites showed any indications of organ specific 

toxicity, indicating a lack of adverse effects. Also, none of the plasma key metabolites that are known 

to be associated with a perturbed gut microbiome were altered upon exposure to either of the sweeteners. 

For further investigation, a metagenomic analysis or in vitro transport studies may highlight the gene 

expressions of gut bacteria or other modes of action that might have resulted in the changes in plasma 

bile acid levels induced by the artificial sweeteners.  

6.2. General Discussion and future perspectives 
To increase our mechanistic understanding of how the gut microbiome may influence host health, 

integration of the existing knowledge of gut microbiota with its functionality, in terms of metabolic 

capacity and the associated production of metabolites, is needed. The objectives of this thesis were to 

elucidate associations between gut bacteria and the production of metabolites for the host. The 

experimental strategy involved an in vivo approach changing the composition of the microbiome and 

studying the associated fecal and plasma metabolites in rats. Given the complexity of the system, a 

combination of omics technologies was applied to obtain functional and mechanistic understanding of 

the complex dynamics of host-microbiome interactions. 

In the current thesis, 10 different antibiotics were selected based on the pre-existing literature taking 

three main criteria into consideration. Firstly, these compounds should be known to elicit a perturbation 
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in the gut composition. Secondly, these compounds should not be systemically bioavailable or their 

bioavailability in the system should be low thus avoiding the induction of any form of systemic toxicity 

that would change the plasma metabolome. The selected compounds consisted of antibiotics, food 

additives, and were administered orally for 28 days to young adult Wistar rats from which the blood 

and feces were sampled for metabolome analyses and the feces was also collected for 16S bacterial 

profiling. To assess the effects of exposure to these compounds on the microbiota composition, 

taxonomic profiling of DNA, isolated from feces samples, was performed and quantitative bacterial 

profiling was performed using qPCR to quantify the absolute count of bacterial loads. In addition, to 

quantify the impact of altered microbial communities on the metabolic output, Mass Spectrometry-

based metabolomics was performed on feces and blood plasma samples. Together with the metabolome 

analyses, a comprehensive profile of metabolic functionality of intestinal microbial communities was 

generated enabling characterization of how these were differentially affected by chemical modulation.  

The field of gut microbiota and its metabolic capabilities has gained significant attention in the last 

decade. However, there are still many unknowns about the (de)toxification abilities of the gut microbes, 

and even more about these abilities when the microbiota is altered as a result of exposure to different 

chemicals. Some of the most important questions that still remained unanswered in this field and are of 

interest for future considerations are the following.  

1. Defining the inter-species and inter-individual baseline variability. 

2. Higher taxonomic resolution for the identification of gut microbiota. 

3. Sensitive methods to elucidate gut microbiota metabolic functionality.  

4. The gut microbiome as critical effect for chemical risk assessment.  

5. Drawing conclusions from the metabolome changes in terms of host well-being.  

6. Alternative methods to elucidate gut microbial functionality.  

7. Are the metabolome changes only a result of gut microbial dysbiosis?  

8. Spontaneous restoration of gut microbiota and derived metabolites without therapeutic interventions. 

In the following sections these topics are discussed in some further details and related future 

perspectives are presented. 

6.2.1. Defining the inter-species and inter-individual baseline variability  
High inter-species as well as inter-individual variabilities of the gut bacterial diversity need to be 

extensively explored in order to understand the translation of information between rodent model 

organisms to humans better. It has been well established that the gut microbial population of each 

individual consists of a unique profile distinct from that of the others [15]. Although the most dominant 
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phyla, the Bacteroidetes followed by Firmicutes remain relatively constant across all the baseline human 

gut (fecal) samples, the proportions of other less abundant phyla such as Proteobacteria, Actinobacteria 

and Faecalibacteria were observed to vary based on the on diet, age, gender, use of drugs, environmental 

exposure to contaminants [16]. These variations may even result in inter-individual variability in studies 

where effects on the microbiota are studied. However, this problem could be resolved by performing 

studies using model organisms under controlled environmental conditions and genetic backgrounds, 

which is difficult for human studies for obvious reasons.  

Despite that, rodent animal models have been observed to have high inter-individual variability even 

under controlled environments that cannot be explained by cohort and caging effects, similar to what 

was observed in Chapters 2-5. Young adult Wistar rats of the age group 70 ± 1 days were acclimatized 

for a week, in an air-conditioned room at a temperature of 20-24 °C, a relative humidity level of 30-

70%, and a 12 h light/12 h dark cycle. Ground Kliba mouse/rat maintenance diet was used for feeding 

throughout the course of the study and this diet along with drinking water were available ad libitum 

except 16-20 h before blood sampling. Parameters including food consumption and body weights were 

determined before the start of the treatment and further on the days 6, 13, and 27 of the study. 

In chapters Chapter 2-5, a high inter-individual variability even within the control groups have been 

noticed, especially in the relative abundances of one specific bacterial family, Verrucomicrobiacea, as 

highlighted in Chapter 3. To understand the potential functional effects of these high variations, the 

feces metabolome profiles of control samples with high abundances of this family were compared to 

the samples with low abundances of the family and no functional differences could be spotted between 

the two groups. This indicated that this family appears to be a commensal species and hence its presence 

or absence may not drastically influence the metabolic output of the gut microbiota.  

