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Abstract  
Soft sensors offer valuable applications in process technology, including pH control in 

bioreactors. Particularly, in the microalgal cultivation sector where the carbonate system 

plays a crucial role in influencing the pH through the injection CO2. Here, seawater is often 

utilized as medium hence requiring the characterization of the dynamic carbonate system 

at higher salinities. In this report, a MATLAB model is described to predict the pH within a 

lab-scale photobioreactor based on changes in the carbonate system under different 

salinities. The model considers the measured off-gas CO2 concentrations and electrical 

conductivity measurements as input. It provides estimations for the concentrations of the 

species present in the carbonate system and calculates the pH over time. The model’s 

predictions align with the changing pH patters observed during the CO2 variations over 

time. However, there are slight discrepancies between the predicted pH and measured pH, 

especially in solutions with higher ionic strengths. To improve accuracy, more precise 

calibration of the model is needed to determine the cation fit factor, which accounts for 

the surplus of cations present in the solution.  
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Nomenclature  
Symbols  

𝛾𝑖 Activity coefficient of component 𝑖 

 

[-] 

𝑎𝑖  Activity of component 𝑖 

 

[𝑚𝑜𝑙 𝐿−1]  

𝑐𝑖 Concentration of component 𝑖  

 

[𝑚𝑜𝑙 𝐿−1]  

𝑐𝑖
∗ Saturation concentration of component 𝑖 

 

[𝑚𝑜𝑙 𝐿−1]  

𝐷𝐿 Dilution rate of the photobioreactor  

 

[𝑠−1] 

𝐹𝐶𝑂2
 Mass transfer rate of CO2 

 

[𝑚𝑜𝑙 𝐿−1 𝑠−1]   

𝐹𝐺 

 

Gas flow rate [𝐿 𝑠−1] 

𝐻𝐶𝑂2 Henry coefficient for CO2 

 

[𝑚𝑜𝑙 𝐿−1 𝑏𝑎𝑟−1] 

𝐼 Ionic strength  

 

[𝑚𝑜𝑙 𝐿−1]  

𝐾𝑖 Equilibrium constant of reaction 𝑖 

 

[-] 

𝑘𝑙𝑎 Mass transfer coefficient  

 

[𝑠−1] 

𝑛𝑖 Mole mass  

 

[𝑚𝑜𝑙] 

𝑃 Partial pressure  

 

[𝑃𝑎] 

𝑇 Temperature  [K] 

 

𝑡 Time  

 

[𝑠] 

𝑥𝑖 Mole fraction of component 𝑖  [-] 

 

𝑧𝑖  Charge of ion 𝑖 [-] 

 
 

Abbreviations  

𝐷𝐼𝐶 Dissolved Inorganic Carbon  

 

 

𝑂𝐷𝐸 Ordinary Differential Equation   

 

𝐴𝑆𝑊 

 

Artificial Seawater  

 

 

𝑅𝑀𝑆𝐸 

 

Root Mean Square Error  
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1. Introduction  
Soft sensors, also known as virtual sensors, can be devoted to the estimation of variables 

in plants controlling the process (Tham et al., 1991). The sensors offer multiple 

advantages such as the realization of a less expensive alternative for hardware sensor 

devices and the input for more comprehensive monitoring networks. Moreover, soft 

sensors allow real-time data and parameter estimation to which no hardware sensor is 

applicable, hence improving control strategy performances (Fortuna, 2007; Jiang et al., 

2021; Tham et al., 1991). Understanding the mathematical model of the process is critical 

to construct the soft sensor.  

 

An application for soft sensors can be found in process technology, such as in the 

microalgal cultivation sector. Cultivation of microalgae caught the attention of the scientific 

community since the valorization of the produced algal biomass assures nutrient recovery 

and CO2 fixation (Guldhe et al., 2017). Parameters of a microalgae photobioreactor such 

as light, temperature, and pH can be modeled dynamically within soft sensors lowering 

costs and increasing the reliability of the cultivation process (González-Camejo et al., 

2020). González-Camejo et al. (2020) established the possibility of a soft sensor 

application for the online monitoring of photosynthetic activity based on pH data.  

 

In microalgal photobioreactors, microalgae cultures are influenced by pH changes both 

directly, as each species has an optimal range of pH for growth, and indirectly, as nutrient 

availability is affected (Suh & Lee, 2003). Inversely, the pH in the photobioreactor is 

influenced by nutrient consumption. When the pH would be accurately modeled and 

controlled, the ability to estimate these nutrient uptake rates would arise. Fundamentally, 

the carbonate system, as described above, will influence the pH. To provide substrate for 

autotrophic microalgal cultivation, CO2 gas is injected and subsequently absorbed (Ifrim 

et al., 2014). The supply of CO2 assures a decrease in pH, as CO2 is converted to carbonic 

acid (H2CO3) and bicarbonate (HCO3
-), which can dissociate to produce hydrogen ions (H+). 

This way, CO2 gas injection gives a possibility to control the pH in the microalgal systems, 

as the pH is dependent on the hydration, dehydration, and protonation of CO2 (Berenguel 

et al., 2004).  

 

Moreover, pH correlates to the activity of protons that subsequently depends on the 

salinity of the medium (Buck et al., 2002). Activity coefficients play a significant role since 

they lower in a more saline solution, as described by the Davies approximation (Stumm, 

1996). These interdependencies of equations describing species concentrations within the 

carbonate system, activity coefficients, and pH, assure the need for a mathematical model. 

Careful modeling of both the activity coefficient and concentration of protons is crucial in 

the design of this dynamic carbonate model defining pH behavior.   

 

In this report, a model is described to predict the pH within a bioreactor based on changes 

in the carbonate system under different salinities. First, more in-depth theoretical 

background on the dynamic carbonate system and activity coefficients is given. 

Subsequently, materials and methods are reported for model development in MATLAB as 

well as the calibration and validation of the model on a lab-scale flat panel photobioreactor. 

Next, the results of these experiments are shown and discussed. Lastly, further research 

recommendations are given based on the results and conclusions.  
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2. Theoretical background  
Developing a soft sensor for the pH control of bioprocesses requires knowledge of both 

soft sensor development and the factors that influence pH. To describe the characteristics 

of the model predicting pH, the dynamic carbonate system is explained, and equations 

describing component concentrations within the carbonate system will be established. 

Moreover, the influence of medium salinities on these concentration dynamics will be 

specified.   

 

Chapter 2 starts with a section dedicated to soft sensor development and highlights 

challenges encountered in the field. The subsequent sections focus on the carbonate 

system, which plays a significant role in pH dynamics. The conversion term within the 

predictive model, also known as the carbonate kinetics, will by described to elaborate on 

the processes occurring. Additionally, the transport dynamics (i.e. gas-liquid transport of 

CO2) will be examined. Furthermore, parameters influencing the activity of protons in more 

saline solutions, particularly the activity coefficients, will be discussed.  

 

2.1 Soft sensor development  
Soft sensors applied in the process industry can function as online predictions of process 

variables, process monitoring or controlling, and process fault detection (Kadlec et al., 

2009). The utilization of soft sensors offers several advantages, as mentioned previously. 

One key advantage is the ability to estimate data in real-time, providing timely and up-

to-date information for decision-making and control purposes. Soft sensors also prove 

helpful in situations where no hardware device or physical sensor is applicable or available. 

They enable the estimation of critical variables or parameters that cannot be directly 

measured, thereby expanding the scope of monitoring and control capabilities in various 

applications (Fortuna, 2007).  

 

To develop a soft sensor, characterization of the process dynamics within the bioreactor 

is required. Roughly this characterization consists of two types of terms, one defining 

conversion reactions, and the other transport dynamics. Furthermore, when developing a 

bioprocess control model distinctions can be made between state variables and process 

parameters (Dochain, 2013). The dynamics of state variables, primarily component 

concentrations, are described by the differential equations and process parameters. 

Examples of these process parameters are reaction constants, specific growth rates, or 

transfer parameters.  

 

The main difficulty during soft sensor development can be found in obtaining accurate 

process data for model construction. Various obstacles, such as missing values, 

measurement noise, data drifting, data outliers, and varying sampling rates can hinder 

the processing of data used in soft sensor development. Addressing these issues requires 

careful manual work when collecting the data during a process. Efforts must be made to 

identify and rectify missing data and outliers, mitigate measurement noise, handle data 

drifting, and ensure consistent sampling rates (Kadlec et al., 2009).  

 

For fault detection during the development of the soft sensor, the parity space method is 

commonly used, shown in Figure 1. In principle, this method establishes the consistency 

between the measurements taken and the output given by the mathematical model 

(Odendaal & Jones, 2014). Naturally, the goal of the model development is to diminish 

the residual term shown in Figure 1.   
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Figure 1. An input-output format of a parity space approach (Dochain, 2013).   

 

2.2 The carbonate system   
In a bioreactor system where carbon dioxide (CO2) is consumed, this process plays a 

significant role in influencing the medium pH in the reactor (Eriksen et al., 2007). The 

supply of CO2 gas into such a reactor ensures gas-liquid transfer, allowing the transfer of 

the component into the aqueous phase. Subsequently, CO2 dissociates into carbonic acid 

(H2CO3), bicarbonate (HCO3
-), and carbonate (CO3

2-) corresponding to Reactions 1, 2, and 

3. The formation of protons in these reactions impacts the water equilibrium shown in 

Reaction 4.  

 

Reaction 1 

𝐻2𝑂 + 𝐶𝑂2 (𝑎𝑞)  ⇆ 𝐻2𝐶𝑂3 (𝑎𝑞)   

 

Reaction 2 

𝐻2𝐶𝑂3 (𝑎𝑞)   ⇆ 𝐻𝐶𝑂3
− (𝑎𝑞) + 𝐻+(𝑎𝑞)  

     

Reaction 3 

𝐻𝐶𝑂3
− (𝑎𝑞)  ⇆ 𝐶𝑂3

2−(𝑎𝑞) + 𝐻+(𝑎𝑞)  

      

Reaction 4 

𝐻2𝑂 ⇆ 𝐻+(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞)  

      

It is important to note that carbonic acid shows to react very rapidly into bicarbonate 

reasoning the common assumption to neglect this first hydration reaction (Stumm, 1996).   

 

This interplay of reactions explains the influence of CO2 on the pH of the medium. When 

the concentrations of species shift towards carbonate formation, the pH of the medium 

decreases. Conversely, an increase in pH indicates a shift towards aqueous carbon dioxide. 

Figure 2 illustrates this relationship in an open carbonate system (Zeebe & Wolf-Gladrow, 

2001). In an open carbonate system, the aqueous solution is capable of reaching 

equilibrium with atmospheric CO2. Consequently, as pH decreases, the total amount of 

dissolved inorganic carbon (DIC) increases.  Adversely, in a closed system, where the 
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amount of DIC remains constant when pH increases. Here, the equilibria between the 

carbonate species are restricted by the absence of atmospheric CO2 exchange (Stumm, 

1996). In more detail, the summation of  dissolved components present in the carbonate 

system (i.e. 𝐶𝑂2, 𝐻𝐶𝑂3
− and 𝐶𝑂3

2−) is termed Dissolved Inorganic Carbon (DIC) (Zeebe & 

Wolf-Gladrow, 2001).  

 

𝐷𝐼𝐶 = [𝐶𝑂2] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2− ]      Equation 1 

 

 

Complementary to Reaction 2, 3, and 4, stoichiometric equilibrium constants are given by 

Equation 2, 3, and 4, respectively (Culberson & Pytkowicz, 1973; Millero et al., 2006).  

 

𝐾1
∗ =

[𝐻+][𝐻𝐶𝑂3
−]

[𝐶𝑂2]
        Equation 2 

  

𝐾2
∗ =

[𝐻+][𝐶𝑂3
2−]

[𝐻𝐶𝑂3
−]

        Equation 3 

 

𝐾𝑤
∗ = [𝐻+][𝑂𝐻−]       Equation 4 

 

Equations 1, 2, and 3 are applicable to an (almost) pure solution where components 

behave ideally following that their activity coefficient approaches 1. However, in more 

saline solutions (i.e., non-ideal) the activity of components needs to be considered, as 

their activity coefficients are lower than 1 due to the increased amount of dissolved ions. 

The activity of component 𝑖 is described by Equation 5 (Boom et al., 2021).  

