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A B S T R A C T

Negative social interactions are harmful for animal health and welfare. It is increasingly important to employ
a continuous and effective monitoring system for detecting and tracking individual animals in large-scale
farms. Such a system can provide timely alarms for farmers to intervene when damaging behavior occurs.
Deep learning combined with camera-based monitoring is currently arising in agriculture. In this work, deep
neural networks are employed to assist individual pig detection and tracking, which enables further analyzing
behavior at the individual pig level. First, three state-of-the-art deep learning-based Multi-Object Tracking
(MOT) methods are investigated, namely Joint Detection and Embedding (JDE), FairMOT, and YOLOv5s
with DeepSORT. All models facilitate automated and continuous individual detection and tracking. Second,
weighted-association algorithms are proposed for each MOT method, in order to optimize the object re-
identification (re-ID), and improve the individual animal-tracking performance, especially for reducing the
number of identity switches. The proposed weighted-association methods are evaluated on a large manually
annotated pig dataset, and compared with the state-of-the-art methods. FairMOT with the proposed weighted
association achieves the highest IDF1, the least number of identity switches, and the fastest execution rate.
YOLOv5s with DeepSORT results in the highest MOTA and MOTP tracking metrics. These methods show high
accuracy and robustness for individual pig tracking, and are promising candidates for continuous multi-object
tracking for real use in commercial farms.
1. Introduction

With the increasing demand for animal products and growing so-
cietal concerns on animal welfare, effective monitoring and analysis
of animal welfare become an increasing research focus. It is known
that commercial farms may have problems with negative and damaging
social interactions between animals. For instance, tail-biting among
pigs threatens both animal welfare causing wounds and stress, and
economic effects on pig production. Therefore, early detection and
prevention of negative animal behaviors are critical and may give
means for better animal welfare. This induces a new challenge for the
animal science community, which aims to a holistic solution that unites
human, animal, and environmental health (Zhang et al., 2019). In
large-scale commercial farms, pigs are kept in groups, which increases
the difficulty for farmers to monitor individual animals. To achieve
an automated and systematic management strategy allowing timely
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alarms of welfare problems, and enabling interventions to prevent or
reduce damaging behavior, continuous video-based monitoring of pigs
is desired. Through continuous video-based monitoring, farmers are
able to check the living conditions of pigs in real time. For instance,
if an aggressive event occurs, pig farmers may get an alarm that
includes location and moving trajectory of the aggressor. In this way,
appropriate actions can be taken immediately to reduce such behavior.
Meanwhile, the record of action trajectories of particular animals can
also be used for analyzing individual characteristics, enabling pheno-
typing that can be potentially used for genetic selection. The possibility
to track individual pigs will also benefit and boost the social network
analysis, e.g. by providing proximity information. Therefore, the aim is
to detect and track individual animals continuously and accurately.

Regarding the existing automated animal tracking systems, there
are two categories. First, contact-based methods with attached sensors,
vailable online 8 July 2023
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e.g., the Radio Frequency Identification Device (RFID) sensors are gen-
erally installed on the ears of pigs and the legs of laying hens (Maselyne
et al., 2016; Siegford et al., 2016). Considering the cost of hardware and
maintenance on large-scale commercial farms, contact-based solutions
for automated tracking are not preferable. Second, contactless moni-
toring using video cameras, which has a growing popularity, because
of the low cost and sustainability compared with the contact-based
sensors.

Most 2D camera-based Multi-Object Tracking (MOT) methods are
developed for pedestrians, vehicles or static objects. However, limited
studies have been performed for animal tracking. Farm animals within
a group usually have a similar appearance and can show various motion
patterns. To develop an effective monitoring system for individual
animals in commercial farms, we first investigate multiple state-of-the-
art methods. By training the networks on a large manually annotated
pig dataset, our research facilitates the use of 2D camera-based systems
in combination with computer vision and advanced deep learning tech-
nologies. In this paper, the focus is on tracking of individual animals to
enable long-term analysis of their behavior. Long-term animal tracking
is usually hampered by animal occlusion, irregular movements, and
abrupt change of direction and action. The intention is to design a
robust tracking system that can handle such kind of irregularities.

Three types of tracking approaches exist in literature. The baseline
of the first type is the Joint Detection and Embedding (JDE) model,
which is a one-shot system that realizes detection and tracking with a
single network. This is an anchor-based method that utilizes bounding-
box clusters (Wang et al., 2020). We propose to combine JDE with the
k-means method to acquire more accurate anchor clusters for specific
animal (pig) datasets. The detection re-identification is optimized by a
proposed weighted association strategy. Regarding the fixed amount of
objects per video in our application, we further constrain the number of
objects per frame for detection (Guo. et al., 2022). The second type is
FairMOT, derived from the JDE model but improved by an anchor-free
method, which significantly reduces the number of identity switches
and enhances the tracking performance (Zhang et al., 2021). To this
end, a re-identification strategy is proposed for the same objects using
data association, which is also employed for FairMOT. The third type
is based on a two-stage system, which consists of the detector – You
Only Look Once (YOLO) latest Version 5 (Redmon et al., 2016; Jocher
et al., 2022), and the tracker – Simple Online and Realtime Tracking
with a Deep Association Metric (Deep SORT) (Wojke et al., 2017).
For this combination, a weighted association strategy is investigated
to re-identify objects in DeepSORT. The performances of the proposed
methods are evaluated using videos recorded at a commercial pig farm.
The tracking results are compared using state-of-the-art MOT evalua-
tion metrics including MOTA, MOTP, IDF1, ID switches, execution rate,
etc. (Heindl, 2017).

The motivating baseline models have been selected based on four
aspects: tracking performance, identification accuracy, data-collection
efficiency, and model execution rate. The first aspect is tracking per-
formance which is essential for evaluation. Evaluation metrics are
required for inspecting the individual animal tracking performance.
The proposed baseline models are evaluated on the MOT-16 bench-
mark (adopted from person tracking Milan et al., 2016), which con-
tains 7 challenging real-world videos of both static scenes and mov-
ing scenes. The total set of scenes is composed of 759 tracks with
182,326 bounding boxes in the test set. MOTA is a standard tracking
metric and represents multi-object tracking accuracy, including false
positive, false negative, and the number of ID switches. The three
baseline models JDE, FairMOT, and DeepSORT result in MOTA values
of 64.4%, 74.9%, and 61.4%, respectively. The second aspect aims
at achieving sufficient identification accuracy. Regarding individual
animal monitoring, long and stable tracking for the same animal is
desired. High-level animal behavior analysis is feasible only if the
2

tracking procedure is nearly error-free, so that a long tracking pattern
can offer more information related to the same animal. However, indi-
vidual animal tracking has several challenges such as occlusion, close
distance between multiple objects, and arbitrary moving directions. In
these cases, accurate and stable identification accuracy is required. This
means that long tracking trajectories of the same animal lead to a low
number of identity switches. Besides this number, another metric for
tracking performance is the IDF1 score, which is a percentage score of
identity association over time. In terms of the MOT-16 benchmark, JDE
results in an IDF1 of 55.8% and 1544 ID switches. FairMOT achieves
an IDF1 of 72.8% and 1074 ID switches. DeepSORT gives 781 ID
switches. Regarding these two aspects of tracking performances and
identification accuracy, the proposed baseline models are competitive
with the state-of-the-art methods on the MOT-16 pedestrian dataset.