When a combined relative abundances stacked bar plot for control samples from studies conducted over 

a span of seven years was plotted, a high variability of the Verrucomicrobiacea family was observed 

between different studies where this family was abundant to a varying extent in control samples from 

studies conducted over a span of seven years (Figure 6.1). This fluctuation could be a result of a possible 

technical bias between studies as the DNA sequencing and 16S bacterial community profiling followed 

by data analyses were performed separately. Furthermore, in order to analyze the meanings of these 

high variations between individual samples, it is important to establish historic ratios of gut microbes 

that colonize healthy host guts [17]. This step is necessary before conducting any dietary intervention 

or cohort studies in order to define a ‘normal’ and healthy microbiota.  
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Figure 6.1: Combined relative abundances stacked bar plots of gut (fecal) samples from studies conducted over 
a span of seven years. The different color coding refers to different bacterial families as depicted. 
 
Therefore, it is necessary to establish the baseline inter-individual variability in the intestinal microbiota 

to understand if changes induced by external factors lie within the natural biological variation or not. 

Hence control feces samples of rats (belonging to a similar age group) from different times of the year 

from both the sexes, making up to a total of at least 200 samples need to be collected and further used 

for a deep 16S rRNA gene sequencing analysis. Data processing and bioinformatic analyses of all the 

samples must be conducted together for all the samples in order to avoid any technical bias.  The use of 

high throughput, deeper sequencing data and an easier ability of bioinformatics pipelines to integrate 

datasets is a must to establish the historical control range of baseline variability of normal gut microbiota 

composition of model organisms under controlled environments for better interpretations of 

microbiome data. Therefore, better definition of baseline inter-species as well as inter-individual 

variabilities of the gut bacterial composition will facilitate the detection of relevant chemical-induced 

changes and also facilitate inter-species extrapolations. Furthermore, for humans, better insight into the 

influence of different factors such as age, diet, disease state, gender and other confounders on baseline 

gut microbiota variability also remains an important topic for further studies.    

6.2.2. Higher taxonomic resolution for the identification of gut bacteria  

The importance of high resolution 16S sequencing data with taxonomic assignments up to species or 

strain levels may provide a clearer insight into the individual functionalities of the intestinal bacteria. 

At the present state-of-the-art 16S rRNA gene sequencing is widely used to determine the microbial 

diversity within a specific biological specimen or site. Next Generation Sequencing (NGS) technology 

has been extensively adopted to identify and characterize bacterial species. However, as the read lengths 

used for NGS platforms is short, only a subset of the gene is sequenced, which means that the resolution 

of the 16S profiling is somewhat restricted to the targeted variable regions (such as V3-V4), as many 
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bacteria might share the same amplified region [18, 19]. This will lead to reliable taxonomic 

assignments up to higher levels such as order or family but not beyond that, as observed in Chapters 
2-5. Any assignments beyond these levels were inaccurate and error-prone and therefore the results did 

not allow studying of the gut bacteria functions at lower taxonomic levels such as species or strain level. 

The majority of the associations between the gut bacterial families and the fecal or plasma metabolites, 

as presented in Chapter 2, hint towards potential relationship between the two. However, since there 

are multiple bacterial strains responsible for a particular function, these direct one-to-one correlations 

may not necessarily answer the question of causality between the gut families and specific metabolic 

changes.  

Recently, a high throughput sequencing using the full-length genes (~1500 bp) has gained a lot of 

attention in providing taxonomic resolution at species and strain levels [20]. This method seems to be 

more sophisticated and provides more accurate results at species level and avoids any type of subtle 

nucleotide substitutions. Literature suggests that sequencing platforms that rely on targeted regions of 

the 16S gene are unable to match the taxonomic accuracy when compared to sequencing the full 16S 

gene and the latter was able to resolve the issue of divergent intragenomic copy polymorphisms of the 

marker gene that are highly prevalent in the bacterial taxa that are isolated from the human gut 

microbiota [20]. Hence, there might be a need to use different approaches to circumvent the problem of 

taxonomic resolution by either opting for full-length 16S sequencing platforms or methods like whole 

genome shotgun sequencing methods and DNA microarray-based detection [21]. A higher taxonomic 

resolution of the gut bacteria may also be useful in defining meaningful correlations between the gut 

strains and feces/plasma metabolites and distinguish overlapping and unique functions of 

phylogenetically related taxa. 

Another approach may be microbial RNA sequencing in combination with mass spectrometry-based 

metabolomics to understand the operations of the gut microbiota at a mechanistic level. With the 

transcriptomics approach using the RNA isolated from cecal and fecal samples, important genes that 

represent essential metabolic pathways could be identified [22]. Following which, mass spectrometry 

may be used to confirm the end products of the pathway components to verify the expression and 

activity of the genes involved.  

Further, in vitro methods of culturing important gut microbiota and linking them to various health risks 

and diseases is gaining a lot of attention as in vitro models may provide an overall insight into essential 

microbiome responses. One important factor to be noted is that the cultivation media need to be 

carefully selected in order to successfully isolate the necessary strain [23]. However, because NGS 

technology cannot distinguish between live or dead bacteria, it is important to check the bacterial cell 

viability. However, it is also important to be noted that the majority of the gut taxa are still unculturable 

[24, 25] although they are metabolically and functionally active in the gut environment.  
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Clinically relevant gut bacterial isolates (such as a well-known gut microbiota-associated pathogen 

Clostridium difficile) may also be used for 16S rRNA based identification and further molecular and 

biochemical testing. Hence, not only omics-based approaches but also their integration with molecular 

assays may be used to confirm the biochemical functions of these vital bacterial strains. Further, 

targeting a set of genes that constitute a pathway rather than one single gene would yield more robust 

results. This also holds for metabolome analysis where the detection of multiple intermediates of a given 

pathway is likely to improve confidence compared to only measuring the end product. All together 

linking a specific metabolic conversion or pathway with (a) specific bacterial strain(s) remains an 

important topic for future research with several challenges. 