  

𝑎𝑖 = 𝑥𝑖𝛾𝑖        Equation 5  

Figure 2. The open carbonate system at atmospheric pressure and 25 degrees Celsius 

(Stumm, 1996). 
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Where, 𝑥𝑖 is the mole fraction or concentration, and 𝛾𝑖 is the activity coefficient of 

component 𝑖. It is important to note that when using the mole fraction, the activity of the 

component will be dimensionless. However, when using concentration, the unit of the 

activity will be the same as the unit of the concentration used.  

 

Consequently, theoretically, the stoichiometric equilibrium constants in solutions of higher 

salinities are related to the species’ activities, following Equations 6, 7, and 8 (Culberson 

& Pytkowicz, 1973; Millero et al., 2006).  

 

𝐾1 =
𝛾𝐻𝛾𝐻𝐶𝑂3

𝑎𝐻2𝑂  𝛾𝐶𝑂2 
𝐾1

∗        Equation 6 

 

𝐾2 =
𝛾𝐻𝛾𝐶𝑂3

𝛾𝐻𝐶𝑂3 
𝐾2

∗        Equation 7 

 

𝐾𝑤 =
𝛾𝐻𝛾𝑂𝐻

𝑎𝐻2𝑂
𝐾𝑤

∗         Equation 8 

 

Substitution of the respective stoichiometric equilibrium constants in Equation 6, 7, and 8 

establishes the equations for the equilibrium constants under saline conditions given by 

Equation 9, 10, and 11.  

  

𝐾1 =
𝛾𝐻𝛾𝐻𝐶𝑂3

𝑎𝐻2𝑂  𝛾𝐶𝑂2 

[𝐻+][𝐻𝐶𝑂3
−]

[𝐶𝑂2]
      Equation 9 

 

  𝐾2 =
𝛾𝐻𝛾𝐶𝑂3

𝛾𝐻𝐶𝑂3 

[𝐻+][𝐶𝑂3
2−]

[𝐻𝐶𝑂3
−]

       Equation 10 

 

𝐾𝑤 =
𝛾𝐻𝛾𝑂𝐻

𝑎𝐻2𝑂
[𝐻+][𝑂𝐻−]       Equation 11 

 

As the amount of dissolved ions increases in more saline solutions, the activity of water 

(𝑎𝐻2𝑂) decreases, as described in Equation 12 (Fernández, 2011). Nevertheless, the 

number of water molecules typically greatly exceeds the number of other ions present. As 

a result, the term 𝑛2 becomes negligible and  𝑎𝐻2𝑂 approaches a value of 1. Hence, 

commonly, the activity of water is nearly equal to its concentration and behaves as an 

ideal component in the solution.  

 

𝑎𝐻2𝑂 =
𝑛1

𝑛1+𝑛2
        Equation 12 

Where, 𝑛1 and 𝑛2 are moles of water and solute, respectively. 

 
The equilibrium constants in Equations 9 and 10 are dependent on both salinity and 

temperature. In more saline solutions, the activity coefficients of the components play a 

significant role. These activity coefficients have an impact on the value of the equilibrium 

constants, as they are based on component activity. Additionally, temperature variations 

can also influence the equilibria reactions. Higher temperatures generally enhance the 

solubility of salts, allowing for a greater number of ions in the solution. This temperature 

dependence affects the equilibrium constants and the overall behavior of the system.  

 

Millero et al. (2006) established the relationship between the 𝑝𝐾𝑖 , S and T, as described in 

Equation 13 with its constant parameters in Table 1. 
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𝑝𝐾𝑖 − 𝑝𝐾𝑖
0 = 𝐴𝑖 +

𝐵𝑖

𝑇
+ 𝐶𝑖ln (𝑇)      Equation 13  

 

Pure water references for 𝑝𝐾2
0 and 𝑝𝐾2

0 are described earlier (Harned & Davis, 1943; Harned 

& Scholes, 1941). The relation between 𝑝𝐾𝑖 and 𝐾𝑖 is defined by Equation 14.  

 

𝐾𝑖 =  10−𝑝𝐾𝑖        Equation 14 

 

Table 1. Parameters for the determination of the dissociation constants 𝑝𝐾1 and 𝑝𝐾2 as a function of 

ionic strength and temperature (Millero et al., 2006). 

 𝑝𝐾1 𝑝𝐾2 

𝑝𝐾𝑖
0 

−126.34048 +
6320.813

𝑇
+ 19.568224 ln(𝑇) −90.18333 +

5143.692

𝑇
+ 14.613358 ln(𝑇) 

𝐴𝑖   93.9053𝐼0.5 + 1.6549𝐼 − 0.130𝐼2    147.2748𝐼0.5 + 6.0876𝐼 − 0.869𝐼2    

𝐵𝑖   −3706.9𝐼0.5 − 303.7𝐼    −5400.9𝐼0.5 − 968.4𝐼  

𝐶𝑖   −14.4858𝐼0.5    −23.2804𝐼0.5  

 

2.3 Activity coefficient  
To establish the activity of the components in the solution, single-ion activity coefficients 

(𝛾𝑖) need to be determined. The most important parameter affecting 𝛾𝑖 is the ionic strength 

(𝐼) of the solution, described by Equation 15.  

 

𝐼 =
1

2
∑ 𝑐𝑖𝑧𝑖

2         Equation 15 

In this Equation, 𝑐𝑖 is the concentration of the species and 𝑧𝑖 is the charge of component 

𝑖. 

 

Equation 15 must consider all charged components present in the reactor to accurately 

determine the ionic strength of the solution. For dilute solutions with an ionic strength not 

exceeding 0.1M, activity coefficients are described by the Debye-Hückel equation 

(Pankow, 2019; Ritsema, 1993) in Equation 16.  

 

−log 𝛾𝑖 = 𝐴𝑧𝑖
2 𝐼

1
2

1+𝐵 𝑑 𝐼
1
2

       Equation 16 

The terms A and B are temperature-dependent constants, 𝑧𝑖 is the charge of component 

𝑖, 𝐼 is the ionic strength of the solution and, 𝑑 is the diameter of the ion.  

 

When cultivation media or other solutions carry an ionic strength higher than 0.1M, the 

Debye-Hückel equation is not applicable. The single-ion activity coefficients in a more 

concentrated solution differ since ions get in closer proximity influencing ion-pair formation 

and complexation (Ritsema, 1993). As a result, activity coefficients are lower in more 

saline solutions. For systems with an ionic strength not exceeding 0.5M, the Davies 

equation is commonly employed, represented in Equation 17 (Pankow, 2019; Ritsema, 

1993).  

 

−log 𝛾𝑖 = 0.51𝑧𝑖
2 𝐼

1
2

1+𝐼
1
2

− 0.3𝐼      Equation 17 
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This logarithmic function describes the ion activity coefficient based on its valence and the 

ionic strength of the solution. A significant difference in the ion activity of species in 

solution is found in the distinction between univalent and divalent ions. Lower valance ions 

have a higher activity coefficient than high valance ions for any ionic strength, as 

illustrated in Figure 3.  

 

 
Figure 3. Activity coefficient based on the Davies Equation, valid for solutions with an ionic 

strength not exceeding 0.5M. 

 

In seawater, where the ionic strength exceeds 0.5M, other relationships are established in 

order to understand the correlation between the ionic strength and the activity coefficient. 

Previous studies have derived empirical equations to predict the activity coefficients in 

these more concentrated solutions (Plummer & Sundquist, 1982; Pytkowicz, 1975; Ulfsbo 

et al., 2015). These models account for ion-paring and primarily describe mean activity 

coefficients for salts considering their radii. The ionization behavior of hydroxide ions and 

protons is described by Culberson & Pytkowicz (1973) and presented in Figure 4. 

Additionally, the activity coefficients of bicarbonate and carbonate ions as a function of the 

ionic strength are illustrated in Figure 4 (Pytkowicz, 1975). The empirical relationships 

between the activity coefficients and higher ionic strength in more saline solutions are 

presented in Table 2.  
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Table 2. Empirical relationships between the activity coefficient and ionic strength of the species 

within the carbonate system in solutions with an ionic strength higher than 0.5M. 

Species  Equation describing the relation between its activity 

coefficient and the ionic strength of the solution  

Reference  

𝑯𝑪𝑶𝟑
− 𝛾𝐻𝐶𝑂3

− = −0.276 𝐼 + 0.684      (R2 = 1) 

 

(Pytkowicz, 

1975) 

𝑪𝑶𝟑
𝟐− 𝛾𝐶𝑂3

2− = −0.069 𝐼 + 0.078      (R2 = 0.99) 

 

(Pytkowicz, 

1975) 

𝑶𝑯− 𝛾𝑂𝐻− = −0.266 𝐼 + 0.407       (R2 = 0.98) 

 

(Culberson & 

Pytkowicz, 1973) 

𝑯+ 𝛾𝐻+ = 0.073 𝐼 + 0.664          (R2 = 0.90) 

 

(Culberson & 

Pytkowicz, 1973) 

 

 

 
Figure 4. Activity coefficients of H+, OH-, HCO3

-, and CO3
2- in more saline solutions. 

 

It is important to note that ionic strength is not directly measured, as it involves 

quantifying the total concentration of all ions present in a solution. Therefore, an indirect 

approach is commonly employed, based on its correlation with electrical conductivity. 

Here, the underlying principle is that the presence of ions in a solution enhances its 

electrical conductivity. By measuring the electrical conductivity of a solution in units of 

milisiemens per centimeter (mS/cm), a linear relationship can be established between the 

conductivity and the ionic strength expressed in terms of molarity (M). Previous research 
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found a linear relationship, represented in Equation 18, in solutions with an ionic strength 

up to approximately 39.5 mS/cm. The correlation coefficient in this study was shown to 

be 0.996 indicating a significant correlation (Griffin & Jurinak, 1973).  

 

𝐼 = 0.0127𝐸𝐶 − 0.0003        Equation 18  

 

 

2.4 pH  
The pH is defined as a measure of the activity of the dissolved hydrogen ions (Buck et al., 

2002).  

  

𝑝𝐻 =  − log 𝑎𝐻         Equation 23  

 

𝑎𝐻 = [𝐻+] ∙  𝛾𝐻        Equation 24 

 

The term [𝐻+] is the concentration protons in solution, and 𝛾𝐻 is the molal activity 

coefficient of protons.  

 

Thus, accurate determination of pH depends on both careful establishment of the 

concentration of protons and its activity coefficient.  

 

When looking at the application of the model within a photobioreactor inoculated with 

autotrophic microalgae, the proton concentration relies heavily on the carbon dioxide 

entering the solution and its uptake rate by the microalgal species (Berenguel et al., 2004). 

However, the concentration of protons hence medium pH can also be influenced by the 

uptake of a nitrogen source. In more detail, NO3
- or NO2

- uptake would result in the 

consumption of a proton whereas NH4
+ uptake would result in the excretion of a proton 

(Eriksen et al., 2007). 

 

2.5 Gas-liquid transfer of CO2 

The entering of CO2 as a gas into the medium follows the gas-liquid mass transfer of the 

species into the liquid phase. As the mass transfer and diffusion from the liquid into the 

gas are much faster, gas-side mass transfer resistance on the gas-liquid interphase can 

be neglected (Ndiaye et al., 2018; Olsen et al., 2017). The mass transfer of CO2 is 

described by Equation 19.  

 

𝐹𝐶𝑂2
= 𝑘𝑙𝑎(

𝑐𝐶𝑂2.𝑔

𝑚
− 𝑐𝐶𝑂2.𝑙)      Equation 19 

In this Equation, 𝑐𝐶𝑂2.𝑙 is the CO2 concentration in the liquid, 𝑐𝐶𝑂2.𝑔 is the CO2 concentration 

in the gas phase, 𝑘𝑙𝑎 is the mass transfer coefficient and 𝑚 is the partition coefficient for 

CO2.  

 

In the case of an ideal gas mixture, Henry’s law as a function of temperature can be 

applied to find the partition coefficient 𝑚, as revealed in Equation 20 (Boom et al., 2021). 

 

𝑚(𝑇) = (𝐻𝐶𝑂2
(𝑇𝑟𝑒𝑓) exp (−

∆𝑠𝑜𝑙𝐻

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) (𝑅𝑇))

−1

   Equation 20  

𝐻𝐶𝑂2
(𝑇𝑟𝑒𝑓) is the Henry solubility for CO2 in water at the reference temperature 298.15K 

and ∆𝑠𝑜𝑙𝐻 is defined as the enthalpy of dissolution of CO2 in water.  
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The presence of dissolved salts decreases the solubility of CO2, commonly known as the 

“salting out effect” (Sander, 2015). The 𝐻𝐶𝑂2 is dependent on the ionic strength of the 

respective medium described via the Sechenov equation (Equation 21) (Sander et al., 

2022). 