The third aspect is data-collection efficiency which aims to acquire
annotated data effectively. The bounding box is annotated, which fits
with the input of the object detector. Compared with other annotation
formats e.g. keypoints, polygons, and polylines, the bounding box is
sufficient to localize and track objects accurately. Because we seek after
the object location and accurate identity, rather than perfectly matched
object contour. The bounding box requires less labor and offers the
desired accuracy.

The fourth aspect is the model execution rate, which aims at a
real-time monitoring system. The requirement for an execution rate is
faster than 15 fps. For this purpose, we have initially compared state-
of-the-art multi-object tracking methods applied to pedestrian datasets
(because the amount of state-of-the-art tracking research on animals
is limited). JDE achieves an execution rate of 18.8 fps on a single
Nvidia Titan XP GPU. FairMOT executes at 25.9 fps on two RTX 2080 Ti
GPUs. Both JDE and FairMOT are joint detection and tracking, which
test on the MOT-16 benchmark (pedestrian dataset) with an image
resolution of 1088 × 1088 pixels (Wang et al., 2020; Zhou et al., 2019).
The detector YOLOv5s detects objects in an image of 416 × 416 pixels
with an execution time of 140 fps on a Tesla P100 GPU (Jocher et al.,
2022). The DeepSORT tracker achieves an execution time of 40 fps on
a GeForce GTX-1050 GPU, which tests on the MOT-16 benchmark with
an image resolution of 640 × 640 pixels (Wojke et al., 2017). Based
on the above inference times, all proposed models are suitable for the
application. Therefore, the proposed baseline models — JDE, FairMOT,
and YOLOv5 with DeepSORT, have been adopted for further research,
on the basis of the above four aspects.

This work mainly contributes to 3 areas, which are as follows. (1) In-
vestigation and comparison of several state-of-the-art MOT methods for
pigs in large-scale farms. (2) Development of data association strategies
to optimize multi-object re-identification, by expanding the proposed
strategy for three deep learning-based models on a pig dataset. (3)
Two manually annotated datasets with bounding boxes of location
information for videos recorded at a real commercial farm. The enrich-
ment of the dataset is manually annotated and containing two groups:
(a) frames with an annotation interval of 2 s, derived from 96 video
recordings including 22,384 frames of 12.44 h in 33 days; (b) frames
from continuous videos (without any annotation intervals), based on
5 one-hour recordings from 2 pens in two days (in total 5 h). Each
one-hour video contains around 54,000 frames.

The remainder of this paper is organized as follows. Section 2
introduces the related works in recent years. Section 3 describes the
workflow of data acquisition and annotation, and elaborates the net-
work architectures of three MOT methods and the proposed enhanced
re-identification algorithms. The evaluation methods are also intro-
duced. Section 4 shows experimental details and results. Section 5
discusses the findings of the study and the potential future work
accordingly. Finally, Section 6 concludes this work.

2. Related works

Three-dimensional (3D) Kinect cameras with a depth sensor have

been used for monitoring pigs (Mallick et al., 2014; Kim et al., 2017).
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However, the field of view captured by a 3D camera is rather lim-
ited, while the computation based on 3D data is expensive (Matthews
et al., 2017). Therefore, more state-of-the-art studies employ two-
dimensional (2D) camera monitoring, which provides a broader view,
a cost-efficient solution and lower computation requirement. Studies
were reported on 2D video-based monitoring and giving visual informa-
tion on e.g. collective detection of golden shiner fish groups (Davidson
et al., 2021), but also multiple pig detection and tracking in indoor
sheds (Zhang et al., 2019). This motivates the utilization of 2D RGB
cameras for our research. Artificial intelligence presents the emerging
topic of 2D video-based individual animal detection and tracking,
which has the potential to offer high efficiency. Therefore, 2D video-
based tracking can contribute to saving costs, while avoiding contacts
with animals.

Video-based animal monitoring requires to localize objects at an
individual level and recognize animal behavior status. In order to
apply deep learning methods to learn features from animal videos,
data preparation is needed with corresponding annotations for spe-
cific monitoring objectives. Some research provides the objects and
contours by segmentation as input for tracking (Fragkiadaki and Shi,
2011; Thombre et al., 2009), which is more accurate for outlining
individual objects. However, preparing contour-based manual segmen-
tation is time-consuming, labor intensive and subjective. It also requires
significant computational resources during learning.

Some research focuses on MOT for pig analysis. Perner (2001)
subtract the background from each video frame by segmentation, and
group object pixels into an object by the line-coincidence method.
A stable monitoring of pig position and its movements are achieved,
although the data only records three pigs in one pen. It shows the limi-
tation to be applied on commercial farms, which have 10–11 pigs in one
pen. A specific study (van der Zande et al., 2021) applies a tracking-by-
detection method of YOLOv3 with SORT on pig datasets. However, it
shows a limitation of insufficient training data (4000 frames), which is
similar in other research (Riekert et al., 2020) that only has 305 manu-
ally annotated frames. In addition, the qualitative evaluation in van der
Zande et al. (2021) is not sufficient to validate their tracking per-
formance. For instance, it lacks the state-of-the-art evaluation metrics
including IDF1, MOTA and MOTP (Leal-Taixé et al., 2015). Zhang et al.
(2019) combine a CNN-based detector with a correlation filter-based
tracker, using a novel hierarchical data association algorithm, which
achieves a MOTA of 89.58% on 5 testing video segments. However,
the evaluation is not based on cross-validation and a comprehen-
sive comparison with the state-of-the-art tracking algorithms is not
provided.

