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Highlights
Ribosomally synthesized and post-
translationally modified peptides
(RiPPs) from microorganisms show high
chemical diversity and exhibit potent bio-
logical properties.

The computational detection of novel
classes of RiPPs is hampered by their
short length and the lack of universally
conserved genes.

The high false-positive rate of class-
independent computational detection
approaches can be addressed by vali-
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a
chemically diverse class of metabolites. Many RiPPs show potent biological activ-
ities that make them attractive starting points for drug development. A promising
approach for the discovery of new classes of RiPPs is genome mining. However,
the accuracy of genomemining is hampered by the lack of signature genes shared
across different RiPP classes. One way to reduce false-positive predictions is by
complementing genomic information with metabolomics data. In recent years, sev-
eral new approaches addressing such integrative genomics and metabolomics
analyses have been developed. In this review, we provide a detailed discussion of
RiPP-compatible software tools that integrate paired genomics and metabolomics
data. We highlight current challenges in data integration and identify opportunities
for further developments targeting new classes of bioactive RiPPs.
dation via mass spectrometry-based
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RiPPs – a pharmacologically promising class of natural products
Microorganisms produce a vast array of low-molecular-weight metabolites known as natural
products (NPs; see Glossary), also called ‘secondary metabolites' or ‘specialized metabolites’.
These molecules are not immediately involved in cell survival but often display potent biological
activities, a property used for the development of numerous drugs [1]. A recent large-scale survey
estimated that only 3% of NP biosynthetic pathways encoded in bacterial genomes have been
experimentally characterized [2]. Therefore, microorganisms represent still largely untapped
sources for NP drug discovery.

Among the different classes of microbial NPs, ribosomally synthesized and post-
translationally modified peptides (RiPPs) have received special attention due to their excep-
tionally large biosynthetic diversity [3]. RiPPs are known for many interesting biological properties,
including antibiotic, antiviral, and antineoplastic activities [4]. For example, the recently described
RiPP darobactin A (Figure 1A, structure 1) selectively kills Gram-negative bacteria by inhibition of
the outer membrane protein BamA. This novel antibiotic mode of action, the first one since the
1960s, represents a promising avenue toward the development of new antibiotics [5–8]. Growing
interest in the scientific and commercial potential of RiPPs has led to the discovery of no fewer
than 17 new classes of RiPPs between 2011 and 2020 [9,10]. It is generally believed that the cur-
rently known 40+ distinct classes of RiPPs [10] are only the most widely distributed ones and that
there is large ‘hidden’ RiPP biosynthetic potential left to discover.