  

log (
𝐻0

𝐻
) = 𝑘𝑠 ∙ 𝐼        Equation 21 

The constant 𝑘𝑠 is the molality-based Sechenov constant which depends on the electrolyte 

(e.g. NaCl) and can be found in IUPAC databases (IUPAC-NIST Solubilities Database). 

 

Regarding the effect of changing salinity on (𝑘𝑙𝑎)𝐶𝑂2
 values, controversial effects are 

reported in previous studies. It has been shown that seawater or electrolytic solutions 

show an increase in (𝑘𝑙𝑎)𝐶𝑂2
when comparing to tap water (Elhajj et al., 2014; Tokumura 

et al., 2006). However, both Barrut et al. (2012) and Moran (2010) report no effects of 

salinity of the water on the mass transfer rate of carbon dioxide.  

 

An estimation of the rate of gas-liquid transfer of CO2 is often based on a measured 

transfer rate of O2 (Boogerd et al., 1990; Ifrim et al., 2014). This because measurements 

of CO2 rates are challenging due to the direct formation of carbonic acid. Here, the rate of 

transfer of both components is related according to the following equation: 

(𝑘𝑙𝑎)𝐶𝑂2
= (𝑘𝑙𝑎)𝑂2

∗ (
(𝐷𝐿)𝐶𝑂2

(𝐷𝐿)𝑂2

)
0.5

       Equation 22 

 

Previous research establishes the assumption of the (𝑘𝑙𝑎)𝐶𝑂2
to be 0.893 times (𝑘𝑙𝑎)𝑂2

 

(Boogerd et al., 1990). Furthermore, the determination of the oxygen mass transfer of 

non-respiring systems can be done by using the static method (Galaction et al., 2004). 

This method relies on the increase of dissolved oxygen in the medium by aeration of the 

reactor after nitrogen sparging which provides an oxygen concentration of nearly zero.  
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3. Methods and materials  
This chapter focuses on the development of the mathematical model for the simulation of 

the dynamic carbonate system. Furthermore, the process of calibrating and validating the 

model is explained, along with the details of the experimental set-up.  

 

3.1 Mathematical model  
The development of the model describing the dynamic carbonate system and the change 

in pH was performed in MATLAB R2020b. The input of the model consisted of off-gas CO2 

and EC data files, along with the initial conditions for each experiment. Also, measured pH 

data was used to initialize and calibrate the model. The model’s output was a matrix of 

species concentrations within the carbonate system varying over time together with the 

estimated change in pH. Additionally, the plots of this behavior were generated, and the 

difference between the model predictions and the measured value was quantified.  

 

The model was organized into separate functions and scripts, each handling different 

datasets or calculation systems. Data files and the starting points of each experiment were 

given as input within the model execution script. Subsequently, this execution script refers 

to the data processing function which links to the data import functions and the description 

of the carbonate system. Here, the import functions handle the raw EC, CO2, and pH data. 

The carbonate system simulation function describes the equations required to establish 

species concentrations within the system. This script links to a function defining the 

constant parameters during the experiments. Figure 5 provides an overview of these 

functions, showing their respective roles and linking with other scripts.  

 

The following assumptions were made while developing the mathematical model:  

- Liquid and gas within the reactor are perfectly mixed.  

- The gas phase behaves like an ideal gas.  

- Temperature is constant, and it is set to 25°C.  

- There is a negligible amount of carbon dioxide present in the incoming airflow at 

the start of each experiment since the solution is sparged with nitrogen overnight. 

- The Henry constant change is negligible during each experiment.  

 

Appendix 8.1 shows the complete MATLAB code written. 
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Figure 5. The structure of the MATLAB model that is estimating species concentrations within a 

carbonate system, with subsequent pH estimation over time. 

 

To estimate the concentrations of the species present within the carbonate system, an 

ordinary differential equation (ODE) solver was utilized, with the respective state 

variables, [𝐶𝑂2], [𝐻𝐶𝑂3
−], [𝐶𝑂3

2−], [𝐻+] and [𝑂𝐻−]. The data processing function referenced 

the specific equations required to solve the simulation within the carbonate system 

simulation function. Modeling the concentrations of the species relied on the dynamic CO2 

concentration in the off-gas, EC measurements converted to ionic strength, and the kinetic 

equations described in Chapter 2.2. Figure 6 shows the matrix resulting from solving the 

mathematical model of the ODE function.  

 

 
Figure 6. Matrix form of the mathematical model describing the species concentration changes over 

time in the carbonate system.   

In more detail, the MATLAB ODE solver function ode15s was used to calculate species 

concentrations and their change over time. This ODE function is specifically suitable for 

solving stiff differential equations (Shampine & Reichelt, 1997). Here, stiff differential 

equations are defined to be numerically unstable. Hence, small steps were required to 

take by the numerical method used (Garfinkel et al., 1977). This was done by the quasi-

constant step size implementation of the ode15s function of MATLAB, varying the step size 
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of simulations within a defined tolerance. The input of this ode15s-solver required, next 

to the differential equations, the total simulation timespan, and an initialization of the state 

variables. Hence, to initialize the matrix, the pH measured at the start of the experiment 

was used to calculate [𝐻+] and [𝑂𝐻−]. Additionally, a term accounting for the surplus of 

cations present in the solution, the cation fit factor, was included manually.  

 

The specific activity was required to accurately model the species concentrations. In the 

model, the ionic strength measurements of the medium solution are incorporated within 

each timestep of the ODE solver by employing the monitored EC measurements converted 

into ionic strength. The conversion equation, 𝐼 = 0.0127𝐸𝐶 − 0.0003,  assured a linear relation 

between the EC and ionic strength of the solution, as described in more detail in Chapter 

2.3. The activity coefficients of the species present were computed based on the ionic 

strength of the solution. If the ionic strength did not exceed 0.5M, the Davies equation 

gave an estimation of the activity coefficients. In solutions of higher ionic strength, the 

empirical relations described in Chapter 2.3 were used to compute values for the activity 

coefficients of the dissolved species.   

 

With the use of the predicted proton concentration and its activity coefficient, the pH was 

calculated at every time point.  

 

An additional MATLAB function was implemented to handle the constants related to the 

system’s behavior. The constants included temperature and based on this temperature 

𝑝𝐾1
0 and 𝑝𝐾2

0 values were computed. Moreover, the pressure within the bioreactor was 

calculated based on the overpressure measured during the experimental run. The Henry 

constant, which characterized the solubility of CO2 in the solution, was calculated based 

on the initial ionic strength, as explained in Chapter 2.5. Lastly, the mass transfer 

coefficient for CO2 ((𝑘𝑙𝑎)𝐶𝑂2
) was calculated based on a measured (𝑘𝑙𝑎)𝑂2

, as described in 

Chapter 2.5. 

 

3.1.1 Model calibration  

Before applying the model to solutions with different ionic strengths, calibration was 

required to be performed over the range of 0.1M and ASW (~0.6M). Model calibration 

required data from EC, off-gas CO2, and pH measurements. The predicted pH was fitted 

to the measured pH for each ionic strength solution by setting a cation fit factor. This 

cation fit factor was included in the electron balance, as depicted in Figure 6 by the 

determination of the proton concentration. By incorporating the cation fit factor, the 

predicted pH values could be effectively adjusted to closely match the measured pH values, 

assuring calibration of the model for each ionic strength solution.  

 

The accuracy of the calibration and cation fit factor was determined based on the accuracy 

of the measurement data of the EC, off-gas CO2, and pH measurements. To analyze the 

accuracy of these measurements, the standard deviation is analyzed and a calibration 

curve for the off-gas analyzer was made. This calibration curve involved measuring the 

off-gas CO2 concentrations without passing through the medium, by bypassing the reactor.   

 

3.1.2 Model validation  

To verify the predictability of the cation fit factor, a validation experiment was performed. 

The validation aimed to assess whether the model could accurately predict the cation fit 

factor for a certain ionic strength of the solution within the calibration range. The accuracy 
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was determined by comparing the modeled pH to the measured pH during the experiment. 

For this, the Root Mean Square Error (RMSE) was calculated every second of the 

simulation. The RMSE is commonly used as the statistical metric to measure model 

performance, as it quantifies the error between the model predictions and the 

corresponding measured values in the same units (Hodson, 2022).  By calculating the 

RMSE at every time point throughout the simulation, the model’s performance could be 

assessed during the complete experiment. Lower RMSE values indicated a higher level of 

agreement between the model and the measured data, suggesting better accuracy and 

reliability of the model in predicting the dynamic carbonate system. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1        Equation 23 

Where, 𝑛 is the number of observations, 𝑦𝑖 is the measured value, and 𝑦𝑖̂ is the 

corresponding model prediction.  

 

3.2 Experimental Set-up  
All calibration and validation experiments were performed in an INFORS-HT flat panel airlift 

photobioreactor with a working volume of 1.8L (Figure 7). The temperature was kept at a 

constant temperature of 25 °C using the heating jacket of the INFORS system. To remove 

water vapor from the gas phase, exhaust gas was led through a condenser and cooled to 

2°C. Overpressure in the reactor was measured by a U-manometer and high overpressure 

built-up was prevented by a pressure safety system in the form of a water lock attached 

to the headspace of the bioreactor. No pressure could be built up in the reactor since a 

higher pressure would assure water transfer out of the tube connected. An inner pressure 

increase above a threshold of the maximal water column would push water and 

subsequently gas toward the open environment preventing reactor damages, as illustrated 

in Figure 8. 

Figure 7. Labfors 5 Lux LED flat panel 

(Franco, 2017). 
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Figure 8. Water lock controlling pressure inside the reactor. 

 

The INFORS flat panel airlift reactor was equipped with horizontally installed sensors for 

pH, Dissolved Oxygen (DO), temperature, and Electrical Conductivity (EC), as presented 

in detail in Figure 9. The reactor holds three mass-flow controllers, which enable the 

adjustment of the surpassing gas flow rates. This was based on the heat capacitance of 

the gas they were calibrated against. The input gas flow rates were configured in mL/min 

units. To enhance the average gas retention time, gas recirculation was employed, as 

illustrated in Figure 9. This approach was followed to address the limitation of the gas 

analyzer, which had a maximum capacity of 200 mL/min. Moreover, the gas recirculation 

set up simulated a common configuration used when inoculating with microalgae to 

improve the efficiency of CO2 removal within the reactor (Cuaresma et al., 2011).    

 

The pH probe (Mettler Toledo InPro 3030) was calibrated via a two-point calibration with 

buffer solutions of pH 4 and pH 10. Data logging of the pH measurements occurred every 

10 minutes or whenever a change in pH of 0.05 pH units was detected, with the use of 

the software tool Iris V5 installed on a computer coupled to the INFORS unit. Similarly, 

temperature measurements were logged using the same software and method as the pH 

measurements.  

 

The EC probe (Mettler Toledo lnPro7001i) was a smart sensor calibrated by the supplier 

and with the calibration data stored within its chip. The calibration was verified at the start 

of each experiment using a reference standard from Mettler Toledo with a conductivity of 

12.88 mS/cm. The EC data was automatically logged every 30 seconds and exported as 

csv file after each experiment via the Transmission Configuration Tool (TCT) supplied by 

Mettler Toledo. 

 

Furthermore, an off-gas analyzer, Servomex 4100 Gas Purity Analyzer, was integrated 

into the reactor set-up to monitor the CO2 and O2 concentration in the outgoing gas. 

Calibration of the gas analyzer involved a two-point calibration using a calibration gas 

mixture (2.46% CO2) and a pure N2 flow for low-point calibration (0% CO2). The off-gas 

analysis was logged every 5 seconds through a Labview-generated DAQ software tool 

which generated a text file per day. 

 

A dissolved CO2 probe is tested to compare the model’s response on this measurement to 

the off-gas CO2 analysis. The dissolved CO2 probe (Hamilton CO2NTROL RS485 120) was 

calibrated equally to the off-gas analyzer, ensuring consistency between the two 
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measurement methods. The measurements were logged every minute through the 

corresponding software tool supplied by Hamilton generating an Excel file per experiment.  