All existing studies regarding pig detection and tracking use
tracking-by-detection methods, which lead to high computational cost,
especially when object numbers increase. In this situation, it is chal-
lenging to realize a real-time MOT system for pig tracking. The existing
work using MOT for tracking pigs is also limited. In order to explore
more MOT methods, we investigate alternative related work developed
for other purposes, e.g. pedestrian tracking and vehicle tracking. The
Kanade-Lucas-Tomasi (KLT) feature tracker is a widely used vanilla
tracking method that is based on the Lucas-Kanade optical flow method
and is frequently employed in applications that require the identifi-
cation of object motion through the association of tracked features
between frames (Tomasi and Kanade, 1991). However, the KLT feature
tracker’s performance may suffer due to the non-rigid motion common
in animal behavior and the large deformation resulting from their
movements, invalidating its linear motion assumption and resulting in
lost tracks. Additionally, the KLT feature tracker lacks the capability to
recover lost features or handle occlusions, both of which can lead to
tracking failures. For these reasons, we have explored state-of-the-art
methods in multi-object tracking that can better address the unique
challenges of animal behavior analysis.

As video-based multi-object tracking becomes popular, there are
two major directions: (1) tracking-by-detection, and (2) joint detection
3

and tracking.
Tracking-by-detection method is a two-stage system that consists
of: (1) object detection, and (2) tracking. In the tracking module,
both motion and appearance features are extracted from the detected
bounding-box sequence by a re-identification model, followed by as-
sociating the detection frame-by-frame. Therefore, tracking results are
obtained only in the final stage. Regarding object detection, tremen-
dous work has been investigated utilizing deep learning. Some studies
apply the R-CNN (Girshick et al., 2014) and Fast R-CNN (Girshick,
2015). The networks R-CNN and Fast R-CNN use selective search to
generate regions for each image and detect objects. However, the
regional approach can yield high computation cost. Faster R-CNN (Zhou
et al., 2018) utilizes a region proposal network to replace the selec-
tive search method, which achieves promising detection accuracy on
the PASCAL VOC 2007 (Everingham et al., 2007), 2012 (Everingham
et al., 2012), and MS COCO datasets (Lin et al., 2014). Faster R-CNN
accelerates the computation compared with R-CNN and Fast R-CNN.
However, it is still challenging to reach real-time processing speed
in practice. Another popular detector used for object detection is the
YOLO detector (Redmon et al., 2016), based on a single network to
obtain all bounding-box information on a full image, and subsequently
implement regression and classification. The YOLO architecture series
are developing fast and have an advantage of fast processing speed
by virtue of simpler network architecture. By comparison, Faster R-
CNN achieves a Mean Average Precision (MAP) of 87.69%, while
YOLOv3 achieves an MAP of 80.17% on the same pill image dataset.
However, the detection speed of YOLOv3 is more than eight times
faster than that of Faster R-CNN (Tan et al., 2021). The prevailing
trackers including SORT (Bewley et al., 2016) and DeepSORT (Wojke
et al., 2017), have been widely used for MOT of pedestrians and
vehicles (Wojke et al., 2017; Hou et al., 2019; Bathija and Sharma,
2019). SORT is a data association method based on a Kalman filter
and a Hungarian algorithm to associate the detected bounding-box
results between adjacent frames (Bewley et al., 2016). SORT achieves
good performance on the MOT challenge dataset (Leal-Taixé et al.,
2015), whereas it has a deficiency in handling occlusions. DeepSORT
introduces the comparison of appearance features, which is added to
the motion model in SORT. This enhances the performance for a longer
duration of occlusion (Wojke et al., 2017). For two-stage tracking-by-
detection networks, the optimal models for detection and tracking can
be determined individually, whereas the computation cost evaluated
for the two individual steps is high to sustain continuous multi-object
tracking.

In contrast with tracking-by-detection methods, joining tracking
with detection gains significant computational efficiency. Therefore,
another research direction is towards a joint detection-and-tracking
strategy, also known as a one-shot system. The joint method utilizes
a single network to combine detection with tracking, which shares fea-
tures among these two tasks and saves computational cost. The first cat-
egory of joint strategies is to perform object detection and re-ID feature
extraction in a single network. For instance, TrackR-CNN (Voigtlaender
et al., 2019) adds a re-ID branch with Mask R-CNN (He et al., 2017),
which obtains mask-based detection with appearance features for each
proposal in a regression task. This approach reduces the execution
rate. However, the tracking performance is not comparable with two-
stage methods. Another research regarding associative embedding is
to join object detection and embedding appearance features, used in
human-pose estimation (Newell et al., 2017). However, this research
can be only applied to single images, while data association in MOT
requires association across sequential frames (Newell et al., 2017). The
second category is to perform object detection with motion feature
extraction in a single network for tracking. For instance, the research
on Tracktor (Bergmann et al., 2019) is converting a detector to a
model that jointly materializes detection and tracking. It incorpo-
rates a single object tracker into a tracked Faster-RCNN detector by
extracting the spatial and temporal positions, i.e. trajectories, so it

does not rely on training or optimization on tracking data. However,
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Fig. 1. Sample frames taken from a period of 12 s with a time difference of 4 s, for pigs recorded at Volmer farm in Germany. Several challenging situations are highlighted. Pigs
in the green and blue bounding boxes are occluded by neighbors in the first several frames. The pig in the yellow bounding box moves fast between (c) and (d), which causes
a large deformation of the bounding-box size. As can be observed that pigs in the yellow and red bounding boxes have a highly activity level, where the bounding boxes have
variable width/height ratios and sizes. Compared to pedestrian data, the head direction of a pig is unpredictable.
Tracktor is only capable of addressing most of the less challenging
tracking scenarios (i.e. no small and occluded objects or missing detec-
tion). Regarding complex situations, the accuracy is not stable, which
may be caused by lacking an additional embedding model to extract
appearance features (Wang et al., 2020).

3. Materials and methods

3.1. Data description

The research data involved in this study is based on videos recorded
at a real commercial farm. The data is first acquired, followed by
manual annotation and data curation. Video recordings are collected
at the pig farm of Volmer in Germany. The Animal Welfare Body of
Wageningen University & Research (Wageningen, the Netherlands) ap-
proved the protocol of the study (211223_LB_IMAGEN). The procedure
is in accordance with the Dutch law on animal experimentation, which
complies with the European Directive 2010/63/EU on the protection of
animals used for scientific purposes. Fig. 1 shows four sample frames
taken from a period of 12 s with a time difference of 4 s. Several
challenging situations are highlighted. Pigs in the green and blue
bounding boxes are occluded by neighbors in the first several frames.
The pig in the yellow bounding box moves fast between Fig. 1(c)
and (d), which causes a large deformation of the bounding-box size.
It can be observed that pigs in the yellow and red bounding boxes
have a highly active level, where the bounding boxes have variable
width/height ratios and sizes. Compared to pedestrian data, the head
direction of a pig is unpredictable. Pigs from in total 10 pens are
recorded, where most pens contain 11 pigs with or without sprayed
color marks on their backs. The group composition of the pigs usually
remains constant unless special situations occur, like e.g. sickness or
injury. Most pens are installed with one single camera which captures
the side view towards the pen’s floor at ceiling height (average pen
size (length×width×height): 372.5 × 288.75 × 280 cm3), covering the
entire pen. The cameras used for recording are LOREX 4KSDAI168 with
an image resolution of 1280 × 720 pixels, and a frame rate of 15 fps.
Pig videos are recorded continuously on a 24/7 basis, and each video
is automatically generated and stored per hour.
4