6.2.3. Sensitive methods to elucidate gut microbiota metabolic functionality 

In order to connect the microbiota and their metabolic functions better, also a metagenomics approach 

may be of use that determines the gene expression profiling of the individual bacteria. It is known that 

there are thousands of microbial species residing in the human gastrointestinal tract and these species 

are prominently bacteria. These gut bacteria are known to play an essential role in regulating host 

metabolism, the immune system, in protecting against harmful pathogens and in maintaining 

homeostasis [26]. Various molecular techniques have been developed to study these functions that the 

gut microbiota possess, such as integrated omics approaches using taxonomic and metabolomic 

methods. As established in Chapters 2-5, it is well known that the intestinally originating bacteria 

contribute to various important metabolic pathways such as formation of secondary bile acids, 

tryptophan metabolism, formation of short chain fatty acids, and several others. However, the gut 

microbial metabolic functionality can not only be studied by integrating 16S rRNA gene sequencing 

with metabolomics, but it is also necessary to understand the underlying biochemical mechanisms 

and/or genes that link the presence or absence of a certain microbe to the presence or absence of a 

certain microbiota-derived metabolite or metabolic pathway and this approach may also facilitate 

detection of pathways that consist of contributions from different bacteria.  

Metagenomics is an approach that characterizes all the genes belonging to a community as a result of 

randomly sequencing (‘shotgun’) the DNA extracted for a particular sample [26, 27]. This functional 

metagenomics approach can be used to isolate rather novel genes from the unculturable fraction of the 

gut microbiota and can be used to reveal the complex behind the crosstalk between both microbial 

communities and the host organism. So, in order to obtain a high-resolution description of the host-

bacterial interactions, whole-metagenome shotgun analysis could be performed. This is accomplished 

by analyzing the complete genome of all the microbes present in a specific sample [28]. This analysis 

would also help to establish species- or genus-specific metabolic functions of the gut microorganisms. 

Although promising this method identifies the presence of genes but cannot be used to identify 

microbial activity or gene expression. To address this shortcoming, a metatranscriptomics approach 
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may be used [29]. This approach may be used to determine the gene expression activity of gut 

communities [26]. Identifying the metabolic functions is done by the metabolomics approaches also 

used in the present thesis. 

Another method developed is the in vitro model called PolyFermS platform to mimic the fermentation 

process that occurs in the human gut [30]. This model comprises a first-stage inoculum reactor seeded 

with immobilized fecal microbiota and is further used to continuously inoculate parallel operating 

systems in order to mimic the different sections of human colon to facilitate functional investigations 

[31].  

6.2.4. The gut microbiome as critical effect for chemical risk assessment  

Toxicological risk assessment of chemicals is the process to determine the extent of adverse health 

effects in humans or other target organisms that may be exposed to a particular chemical [32]. Based 

on the risk, a chemical is classified as the following categories: reprotoxic, teratogenic, skin irritant, 

organ toxic, carcinogen and several others. In recent years, the effects of several different compounds 

such as agricultural chemicals, pharmaceuticals and others, have been observed on the gut microbiota 

and the host. For risk assessments of chemical compounds, adverse or toxicological endpoints of 

observed changes in the gut microbiome and metabolomes may also need to be analyzed. Food, 

xenobiotics and environmental chemicals could potentially affect the gut microbiota by causing gut 

perturbations of certain bacterial taxa, consequently leading to host diseases [33]. Conversely, the gut 

microbiota composition may also have an influence on the nutrient update and intestinal permeability 

hereby effecting the xenobiotic uptake. Several studies have determined that antibiotic treatments 

actively affect gut permeability in rodent models, which may in turn lead to a differential uptake of 

given compounds and their overall toxic or beneficial effects on the gut and host [34]. This suggests 

that the gut microbiota likely can influence the toxicity of ingested xenobiotics.  Such interventions 

such as exposure to drugs or food additives may have distinct effects on the gut microbiota composition 

and functions, as observed in Chapters 2-5, and these changes may or may not be adverse. Other 

agriculturally relevant compounds such as various fungicides, herbicides and insecticides have been 

recently shown to affect the gut microbiota composition, but their underlying functional mechanisms 

are to a vast extent still unexplored [35-37]. In addition, gut microbiota may convert the xenobiotics 

leading to more or less potent metabolites, such as is for example the case for the conversion of daidzein 

to its more potent estrogenic metabolite S-equol [38, 39]. 

In vivo animal studies such as the ones mentioned in Chapters 2-5, may be used to study essential 

interactions between the gut bacteria and host for chemical risk assessment. But the translation of 

knowledge to humans should be performed with caution due to obvious physiological species 

differences. Therefore, it may be necessary to adopt germ-free models colonized with gut bacterial 

communities isolated from humans in order to represent a comparable model system [40]. Another 



- 187 - 
 

important aspect that has also been already mentioned above is to understand the baseline inter-

individual variability in order to interpret the inter-species and inter-individual differences in the risk 

assessments of chemicals between animal studies. Elucidating the full range of effects of chemicals on 

the gut microbiota as well as the  gut microbial transformations of the respective chemicals or the overall 

host metabolome may provide new insights about the effects of diet, drugs and pollutants on human 

health and diseases [41].  