The overwhelming majority of RiPP classes was discovered serendipitously: promising biological
activity or an interesting signal in ametabolomics experiment was investigated, and the respon-
sible molecules were isolated. Only after structural elucidation of the NP, followed by the genome
sequencing of the producing organism, could the biosynthetic origin be elucidated [10–12]. Such
‘isolation-first’ strategies, also known as ‘grind and find’, carry the risk of rediscovery of known
metabolites, are resource-intense, and are of limited compatibility with modern high-throughput
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Figure 1. Overview showing examples of ribosomally synthesized and post-translationally modified peptides
(RiPPs) and their canonical biosynthetic pathway. (A) RiPP chemical structures mentioned throughout the article:
darobactin A (1), biarylitide YYH (2), wewakazole (3), deepflavo (4), deepginsen (5). Highlighted in yellow are different post-
translational modifications introduced by a variety of class-dependent enzymatic reactions. (B) RiPP biosynthesis exemplified by
lanthipeptide nisin. The structural gene nisA is transcribed and translated, resulting in the precursor peptide, consisting of a
‘leader’ and core peptide part. The core peptide is modified by tailoring enzymes that are encoded in the biosynthetic gene
cluster. The ‘leader’ peptide part is cleaved from the modified core peptide, and the mature product is exported [76].
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Glossary
Biosynthetic gene cluster: genes
responsible for the biosynthesis of a
natural product, colocalized in a
genomic region.
Feature-based approaches: paired
omics approach using extracted (sub)
structural or chemical compound class
information for connecting biosynthetic
gene clusters and molecular families.
Gene cluster family: subnetwork
resulting from clustering of biosynthetic
gene clusters based on pairwise
similarity analysis.
Genomics: methods to study genes,
their functions, and spatial distributions
in a given genome.
Liquid chromatography–tandem
mass spectrometry: analytical
technique for the separation and
spectrometric analysis of molecules and
their fragmentation.
Metabolomics: methods to study the
total set of small metabolites produced
by an organism.
Molecular family: subnetwork
resulting from MS/MS fragmentation-
based spectral similarity analysis, with
nodes representing individual or
grouped spectra.
Natural products: small-molecule
specialized or secondary metabolites
not immediately involved in cell survival.
Paired omics: pairing of genomic and
metabolomic data with regard to the
investigation of natural products.
Precursor peptide: short peptide
resulting from a structural gene, which is
modified and results in the mature
product.
Ribosomally synthesized and post-
translationally modified peptides:
natural products that are produced by
the proteinogenic way, in contrast to
nonribosomal peptides.
Strain-correlation-based
approaches: paired omics approach
using strain/sample presence/absence
overlap to assess correlation between
biosynthetic gene clusters/gene cluster
families and MS/MS spectra/molecular
families.
approaches. Therefore, computational methods for the detection and prioritization of biosyn-
thetic pathways in genomics data have been developed. Predictions can be further validated
by using metabolomics data, but automated data integration is not yet trivial. In this review, we
first discuss the biosynthetic principles that complicate the detection of new classes of RiPPs
by genome mining. We continue with an overview of recently developed generalist and RiPP-
specialized software tools for automated integration of genomic andmetabolomics data, then ad-
dress current challenges, and finally highlight opportunities for further development.

Fundamentals of RiPP biosynthesis
Canonically, the biosynthesis of microbial NPs is governed by a set of genes colocalized in the
same genomic region, known as a biosynthetic gene cluster (BGC). RiPPs follow this
Trends in Pharmacological Sciences, August 2023, Vol. 44, No. 8 533
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biosynthetic logic and consist of at least two components: first, one or more small structural
genes encoding short precursor peptides, and second, one or more genes encoding precur-
sor-peptide-modifying ‘tailoring’ enzymes. These two components alone can be sufficient to pro-
duce a mature product [11,12]. Additionally, accessory genes related to maturation, transport,
autoresistance, or regulation are commonly colocalized in RiPP BGCs [3].

The RiPP precursor peptides consist of a core peptide, usually flanked by an N-terminal ‘leader’
peptide (Figure 1B). In some cases, a C-terminal recognition sequence (the ‘follower’) is present,
either on its own or together with the ‘leader’ peptide [3]. After transcription and translation, the
precursor peptide is modified by tailoring enzymes, which introduce post-translational modifica-
tions (PTMs). PTMs greatly expand the chemical space of proteinogenic amino acids, including
the introduction of β- or D-amino acids, alterations to the peptide conformation, and additions of
heteroatoms or other functional groups [10]. RiPPs are grouped into classes (or families) based
on shared structural and biosynthetic concepts. These range from ‘simple’ macrocyclization
(e.g., the lasso-fold structure observed in lassopeptides) to complex biosynthetic cascades
(e.g., thiopeptides, also known as pyritides) [3,13]. After modification by tailoring enzymes, the
leader and/or recognition sequences flanking the core peptide are removed by proteolysis, result-
ing in the mature modified core peptide, which is eventually exported from the cell [3].

Genome mining for RiPPs: principles and challenges
The conserved architecture of colocalized genes in the BGCs of microbial NPs can be detected
and annotated computationally by a strategy known as ‘genome mining’ [14–16]. Most com-
monly, BGCs are detected by using hardcoded rulesets based on conserved ‘signature’ genes
(e.g., antiSMASH [17,18] or PRISM [19,20]). Detected BGCs can be annotated by matching
against experimentally characterized BGCs, using community resources such as MIBiG
[21,22]. Large databases of putatively detected BGCs are available for comparisons
(e.g., antiSMASH-DB [23], IGM-ABC [24]). On the basis of the observation that similar BGCs
often produce similar compounds, BGCs can be further grouped into so-called gene cluster
families (GCFs). In GCFs, annotations of identified BGCs can be propagated to their neighbors
in the network, which allows one to formulate hypotheses about their encoded products [25,26].
Furthermore, subcluster analysis can predict putative substructures of the encoded (unknown)
metabolites [27,28]. Therefore, genomemining allows automated assessment of the ‘theoretical’
biosynthetic capacity encoded in a microbial genome (i.e., the ‘biosynthetic blueprint’) and to
compare it with the existing body of knowledge [15].