All manually annotated frames are processed with the Computer
Vision Annotation Tool (CVAT) (Openvinotoolkit, 2020), which is a
software package for object annotation. Video segments showing active
pig movements are selected, followed by annotating the pig location
in each video frame with a consistent identity associated for each
individual pig. CVAT is capable of labeling object-location information
using a rectangular-shape bounding box, and also provides the options
for adding occlusion conditions. Aiming at more effective annotation
work, we have chosen to annotate bounding boxes rather than object
contours. CVAT supports saving the frame ID, object ID, bounding-box
location, and size of the object.

3.2. Network architecture overview

3.2.1. Joint Detection and Embedding (JDE)
JDE is aiming at a one-shot system, which combines detection and

tracking in a single network by adding a re-ID embedding branch in
parallel. The jointly learned features are shared for two objectives,
which are to localize the objects and to associate identities between
continuous frames with the appearance embedding. In this way, the
system reduces the computation cost and enhances the tracking effi-
ciency (Wang et al., 2020). The baseline network in JDE is derived from
YOLOv3, which is the DarkNet-53 - a Feature Pyramid Network (FPN).
As described in Fig. 2, the feature maps at multiple scales of an input
video frame are first acquired. Second, feature maps are fused by a
skip connection between the feature maps of the smallest scale and the
second smallest scale, similarly to other scales. Ultimately, each fused
feature map is attached to a prediction head, which generates a dense
prediction map with three branches: box classification, box regression,
and appearance embedding. The detection branch is responsible for
the first two tasks: foreground/background classification with a cross-
entropy loss, and bounding-box regression with a smooth 𝐿1 loss. The
learning procedure of appearance embedding in JDE is to derive a small
distance measure for detected bounding boxes for the same identity,
whereas bounding boxes for different identities achieve a large dis-
tance. The experimental results with pedestrian datasets show that the
cross-entropy loss gives the best results (Wang et al., 2020). Hence, the
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Fig. 2. JDE network architecture with prediction heads, including the box classification, box regression and embedding (Wang et al., 2020).
appearance embedding learning of JDE is based on using cross-entropy
loss. To fuse all the losses, the system adopts an automated learning
scheme by using the concept of task-independent uncertainty (Kendall
et al., 2018). The total loss shown in Fig. 2 is specified by

𝑡𝑜𝑡𝑎𝑙 =
𝑀
∑

𝑖

∑

𝑗=𝛼,𝛽,𝛾

1
2
( 1

𝑒𝑠
𝑖
𝑗
𝑖
𝑗 + 𝑠𝑖𝑗 ) , (1)

where 𝑀 is the number of prediction heads, 𝑖 = 1,… ,𝑀 , while
𝑗 = 𝛼, 𝛽, 𝛾 are branch losses. Parameter 𝑠 denotes the task-dependent
uncertainty, which is a learnable parameter that can be adjusted for
each loss. When the loss of one task increases, the related learnable
parameter decreases. This parameter optimizes one task as much as
possible, but without affecting other tasks.

JDE adopts a simple and fast online association algorithm. Each
track consists of an appearance state and a motion state. The appear-
ance affinity matrix is calculated by cosine similarity and the motion
affinity matrix is computed using the Mahalanobis distance. A buffer
pool is set for potential tracks to the subsequent association. For each
frame, there is a re-identification calculation between all detection and
tracks in the buffer pool. The Hungarian algorithm (Kuhn, 1955) solves
the linear assignment to output matched tracks, unmatched tracks and
detections. A Kalman filter (Welch et al., 1995) is used to update and
predict the locations in the current frame from the existing tracks.

K-means clustering is also applied to the training dataset to recalcu-
late 12 anchors, where each scale has 4 anchors. For the widely used
pedestrian datasets in MOT, a filter condition is normally applied to
constrain the object aspect ratio to 1/3 (width/height). We remove
this constraint because more deformations are expected in the pig
datasets. Furthermore, we fix the amount of objects in each frame with
a non-maximal suppression (NMS) setting.

3.2.2. Enhanced re-identification association on JDE
The workflow of data association in JDE is depicted drawn in

Fig. 3. In total, there are three online association steps to handle the
detections and tracks. We adopt all detected bounding boxes in the
first frame as the initial tracks. The first association is related to the
embedding distance with fused motion. After calculating the Hungarian
algorithm (Kuhn, 1955), the unmatched tracks and related detections
are further imported to the second association. The original second
association applies the Intersection over Union (IoU) comparison. In
the third ID association step, the IoU distance is adopted to handle the
unconfirmed tracks, which are usually tracked with only one initial
frame. A buffer pool is used for storing lost tracks, and the tracks
are removed when they are lost for more than a certain frame-count
duration (threshold). In the end, the outputs combine all followed
tracks, activated tracks, and refined tracks.

The shape of the bounding box for pedestrian detection has a com-
parative regular width/height ratio. The common width/height ratio
of pedestrians is 1/3. However, in the captured videos, the position
5

and posture information of pigs cannot be expected, since they are
under a ‘‘free’’-living mode in the commercial pens (see Fig. 1). In
this regard, diverse width/height ratios and sizes of the bounding box
from one pig are possible. In this way, animals are more challenging to
track than pedestrians. However, in the second step for data association
in the original network architecture, only a single IoU calculation is
performed, where only the percentage of the overlap between two
boxes is considered. The bounding box that outlines a single pig can
change substantially between adjacent frames according to pig status,
yielding to significant changes of bounding-box shapes. This means
the re-ID method of calculating the IoU for associating the pedestrian
detection is not appropriate for pig detection. We propose to add
another association term based on extracted appearance-embedding
features to enhance the re-ID method for associating the pig detection.
Therefore, we introduce an enhanced weighting strategy in the second
association (see green marks in Fig. 3), specified by

𝑑𝑖𝑠𝑡𝑜𝑡𝑎𝑙 = 𝜔𝐹 ⋅ 𝑑𝑖𝑠𝐼𝑜𝑈 + (1 − 𝜔𝐹 ) ⋅ 𝑑𝑖𝑠𝑒𝑚𝑏 , (2)

where 𝑑𝑖𝑠𝑡𝑜𝑡𝑎𝑙 is the total distance of the second association, param-
eter 𝜔𝐹 is a gain parameter. Parameter 𝑑𝑖𝑠𝐼𝑜𝑈 represents the IoU
distance and the distance 𝑑𝑖𝑠𝑒𝑚𝑏 indicates the embedding distance with
fused motion. This distance parameter considers the weighted distance
between the IoU and fused embedding with motion, instead of only
relying on the IoU distance after the first embedding comparison (Guo.
et al., 2022).