In Chapter 4, the ability of spontaneous restoration of both the gut microbial community as well as the 

metabolome have been analyzed one and two weeks post antibiotic cessation. Although the recovery of 

both feces and plasma metabolomes were observed to be slower than that of the microbiota, there was 

indeed a hint towards a recovery process as several metabolites were back to their control levels while 

others showed indications of overcompensation, resulting in changes in the opposite direction than what 

was observed during the treatment itself. Studies like these may also help in understanding if an 

adaptation to a continuous (unintended) exposure of toxic substances in humans is possible. The 

exposure may be in extremely low doses but repeated, as a result of a dietary or occupational exposure. 

Therefore, the research question that needs to be answered is to what extent are these induced changes 

in the microbiota biologically relevant for the host organism. This knowledge would be essential to 

elucidate the physiological consequences of these alterations and their meaning with regards to toxicity 

or adversity and provide insight into to what extent these effects should become part of standard risk 

assessment guidelines. The potential consequences of gut microbiota related metabolic alterations for 

human health will be discussed to some further extent in the next section. 

6.2.5. Drawing conclusions from the metabolome changes in terms of host 
well-being 

Understanding the relevance of metabolome changes for the host is important to understand the 

consequences of changes in terms of adversity. The use of molecular technologies such as 

metabolomics, is important to understand the responses, in terms of metabolite changes, to external 

stimuli such as diet and environmental factors. Metabolomes include endogenous and exogenous small 

molecules that may originate from the diet, microbial products, drugs, dietary supplements and many 

others. With the help of rapidly growing integrated omics technologies, several essential metabolic 

markers have been identified and characterized that are associated with the gut microbiota composition 

and resulting dietary impact on the host metabolic functions [42]. As the metabolomes mirror the end-

products of several different cellular and physiological-level processes, they may be related to host 

health and disease. To this end, static or dynamic clinical biomarkers may be selected, where dynamic 

biomarkers are important to understand the clinical response that may include disease progression and 

association to a particular treatment and static biomarkers are the ones that are able to predict a clinical 

response based on the physiological state of a patient [43]. Several biomarkers have been established 
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and associated to diseased conditions but what is still missing is the ability to understand the 

consequences for human health based on the extent of changes in the overall metabolome.  

Recent studies have shown that high fat diets promote growth of endotoxin producing bacteria and 

inhibit the levels of bacteria that are known to protect the gut barrier. Further, they are known to alter 

the Firmicutes to Bacteroidetes ratio and this results in higher levels of lipopolysaccharides in the blood 

and hence, consequently triggers inflammation [44]. Gut microbiota produces endotoxins that mediate 

diet-induced metabolic syndromes such as obesity, diabetes and hypertension [45-47]. These results 

indicate that these diseases may be circumvented by targeting specific gut microbial populations via 

dietary interventions that specifically promote the growth of bacteria that protect the gut-barrier 

functions and therefore, suppress the harmful pathogenic strains that produce endotoxins. Another 

promising method would be to manipulate the gut microbiota via fecal microbiota transplantation 

(FMT) as a therapeutic method [48, 49]. FMT is the process of administering fecal slurry solution from 

a healthy donor into the gastrointestinal tract of a diseased recipient in order to trigger a change in the 

recipient’s gut composition and consequently confer benefit to host health. Diseases such as 

inflammatory bowel disease, metabolic syndrome, autoimmune disorders, among others may be 

targeted for FMT-based therapy [48]. 

Other studies focus on the interactions between the gut microbiome and the host immune system and 

the role of the microbiota in the development of different immune-mediated diseases such as 

inflammatory bowel syndrome, autoimmune diseases, cancer, cardiometabolic diseases and several 

others [50]. Another study used G-protein coupled receptors to identify gut microbial metabolites and 

found that histamine production by Morganella morganii or Lactobacillus reuteri increased colonic 

motility [51]. A further observation was that certain Bacteroides strains may produce the essential 

amino acid phenylalanine and when the serum concentration of this amino acid is greater than 1mM, it 

may result in phenylketonuria.  

The effects of different compounds on the different metabolite levels, specifically, the levels of bile 

acids, as observed in Chapters 2-5, do not however address the meanings of these changes in terms of 

host health. In order to understand the consequences of changes in the kinetics of bile acids, it may be 

important to additionally conduct histopathological analysis of the liver combined with liver function 

tests, in a situation where an indication of liver-associated toxicity is predicted [52]. Another important 

aspect could be conducting more of such controlled animal studies and add them to the MMT database 

in order to keep the database updated and have more precision in finding organ-associated toxicity 

patterns of new test compounds. This would strengthen the prediction of adverse effects in humans 

using in silico methods in terms of risk assessment.  

Adverse outcome pathways (AOPs) have gained attention in order to elucidate the underlying 

mechanisms of toxic events relevant for the risk assessment of chemicals. Drug-induced liver injuries 
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(DILI) such as cholestasis result from an altered bile acid pool including a higher accumulation of bile 

acids in the host system. Therefore, in order to bridge the gaps in the mechanistic understanding behind 

the progression of DILI, AOPs provide the link between the molecular initiating event, a series of 

intermediate steps and an adverse outcome as a result of the event relevant for risk assessment [53]. 