Genomemining is also suitable for the detection of RiPPBGCs: antiSMASH can detect at least 28
different classes of RiPPs [18], whereas RiPP-PRISM can detect no fewer than 21 different clas-
ses [9]. In the antiSMASH database (version 3), the 14 most abundant classes of RiPPs amount
to at least 44 000 predicted RiPP BGCs across publicly available bacterial, archaeal, and fungal
reference genomes [23]. Once an RiPP class is described, the involved enzymatic machinery can
easily be detected by gene homology-based approaches. However, genome mining for
completely novel RiPP classes is much more challenging: because RiPP biosynthetic classes
do not share universally conserved core enzymes or motif sequences, they remain ‘invisible’ to
rule-based genome mining tools. Furthermore, RiPP structural genes encoding precursor pep-
tides can be extremely short: the smallest reported structural gene [bytA, encoding the biarylitide
YYH (Figure 1A, structure 2) precursor] is only 18 base pairs long, making it also the shortest
known coding gene [11]. Considering all possible short open reading frames in a genome may
lead to a prohibitively high number of potential candidates, including many false-positives,
whereas defining a minimal gene length for structural peptides may also exclude novel classes
of short RiPPs.
534 Trends in Pharmacological Sciences, August 2023, Vol. 44, No. 8
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To address the limitations of homology-dependent BGC detection, tools using alternative con-
cepts for BGC detection were developed: besides tools using concepts applicable to all classes
of microbial BGCs, such as ClusterFinder [29], EvoMining [30], or DeepBGC [31], a few tools have
been designed specifically for the detection of novel RiPP BGCs. The tool DeepRiPP uses a
deep-learning approach based on natural language processing (NLPPrecursor) to identify new
RiPP precursor peptides linked to known classes [32]. Similarly, neuRiPP uses a deep neural net-
work architecture to recognize RiPP structural genes independent of their biosynthetic class [33].
Another tool, decRiPPter, uses a support vector machine and a set of rules to differentiate
putative RiPP precursor peptides from small noncoding genes [34]. A drawback of such
homology-independent methods is their high rate of false-positive detection due to lack of indic-
atory signature enzymes, requiring extensive manual follow-up validation [34].

Pruning of false-positives: pairing genomics and metabolomics data
One strategy to reduce false-positives and to improve throughput in the discovery of novel clas-
ses of RiPPs is to validate predictions from genomemining via detection of products using liquid
chromatography–tandem mass spectrometry (LC-MS/MS)-based metabolomics [35]. In
LC-MS/MS analysis, NPs are separated, ionized, and fragmented by collisional dissociation. In
the resulting tandem mass (MS/MS) fragmentation spectra, individual fragments typically corre-
spond to parts of the parent molecule structures (i.e., substructures). This makesMS/MS spectra
useful for diagnostic purposes, such as the annotation of substructures and the identification of
the chemical compound class [36–41]. MS/MS fragmentation spectra can also be considered
as characteristic molecular fingerprints, with similar molecules usually showing similar MS/MS
fragmentation. Modification-tolerant matching of spectra allows clustering of molecules into net-
works based on MS/MS spectral similarity [also known as ‘molecular families’ (MFs)], thereby
organizing data and propagating annotations [42–45].