 

The quality certificates of the probes are depicted in Appendix 8.2.  

 

 
Figure 9. Reactor set-up including the position of the sensors and identification of the components 

in the liquid and gas phase. 

 

3.2.1 Model calibration  

Model calibration required data on the CO2 concentration in the off-gas, EC, and pH 

measurements during each experiment. For the experiments, artificial seawater (ASW) 

was diluted to reach solutions with an ionic strength of 0.1M, 0.2M, 0.4M, and 0.5M. Lastly, 

undiluted ASW was used (~0.6M). The pure ASW-solution contained (per liter) 0.8 g 

CaCl2*2H2O, 24.5 g NaCl, 9.8 g MgCl2*6H2O, 3.2 g Na2SO4, and 0.85 g K2SO4. Experiments 

at each ionic strength were carried out in triplicates and started at a CO2 concentration of 

0%. Then, CO2 concentration was increased stepwise to 1% and 2% v/v, representing 

0.01 and 0.02 atm, as shown in Figure 10. At each concentration step equilibrium was 

awaited before the next step started. During the experiments, pH, off-gas CO2, and EC 

were constantly measured. The temperature was kept constant at 25 °C using the heating 

jacket of the system. Measurements were performed and logged following the procedures 

described in Chapter 3.2.  
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Figure 10. Change in CO2 concentration (resembling pCO2 in the off-gas) during each experiment. 

3.2.2 Model validation 

A validation experiment was carried out in duplicate. The solution used for validation was 

set to an ionic strength of approximately 0.3M, which fell within the range of the calibration 

(between 0.1M and 0.6M).  Similar to the calibration experiments, variations in the CO2 

concentrations were set to induce changes in the pH of the solution. In order to observe 

if the model’s predictions would follow smaller deviations in pH, the steps in CO2 

concentrations were set to be smaller. The CO2 concentration in the gas phase was 

increased stepwise to 0.5%, 1%, 1.5%, and 2% v/v, with each concentration step allowing 

for equilibrium to be reached before proceeding to the next step. Throughout these 

saturation and desaturation processes, continuous monitoring of pH, EC, off-gas CO2 and 

temperature was carried out. The temperature was maintained constant at 25 °C. 

Measurements were performed and logged following the procedures described in Chapter 

3.2.  

 

3.2.3 NaOH addition  

Experiments were performed to see how the model reacts to the addition of sodium 

hydroxide (NaOH). The addition of alkaline solutions results in a change in cation 

concentration in the solution. To perform these experiments, the reactor medium was 

spiked with 0.36mL, 1.08mL, and 1.8mL of 1M NaOH solution resulting in concentrations 

of 0.2mM, 0.6mM, and 1mM NaOH, respectively. The experiment was conducted at a 

saturation concentration of 1% v/v CO2. Each addition of NaOH was introduced once the 

system reached an equilibrium state. The reactor set-up, measurements, and data logging 

remained identical to those employed in the calibration and validation experiments.  
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4. Results and discussion  
In this chapter, calibration model results are discussed, and the accuracy of this calibration 

will be established. Hereafter, model validation is described and reviewed.  

 

It is relevant to note that solutions with an ionic strength lower than 0.1M are not 

considered due to the inaccuracy of pH sensors in these solutions. In pure water, the pH 

electrode tends to drift and responds slowly giving inaccurate, and non-reproducible 

measurements. This is due to the low conductivity of the solution since the changes in 

liquid junction potential and the absorption of CO2 into the solution are minimal (Thermo 

Fisher Scientific, 2012).  

   

4.1 Model calibration  
The mathematical model computed results in a simulated pH based on the concentration 

of CO2 in the off-gas and the EC measurements in the solution. Figure 11 shows the model 

responses for the first run of the triplicate experiment conducted on the solutions with an 

ionic strength of 0.1M, 0.2M, 0.5M, and an undiluted ASW solution. The calibration of the 

model involves the determination of the cation fit factor at each ionic strength. To fit the 

predicted pH by the model to the measured pH more correctly, the surplus of cations to 

anions is included in the model to account for the net positive charge present within the 

solution. The cation fit factor considers the positively charged components present aside 

from the protons. This fit factor is used to determine the proton concentration over time 

by including this cation concentration in the electron balance. 

 

As depicted in the Figures 11C and 11D, when solutions contain a higher ionic strength, 

fitting the model exactly to the measured pH values assures difficulties. To address this 

challenge, two options for calibrating the model are considered. The first option fits the 

model to the initialization phase, where the predicted pH is set equal to the measured pH 

at the start of the experiment. Here, the CO2 concentration is 0% v/v and the pH is 

approximately 7.5. The second option fits the model to the measured pH values when the 

CO2 concentration is 1% v/v and the pH is approximately 5. In the subsequent sections, 

the advantages and disadvantages of both calibration options will be examined and 

discussed.  

 

4.1.1 Model fit at 0% v/v CO2 concentration  

As mentioned before, Figure 11 shows the model responses for the experiments performed 

with solutions containing an ionic strength of 0.1M, 0.2M, 0.5M, and undiluted ASW. Here, 

the model is fitted to the initialization phase of the measured pH. The accuracy of the 

model over the complete experiment is determined by the Root Mean Square Error 

(RMSE). The model simulations at an ionic strength of 0.1M and 0.2M yield an average 

RMSE for the experiments of 0.074 and 0.203, respectively. In the case of the least diluted 

solution with an ionic strength of 0.5M, the RMSE is computed at 0.125. For the undiluted 

ASW, the RSME is 0.163. 
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It is relevant to mention that the experiment conducted on the solution with an ionic 

strength of 0.1M was performed in duplicate, while subsequent experiments starting from 

0.2M were conducted in triplicate. The decision to switch to triplicate experiments was 

based on the realization that triplicate experiments provide the opportunity to calculate 

standard deviations. By having multiple replicates, it becomes possible to assess the 

variability and reliability of the measurements, thus providing a more robust and 

statistically meaningful analysis of the data. 

 

  

  

Figure 11. Model response for artificial seawater (ASW) dilutions with an ionic strength of 0.1M (A), 0.2M (B), 0.5M 

(C), and undiluted ASW (D) where CO2 is stepwise changed to 1% and 2% v/v and the model cation fit factor is 

set to fit the measured pH during the initialization phase.  
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The evaluation of the model's performance based on the RMSE values indicates that the 

model is not able to precisely predict the measured pH. However, despite the deviations, 

the model response is comparable to the measured pH during the dynamic CO2 

concentrations in the different dilutions of ASW and undiluted ASW. To explain in more 

detail, Figure 12 illustrates the change in RMSE per calibration model response to stepwise 

alterations in CO2 concentration across the artificial seawater (ASW) dilutions with an ionic 

strength of 0.1M, 0.2M, 0.4M, 0.5M, and undiluted ASW.  

 

 
Figure 12. The calculated Root Mean Square Error (RMSE) between the model's response and the 

measurements during the experiments when fitting the model during the initialization phase. 

The cation fit factor is influenced by the ionic strength, as illustrated in Figure 13. However, 

the five data points displayed in the graph do not exhibit a clear correlation. The 

experiments conducted on solutions with ionic strengths of 0.2M and 0.5M show a 

significant standard deviation, indicating large variability in the cation fit factor between 

the triplicates in the experiment. Furthermore, the cation fit factor values at 0.4M and in 

ASW (0.6M in the graph) appear to be relatively low. It is evident that more experiments 

and data points are required to establish a stronger correlation between the cation fit 

factor and the ionic strength when fitting the model response to the measured values 

during the initialization phase.  
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Figure 13. Cation fit factor set to fit the model's response to the measured pH values during the 

initialization phase. 

 

4.1.2 Model fit at 1% v/v CO2 concentration  

The alternative option of fitting the model response to the measured values when the CO2 

concentrations reached a value of 1% v/v provides different values for the cation fit factor 

compared to the fitting during the initialization phase. For the experiments conducted on 

the 0.1M and 0.2M solutions, this alternative fitting option assure no significant difference 

in the RMSE of the experiments. However, for solution with higher ionic strengths, notable 

differences are observed. Figure 14 presents the model responses for the ASW dilutions 

with an ionic strength of 0.1M, 0.2M, 0.5M, and undiluted ASW when fitted at a CO2 

concentration of 1% v/v. The average RMSE values for the triplicate experiments for the 

solutions with an ionic strength of 0.1M and 0.2M are 0.074 and 0.271, respectively. In 

the case of the least diluted solution with an ionic strength of 0.5M, the computed RMSE 

is 0.515, while for undiluted ASW, the RSME is 0.216. Figure 15 further illustrates the 

change in RMSE per model response to stepwise alterations in CO2 concentration across 

the artificial seawater (ASW) dilutions with an ionic strength of 0.1M, 0.4M, 0.5M, and 

undiluted ASW. The relatively high RMSE values indicate the presence of modeling 

difficulties and reduced accuracy, particularly in highly concentrated salt solutions. This 

highlights the challenges associated with accurately predicting the pH in solutions with a 

high ionic strength.  
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Figure 14. Model response for artificial seawater (ASW) dilutions with an ionic strength of 0.1M (A), 0.2M (B), 0.5M (C), 

and undiluted ASW (D) where CO2 is stepwise changed to 1% and 2% v/v and the model cation fit factor is set to fit the 

measured pH at 1% v/v CO2 concentration. 
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Figure 15. The calculated Root Mean Square Error (RMSE) between the model's response and the 

measurements during the experiments when fitting the model at a CO2 concentration of 1% v/v. 

The cation fit factor when fitting at a CO2 concentration of 1% v/v decreases as the ionic 

strength of the solution increases, as depicted in Figure 16.  Here, a correlation is found 

between the concentration cations used to fit the model and the ionic strength of the 

solution in which the carbonate system is assessed by the model. The relationship between 

the cation concentration and the ionic strength can be characterized by the equation 𝑦 =

−0.0253𝑥 + 0.0213, where y represents the cation concentration and x the ionic strength. 

The correlation coefficient (R2) of 0.87 indicates a moderate relationship between the two 

variables. However, it is important to note that there is a relatively high standard deviation 

observed in the solution with an ionic strength of 0.2M. It suggests that other parameters 

may also be influencing the cation concentration, leading to increased variability in the 

data. 

 

 
Figure 16. Cation fit factor set to fit the model's response to the measured values when the CO2 

concentration is 1% v/v. 
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4.1.3 Discussion on the general model’s response  

Figures 11 and 14 illustrate that the model’s response is comparable to the measured pH 

during the changing CO2 concentrations in the different dilutions of ASW and undiluted 

ASW. In general, when the CO2 concentration increases to 1% v/v, the pH drops from 

approximately 7.5 to 5. Moreover, when increasing the CO2 further to 2% a further 

decrease in pH is observed as more protons, bicarbonate, and carbonate ions are formed. 

The model predicts this dynamic nature between the CO2 concentrations and the pH similar 

to the measured response to the dynamic CO2 behavior. However, certain remarks can be 

made regarding its behavior. Specifically, when CO2 concentrations approach 0% v/v 

during the desaturation of the solution, a stepwise result of the modeled pH is obtained. 

It is important to consider that the off-gas analyzer has a resolution of 0.001% v/v, so 

CO2 concentrations lower than this threshold will not be detected. Consequently, when 

reaching this lowest limit certain inaccuracies in the measurements arise. Therefore, 

approaching this minimum threshold of the off-gas analyzer gives a reason for the 

stepwise response of the model in the desaturation phase. The concentration of CO2 is one 

of the main model inputs by which pH estimation is computed. That is why, when lowering 

the CO2 to 0% v/v, measurements of CO2 will decrease in steps of 0.001% v/v resulting 

in a stepwise response of the model. To correct partially the inaccuracies of the off-gas 

analyzer around 0% v/v CO2, an adjustment to its measurements is added to the model. 

Particularly, any concentration of CO2 reaching 0.003%, lower values than 0.003%, or 

negative values are set to 0.001% yielding a correction for the off-set of the off-gas 

analyzer. Explaining the bigger jump in the computed pH in the latter part of the 

desaturation phase, while disregarding the fluctuations of the measurements between 

0.004 to 0.002% v/v. The off-set of the analyzer may be attributed to factors such as 

pressure difference or the presence of water vapor in the line entering the analyzer. The 

calibration with the use of the dry baseline described before does not account for the water 

vapor present or the pressure that may build up in the reactor. These factors can 

potentially affect the accuracy of the measurement device, leading to the need for 

correction. 