3.2.3. FairMOT
Similar to JDE, FairMOT is also a one-shot system. The backbone

network used in FairMOT is ResNet-34, which trades-off tracking per-
formance and computing time. To fuse multi-layer features as JDE, a
developed version of Deep Layer Aggregation (DLA) (Zhou et al., 2019)
is attached to the backbone, as shown in Fig. 4. The tuning of the
network adds more skip connections between multiple scales, which is
similarly explored in FPN. Moreover, deformable convolution layers in
all up-sampling stages are used, to enable dynamic adjustment among
object scales and poses. The entire network is called DLA-34.

Compared with JDE, FairMOT addresses three unfair issues caused
by anchors, features, and feature dimensions. The unfairness caused by
the anchor-based method shows all active anchors around the object
center are considered as candidates of re-ID features. The adjacent
anchors have a high possibility to be confirmed as being the same iden-
tity if their IoU values are high enough, which results in sub-optimal
extracted features. FairMOT solves this unfairness by extracting the re-
ID feature only from the center of the object. In addition, FairMOT
improves the setting of the feature dimension, whereas the performance
is higher when the network learns lower-dimensional features. The
object detection branch in FairMOT is based on the anchor-free object
detection architecture CenterNet. It leaves out the steps for computing
clusters from all bounding boxes. As can be observed in Fig. 4, three
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Fig. 3. Enhanced re-identification association workflow of JDE and FairMOT methods. The new proposed weighted association strategy is highlighted in the green block. This
distance parameter considers the weighted distance between the IoU and fused embedding with motion, instead of only relying on the IoU distance after the first embedding
comparison.
Fig. 4. FairMOT network architecture with prediction branches, including the heat-map, box size, center offset, and re-ID embedding (Zhang et al., 2021).
parallel heads contribute to the detection branch. The heat-map head
predicts the locations of the object centers with a focal loss. The box-
offset head and the box-size head are responsible for more accurate
localization and estimating the height and width of the target box,
optimized by the 𝐿1 loss. As shown in Fig. 4, FairMOT introduces a re-
ID branch to generate object features, aiming at distinguishing different
objects. The re-ID features are extracted from the feature map, which
are derived from a convolution layer with 128 kernels, based on the
backbone network. The automated loss balancing in FairMOT is the
same as used in the JDE network. It consists of the detection loss and
re-ID loss. The detection loss is the sum of ℎ𝑒𝑎𝑡 and 𝑏𝑜𝑥. The total loss
shown in Fig. 4 is specified by

𝑡𝑜𝑡𝑎𝑙 =
1
2

( 1
𝑒𝑠1

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 +
1
𝑒𝑠2

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 + 𝑠1 + 𝑠2
)

, (3)

where 𝑠 is the same as the parameter in the JDE method.

3.2.4. Enhanced re-identification association on FairMOT
The online association strategy in FairMOT takes a prevailing track-

ing method, similar to the JDE method. We also explore the proposed
weighted strategy in the FairMOT approach, which is expected to
utilize more appearance embedding features and reduce the number
of identity switches during tracking.

3.2.5. YOLOv5 and DeepSORT
Another proposed method is a two-stage system, which is following

a tracking-by-detection strategy. The first stage is to localize objects by
a detector for each input frame. Meanwhile, appearance and motion
6

features are extracted from the detected bounding-box sequences. Ap-
pearance feature association helps to reduce identity switches, while
motion features are processed by a Kalman filter to predict object
location in the next frame. The second stage obtains identity associ-
ation between adjacent frames using a data-association algorithm. The
strength of a two-stage system is that each of the two stages can be
optimized individually. However, it increases computation cost, which
is not desired for continuous 24/7 tracking with MOT in practice.
In this research, we employ a combination with the You Only Look
Once (YOLO) Version 5 detector (Jocher et al., 2022) and the Sim-
ple Online and Real-time Tracking with a Deep Association Metric
(DeepSORT) (Wojke et al., 2017). We aim at using the YOLO network
with lower complexity to improve the model efficiency. Therefore,
our baseline employs the small YOLOv5 model (further referred to
as YOLOv5s), which reduces the complexity of the network for faster
training and inference (see Fig. 5). The core concept of YOLO is to con-
vert the object detection to a regression problem. YOLO utilizes a full
image as input to a single deep neural network to derive the bounding
boxes. The architecture of YOLO consists of three components: (1) a
backbone convolution neural network (CNN) that extracts appearance
features with different sizes, (2) a neck network including a set of layers
that integrates features and then passes them to the prediction layer,
and (3) a head incorporating features along with the bounding-box
predictions and then classifying the predictions including regression to
finalize the detection stage (Redmon et al., 2016). The architecture of
YOLOv5s employs CSPDaeknet as the backbone for appearance-feature
extraction, PANet as the neck for generating FPN to pass features to
the prediction head, and convolutional layers as the head to output the
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Fig. 5. YOLOv5 network architecture with prediction branches, including the box classification, box regression, and objectness (Jocher et al., 2022).
Fig. 6. Enhanced re-identification association workflow of DeepSORT method. The proposed weighted association strategy is highlighted in the green block. The cost matrix
considers the weighted distance between the IoU and appearance, instead of only relying on the IoU comparison after the matching cascade.
predicted bounding boxes (Xu et al., 2021). The multi-task loss function
of YOLO is specified by

𝑡𝑜𝑡𝑎𝑙 =
𝑀
∑

𝑖=1

∑

𝑗=𝛼,𝛽,𝛾
𝜆𝑗𝑖

𝑗 , (4)

where 𝑀 is the number of individual tasks, and 𝑗 = 𝛼, 𝛽, 𝛾 are
hyperparameters to constrain the gain of the loss.

DeepSORT is a conventional tracker used in two-stage systems (Wo-
jke et al., 2017). It presents the track handling and state estimation
to associate frame-by-frame detection. Apart from the Hungarian algo-
rithm (Kuhn, 1955) and the Kalman filter (Welch et al., 1995) which
are also used in JDE and FairMOT, the core component in DeepSORT
introduces a matching cascade algorithm to effectively solve the pres-
ence of occlusions, which reduces the identity loss significantly (Wojke
et al., 2017).