Therefore, experimentally observed NPs can be annotated and ‘mapped’ back to BGCs to con-
firm initial predictions. This matching also allows one to prioritize BGCs that show expression over
those that do not (many BGCs are ‘silent’ under laboratory conditions). Hence, genomic and
metabolomic data are complementary in forming and confirming hypotheses and reducing
false-positives. Such integrated metabolomics and genomics data are generally referred to as
paired omics datasets [35]. In recent years, different tools for the processing and analysis of
paired omics datasets have been developed [35,46–48]. We first survey generalist tools that
are also applicable to RiPP NPs, followed by tools that are specifically designed for the analysis
of RiPPs (see overview in Table 1). We limit our discussion to tools that require both genomics
and metabolomics data as input.

Generalist and RiPP-specific tools for omics data pairing
Generalist tools pair BGCs toMS/MS spectra by relying on information that is applicable to all bio-
synthetic classes [35]. A common strategy is the analysis of presence–absence patterns of BGCs
and MS/MS spectra associated with microbial strains, so-called strain-correlation-based
approaches (Figure 2). BGCs and MS/MS spectra are first organized into GCFs and MFs,
respectively, using different clustering tools. Therefore, GCFs and MFs each can be traced
back to sets of strains, allowing the calculation of linking scores based on strain overlap [35].
Such a generalist approach was first introduced under the name ‘metabologenomics’ by
Doroghazi and colleagues, who matched GCFs and detected molecules using a point-based
system relying on strain contribution, followed by manual verification of the putative links [26].
Similarly, Duncan and others applied ‘pattern-based genome mining’, which relied on a manual
comparison of the presence–absence patterns of GCFs and MFs [49]. Some other generalist
tools use a ‘hybrid’ approach by combining both correlation- and feature-based concepts in
Trends in Pharmacological Sciences, August 2023, Vol. 44, No. 8 535
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Table 1. Recently developed paired genomics andmetabolomics software addressing ribosomally synthesized and post-translationally modified pep-
tides with several key factors to consider upon their use

Tool [latest version] Approach RiPP
specific?

Open
source

Free academic
license?

Note Refs

Ripp2Path
[2016]

Feature- based Yes Yes Yes Part of Pep2Path package [56]

RippQuest
[2014]

Feature- based Yes No – Superseded by MetaMiner [57]

MetaMiner
[2019]

Feature- based Yes No Yes NPDtools package, GNPS website [58]

DeepRiPP
[2021]

Feature- based Yes No Yesa – [32]

Metabolo-genomics
[2023]

Correlation- based No No No No public release of program [26,63]

NPLinker
[2023]

Hybrid No Yes Yes Undergoing refactoring, see https://github.
com/NPLinker/nplinker

[50]

NPOmix
[2022]

Hybrid No Yes Yes Input must be similar to reference database;
undergoing refactoring, https://github.
com/tiagolbiotech/NPOmix_python

[52]

aRequires login and approval of extensive end user license agreement.
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pairing. One of them, NPLinker [50], expands and refines the scoring algorithm first introduced by
the ‘metabologenomics’ approach [26] and combines it with the feature-based IOKR score,
which calculates binary molecule fingerprints from MS/MS fragmentation spectra and structures
predicted from BGCs for improved pairing. Recently, NPLinker was enhanced by a new scoring
function called ‘NPClassScore’, which uses chemical compound classes predicted from BGCs
and MS/MS fragmentation patterns to eliminate a substantial number of false-positive BGC-
MS/MS links [51]. Another hybrid tool is NPOmix, which uses a k-nearest neighbor-based clas-
sifier to compare similarity fingerprints calculated from the association of microbial strains to
GCFs and MFs. NPOmix further uses information regarding predicted molecular substructures
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Figure 2. Schematic visualization of a generalized paired omics data workflow for the prioritization o
ribosomally synthesized and post-translationally modified peptides. Starting from microbial strains, genomes are
sequenced and metabolomics data are generated. After the prediction of biosynthetic gene clusters, two strategies of data
analysis can be followed. One strategy focuses on the prediction of chemical (sub)structures from biosynthetic gene clusters
and from metabolomics data. The presence or absence of predicted substructures is then used for feature-based matching
Another strategy organizes biosynthetic gene clusters and mass spectrometry data based on similarity, followed by strain co-
occurrence (correlation)-based matching. Examples of software tools using these strategies are mentioned on the right-hand
side of the figure. Abbreviation: LC-MS/MS, liquid chromatography–tandem mass spectrometry.
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and biosynthetic class to supplement the classifier-based score [52]. Intuitive and generally appli-
cable, these correlation-based concepts were used in manual or semiautomated fashion for the
discovery of newRiPPs from known classes, such as the chymotrypsin inhibitor microviridin 1777
[53] or new congeners of the antibiotic siomycin [54].