Therefore, AOPs have been introduced for several bile acid associated disorders such as cholestatic 

liver injury focusing the bile salt export pump (BSEP) with inhibition of this export pump as the 

molecular initiating event for cholestasis [54]. BSEP is known to be essential for the export of Bas and 

an inhibition of BSEP may result in an accumulation of systemic Bas leading to either homeostatic 

response to regulate the bile acid pool by removing Bas and their products or to the induction of an 

array of deteriorative changes leading to cell death [55]. Transcriptomics analysis of human hepatoma 

monolayers (HepaRG) and liver cultures subjected to cholestatic drugs and a BA mix, together with 

subsequent pathway analysis showed that the available AOP on cholestatic liver injury could be used 

for predicting intrahepatic drug-induced cholestasis [55, 56]. Other studies have highlighted the use of 

AOPs for other kinds of DILIs including liver fibrosis and liver steatosis [57, 58].  

Overall, AOPs need to be continually updated by taking into account newly obtained data (structural, 

multi-omics, in vitro and in vivo data) and it is therefore necessary to elucidate the important meanings 

behind the extent of changes caused to the metabolomes, that result from gut microbiota perturbations 

and be able to draw conclusions about the adversity of these changes with respect to host health. It will 

also help to analyze the changes induced by different compounds via the gut bacterial community, from 

a regulatory perspective.  

6.2.6. Alternative methods to elucidate gut microbial functionality  

It is also of importance to note that the results presented in this thesis were based on in vivo 28-day 

studies in young adult Wister rats. However, in modern toxicology there is also a need to consider new 

approach methodologies. That implies that it is also important to discuss the possibility to move towards 

use of alternative strategies including in vitro and/or in silico tools to promote more animal-free 

experiments in the future. In vitro methods are generally used to perform studies in a highly controlled 

manner without using animals. Simple cell-line based models maybe used to study cellular process 

whereas to understand crosstalk between different cell types, ex vivo methods such as using functional 

tissues or organs isolated from an organism may be used. Combining knowledge generation from in 

vivo and in vitro approaches may provide a mechanistic understanding of the gut microbiota mediated 

metabolic functionality. A possible strategy may be to develop in vitro gut models using for example 

1) anaerobically incubated rat feces to study microbial metabolism as well as effects on microbial 

composition and 2) Caco-2 cell layer transwell systems in order to study effects on absorption processes 

in the gut that may eventually also modify metabolome patterns in feces and plasma. In addition, these 

in vitro studies my help to better understand the underlying modes of action of selected test compounds 
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in a controlled environment. This approach could also help in better understanding inter-individual and 

inter-species differences by mimicking the in vivo situation using pooled fecal samples of rats or human 

in small batch incubations that may allow to study the inter-individual and interspecies variations. 

Further, a specific class of metabolites such as the bile acids and their transportation across an intestinal 

cell layer could be targeted which would be of interest given that bile acids appeared to play a significant 

role in the altered metabolomes of the fecal and plasma samples from rats exposed to the model 

compounds of the present study.  

In a recently reported study [59], the effects of antibiotics on bile acids was studied using in vitro models 

combined with integrated metabolomics and 16S rRNA sequencing in order to investigate to what 

extent such in vitro methodologies could elucidate the effects observed in the  in vivo studies as 

published in Chapters 2-5. The 16S rRNA analysis of the in vitro fecal samples incubated with different 

antibiotics – tobramycin, colistin sulfate, meropenem trihydrate or doripenem hydrate revealed colistin 

sulfate to induce the least alterations in the gut microbiota, consistent with the in vivo data (Chapter 
3). Also, in line with the in vivo data, in the in vitro fecal incubations, tobramycin appeared to have the 

strongest effect with a significant reduction of Verrucomicrobiaceae and an increase in 

Lachnospiraceae. Further, the in vitro anaerobic fecal incubations with tobramycin showed an increase 

in the taurine conjugated primary bile acid, TCA, corroborating the in vivo experiments and confirming 

that tobramycin inhibits TCA deconjugation. The in vitro studies also revealed that when extra TCA 

was added to the in vitro incubations with control fecal microbial samples deconjugation by the fecal 

microbiota was highly efficient [59].  

Additionally, in vitro experiments were performed using a Caco-2 cell layer in a transwell model to 

study the intestinal reuptake of intestinal bile acids [60]. This Caco-2 cell line is able to differentiate 

into cells that are present in the small intestinal cell layer and this cell line can be used to evaluate 

transport and reuptake of intestinal bile acids. The results obtained when Caco-2 cell-based transport of 

bile acids was studied, indicated that the transportation of the taurine/glycine conjugated primary bile 

acids TCDCA and GCDCA were observed to be faster than that of the taurine/glycine conjugated 

primary bile acids TCA and GCA as a result of higher passive diffusion rates across the barrier for 

dihydroxy bile acids compared to trihydroxy bile acids [60]. The experiments also showed that when 

Caco-2 cells were preincubated with tobramycin, the transportation of four different primary bile acids 

(TCA, TCDCA, GCA and GCDCA) as well as that of six different conjugated secondary bile acids 

(including GLCA, GUDCA, GDCA, TLCA, TUDCA and THDCA), was lower. This indicated an 

inhibitory effect of the antibiotic on the apical sodium-dependent bile acid transporter (ASBT), which 

is normally located at the apical membrane of enterocytes and is responsible for reabsorption of the bile 

acids back to the liver [60].  Therefore, these in vitro studies showed that the effects of tobramcyin on 

host bile acid homeostasis as detected in the 28-day in vivo study (Chapter 3) should not only be 
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ascribed to an effect on the intestinal microbiota but can in part also be ascribed to an effect of 

tobramycin administration on the process of bile acid reuptake. 