 

Another observation could be made when comparing the saturation phase to the 

desaturation phase in the experiments. The model encounters difficulties in modeling the 

gradual increase in pH when the CO2 concentration drops down to 0% v/v. While this can 

be partly attributed to the resolution limitations of the off-gas analyzer, there is another 

explanation to consider. This plausible explanation for the deviation of the model is the 

formation of calcium carbonate within the solution. Even in the experiments with the 

lowest ionic strength solution (0.1M), the model calculates 3.17E-9 M carbonate ions at a 

CO2 concentration of 2% v/v. Additionally, approximately 0.04M calcium ions are present 

in this solution. Considering the solubility product constant of 3.36E-9 at 25 °C (Haynes, 

2010) and the solubility reaction shown below, even in the experiments with the lowest 

ionic strength solutions, a 0.03M calcium carbonate could be formed. 

 

𝐶𝑎𝐶𝑂3 (𝑠) ↔ 𝐶𝑎2  (𝑎𝑞) + 𝐶𝑂3
2−(𝑎𝑞) 

 

The formation of calcium carbonate at low pH results in increased CO2 uptake by the 

solution to maintain the CO2 concentration at 1 or 2% v/v. This process releases protons, 

leading to the formation of more bicarbonate and carbonate ions. As a result, lower pH 

values are measured compared to the model predictions. Conversely, during the decrease 

in CO2 concentration, calcium carbonate undergoes a reverse reaction forming carbon 



 31 

dioxide, eventually leaving the system. This explains the higher pH measurements 

compared to the model predictions, as a larger amount of CO2 needs to be released from 

the solution, taking up protons in the process. This reaction of calcium carbonate formation 

and its redissolution and currently not accounted for in the model. It may contribute to 

the discrepancy between the model predictions and the experimental observations. 

Especially, in the experiments conducted on solutions with higher ionic strengths.  

 

Moreover, when looking at Figures 11 and 14, it could be concluded that the pH of the 

solution lowers when its ionic strength increases. Starting at a pH of 7.9 in the 0.1M 

solution, pH lowers to 4.9 when CO2 v/v jumps from 0% to 2%. Whereas in the 0.4M 

solution, a decrease in pH from approximately 7.2 to 4.7 is seen. However, a higher pH 

would be expected since pH is defined as a logarithmic function of hydrogen ion activity. 

The decrease in activity coefficient observed in more saline solutions leads to higher pH 

values. Therefore, it becomes necessary to identify additional factors that could account 

for this behavior. One potential explanation is the uncertainty associated with the pH probe 

used, which has an inaccuracy factor of 0.25 pH units at a pH of 7 as shown in the quality 

certificate in Appendix 8.2.1. Furthermore, looking at the triplicate results for the 0.5M 

solution pH drift is revealed, as depicted by the higher initial value of the measured pH 

during each experiment in Figure 17. This observed increase in pH could be due to the 

concentration of CO2 in the solution. Despite the reactor being sparged with nitrogen 

overnight prior to the experiment, traces of CO2 may still persist. However, after a period 

of 3 days, more complete removal of CO2 is achieved, resulting in a higher pH compared 

to the initial pH value. It is important to note that the off-gas analyzer has an accuracy of 

0.001% v/v, so CO2 concentrations lower than this threshold will not be detected. Another 

explanation for this drift in pH can be related to the calcium carbonate kinetics mentioned 

before. Here, after each experiment, more CO2 would leave the system, as calcium 

carbonate formation results in an increased CO2 uptake. Eventually, during the 

desaturation phase, this would result in an increase in the measured pH. In the case of 

the triplicate experiments where the same solution was repeatedly used, it is plausible 

that the second experiment starts at a higher pH than the first experiment. This can be 

attributed to the residual effects of the previous experiment, contributing to the observed 

drift in pH. 
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Figure 17. Stepwise CO2 change in 0.5M solution performed in triplicate showing measured pH, off-gas CO2 

concentration and model response. 
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4.1.4 Discussion on the cation fit factor  

The results described in Chapter 4.1.1 and 4.1.2, consider the possibility of two options 

for implementation of the cation fit factor. The two options, fitting the model during the 

initialization phase and fitting at a CO2 concentration of 1% v/v, have both advantages 

and disadvantages.  

 

Fitting the model during the initialization approach allows for convenient application to 

new experiments. Moreover, fitting the model’s response to the measured pH values 

around a pH of 7, involves a low proton concentration gaining a more accurate fit. 

However, this approach introduces an uncertainty term due to the off-gas CO2 

measurement when approaching a concentration of 0% v/v. In the model the data in this 

range is processed and corrected for an off-set. Fitting the model to processed data of the 

off-gas CO2 may inadequately influence the accuracy of the model’s response. On the 

other hand, fitting the model at a CO2 concentration of 1% v/v avoids this issue and 

ensures a more accurate representation of the CO2 concentration as an input of the model. 

However, a drawback of modeling at higher CO2 concentrations is that the model is fitted 

at lower pH values. Lower pH values correspond to higher proton concentrations on a 

logarithmic scale. Thus, a small difference between the model’s response and the 

measured pH value in the lower pH regime might account for a greater difference if pH 

increases again.  

 

Regarding the relationship between the cation fit factor, the surplus in cations in solution, 

and the ionic strength, speculations can be made. In less diluted solutions of ASW higher 

concentrations of K+, Mg2+. Ca2+, and Na+ cations are present. The model includes an 

electron balance which determines the concentration of protons in solution while 

considering the concentrations of the species in the carbonate system, being [𝐶𝑂2], [𝐻𝐶𝑂3
−],

[𝐶𝑂3
2−],  and [𝑂𝐻−]. Also, the cation fit factor is incorporated into this electron balance. In 

less diluted ASW solutions, it is expected that the surplus of cations, the cation fit factor, 

would be higher than in more diluted solutions. This accounts for the higher concentrations 

of cations present in the ASW.  

 

Interestingly, when fitting the model’s response at a CO2 concentration of 1% v/v, a 

decrease in the cation concentration is observed, which contradicts this expected effect. 

Fitting during the initialization phase may provide better agreement, although the limited 

number of data points does not give a significant answer to this discrepancy.  
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4.1.5 Model parameters 

There are multiple parameters used in the model to estimate the ion concentrations within 

the carbonate system. The ionic strength-dependent parameters computed by the model 

are the Henry constant, activity coefficients, and the equilibrium constants  

𝐾1 and 𝐾2. Table 3 shows the ionic strength-dependent parameters calculated by the 

model.  

 

The Sechenov equation described in Chapter 2.5 ensures an increase in the Henry constant 

when salinity increases. Here, the reference Henry constant (𝐻0 = 0.033 𝑚𝑜𝑙 𝐿−1 𝑏𝑎𝑟−1) at 

298.15K and atmospheric pressure for carbon dioxide is used. The increase can be 

explained by the salting-out effect, reasoning the lower solubility of gas when the salinity 

of a solution increases.  

 

As described deliberately in Chapter 2.3,  the result of an increase in ionic strength of a 

solution is a decrease in activity coefficients of the ions in solution. The model calculates 

the activity coefficients of the ions in a solution based on the Davies equation or the 

previously described empirical-based equations. The Davies equation correlates the ionic 

strength and activity coefficients adequate until an ionic strength of 0.5M is reached. When 

the ionic strength of the solution exceeds 0.5M, the empirical relations are used to 

compute activity coefficients.  

 

The equilibrium constants computed in the model are based on the relationship between 

salinity and the values for pK1 or pK2 as described by Millero et al. (2006) in Chapter 2.2. 

This relationship established accounts for the activities of the species within the carbonate 

system, which effectively takes the ionic strength into account when determining the 

equilibrium constants. Therefore, the use of the relationship established by Millero et al. 

(2006) for pK1 or pK2, which already considers concentrations of species, would result in 

double accounting for the ionic strength. To correct for this double accounting, the 

equilibrium constants are adjusted using the activity coefficients of the respective ions, as 

shown in Equations 24 and 25.   

 

 

𝐾1 =
𝛾𝐻𝛾𝐻𝐶𝑂3

𝛾𝐶𝑂2𝑎𝐻2𝑂
10−𝑝𝐾1        Equation 24  

 

𝐾2 =
𝛾𝐻𝛾𝐶𝑂3

𝛾𝐻𝐶𝑂3

10−𝑝𝐾2        Equation 25 

 

The final parameter used in the model to compute the dynamic concentrations of the 

species within the carbonate system is the mass transfer coefficient of CO2, (𝑘𝑙𝑎)𝐶𝑂2
. The 

estimation of the rate of gas-liquid transfer of CO2 is based on a measured transfer rate 

of O2. This (𝑘𝑙𝑎)𝑂2
 was measured to be 0.032 s-1 in the solution with an ionic strength of 

0.1M. Considering their relation described in Chapter 2.5, the mass transfer coefficient of 

CO2 was found to be 0.28 s-1.   
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Table 3. Ionic strength-dependent parameters computed by the model for solutions with an ionic 

strength of 0.1M, 0.2M, and 0.4M. 

Ionic Strength  

𝐼 

[M] 

Henry Constant  

𝐻𝐶𝑂2
 

[mol/L/bar] 

Equilibrium 

Constant  

𝐾1 

Equilibrium 

Constant  

𝐾2 

Activity 

coefficient  

𝛾𝐻 

0.1 0.0337 5.49E-7 1.12E-10 0.79 

0.2 0.0344 6.46E-7 1.38E-10 0.76 

0.4 0.0358 8.12E-7 1.69E-10 0.76 

0.5 0.0366 5.12E-7 4.79E-11 0.70 

Undiluted 

ASW (I≈0.6) 

0.0378 5.19E-7 4.77E-11 0.71 

 

4.2 Accuracy of the Measurements  
As described above, measurement inaccuracies play a big role in the model response. The 

calibration of the model is based on measured pH, EC, and CO2 concentration values 

throughout the experiments. Logically, perfect measurements are not existing hence an 

inaccuracy factor needs to be determined. For the off-gas analysis of CO2, a dry baseline 

is used to correct the measurement errors. The dry baseline involves measuring the off-

gas CO2 concentrations without passing through the medium, by bypassing the reactor.  

This results in a calibration curve for the measured concentrations of 0, 1, and 2% CO2. 

The dry baseline, 𝑦 = 0.973𝑥 with a 𝑅2 = 0.998, is subsequently used to correct the wet 

baseline measurements during the experiments. Here, 𝑥 equalizes the measured CO2 

concentration and 𝑦 the corrected CO2 concentration used further in the model.  

 

Regarding the pH measurements, considerable differences between the initial pH in 

triplicate experiments executed have been found, as described before and seen in Figure 

17. To quantify the differences, standard deviations (𝜎) of the pH measurements are 

calculated and plotted. Figure 18 shows the standard deviation over the triplicates of the 

solutions with an ionic strength of 0.2M. Especially, at the start of the experiments at the 

initial concentration of CO2 (i.e., 0% v/v) a large 𝜎 is found. The mean of the 𝜎 in this 

experiment was 0.1165. The significant deviation at the start of the experiments can be 

devoted to the logarithmic relationship between pH and the proton concentrations. Higher 

pH values correspond to lower proton concentrations, while lower pH values correspond 

to higher proton concentrations. This logarithmic relationship amplifies the impact of small 

variations in proton concentrations, leading to larger differences in pH differences. 

Furthermore, the relatively high differences in the pH measurements can be caused by the 

2-point calibration done at pH 4 and pH 10. To gain maximum consistency and minimum 

uncertainty, multi-point calibrations are recommended (Naumann et al., 2002). However, 

the Labfors bioreactor software used did not provide this possibility.  
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Figure 18. Standard deviation (σ) of the measured pH in a diluted ASW solution (I = 0.2M). 

 

Next to the off-gas CO2 measurement, the model input is based on the EC measurements 

within the reactor.  These EC measurements show a considerable noise result during the 

experiment, suggesting that the measurements fall within the error range of the probe. 