Most RiPP-specific tools use feature-based approaches: molecular ‘building blocks’
(e.g., substructures, scaffolds, or specific functional groups such as amino acids, PTMs) are
first inferred or predicted from BGCs and MS/MS fragmentation spectra. These structural fea-
tures are then used to create profiles for individual BGCs and MS/MS spectra, and the overlap
between these profiles is used to calculate pairwise linking scores (Figure 2) [35]. This approach
was first applied to RiPPs (and nonribosomal peptides) by Kersten and others using the
‘peptidogenomics’method: short amino acid sequence tags fromMS/MS fragmentation spectra
were identified andmanually matched against predicted peptide sequences fromBGCs [55]. This
initial approach was later automated by Pep2Path’s RiPP2Path algorithm. The latter converted a
mass shift sequence into a list of candidate peptide sequences and matched them against pre-
dicted precursor peptides from the genome, regardless of PTMs [56]. The tool RiPPQuest used a
similar approach but focused on the identification of lanthipeptides, and the authors validated
their approach with the identification and structural prediction of a putative new lanthipeptide
named ‘informatipeptin’ [57]. Recently introduced tools further advance automation and annota-
tion capabilities: MetaMiner expands the scope of its predecessor RiPPQuest in terms of covered
RiPP classes and allows processing of metagenomic data [58]. MetaMiner creates a combinato-
rial library of putative peptide sequences with a variety of PTMs. Predicted MS/MS spectra are
compared against experimental ones in a modification-tolerant way, and matches are scored
by statistical significance (estimating the false discovery rate). The authors demonstrated the ap-
plicability of MetaMiner by linking the known RiPP wewakazole (Figure 1A, structure 3) to its BGC
[58]. In another study, MetaMiner was used to annotate putatively novel lassopeptides [59]. A
similarly automated tool, DeepRiPP, uses a natural language processing approach to detect
RiPP precursor peptides and predict their cleavage patterns [32]. It is further integrated with
the RiPP-PRISM tool for prediction of putative tailoring reactions [9] and includes algorithms for
precursor annotation by comparison against known RiPPs and identification of matching MS/
MS fragmentation spectra. The applicability of DeepRiPP was demonstrated by the detection,
prioritization, characterization, and isolation of novel members of known RiPP classes [e.g., the
lanthipeptides deepflavo (Figure 1A, structure 4) and deepginsen (Figure 1A, structure 5)].

Challenges and opportunities in RiPP paired omics analysis
Toward class-agnostic feature-based pairing tools
RiPP-specific paired omics tools usually use feature-based pairing approaches, relying on sub-
structure recognition for scoring of putative links. However, current substructure prediction strat-
egies are mostly restricted to PTMs of characterized RiPP classes. For example, the MetaMiner
tool uses a hardcoded ruleset of tailoring reactions of nine classes of RiPPs for the creation of
a combinatorial library of putative products, relying on antiSMASH [17,18] and BOA [60] for
BGC detection [58]. Similarly, the RIPP-PRISM algorithm used by DeepRiPP is limited to tailoring
reactions of well-known RiPP classes to create a combinatorial library of putative MS/MS frag-
ments for matching against experimental data [32]. In our literature survey, we could not find
any account of a novel RiPP class being discovered by using feature-based paired omics tools.
Therefore, a pressing issue is the improved prediction of tailoring reactions acting on putative
RiPP precursor peptides, resulting from tailoring enzymes that may only be distantly related to
characterized ones. This is a crucial step for the prediction especially of novel RiPP substructures
and consecutively linking them to metabolite spectra. One possible approach could be the use of
machine learning-based models trained on RiPP-associated, generalist tailoring enzymes
Trends in Pharmacological Sciences, August 2023, Vol. 44, No. 8 537
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(e.g., halogenases, oxidases, dehydratases). Having such models in place would allow general-
ized in silico biosynthesis of putative substructures, extending the concepts used by tools such
as DeepRiPP and MetaMiner for known RiPP classes. Alternatively, RetroRules-like generalized
reaction rules [61] for enzyme classes commonly involved in RiPP biosynthesis could be ex-
tracted and used to predict biosynthesis. Both approaches could predict amino acid sequence
tags modified with putative PTMs to be used for direct matching against experimental MS/MS
fragmentation spectra or to predict molecular fingerprints. Although perfect structure prediction
remains elusive for the foreseeable future, matches only need to be ‘good enough’ to allow anno-
tation and hypothesis-driven prioritization for follow-up experimental validation.