3.2.6. Enhanced re-identification association on YOLOv5 and DeepSORT
As shown in Fig. 6, the baseline association strategy calculates

the association steps in two stages. Based on all detected bounding
boxes in the first frame, we consider those as initial tracks. The first
association step uses the matching cascade, related to the appearance-
based comparison, weighted by the Mahalanobis distance and the
cosine distance. After distribution by the Hungarian algorithm (Kuhn,
1955), the unmatched tracks and detections are further imported to the
second association stage. The original second association is only an IOU
comparison to sort out the matched tracks, unmatched detection, and
track candidates. If the status of a track remains unconfirmed after a
certain number of frames, indicated by a threshold, it will be removed.

The motivation of an enhanced re-ID association is illustrated in
Section 3.2.1. DeepSORT performs a separate IoU calculation, which
enables the use of appearance-embedding features to help data as-
sociation. Similar to the JDE and FairMOT methods, we propose a
weighted strategy to employ feature fusion in YOLOv5s with DeepSORT
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(see green marks in Fig. 6). Here, we introduce a weighted strategy,
specified by

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝜔𝐷 ⋅ 𝐶𝑜𝑠𝑡𝐼𝑜𝑈 + (1 − 𝜔𝐷) ⋅ 𝐶𝑜𝑠𝑡𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 , (5)

where 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 is the total cost matrix of the second association, and
𝜔𝐷 is a gain parameter. Variable 𝐶𝑜𝑠𝑡𝐼𝑜𝑈 is the IoU matching cost
and 𝐶𝑜𝑠𝑡𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 is the cost matrix of a matching cascade with the
Mahalanobis distance and the cosine distance. The total cost considers
the weighted distance at the second step to include richer feature
comparison of the IoU cost and the appearance-based cost, instead of
only relying on the IoU comparison after the matching cascade.

3.3. Evaluation methods

3.3.1. Evaluation metrics
The proposed methods are evaluated using the metrics derived

from the MOT challenge based on the pedestrian datasets (Leal-Taixé
et al., 2015), combined with evaluation metrics used in evaluating the
JDE (Wang et al., 2020) and FairMOT methods (Zhang et al., 2021).
These metrics are employed and listed in Table 1 that illustrates metric
terminology for evaluating the proposed systems. The upward arrow
after the name of the metric indicates that a higher value of this term
is desired, while a downward arrow after the metric highlights that
a lower value is better. It should be noted that the different metrics
are not equally important. MOTA considers detection performance,
using the overlap between the detected box and ground-truth box,
and a confidence score to constrain the detected box. In this way,
MOTA significantly outweighs the association performance. However,
our tracking application does not aim for a large overlap between the
detected box and the ground-truth box. Regarding individual animal
monitoring, long and stable tracking for the same animal is more
important and desirable. Therefore, we mainly focus on the detected
identification accuracy IDF1 and the number of ID switches, rather than
striving for a high overlap by MOTA.
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Table 1
Evaluation metrics and terminology for the proposed MOT methods (arrows indicate preferred value optimization).
Metric Description

MOTA↑ Multi-object tracking accuracy. This measure combines three error sources: false positives, missed targets, and identity switches.
MOTP↓ Multi-object tracking precision. The misalignment between the annotated and the predicted bounding boxes.
MT↑ Number of mostly tracked trajectories.
PT Number of partially tracked trajectories.
ML↓ Number of mostly lost trajectories.
IDF1↑ ID F1 score. The ratio of correctly identified detection over the average number of ground-truth and computed detection.
IDs↓ Number of identity switches.
FPS↑ Execution rate, frames per second.
3.3.2. K-fold cross-validation
The proposed MOT systems are evaluated using a K-fold cross-

validation. Every sample frame can be utilized in either the training or
the testing dataset, which results in a model validation with less bias.
We randomly split the entire dataset into K groups, where each group
is involved in the training procedure for K − 1 times, and one time for
the test procedure. The evaluation metrics are accumulated for each
method of each training cycle and finally averaged for measuring the
performance (Rodriguez et al., 2009).

3.3.3. T-test
The t-test is utilized to validate the effect of the proposed strat-

egy. The two-tailed paired t-test is a valuable statistical test that is
appropriate for comparing the baseline model and enhanced model,
due to the evaluation metrics obtained from the same groups. This test
determines whether the enhancement brought by the proposed strategy
is statistically meaningful, or is merely an occasional event. For this
study, a significance threshold of a 𝑝-value 𝑝 = 0.05 is used to indicate
that above the threshold the null hypothesis cannot be rejected when
𝑝 > 0.05. Conversely, a 𝑝-value of 𝑝 ≤ 0.05 denotes a statistically
significant test result, indicating that the enhancement is statistically
significant (Kim, 2015).

4. Results

4.1. Summarization of dataset

Our manually annotated datasets of pigs are divided into two
groups. The first group is used for K-fold cross-validation. It consists
of 22,384 frames including 250,638 annotated bounding boxes from
10 pens recorded from different daytime periods. The videos are
selected from 33 days of video recordings. As shown in Table 2, we
have 32 short segments with around 100 frames of 3 min and 20 s, and
64 long segments of around 300 frames of 10 min. The total duration is
about 12.44 h for 96 videos. All videos are recorded at a frame rate of
15 fps. A frame step of 30 frames (2 s) is taken during annotation, i.e. to
output one frame per 30 frames for effective ground-truth acquisition.
All frames are selected from daytime scenes in an uncontrolled farming
environment. For evaluating the generalization of the proposed models,
videos under various conditions are captured and selected according
to the activity levels of pig movements, occurrence of occlusion, or
group stacking. The summary shown in Table 3 describes the data
distribution of the collected data, which is later used for implementing
K-fold cross-validation. We divide the dataset into 𝐾 = 8 groups. Each
group is randomly assigned with 4 short segments and 8 long segments,
including around 2800 frames in total. Each group is involved in
7 cycles of training, combined with 1 test as a procedure cycle. Each
cycle of the procedure uses around 19,600 frames for training, while
each test step after this employs around 2800 frames. To test the overall
tracking performance, the evaluation metrics are calculated, based on
the average values over all testing splits.

The second group of the pig dataset is used for validating the pro-
posed system on long-duration tracking scenarios. The dataset consists
of 5 one-hour videos from 2 pens in 2 days. The ground truth of
8

one-hour videos is annotated on continuous video frames, where each
Table 2
Summary of dataset distribution for K-fold cross-validation.

Video data No. of frames Duration No. of videos

Short segments ≈100/segment ≈3 m 20 s/segment 32
Long segments ≈300/segment ≈10 m/segment 64
Overall 22,384 ≈12.44 h 96

Table 3
Summarization of the dataset in each fold for K-fold cross-validation, K = 8.