Furthermore, as another new approach methodology, a physiologically based kinetic model (PBK) may 

be used to predict the levels of bile acids in vivo, using in vitro data to define the PBK model parameters, 

thus providing new in silico strategies for which some proofs-of-principle to promote more animal-free 

experiments are already available [61]. Such PBK models can also be of use to extrapolate responses 

from animals to humans for risk-assessment strategies (Figure 6.2). Already established PBK models 

for humans and rats may be used and may be modified to include the different sections of the intestines 

to allow smooth prediction of adverse effects resulting from in vivo doses based on the in vitro data.  

 

Figure 6.2: A combined schematic diagram of in vitro and in silico methods that may be used in combination 
with the in vivo approach used in the present thesis in order to predict adverse effects by new approach 
methodologies. 
 
In vitro approaches will also be of use to evaluate gut bacterial enzyme-specific biotransformation 

capabilities. This strategy may involve incubating rat or human fecal samples from treated and un-

treated groups and further exposed to different chemical probes that are known to be biotransformed by 

human intestinal bacteria [41, 62]. Further, with the help of integrated taxonomic profiling and 

metabolomics analyses the correlations between in vitro biotransformations of reference compounds 

and specific bacterial families or strains may be defined thereby enabling definition of a metabolic 

activity-based fingerprint of the functionality of the microbiota. Alternatively isolated bacterial strains 

may be incubated. Hence, approaches like these may help understand the extent to which metabolic 

functions may vary between individual gut bacteria and promote an understanding of these bacterial 

biotransformation processes in improving human health.  
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6.2.7. Are the metabolome changes only a result of gut microbial dysbiosis? 

As already shown by the example of tobramycin discussed in the previous section, effects on the host 

metabolome may not always be a result of microbiota perturbation but can also stem from other modes 

of action. The changes induced on the metabolome of the host upon dietary intervention, as observed 

in Chapters 3-5, were assumed to stem from an altered gut microbiota. As mentioned earlier, the 

antibiotics and their dose levels used were selected to induce a dysbiosis in the gut composition and 

produce low or no systemic effects on the host. As any form of systemic effects would hinder 

interpretation of the effects on the metabolomes, especially the blood metabolite changes, drugs and 

their doses were selected to exclude any systemic toxicity. However, it may not be ignored that 

compounds studies may, even when they are not systemically available, still have a local effect on the 

intestinal cells so that not all the metabolite changes are a result of an altered microbiota. This 

observation was made in Chapter 5, where artificial sweeteners were administered to young adult 

Wistar rats and although no significant change was observed in the gut bacterial composition, there 

were however changes in certain metabolites, specifically in blood plasma. It is therefore a necessity to 

understand if these observed changes in the plasma metabolome are actually related to a subtle change 

in the gut microbiota at species level or perhaps associated with for example the intestinal reabsorption 

of bile acids into the systemic circulation. Such effects on gut epithelial cells and their metabolic 

pathways or transporters may provide additional modes of action by which the host metabolome may 

be affected. Future studies using in vitro models for intestinal tissue seem to be the way forward to 

elucidate such modes of action. Beyond Caco-2 cell lines, there are other kinds of artificial gut model 

systems such as the simulator of the human intestinal microbial ecosystem (SHIME), that has been 

developed to mimic the enzymatic and physicochemical environment of the stomach, small and large 

intestines [63]. This model may be used to determine the systemic bioavailability of different 

compounds. And further mucin-coated microspheres may in included in these models to enable close 

resemblance to the human colon and can be used to study the effects of substances on the gut ecosystem 

[64].  

Further, gut-on-a-chip models may be used for host-microbe interaction studies that take intestinal 

physiology into account [65]. In addition, platforms using primary cells have been recently developed 

to translate the characteristics of entire organs such as organoid (enteroid) 3D shaped systems, among 

others [66]. The organoids consist of monolayers of cells, a mucosal lumen, cell debris and outwardly 

proliferations regions enriched with stem cells and the 3D shaped intestinal systems mimic the topology 

and physiology of an actual intestinal tract [67]. These models may allow controlled regulation of gut 

ecosystems which is difficult to achieve when using in vivo animal studies and may focus on different 

ranges of variables depending on the research question. All in all, rapid progression in this field allows 

newer opportunities to further investigate the functional capabilities of the gut and its microbiome.  
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6.2.8. Spontaneous restoration of gut microbiota and derived metabolites 

without therapeutic interventions  

Any impairment to the gut microbiota may lead to long term implications such as loss of homeostasis 

that may further impact host well-being. It is well known that severe diseases such as inflammatory 

bowel disease, metabolic syndrome, autoimmune disorders, neurological diseases, among others are 

directly or indirectly influenced by a dysbiotic gut or vice versa. Use of probiotics or lactic acid 

producing bacteria (LAB) like Lactobacillus and Bifidobacteria have been widely reported in the last 

decades as a method to restore the gut communities [68]. In addition, prebiotics consist of enrichment 

ingredients like non-starch polysaccharides and oligosaccharides that are known to be undigestible by 

humans but they help in stimulating vital metabolic activities that are possessed by LAB species and in 

turn may help the physiological well-being of the host [69]. Despite these efforts, not much research is 

conducted on the restoration capabilities of microbiota-derived metabolites post-treatment cessation. 