Figure 19A illustrates the raw measurements obtained during the triplicate experiment 

with an ionic strength of approximately 0.5M. To enhance the clarity of the data, MATLAB 

R2020b was used, providing a function to smoothen the measurements resulting in Figure 

19B. This smoothening function applies a moving average to the vector of measurement 

data while using a fixed window length. Based on these results, it can be concluded no 

significant difference in ionic strength is observed throughout the experiments.  
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Figure 19. Ionic strength measurements during the triplicate experiment in a solution with an ionic strenght of 

approximately 0.5M.  
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Since ionic strength measurements are not significantly changing and within the error 

range of the probe, the model could determine the concentrations of ions present in the 

carbonate system solely on initialization of the ionic strength by a start value. For instance, 

in the triplicate experiment conducted with an ionic strength of 0.5M, the average Root 

Mean Squared Error (RMSE) is found to be 0.484. When the EC measurements are 

excluded as input in the model, the average RMSE changes slightly to 0.481, indicating 

that leaving out the sensor has a minimal impact on the model accuracy. To exclude EC 

data in the model, the ionic strength is calculated dynamically within the model itself. This 

is achieved by using the computed ion concentrations, allowing for the dynamic calculation 

of the ionic strength and subsequently, the activity coefficients. The exclusion of EC data 

can be advantageous in situations where permanent EC measurements are not feasible or 

where the measurements would be significantly influenced by other factors.   

 

Despite the fact that excluding EC measurements may not yield a marginally different 

model prediction, software sensors, and their mathematical model are more reliable with 

multiple input variables. Incorporating data from multiple sensors enables the model to 

respond quickly to significant changes, leading to improved prediction accuracy 

improvement. Additionally, employing multiple sensors allows for the detection of potential 

sensor failures when any of the sensors would deteriorate (Kadlec et al., 2009). 

Nevertheless, challenges may arise when applying the model to microalgae 

photobioreactors, particularly, in measuring the electrical conductivity of the medium. The 

presence of microbial aggregates can interfere with conductivity due to their ability to 

conduct electrical current (Caizán-Juanarena et al., 2020; Li et al., 2017).  

 

4.2.1 Dissolved CO2 Measurements 

To assess the potential for improved accuracy of the CO2 measurements, a dissolved CO2 

probe was tested as an alternative to off-gas analysis. The goal was to determine whether 

measuring the CO2 directly in the liquid would yield a more precise or comparable result 

of the model estimation than based on the off-gas analysis. This alternative measurement 

method could be particularly relevant in situations where implementing off-gas CO2 

analysis is not feasible or practical, such as during the cultivation of microalgae in an open 

pond.  

 

The findings, depicted by the black line in Figure 20, reveal a relatively noisy signal when 

measuring CO2 concentrations approaching 0% v/v. The presence of noise introduces 

significant fluctuations in the data, which has a noticeable impact on the model’s response. 

Besides the noise in the measurements, higher concentrations of dissolved CO2 are 

measured when the solution approaches an 0% v/v CO2 concentration compared to the 

CO2 measurements obtained through the off-gas analysis. As a result, the model response 

predicts a lower pH than the pH measured at a CO2 around 0% v/v. The noise in the raw 

data could indicate that the measurements from the dissolved CO2 probe would benefit 

from smoothening techniques. However, the predicted pH will remain lower than the 

measured pH due to the higher CO2 concentration measured. Even though, smoothening 

of the data would result in less fluctuating predicted pH.  

 

When comparing Figure 20 to Figure 11B, which both represent the same solution with an 

ionic strength of 0.4M undergoing stepwise changes of CO2, a substantial difference in the 

model’s response is observed. The use of data from the dissolved CO2 probe resulted in 

an RMSE of 0.521, indicating a relatively higher level of inaccuracy. In contrast, when 
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utilizing off-gas analysis as an input, the RMSE was significantly reduced to 0.101, 

indicating a higher level of accuracy in the model’s prediction.  

 

To address the inaccuracy caused by the higher CO2 concentration off-set at 0% v/v, a 

potential solution is to incorporate a data correction factor for this off-set in the model. 

Currently, the data of the off-gas analyzer is corrected when the CO2 concentration reaches 

a value of 0.003%. Increasing this off-set correction value when using the dissolved CO2 

probe could potentially lead to a more representative and accurate result of the model’s 

response.  

 

 

 
Figure 20. Stepwise CO2 change in 0.4M solution showing measured pH, dissolved CO2 

concentration, and model response. 

 

4.3 Model Validation  
Following the calibration of the model, a validation experiment was carried out in duplicate 

to assess its performance. This experiment involved stepwise changing the CO2 

concentration in a solution with an ionic strength of 0.3M. The validation process applies 

a cation fit factor based on the established correlation between the cation concentration 

and the ionic strength of the solution. The selected cation fit factor of the model’s response 

was fitted to 1% v/v CO2 concentration, as this approach assured a linear correlation. This 

correlation was characterized in the calibration experiments by the equation 𝑦 = −0.0253𝑥 +

0.0213, where y represents the cation concentration and x the ionic strength. 

Consequently, in a solution with an ionic strength of 0.3M the cation concentration is 

derived to be 0.0137M.  

 

Figure 21 displays the results and RMSE of the second validation experiment. It can be 

observed that the model follows the behavior of the measurements, although the pH is 

predicted consistently with underestimated values. This suggest that the predicted cation 

was too low, leading to lower pH predictions.  
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The duplicate results obtained from the validation experiment show an average RMSE of 

0.582 and 0.314, respectively. Figure 21 illustrates the outcomes of the second run, which 

exhibited slightly improved accuracy compared to the initial run. Nevertheless, over both 

runs a relatively low accuracy was achieved. This is attributable to several possible factors. 

Firstly, the software utilized for the calibration experiments experienced a crash requiring 

the use of an alternative infors unit for the validation experiments. Additionally, the crash 

may have been triggered by a defective pH probe, asking for the substitution of the pH 

probe for the validation experiment. This alternative use of hardware might cause 

deviating measurements of the off-gas CO2 concentration and the pH of the solution. Thus, 

requiring a different fit factor than established in the calibration experiments.  

  

 
  

A B 

Figure 21. Stepwise change of CO2 in a solution with an ionic strength of 0.3M, showing measured pH, CO2 

concentration in the off-gas, and simulated pH (A). The Root Mean Square Error (RMSE) of the model estimation 

compared to the measured pH (B).  

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [sec]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
M

S
E

0 2 4 6 8 10 12 14 16 18 20

Time [hours]

4.5

5

5.5

6

6.5

7

7.5

8

8.5

p
H

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
p

C
O

2
 [

a
tm

]

pH measured

simulated pH

offgas xCO
2



 39 

 

 

 

 

Figure 22 provides an additional visualization, next to the RMSE, of the difference between 

the measured and predicted pH during the validation experiment. In Figure 22A, 

representing the stepwise saturation phase to 2% v/v CO2, a constant deviation is 

observed at the start of the experiment, which gradually increases as pH decreases and 

CO2 concentration increases. When a pH of approximately 5 is reached at a CO2 

concentration of 2% v/v, a steady deviation is shown. The diagonal line in the plot 

represents a perfect prediction of the measurement values, indicating no discrepancy in 

the model’s performance.  

 

During the desaturation phase, shown in Figure 22B, the model exhibits a relatively 

constant deviation, except in the last part when the pH reaches 8 and CO2 concentration 

is almost 0% v/v. At this point, a jump is seen in the model deviation. Figure 22 provides 

a different perspective on the model’s performance compared to the RMSE shown in Figure 

21B. Nevertheless, the results of both graphs align, showing a relatively constant deviation 

except during the first drop in pH and during the last part of desaturation.   

 

4.4 NaOH addition results  
When sodium hydroxide (NaOH) is added to a solution containing dissolved CO2, it induces 

a change in the cation concentration. The response of the model to this increasing cation 

concentration is evaluated. However, challenges arise in accurately obtaining the model's 

response, as shown in Figure 23B through the RMSE of the model's performance over 

time.  

 

At first, the model is initialized matching its predicted pH to the measured pH in the 

solution. The increase in CO2 concentration to 2% v/v shows a decrease in the measured 

pH to 5.2. The first addition of 0.002 M NaOH results in an increase in measured pH. The 

model, however, responds with a higher pH of 6.0 to the CO2 increase and deviates to the 

measured pH after NaOH addition as well, as illustrated in Figure 23A. Subsequent NaOH 
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Figure 22. Difference in predicted and measured pH during the saturation phase (A) and desaturation phase (B) in a 

solution with an ionic strength of 0.3M. 
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additions result in an underestimation of the pH. The average RMSE for this experiment, 

conducted in a solution with an ionic strength of 0.5M and a fixed concentration of 0.5% 

v/v CO2, was 0.233.  

 

Figure 24 presents the change in ionic strength during the experiment. As Na+ and OH- 

ions are added step wise, an increase in ionic strength during these additions would be 

expected. However, while the start and end measurements of the ionic strength show an 

increase, no clear stepwise increase is observed. Furthermore, the continuous increase of 

the measured ionic strength can not be explained. A plausible factor reasoning the 

measurements detected, might be justified by the small increase of ionic strength, which 

is approximately only 0.01 mS/cm. Such a small change may indicate that the 

measurement differences fall within the error range of the probe, leading to the lack of 

clear stepwise increase in the ionic strength data.  

 

It is important to note that the accurate timing of the NaOH addition is crucial when 

modeling this experiment. The incorrect time setting of NaOH addition leads to unreliable 

changes in the ion concentrations, of both the cation and hydroxide ions, in the model’s 

predictions. This results in an inaccurate response of the proton concentration and an 

unrealistic pH of 15. The precise timing of the NaOH addition is essential to ensure an 

appropriate CO2 buffer capacity at the moment of the hydroxide introduction. Thus, when 

the CO2 concentration declines, the addition of the hydroxide ensures a decrease in the 

proton concentration, subsequently lowering the pH.  

 

 

Figure 23. The CO2 in the off-gas, the measured, and simulated pH in a solution (I = 0.5M, started at 1% v/v CO2) 
with addition of NaOH (A). The Root Mean Square Error (RMSE) of the model estimation compared to the measured 

pH (B).  
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Figure 24. Ionic strength during the step wise addition of NaOH in a solution 

with an ionic strength of 0.5M. 
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5. Conclusions  
The pH within a dynamic carbonate system can be predicted using a mathematical model 

implemented in MATLAB. The model considers the measured off-gas CO2 concentrations 

and electrical conductivity measurements as input. It provides estimations for the 

concentrations of the species present in the carbonate system and calculates the pH over 

time.  

 

The model’s response follows the behavior of the measured pH values during the changing 

CO2 concentrations in the different dilutions of ASW and undiluted ASW. However, when 

CO2 concentrations approach 0% v/v during the desaturation process, a stepwise result of 

the modeled pH is obtained instead of a gradual change. This behavior can be attributed 

to the stepwise nature of the off-gas analyzer measurement data.  

 

During the calibration experiments, the model exhibits different responses depending on 

the ionic strength of the ASW dilutions and undiluted ASW. Two different options for fitting 

the model during calibration are discussed. Setting the cation fit factor to fit during the 

initialization of the experiment (i.e. 0% v/v) lead to no direct correlation whereas fitting 

at 1% v/v CO2  lead to a linear relationship. The relationship between the cation fit factor 

concentration and the ionic strength can be characterized by the equation 𝑦 = −0.0253𝑥 +

0.0213, where y represents the cation concentration and x the ionic strength. The 

correlation coefficient (R2) of 0.87 indicates a moderate linear relationship between the 

two variables. The two options, fitting the model during the initialization phase and fitting 

at a CO2 concentration of 1% v/v, have both advantages and disadvantages.  

 

For model validation, performed in a solution with an ionic strength of approximately 0.3M, 

the average RMSE was found to be 0.447. This indicates the level of deviation between 

the model’s predication and the actual measured values during the validation experiment 

was marginal.  
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6. Recommendations  
Further research is necessary to improve the accuracy of the model. In particular, the 

determination of the cation fit factor to calibrate the model needs further investigation. 

More datapoints are required to obtain an accurate result of the calibration. The current 

calibration is based on only five measurements, which may not be sufficient to predict an 

accurate cation fit factor. Especially, in the solutions with an ionic strength of 0.2M high 

deviations are found Furthermore, it is recommended to fit the model at a CO2 

concentration of approximately 0.5% v/v avoiding the uncertainty term of the off-gas CO2 

measurement when approaching a concentration of 0% v/v. Additionally, the accuracy of 

the calibration would be improved when fitting the model around neutral pH since the 

concentration of protons is lower around a pH of 7 than around a pH of 5. However, since 

the addition of 0.5% v/v CO2 will ensure a decrease in the pH, fitting at neutral pH will not 

be feasible. Thus, fitting with the use of the cation fit factor would be ideally at a CO2 

concentration of 0.5% v/v in the off-gas and at a pH of approximately 6.   