Limitations of correlation-based generalist tools
Contrary to feature-based approaches, strain correlation-based approaches are independent of
prior or inferred biosynthetic or chemical knowledge. Therefore, they are in principle suitable for
known and unknown RiPPs alike. A disadvantage of correlation-based approaches is the high
number of possible pairwise links that can arise between GCFs and MFs with similar source strain
contributions/sample occurrence [50]. In this case, the linking scores have low differentiating power,
requiring manual sifting through the top n best matches to identify plausible ones. This not only is
resource-intensive but also requires expert knowledge. Therefore, correlation-based approaches
do not scale well to large datasets and struggle in differentiating strains with similar biosynthetic pro-
files. Another drawback of correlation-based approaches is their reliance on similarity-based group-
ing of BGCs into GCFs and metabolites into MFs, respectively. Usually, a range of cutoff values can
be used to construct GCFs and MFs, with ‘looser’ cutoff values leading to more permissive groups
with a larger number of members than ‘stricter’ values [35]. Currently, there is no generally accepted
consensus or definition for theminimum similarity two BGCs or twoMS/MS spectra need to display
to be considered related [40]. Cutoff values are therefore often chosen empirically and are specific to
the research question. Moreover, RiPP BGCs tend to be rather small, and their grouping can there-
fore be significantly affected by included flanking regions that are added to the biosynthetic regions
by ‘greedy’ approaches such as antiSMASH. Similarity-based grouping always carries a certain
amount of arbitrariness, thereby strongly affecting downstream processing. The parameter depen-
dence of similarity-based tools is discussed in more detail elsewhere [62,63].

Opportunities in combining feature- and correlation-based approaches
Some tools, such as NPLinker [50], apply a hybrid strategy to combine correlation- with feature-
based approaches to filter out false-positive connections, such as by considering the biosynthetic
class of the encoded product using the NPClassScore [51]. However, to our knowledge, there is
no RiPP-specific pairing tool that combines both correlation- and feature-based approaches.
Ideally, such a tool would (i) selectively detect RiPP structural genes independent of known
classes; (ii) accurately predict RiPP substructures and annotatemembers of knownRiPP classes;
(iii) use strain correlation-based strategies to identify possible pairwise links between BGCs and
MS/MS spectra; (iv) use substructure information (inferred chemical compound classes, precur-
sor peptide sequences, and/or PTMs) to accurately prune false-positive connections; (v) present
results organized into novel versus known RiPP classes, including confidence scores; and
(vi) suggest promising candidates for follow-up experimental characterization in terms of novelty,
association with orthogonal data (e.g., bioactivity), and isolation feasibility. Some components of
such a hypothetical tool already exist in one way or another: tools for class-independent detection
of precursor peptides (e.g., DeepRiPP [32], neuRiPP [33], decRiPPter [34]) or substructure
prediction (e.g., iPRESTO [28], PRISM4 [20,44], MS2LDA [41], CANOPUS [44], MSNovelist [64])
are available. Furthermore, tools exist to match MS/MS spectra or BGCs against databases
(e.g., DEREPLICATOR+ [65], Nerpa [66]), which reduces the risk of reisolation of knownmolecules.
Integration of additional sources of information, such as data on biological activity (e.g., FERMO
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Outstanding questions
How can new RiPP classes be
discovered in both a selective and
sensitive manner?

What new approaches can effectively
detect false-positive RiPP annotations?