Hence, it is important to be able to elucidate long term compositional and functional effects (including 

antibiotic resistance) of compounds such as antibiotics that are known to alter the gut microbiota.  

In Chapter 5, a potential ability of gut microbiota to spontaneously recover one and two weeks post 

antibiotic cassation has been reported. Not only the gut microbiota but this tendency to spontaneously 

restore was also observed for the metabolomes, more evidently in fecal than plasma metabolomes. The 

plasma metabolites showed an overcompensation effect two weeks post antibiotic cessation. This 

overcompensation effect may lead to a complete restoration of the metabolite changes back to baseline 

or control levels in a more prolonged study design. Therefore, these results may hint that there may be 

little need for therapeutic interventions such as FMT or the use of probiotics and prebiotics, for 

restoration of the intestinal microbiome. In humans however, several other variables may play a role in 

the spontaneous ability of gut microbiota reconstitution such as host health, exposure to drugs, genetics, 

age, immune system and several others. Therefore, the spontaneous restoration ability may be validated 

further with the help of humanized rodent models [70]. These models would help avoid any form of 

obvious inter-species differences between rodents and humans and be able to simulate and represent the 

complexity of human physiology.  
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6.3. Conclusions  

The metabolic capacity of intestinal microbiota is well-studied, yet there are a lot of unknowns 

regarding its role in chemical (de)toxification. In the field of regulatory toxicology, the metabolic 

capacity of liver and other important organs is of huge interest whereas gut-mediated metabolism is 

often poorly characterized. Hence, this knowledge gap has led to more attention towards not only the 

composition dynamics of the gut microbiota but also its metabolic functionality upon exposure to 

chemical compounds, such as, food additives, drugs, etc. To investigate the complex bidirectional 

crosstalk between the gut microbes and the host, where the compounds affect the gut microbiome and 

in turn the microbiota affects the metabolism of the compounds, an integrated omics approach, 

combining taxonomics and metabolomics, appears to provide a promising tool. Measurement of 

metabolites compliment the gut bacterial profiling, hereby enabling definition of important correlations 

that may provide a first impression on the metabolic interplay between the gut microbiota and host 

organism. The observations made in this thesis emphasize the fact that although the fecal metabolome 

provides an image of the metabolic output of the gut (fecal) microbiota, the blood plasma metabolome 

may serve as a tool to identify a microbial perturbation. Another major highlight was the individuality 

of the gut microbiota composition within control rats that were maintained in a controlled environment, 

indicating the importance of a longitudinal study to determine the historical baseline variability of gut 

microbes from an untreated or control group from both sexes and not only for rats but also for human. 

These results obtained in this thesis also indicate that there is a need for better understanding of the 

consequences of the gut dysbiosis and metabolism for human health in order to facilitate use of the 

outcomes in toxicological risk assessment strategies of chemical substances.  
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CHAPTER 7:   
 

SUMMARY 
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7.1. Summary  
In the last decades, the gut microbiome and its influence on host health has been extensively studied. 

Hence, to elucidate the potential associations that govern interactions between the gut bacterial 

communities and the host, an integrative approach was used to yield knowledge about the gut metabolic 

capacity and its influence on the rodent microbiome. By identifying and quantifying alterations in 

targeted metabolites, along with the gut microbial perturbations induced by a chemical compound (such 

as drugs or non-caloric sweeteners), gut microbiota-associated metabolic functionality and its 

consequences for host metabolic patterns could be characterized. Rats, being the golden standard model 

for toxicological research, are commonly used to assess chemical safety in humans and were hence 

selected as the model organism for our experimental set up. The experimental strategy involved the use 

of well-defined test compounds that are known to induce gut microbial perturbations and carrying out 

a targeted metabolomics analysis of rat blood plasma and feces following 28 days oral exposure to the 

selected test compounds. A quantitative taxonomic profiling approach of feces and plasma samples was 

performed to connect the changes induced by chemical exposure in the microbiota with those observed 

for the metabolites.  

In order to further expand the key knowledge from previously published work, the correlations between 

altered gut bacterial families and changes in the metabolites, induced by different antibiotics were 

investigated in Chapter 2. Antibiotics of different classes and activity spectra were used in this study 

to alter gut microbial composition and function. These perturbations in microbiota composition and 

metabolite patterns in both feces and plasma were then used to compute useful correlations to analyze 

how individual microbial families are responsible for the formation or conversion of fecal or plasma 

metabolites. The strongest correlations were found between 16S rRNA based identified bacterial 

families and fecal metabolites, mainly with bile acids, and their derivatives. Another key finding from 

this study was that the cecal and fecal metabolomes were highly comparable and therefore, as a more 

non-invasive matrix, feces may be preferred as the matrix to study the functional read-out that 

characterizes gut microbial perturbations.  

Effects of two additional antibiotics belonging to different classes and activity spectra than the ones 

studied in Chapter 1, on the gut microbiota and associated feces and plasma metabolomes, were 

reported in Chapter 3. Tobramycin and colistin sulfate were each orally administered for 28 days to 

young adult Wistar rats and their subsequent gut (fecal) microbiota, and their feces and plasma 

metabolomes were analyzed to elucidate the gut microbial functionality. Tobramycin induced 

substantial changes in the gut microbiota as well as in the fecal metabolites, including the bile acid pool. 