Dataset No. of frames Duration No. of videos

Training ≈19,600 ≈653.33 m 84
Testing ≈2800 ≈94.67 m 12

Table 4
Summarization of the long-duration dataset, including 5 one-hour video segments.

Video No. Channel No. Date Time Activity level

v1 ch2 2022-10-22 08:00–09:00 Inactive
v2 ch2 2022-10-22 16:00–17:00 Medium
v3 ch2 2022-10-23 08:00–09:00 Mild
v4 ch2 2022-10-23 16:00–17:00 Highly
v5 ch3 2022-10-22 08:00–09:00 Mild

video contains around 54,000 frames. The data description is shown
in Table 4. Video Nos. 1-4 are recorded at two different time periods.
Video No. 5 is recorded at one time period. The activity levels among
pigs are illustrated in Table 4.

4.2. Implementation overview

This section gives an overview of the implementation details of the
proposed methods. The resolution of the input frames for all models
is set to 864 × 480 pixels for a fair comparison. All experiments are
executed on a RTX 2080Ti GPU.

4.2.1. JDE
The backbone network of JDE is DarkNet-53 (Redmon and Farhadi,

2018). Twelve clusters of anchor boxes are derived from all training
bounding boxes by a k-means clustering method (Lloyd, 1982). Three
key parameters – learning rate, batch size and epoch count – are
determined, experimentally considering the best loss convergence and
the highest accuracy. The training model is based on a learning rate of
0.0001, optimizing under standard SGD. The training is performed for
50 epochs with a batch size of unity. The input video frames are resized
to 864 × 480 pixels. The weight for enhanced association is set to 0.8.

4.2.2. FairMOT
The backbone network of FairMOT is DLA-34 (Zhang et al., 2021).

The model is trained with a learning rate of 0.0001, optimized with the
Adam optimizer. The training is performed for 50 epochs with a batch
size of 2. For the sake of efficiency, the resolution of input images is
resized to 864 × 480 pixels. The gain parameter w for the weighted
association is 0.8.
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Table 5
Comparison between the original re-ID association method and the proposed weighted-association strategy.
Testing data Method Re-ID association method IDF1↑ MOTA↑ GT IDs↓

8-fold testing data JDE Original 66.19 83.56

128

554
Weighted 66.60 82.74 514

FairMOT Original 78.97 88.44 259
Weighted 80.94 88.55 213

YOLOv5s with DeepSORT Original 66.46 88.99 486
Weighted 65.76 88.74 499
Table 6
Average tracking results of enhanced JDE and FairMOT, and original YOLOv5s+DeepSORT using 8-fold cross-validation.

Method IDF1↑ ± SD↓ MOTA↑ ± SD↓ MOTP↑ ± SD↓ GT MT↑ PT ML↓ IDs↓ FPS↑

Enhanced JDE 66.60 ± 3.85 82.74 ± 3.13 81.00 ± 1.01 128 113 15 0 514 36.13
Enhanced FairMOT 80.94 ± 4.81 88.55 ± 3.45 82.60 ± 1.70 128 123 5 0 213 48.87
Original YOLOv5s+DeepSORT 66.46 ± 9.80 88.99 ± 8.40 89.78 ± 0.89 128 117 9 2 486 22.24
4.2.3. YOLOv5s with DeepSORT
YOLOv5s with DeepSORT includes two stages. The first stage is the

small YOLOv5 architecture, which consists of the backbone of CSP-
Daeknet, the neck of PANet, and the head of convolutional layers. The
training model has a learning rate of 0.01, optimizing under standard
SGD. The training is performed for 100 epochs with a batch size of 2.
The second stage on tracking utilizes the association metric that was
learned based on OSNet (Zhou et al., 2021) for the purpose of person
re-ID. The input video frames are also resized to 864 × 480 pixels. The
enhanced association uses a weight of 0.9.

4.3. Results

This section illustrates the achieved results in 3 areas: (1) the ben-
efit of the proposed weighted-association algorithm, (2) overall short-
duration results of 8-fold cross-validation, and (3) validated results on
long-duration videos.

4.3.1. Benefit of weighted association
The models obtained with the proposed methods are evaluated

using 8-fold cross-validation. Table 5 shows the comparison of the
original association and the weighted association, in terms of IDF1,
MOTA and the number of ID switches (bold numbers are best). The
evaluation metrics are averaged over all 8-fold testing sets. In terms
of the JDE method, the weighted strategy outperforms the original
association on IDF1. The number of identity switches is 40 lower
than the original association. However, the value of MOTA decreases
by 0.82% with the weighted association. The overall performance of
FairMOT is better than JDE, especially concerning IDF1, MOTA, and
the number of identity switches. As can be observed in Table 5, Fair-
MOT with a weighted-association strategy reduces 46 identity switches,
which is the most effective tracking system. The weighted association
in YOLOv5s with DeepSORT does not perform as desired, because the
performances of most evaluation metrics decrease. The execution rates
between original and weighted association on each method are similar.
Through the comparison above, it is demonstrated that the proposed al-
gorithms based on JDE and FairMOT benefit the tracking performance.
It can be concluded that the added appearance features proposed in
the weighted association improve the tracking performance. However,
the weighted strategy shows limitations when it is applied on YOLOv5s
with DeepSORT.

4.3.2. 8-fold cross-validation results
From Table 5, the best performing version of each algorithm is

chosen for further comparison with average numbers. This further
comparison is shown in Table 6, which contains the average 8-fold
cross-validation results of the best version of the proposed methods.
To show the reliability of the proposed tracking methods, the Standard
Deviation (SD) of 8-fold cross-validation results is calculated for IDF1,
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MOTA and MOTP. The tracking performance of the enhanced JDE
method is not optimal, while the execution rate is faster than the
video frame rate. The enhanced FairMOT outperforms the enhanced
JDE and original YOLOv5s with DeepSORT in most evaluation metrics,
especially in two aspects. (1) The number of identity switches that is
around 300 less than enhanced JDE and 273 less than original YOLOv5s
with DeepSORT. (2) The execution rate of the enhanced FairMOT is
1.35 times faster than enhanced JDE and 2.20 times faster than original
YOLOv5s with DeepSORT. Original YOLOv5s with DeepSORT achieves
the highest MOTA and MOTP metrics among all methods. However, the
original YOLOv5s with DeepSORT obtains a large number of identity
switches, and an undesired result of IDF1.