How can noncanonical RiPP BGCs
without coclustering of genes be
addressed?

How can structural predictions of
RiPPs in terms of unknown tailoring
reactions be improved?

What strategies need to be implemented
to guarantee a better integration of
existing and future software?

How can prioritization help to make
experimental validation become more
cost- and time-effective?

What incentives would motivate
researchers to deposit their annotated
data in public repositories?
[67], NP Analyst [68]), or transcriptomic data (e.g., BiG-MAP [69]), promises to improve prioritiza-
tion and minimize manual validation of putative matches. However, the creation of such an RiPP
discovery tool as described in the preceding text is still hampered by heterogeneity in terms of
input and output data formats, software architectures, and terms of software use. Furthermore,
not all developers publish their software source code, hampering comprehensibility and accessibil-
ity. Here, we emphasize the importance of the open source model (https://opensource.org/osd/) for
the development of scientific software: making source code freely available in a well-documented
form drastically facilitates the use of scientific software in such custom pipelines.

Besides technical challenges, limitations in available training data impede the development of
models for the prediction of putative PTMs. To build better software tools, more and better anno-
tated training data need to be made available in machine-readable form. Public data repositories
such as the Paired Omics Data Platform framework (PoDP [70]) allow users to register paired
genomics and metabolomics data and specify validated BGC-metabolite matches, using FAIR
(Findable, Accessible, Interoperable, Reusable) data principles [71]. We encourage researchers
to submit their data to the PoDP and similar initiatives, such as MIBiG [22] for experimentally ver-
ified BGCs, MetaboLights [22,72], Metabolomics Workbench [73], or GNPS-MassIVE [39] for
metabolomics data, and the Natural Product Atlas [74] for newly elucidated NPs. Depositing
both raw and annotated data preserves the manual effort invested in studying BGC–metabolite
connections, makes them easily findable and accessible for future work, and allows the develop-
ment of better software tools. We recognize that deposition of curated research data is time-
consuming, which further increases the workload in the publication process. A possible solution
to incentivize data submission would be the acknowledgment of original data contributors
(e.g., via ORCID) by the developers of machine-learning tools who use their data for training pur-
poses. This easily implementable solution not only would increase visibility of previous work but
also would make the time invested in data deposition and curation creditable.

Concluding remarks and future perspectives
The discovery of new RiPP classes by genome mining is complicated by the lack of universally
conserved signature genes, leading to a high number of false-positive or false-negative annota-
tions, depending on the approach taken. The automated integration of LC-MS/MSmetabolomics
data with genomic information promises to accelerate the prioritization process and to eliminate
false-positives generated by exploratory algorithms. Currently available tools are either specifically
designed for the annotation of already known RiPP classes or too generic to lead to a feasible
number of matches when working with large-scale datasets. There is a lack of tools that specif-
ically target novel RiPP BGCs by applying both correlation- and feature-based approaches in a
complementary fashion. An important issue is the current inability to account for unknown tailor-
ing reactions in novel RiPP classes, resulting from a general lack of well-annotated training data
(see Outstanding questions). Even with the availability of better tools, the discovery of putatively
novel RiPP classes will remain a balancing act between sensitivity of detection and confidence
of annotation. An even grander future challenge is the correct detection of microbial RiPP
BGCs where precursor-peptide-encoding genes and tailoring-enzyme-coding genes are not
colocalized. Such noncanonical BGCs are a general problem in genome mining and require spe-
cial consideration, as recently reviewed elsewhere [16]. This issue may be addressed by integra-
tion of further omics data types (e.g., transcriptomics, facilitating coexpression analysis). This
could provide additional information about the correct detection of novel classes of RiPPs but
may introduce additional challenges in terms of data integration [48]. Nevertheless, follow-up
experimental validation will remain essential, and recent developments involving automation via
biological foundries are a promising approach to scale up experimental work on RiPPs [75].
Despite the current challenges, the detection of novel RiPP classes is a highly promising
Trends in Pharmacological Sciences, August 2023, Vol. 44, No. 8 539
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endeavor, and new computational tools integrating the full omics cascade can be expected to
lead to exciting discoveries.
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