 

Also, it is recommended to investigate the formation of calcium carbonate in more saline 

solutions as it may contribute to the observed deviations between the measured and the 

predicted pH values. The slight precipitation of calcium carbonate could explain the lower 

pH measured at higher CO2 concentrations and the higher pH measured at CO2 

concentrations approaching 0% v/v. By incorporating these dynamics into the model, 

more precise predictions of component concentrations and the pH of the solution can be 

achieved. Specifically, in solutions with higher ionic strengths where more calcium ions 

are present. This inclusion of the calcium carbonate kinetics should be incorporated in the 

model before more extensive calibration is performed.   

 

Further recommendations mark to test the model in a pH range more closely related to 

algae cultivation. The current experiments primarily focussed on pH values ranging from 

4 to 5.5. However, since microalgae cultivation often occurs at neutral pH, it is crucial to 

validate the model’s performance in this pH range. Furthermore, simulating a more 

gradual increase or decrease in pH would provide insights into the model’s behavior under 

such conditions. Conducting a dilution experiment with an incoming 0% v/v CO2 

concentration solution to gradually decrease the pH of the solution could facilitate a 

gradual decrease in pH.  

 

Finally, to investigate the change of cation in the model such as in the experiment with 

NaOH addition, further experiments are required. The model should be adjusted to 

respond to varying cation concentrations instead of using a fixed concentration to account 

for the cation surplus present. By conducting these experiments and modifying the model 

accordingly, a more accurate representation of the changing cation dynamics can be 

achieved. 
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8. Appendices  

8.1 MATLAB model  

8.1.1 Running model  
% clear output window, workspace and close graph windows 
clc 
clear 
close all 

  
%% Calculate the results  
RunStart = 5930;               % Syntax of the starting point of your 

experiment in the table Data_tot  
RunEnd = 21560;                % Syntax of the ending point of your 

experiment in the table Data_tot  

  
% Extract the results from the function CalculateRun  
runResult = CalculateRun("EC_0.5M.csv", 

"06062023_Servomex_Data.txt","pH0_5.txt", 5930, 21560); 

  
% pH and pCO2 measured  
time = runResult.Time; 
pH = runResult.Data_tot.pH; 
CO2 = runResult.Data_tot.CO2_cor;  

  
% pH simulation  
t = runResult.tsim; 
pH_sim = runResult.pHsim;  

  
% RMSE 
rmse = runResult.rmse; 
num_rmse = runResult.num_rmse; 

  

% Calculate the mean Root Mean Squared error of the run  
mean_rmse = mean(rmse); 

  
% Plot the change in ionic strength over time 
figure(1) 
plot(time(RunStart:RunEnd), runResult.Data_tot.I(RunStart:RunEnd), "-b", 

"LineWidth", 2); 
xlabel('Time [hours]'); 
ylabel('Ionic Strenght [M]') 

  
% PLot the model predicted pH, measured pH and change in CO2 in the off-gas 
figure(2) 
colororder({'k','k'}); 
xlabel('Time [hours]'); 
yyaxis left  
ylabel('pH') 
    plot(time(RunStart:RunEnd),pH(RunStart:RunEnd),'-b','LineWidth',2); 
hold on  
    plot(t/(3600),pH_sim,'-r','LineWidth',2) ; 
yyaxis right 
ylabel('p_{CO2} [atm]'); 
    plot(time(RunStart:RunEnd),CO2(RunStart:RunEnd)/100,'-

k','LineWidth',2); 
ylim([0 0.022]); 
legend('pH measured','simulated pH','offgas xCO_{2} '); 
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% Plot RMSE values  
figure(3) 
plot(num_rmse, rmse, '-ko', 'LineWidth', 1); 
xlabel('Time [sec]'); 
ylabel('RMSE'); 
title('0.5M RMSE'); 

 

8.1.2 Calculating Function   
function [runResult] = CalculateRun(ECdataFile, CO2dataFile, pHdataFile, 

RunStart, RunEnd) 

  

    %% Load EC data  
    EC_import = importEC(ECdataFile); 

  
    % Combine date and time string to 1 string 
    Datetime = strcat(char(EC_import.Date), " ", char(EC_import.Time)); 

  
    % Parsing datetime string to a date time object 
    ECtime = datetime(Datetime, 'InputFormat', "dd/MMM/yyyy HH:mm:ss"); 

  
    % Get EC column filtered by NaNs 
    EC1 = EC_import.Ch2_M1(~isnan(EC_import.Ch2_M1)); 

  
    % Smooth EC data 
    EC = smoothdata(EC1); 

         
    % Unit conversion: ms/cm to M  
    I = 0.0127* EC- 0.0003;  

  
    % Create a time vector with the same size as the EC vector 
    TimeEC = ECtime(~isnan(EC_import.Ch2_M1)); 

  

    % Create new table including time steps  
    ECv1 = table(TimeEC, I); 

  
    % Rename columns in ECv1 table  
    Table_EC1 = renamevars(ECv1, "TimeEC","Time"); 
    Table_EC = table2timetable(Table_EC1); 

  

  
    %% Load CO2 offgas data 

  
    % Import and clean file data 
    CO2_import = importfile(CO2dataFile); 

  
    % Combine date and time string to 1 string 
    DateTime = strcat(char(CO2_import.Date), " ", char(CO2_import.Time)); 

  
    %Parsing datetime string to a date time object 
    TimeCO2= datetime(DateTime, 'InputFormat', "dd.MMM.yyyy HH:mm:ss"); 

  
    % Get CO23 column filtered by NaNs 
    CO2 = CO2_import.CO23(~isnan(CO2_import.CO23)); 

     
    % CO2 data correction based on the calibration curve of the dry base 

line   
    CO2_cor = CO2 / 0.9734;  
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    % Create new tables including time steps  
    Table_CO2 = table(TimeCO2, CO2_cor); 
    Table_CO2 = renamevars(Table_CO2, "TimeCO2", "Time"); 
    Table_CO2 = table2timetable(Table_CO2); 

  
    % Correct for noise in the CO2 data when approaching O% v/v 
    indices = find(Table_CO2.CO2_cor < 0.004); 
    Table_CO2.CO2_cor(indices) = 0.002; 

     
    %% Load pH data from Infors 2 file 
    % Load Water1_no_avgeraging txt file 
    pH_import = importIrispH(pHdataFile); 

  
    % Combine date and time string to 1 string 
    f = strcat(char(pH_import.Date), " ", char(pH_import.Time)); 

  
    % Parsing datetime string to a date time object 
    TimeVec = datetime(f, 'InputFormat', 'dd-MM-yy HH:mm:ss'); 

  
    % Get pH column filtered by NaNs 
    pH = pH_import.pH(~isnan(pH_import.pH)); 

  
    % Create a time vector with the same size as the pH vector 
    TV = TimeVec(~isnan(pH_import.pH)); 

  

    % Create new table including time strings  
    Table_pH = table(TV,pH); 

  
    % Rename time column in I0_pH table  
    Table_pH = renamevars(Table_pH, ["TV"], ["Time"]); 
    Table_pH = table2timetable(Table_pH); 

  
    % Synchronize pH, EC and CO2 tables  
    Data_tot = synchronize(Table_pH, Table_CO2, 'union', 'linear'); 
    Data_tot = synchronize(Data_tot, Table_EC, 'union', 'linear'); 

     
    % Calculation of RunTime in seconds and hours subsequently 
    T_s = 

day(Data_tot.Time)*24*3600+hour(Data_tot.Time)*3600+minute(Data_tot.Time)*6

0+second(Data_tot.Time)-

(day(Data_tot.Time(RunStart))*24*3600+hour(Data_tot.Time(RunStart))*3600+mi

nute(Data_tot.Time(RunStart))*60+second(Data_tot.Time(RunStart))); 
    T_h = T_s/3600;  

  
    %% Simulate pH based on CO2 partial pressure in the offgas and EC 

measurements  

  
    % Initialize start values 
    pHstart = Data_tot.pH(RunStart);        % Start pH  
    I_0 = Data_tot.I(RunStart);             % Start ionic strenght[M]  
    gamma_1=0.7;                            % Estimation based on 

literature 
    gamma_2=0.038;                          % Estimation based on 

literature 

   
    % Pre-allocate concentration vector assuming the bioreactor is 

completely stripped from CO2 
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    concentration=[0 0 0 (10^(-pHstart))/gamma_1 (10^-(14-pHstart))/gamma_1 

0 I_0 gamma_1 gamma_2 0]; 

  
    % Set fit factor (cation concentration) at t0  
    concentration(6) = 1.1E-5;   

     
    % Initialize the bicarbonate concentration equal to [cation]  
    concentration(2) = concentration(6);     

     
    % Initialize the counter of the loop to zero seconds 
    t0 = 0; 
    time=0; 

  
    % Set upper value for timeInterval in which the ODE solver ode15s will 

run each simulation  
    tt = 5 * 60;  

  
    % Set the length of the run in seconds 
    tl = T_s(RunEnd) - T_s(RunStart); 

  
    while t0+tt < tl 

         
        % find the current T_s value so we can lookup data in Data_tot 
        s = find(T_s < (t0), 1, 'last') + 1; 

                 
        % lookup current values in Data_tot 
        I = Data_tot.I(s); 
        c_CO2 = Data_tot.CO2_cor(s); 

          
         % Update concentration vector based on t and pHstart   
         c0=[concentration(end,1)  
             concentration(end,2)  
             concentration(end,3)  
             (10^(-pHstart))/gamma_1 
             (10^-(14-pHstart))/gamma_1  
             concentration(end,6) 
             I  
             concentration(end,8)  
             concentration(end,9)  
             c_CO2/100]; 

  
         % Define ODE system 
         odefun = @(t, cl) CO2sys(t, cl); 
         % Resolution settings for ODEsolver 
         opts = odeset('RelTol',1e-8,'AbsTol',1e-10); 
         % Apply ODE for the model  
         [t, cl] = ode15s(odefun,[t0 t0+tt],c0,opts); 

  

         % Storing time steps  
         time = [time;t]; 

          
         % Storing the newly calculated concentrations  
         concentration = [concentration;cl]; 

          
         % new pH for initializing model  
         pHstart = -log10(cl(end,4)*gamma_1);       

               
        % Next initial time for simulation at the endptime of last interval 
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        t0 = t0 + tt; 
    end 

  
    cl=concentration; % Final writing to one vector  
    t=time;           % Rename  

  
    % pH calculation  
    ph = -log10(cl(:,4).*cl(:,8));  

  
    %% RMSE  

  

    % Time in seconds 
    time_m = T_s(RunStart:RunEnd); 
    time_s = t; 

  
    % Calculate the number of seconds  
    num_sec = floor(max(time_s)); 

  
    % Initialize arrays to store RMSE values for each second  
    rmse_values = zeros(num_sec, 1); 

  
    % Calculate RMSE for each second  
        for sec = 1:num_sec 

             
            % Find the indices corresponding to the current second 
            indices_m = find(time_m >= sec-1 & time_m < sec); 
            indices_s = find(time_s >= sec-1 & time_s < sec); 

  
            % Extract pH data for the current second 
            pH_measured = Data_tot.pH(RunStart:RunEnd); 
            pH_m = pH_measured(indices_m); 
            pH_s = mean(ph(indices_s)); 

  
            % Calculate the squared differences for the current second 
            squared_diffs = (pH_m - pH_s).^2; 

  
            % Calculate the mean squared difference for the current second 
            mean_squared_diff = mean(squared_diffs); 

  
            % Calculate the RMSE for the current second 
            rmse_sec = sqrt(mean_squared_diff); 

  
            % Store the RMSE value for the current second 
            rmse_values(sec) = rmse_sec; 
        end 

  
        % Filter NaN values out  
        rmse = rmse_values(~isnan(rmse_values)); 
        num_rmse = 1:length(rmse); 

  
    %% Return the calculate run result  
    runResult.Data_tot = Data_tot; 
    runResult.Time = T_h; 
    runResult.pHsim = ph;  
    runResult.tsim = t;  
    runResult.concentration = cl; 
    runResult.rmse = rmse;  
    runResult.num_rmse = num_rmse;  
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end 
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8.1.3 Function describing the Carbonate System  