Consistently, the plasma metabolome also exhibited alterations upon tobramycin administration, with 

significant changes in pre-established plasma biomarkers (i.e., hippuric acid, indole derivatives and bile 

acids) associated with gut microbial perturbations. However, in contrast to tobramycin, only marginal 
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effects on the gut (feces) microbiota and associated feces and plasma metabolomes were observed upon 

colistin sulfate exposure. Consistently, both fecal and plasma metabolome also overall did not reveal a 

profound effect upon exposure of the rats to colistin sulfate.   

One specific change observed in the colistin treated microbiota was a profound reduction of the 

Verrucomicrobiaceae bacterial family, which appeared to be an effect induced by the antibiotic 

administration. However, the virtual absence of this bacterial family was also observed in four out of 

twenty control animals, suggesting that this reduction can equally well be related to a natural variability 

in the gut microbiota of young adult Wistar rats. Further analysis indicated that these microbes do not 

contribute to the approximately 600 fecal metabolites measured in the study, suggesting their 

commensal nature. Such inter-individual variabilities in the microbiome composition could further 

hamper the interpretation of test compound induced compositional changes in the gut microbiota. 

Therefore, better definition of baseline inter-species as well as inter-individual variabilities of the gut 

bacterial composition may further facilitate the detection of relevant chemical-induced changes and also 

facilitate inter-species extrapolations. 

Furthermore, in Chapter 4, an insight into the recovering abilities of the gut bacterial families as well 

as the associated metabolites in doripenem-antibiotic perturbed animals was provided. With this study, 

spontaneous recovery and reconstitution of 16S rRNA based identified bacterial families as well as of 

the feces metabolome were observed two weeks after cessation of the doripenem treatment. In the 

plasma metabolome of two weeks post high dose doripenem cessation, an overcompensation 

mechanism was observed where the prior changed metabolites (when exposed to doripenem antibiotic) 

changed in the opposite directions two weeks after doripenem treatment was terminated. The results 

obtained from this study contribute to understanding the restoration abilities of the intestinal and 

metabolic homeostasis resulting from broad-spectrum antibiotic exposure, without any therapeutic 

interventions. More extensive studies with prolonged durations post-antibiotic cessation may indicate 

if this overcompensation is indeed in the process of complete recovery or if it leads to a new stable state.  

Finally, Chapter 5 presents a case study to understand if two artificial sweeteners modify the fecal 

microbiota and the metabolomes, Wistar rats from both sexes were orally exposed for 28 days to 

acesulfame potassium (Ace-K) or saccharin. The dose levels selected for Ace-K were 2.5 and 8 times 

higher than the acceptable daily intake (ADI) for the sweetener. The doses of saccharin were selected 

to be 4 and 20 times higher than the ADI for saccharin. Both sweeteners exhibited only minor effects 

on the microbiota, and consequently the fecal metabolome. Saccharin however, significantly altered the 

plasma metabolome, with significant changes in the levels of bile acids in both sexes, indicating 

potentially perturbed bile acid kinetics in the gut, which was rather not apparent in the 16S rRNA based 

identified bacterial families changes and consequently in the fecal metabolome profiles. The absence 

of any changes observed in the microbiota composition may suggest an adaptive effect of the microbiota 
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themselves to the exposure to saccharin or perhaps a possible effect on another target than the gut 

microbiota. This suggests either that the microbiome adaptation may occur faster than changes in the 

gut microbial metabolic functionality, in response to a particular treatment, or the fact that the changes 

in the bile acids may be a result of another mode of action such as for example an effect on bile acid 

intestinal reuptake. Further studies with a higher resolution of 16S rRNA sequencing data, perhaps 

down to taxonomic levels of species or strains assignment, in combination with a metagenomics 

approach and/or in vitro studies on effects of saccharin on intestinal transport of bile acids could be 

used to explore the bacterial species or strains driving the metabolic outcome of saccharin in rats or 

elucidate a different mode of action that may be causing these saccharin induced changes in the plasma 

metabolomes other than the gut microbiota.  

The aim of this thesis was to extend the knowledge of the intestinal microbial metabolic capacity of 

young adult rodent models with the help of multi-omics approaches. This objective was addressed with 

the help of 28-day oral rat studies following OECD 407 guidelines. Test compounds were selected to 

induce gut microbiota perturbations and low or no systemic toxicity in order to assess specific gut 

microbially derived metabolites. The key findings of this thesis include identification and validation of 

metabolic markers and understanding functional roles of specific bacterial families. It was also noted 

that the ability of the gut microbiota to spontaneously recover post antibiotic treatment was much faster 

than the restoration of metabolic functions without any external or therapeutic intervention. These 

results suggest that a combined analysis of microbiota and metabolomes certainly provide a firsthand 

impression of the gut microbial metabolic functionality. A further aspect that needs to be explored are 

the other modes of action that may be affecting the changes in the metabolomes than the gut microbiota. 

These key findings have been discussed and summarized in Chapter 6. Despite that however, there are 

limitations to this work that have also been highlighted in this chapter, where the areas have been 

highlighted where further research may be needed. One of the crucial limitations and topics for future 

results is the apparent inter-individual variability as well as the inter-species variability between rodent 

models and humans and thus how the results can be translated to human and consequently, be of use in 

the risk assessment strategies for chemicals in human beings. Further elucidation of what metabolome 

and microbiota changes will be adverse is also essential to allow future use of the results in human risk 

assessment.  
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