8.1.3.1 Carbonate System when ionic strength is lower than 0.5M  

function [dc] = CO2sys(~,dc) 
% This function describes the ODE to be solved resulting in a matrix 
% containing concentrations of the species in the carbonate system and its 
% equilibria constants, activity coefficient and ionic strenght  

  
% Load file with constants 
Constants=Constants_Nanno();  

  
    % Extract constants 
    kLa=Constants.kla_CO2; 
    HenryK=Constants.Hk; 
    pK1_0=Constants.pK1_0; 
    pK2_0=Constants.pK2_0; 
    Kw=Constants.Kw; 
    T=Constants.T;  
    P = Constants.P;  

  
    gamma_CO2=1.01;   

  
    % Calculate ionic strenght and activity coefficients 
     %I = 0.5*(dc(2) + 4*dc(3) + dc(4) + dc(5) + dc(6))+ I_0; 
     I = dc(7); 
     gamma_z1 = 10^(-((0.5 * (I^(1/2) / (1 + I^(1/2)))) - (0.3 * I)));  
     gamma_z2 = 10^(-((0.5 * 4 * (I^(1/2) / (1 + I^(1/2)))) - (0.3 * I))); 

      
     A1 = 93.9053*I^(0.5) + 1.6549*I - 0.130*I^2;  
     A2 = 147.2748*I^(0.5) + 6.0876*I - 0.8691*I^2; 
     B1 = -3706.9*I^(0.5) - 303.7*I;  
     B2 = -5400.9*I^(0.5) - 968.4*I;  
     C1 = -14.4858*I^(0.5);  
     C2 = -23.2804*I^(0.5);  

      
     pK1 = pK1_0 + A1 +B1/T + C1*log(T);  
     pK2 = pK2_0 + A2 + B2/T + C2*log(T);  
     K1 = ((gamma_z1*gamma_z1)/(gamma_CO2))*10^-pK1;  
     K2 = ((gamma_z1*gamma_z2)/gamma_z1)*10^-pK2;    

      
    % Calculate new concentration values 
      c_CO2 = kLa*(dc(10)*P*HenryK-dc(1))-

(((gamma_CO2/(gamma_z1*gamma_z1))*K1*dc(1)/dc(4))-dc(2)); 
      c_HCO3 = ((gamma_CO2/(gamma_z1*gamma_z1))*K1*dc(1)/dc(4))-dc(2)-

(((gamma_z1/(gamma_z2*gamma_z1))*K2*dc(2)/dc(4))-dc(3));   
      c_CO3 = (gamma_z1/(gamma_z2*gamma_z1)*K2*dc(2)/dc(4))-dc(3); 
      c_H =  dc(2)+2*dc(3)+dc(5)-dc(4)-dc(6); 
      c_OH = 1/(gamma_z1*gamma_z1)*Kw/dc(4) - dc(5);        

       
      dc=[  c_CO2;               
            c_HCO3;                          
            c_CO3;                                                                              
            c_H;  
            c_OH;  
            0;                                                                
            0;                                                                   
            gamma_z1 - dc(8);  
            gamma_z2- dc(9); 
            0;]; 
end 
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8.1.3.2 Carbonate System when ionic strength exceeds 0.5M 

function [dc] = CO2sys(~,dc) 
% This function describes the ODE to be solved resulting in a matrix 
% containing concentrations of the species in the carbonate system and its 
% equilibria constants, activity coefficient and ionic strenght  

  
% Load file with constants 
Constants = Constants();  

  
    % Extract constants 
    kLa = Constants.kla_CO2; 
    HenryK = Constants.Hk; 
    pK1_0 = Constants.pK1_0; 
    pK2_0 = Constants.pK2_0; 
    Kw = Constants.Kw; 
    T = Constants.T;  
    P = Constants.P;  

  
     % Calculate ionic strenght and activity coefficients 
     I = dc(7); 
     gamma_OH = 10^(-((0.5 * (I^(1/2) / (1 + I^(1/2)))) - (0.3 * I)));  
     gamma_H = 0.0728*I +0.6636; 
     gamma_HCO3 = -0.2756*I + 0.6837; 
     gamma_CO3 = -0.0689*I + 0.0783;  
     gamma_CO2 = -0.0252*I + 0.9974;  
     a_H2O = -0.0326*I + 1.0035;  

  
     A1 = 93.9053*I^(0.5) + 1.6549*I - 0.130*I^2;  
     A2 = 147.2748*I^(0.5) + 6.0876*I - 0.8691*I^2; 
     B1 = -3706.9*I^(0.5) - 303.7*I;  
     B2 = -5400.9*I^(0.5) - 968.4*I;  
     C1 = -14.4858*I^(0.5);  
     C2 = -23.2804*I^(0.5);  

      
     pK1 = pK1_0 + A1 +B1/T + C1*log(T);  
     pK2 = pK2_0 + A2 + B2/T + C2*log(T);  
     K1 = ((gamma_H*gamma_HCO3)/(a_H2O*gamma_CO2))*10^-pK1;  
     K2 = ((gamma_H*gamma_CO3)/gamma_HCO3)*10^-pK2; 

      
      % Calculate new concentration values 
      c_CO2 = kLa*(dc(10)*P*HenryK-dc(1))-

((((gamma_CO2*a_H2O)/(gamma_HCO3*gamma_H))*K1*dc(1)/dc(4))-dc(2)); 
      c_HCO3 = (((gamma_CO2*a_H2O)/(gamma_HCO3*gamma_H))*K1*dc(1)/dc(4))-

dc(2)-(((gamma_HCO3/(gamma_CO3*gamma_H))*K2*dc(2)/dc(4))-dc(3));   
      c_CO3 = (gamma_HCO3/(gamma_CO3*gamma_H)*K2*dc(2)/dc(4))-dc(3); 
      c_H =  dc(2)+2*dc(3)+dc(5)-dc(4)-dc(6); 
      c_OH = 1/(gamma_H*gamma_OH)*Kw/dc(4) - dc(5);  

     
      % ODE input 
      dc=[  c_CO2;               
            c_HCO3;                          
            c_CO3;                                                                              
            c_H;  
            c_OH;  
            0;                                                                
            0;                                                                           
            gamma_H - dc(8);  
            0;  
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            0;]; 
end 

 

8.1.4 Constants  
function Constants 
% This function gives out a the table Constants, which contains the 
% constant parameters set for pH simulation in ASW at moderate temperature 

  
Constants.T=298.15; % Kelvin  

  
WaterColumn = 16; % overpressure measured [cm]  
        R_h = 41 + WaterColumn;   %  height of the reactor [cm] 
        P_atm = 1.01325; % bar   
        P_cm = 0.001;    % bar, assuming pressure increases 0.1 bar per 

meter   
Constants.P = (P_atm+(R_h/2)*P_cm)/P_atm;    

  
        T=Constants.T; 
Constants.pK1_0 = -126.34048 + 6320.813/T +19.568224*log(T);  
Constants.pK2_0 = -90.18333 + 5143.692/T + 14.613358*log(T);  

  
        kla_O2=0.323;  
Constants.kla_O2=kla_O2;         %6 kla in s^(-1) O2 
Constants.kla_CO2=0.89*kla_O2*10;        %7 kla in s^(-1) CO2; 
Constants.Kw=10^(-14); 

  
H_Tref =  0.033;    % Henry constant 298.15K [mol/L/bar]    
ks = 0.089;         % Sechenov constant 298.15K for CO2 in NaCl solution  
Constants.Hk =  H_Tref/(10^(-ks*I));  
end 

 

8.1.5 Import EC Data Function  
function EC = importEC(filename) 
%% Set up the Import Options and import the data 
opts = delimitedTextImportOptions("NumVariables", 10); 

  
% Specify range and delimiter 
dataLines = [2, Inf]; 
opts.DataLines = dataLines; 
opts.Delimiter = ","; 

  
% Specify column names and types 
opts.VariableNames = ["Date", "Time", "Ch2_M1", "Ch2_M1Unit", "Ch2_M2", 

"Ch2_M2Unit", "Ch2_M3", "Ch2_M3Unit", "Ch2_M4", "Ch2_M4Unit"]; 
opts.SelectedVariableNames = ["Date", "Time", "Ch2_M1"]; 
opts.VariableTypes = ["char", "char", "double", "char", "char", "char", 

"char", "char", "char", "char"]; 

  
% Specify file level properties 
opts.ExtraColumnsRule = "ignore"; 
opts.EmptyLineRule = "read"; 

  
% Specify variable properties 
opts = setvaropts(opts, ["Date", "Time", "Ch2_M1", "Ch2_M1Unit", "Ch2_M2", 

"Ch2_M2Unit", "Ch2_M3", "Ch2_M3Unit", "Ch2_M4", "Ch2_M4Unit"], 

"EmptyFieldRule", "auto"); 
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% Import the data 
EC = readtable(filename, opts);  
end  
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8.1.6 Import pH Data Function  
function pHfile = importIrispH(filename, dataLines) 
% If dataLines is not specified, define defaults 
if nargin < 2 
    dataLines = [7, Inf]; 
end 

  
%% Set up the Import Options and import the data 
opts = delimitedTextImportOptions("NumVariables", 21); 

  
% Specify range and delimiter 
opts.DataLines = dataLines; 
opts.Delimiter = ","; 

  
% Specify column names and types 
opts.VariableNames = ["Date", "Time", "Temp", "pH", "Var5", "Var6", "Var7", 

"Var8", "Var9", "Var10", "Var11", "Var12", "Var13", "Var14", "Loop", 

"Var16", "Var17", "Var18", "Var19", "Var20", "Var21"]; 
opts.SelectedVariableNames = ["Date", "Time", "Temp", "pH", "Loop"]; 
opts.VariableTypes = ["datetime", "datetime", "double", "double", "char", 

"char", "char", "char", "char", "char", "char", "char", "char", "char", 

"double", "char", "char", "char", "char", "char", "char"]; 

  
% Specify file level properties 
opts.ExtraColumnsRule = "ignore"; 
opts.EmptyLineRule = "read"; 

  
% Specify variable properties 
opts = setvaropts(opts, ["Var5", "Var6", "Var7", "Var8", "Var9", "Var10", 

"Var11", "Var12", "Var13", "Var14", "Var16", "Var17", "Var18", "Var19", 

"Var20", "Var21"], "WhitespaceRule", "preserve"); 
opts = setvaropts(opts, ["Var5", "Var6", "Var7", "Var8", "Var9", "Var10", 

"Var11", "Var12", "Var13", "Var14", "Var16", "Var17", "Var18", "Var19", 

"Var20", "Var21"], "EmptyFieldRule", "auto"); 
opts = setvaropts(opts, "Date", "InputFormat", "dd-MM-yy"); 
opts = setvaropts(opts, "Time", "InputFormat", "HH:mm:ss"); 

  
% Import the data 
pHfile = readtable(filename, opts); 

  
end 

 

8.1.7 Import Off-gas Analysis Data Function  
function CO2 = importfile(filename) 
%% Set up the Import Options and import the data 
opts = delimitedTextImportOptions("NumVariables", 10); 

  
% Specify range and delimiter 
dataLines = [2, Inf]; 
opts.DataLines = dataLines; 
opts.Delimiter = ";"; 

  
% Specify column names and types 
opts.VariableNames = ["Date", "Time", "Oxygen1", "Oxygen1", "CO22", "CO22", 

"Oxygen3", "CO23", "Oxygen4", "CO24"]; 
opts.SelectedVariableNames = ["Date", "Time", "CO23"]; 
opts.VariableTypes = ["char", "char", "char", "char", "char", "char", 

"char", "double", "char", "char"]; 
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% Specify file level properties 
opts.ExtraColumnsRule = "ignore"; 
opts.EmptyLineRule = "read"; 

  
% Specify variable properties 
% opts = setvaropts(opts, ["Date", "Time", "Oxygen1", "Oxygen1", "CO22", 

"CO22", "Oxygen3", "CO23", "Oxygen4", "CO24"], "WhitespaceRule", 

"preserve"); 
opts = setvaropts(opts, ["Date", "Time", "Oxygen1", "Oxygen1", "CO22", 

"CO22", "Oxygen3", "CO23", "Oxygen4", "CO24"], "EmptyFieldRule", "auto"); 

  
% Import the data 
CO2 = readtable(filename, opts); 

  
end 
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8.2 Sensor Probe Quality Certificates  

8.2.1 pH Sensor InPro3030 
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8.2.2 EC Sensor Inpro 7100i  
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8.2.3 Dissolved CO2 Sensor RS485 120  
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