Summarizing, the enhanced FairMOT provides the best results
among the proposed methods. To prove the effectiveness of the en-
hanced re-identification association strategy, there are multiple com-
parisons to highlight the proposed strategy for 8 consecutive cycles.
Figs. 7 and 8 present IDF1 results and the number of ID switches
for the original FairMOT and the weighted FairMOT. It can be ob-
served that the weighted strategy version of FairMOT reduces the ID
switches, thereby improving tracking performance for virtually each
cycle. Regarding the comprehensive data of each fold in Figs. 7 and
8, we perform two paired t-tests for comparing the performance of the
conventional and weighted FairMOT. Notably, one t-test is deployed for
evaluating the IDF1 scores, while the other is inspecting the number
of ID switches. The statistical results verify that the p-values corre-
sponding to IDF1 and ID switches are as low as 0.0018 and 0.0045,
respectively. A 𝑝-value less than 0.05 indicates a significant difference,
whereas a 𝑝-value larger than 0.05 represents no substantial difference.
Thus, the enhanced FairMOT has a noticeable positive impact on multi-
object tracking performance for pigs, as confirmed by the remarkably
significant results (𝑝 = 0.0018 and 𝑝 = 0.0045).

To assess the effectiveness of our proposed methods, we com-
pare them against two state-of-the-art tracking-by-detection benchmark
models for multi-object tracking. We use the YOLOXs detector to obtain
detection results at the first stage (Ge et al., 2021). We incorporate
the two-stage MOT systems by employing two trackers, SORT and
ByteTrack (Bewley et al., 2016; Zhang et al., 2022). To ensure a fair
comparison, we use the same dataset and partitioned folds as our
proposed models, and conduct eightfold cross-validation for the com-
parative experiments. We present a comparison between our proposed
methods and the two additional state-of-the-art methods, as demon-
strated through eightfold cross-validation in Table 7. YOLOXs+SORT
achieves the highest MOTA among all the evaluated models, scoring
89.4%, but it results in a higher number of ID switches, leading to a
lower IDF1 value. Compared to the one-shot methods, the two-stage
methods have a significantly faster inference time. Our enhanced Fair-
MOT outperforms all other state-of-the-art baseline models, achieving

both the highest IDF1 value and the lowest number of ID switches.
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Fig. 7. IDF1 results of FairMOT with the original and weighted re-ID association (higher value is expected, k1–k8 are the names of each test fold used in the eightfold
cross-validation).
Fig. 8. Number of ID switch results of FairMOT with the original and weighted re-ID association (lower value is expected, k1–k8 are the names of each test fold used in the
eightfold cross-validation).
Table 7
Comparison of the state-of-the-art methods under 8-fold cross-validation.

Method IDF1↑ MOTA↑ MOTP↑ GT MT↑ PT ML↓ IDs↓ FPS↑

JDE 66.19 83.56 81.41 128 112 16 0 554 36.13
FairMOT 78.97 88.44 82.80 128 122 6 0 256 48.87
YOLOv5s+DeepSORT 66.46 88.99 89.78 128 117 9 2 486 22.24
YOLOXs+SORT 69.60 89.48 85.02 128 116 12 0 537 14.35
YOLOXs+ByteTrack 73.18 86.80 81.77 128 120 8 0 425 14.65

Enhanced JDE 66.60 82.74 81.00 128 113 15 0 514 36.13
Enhanced FairMOT 80.94 88.55 82.60 128 123 5 0 213 48.87

Apart from the quantitative evaluation metrics, we also visualize
pig trajectories (see Fig. 9). The enhanced FairMOT yields the least
number of identity switches, as shown in Table 6, thus we apply it
on two short video segments of 3 minutes and 20 s. Pigs recorded
in these two segments have different activity levels. The red point
represents the pig departure position and the black star symbol points
to the pig destination position. Fig. 9(a) and (b) depict a pen housing
11 pigs, with most of them displaying mild active movements around
the area nearby their initial position. Fig. 9(c) and (d) portrays a pen
containing 8 pigs. Among them, there are 4 pigs (Pig 4, 5, 6, and
10
8 in Fig. 9(d)) exhibit medium-activity and move away from their
initial positions, while the rest remain relatively static. The enhanced
FairMOT demonstrates highly accurate tracking results, as evidenced
by the visualization comparison of the ground truth and the tracked
trajectories, with continuous trajectories and no instances of identity
switching in both videos.

4.3.3. Validation on long-duration recordings
To validate the feasibility and reliability of the tracking model, we

adopt the model that shows the best performance from the k-fold cross-
validation for a further validation. Five one-hour video segments are
used to validate the model robustness and reliability for long-duration
situations, with the aim of continuous real-time monitoring in real
practical use. The enhanced FairMOT is chosen for the experiments.
The results of the original FairMOT are also presented for comparison
with the weighted FairMOT model. Pigs are normally mildly active in
the morning, and Video Nos. 1, 3, and 5 are selected for this condition.
Video Nos. 2 and 4 record medium and highly active movements
among pigs between 16:00 and 17:00 h. When pigs become active,
more occlusions and faster changes happen, which cause more identity
switches and lower IDF1 values, as shown in Table 8. The average
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Fig. 9. Visualization of pig trajectories with (a) ground truth of inactive pigs, (b) tracking results of inactive pigs, (c) ground truth of medium-active pigs, and (d) tracking results
of medium-active pigs (pig identities are not consistent between ground truth and tracking results because they are randomly assigned).
Table 8
Tracking results of 5 long-duration video segments (1 h) using the original and enhanced FairMOT method, average execution rate 48.87 fps.

Video No. Re-ID association method IDF1↑ MOTA↑ MOTP↑ GT MT↑ PT ML↓ IDs↓

v1 Original 89.90 99.80 95.10 11 11 0 0 19
Weighted 94.00 99.80 95.10 11 11 0 0 19

v2 Original 74.70 89.40 94.50 11 9 2 0 54
Weighted 78.70 89.40 94.50 11 9 2 0 50

v3 Original 92.20 100.00 96.10 11 11 0 0 6
Weighted 92.20 100.00 96.10 11 11 0 0 6

v4 Original 52.60 99.80 95.60 11 11 0 0 107
Weighted 52.60 99.80 95.60 11 11 0 0 105

v5 Original 89.40 99.90 94.70 11 11 0 0 18
Weighted 88.30 99.90 94.70 11 11 0 0 11

Overall value (Mean ± SD) Original 79.96 ± 16.69 97.78 ± 4.19 95.20 ± 0.59 55 53 2 0 204
Weighted 81.16 ± 15.23 97.78 ± 4.19 95.20 ± 0.59 55 53 2 0 191
one-hour tracking performance using enhanced FairMOT achieves an
IDF1 of 81.16% which is 1.2% higher than the original FairMOT, as
the number of ID switches of 291 is 13 less than the original FairMOT.
Since individual comparisons for each video are provided in Table 8, it
can be seen that the enhanced FairMOT results in higher performance,
especially for IDF1 and the number of ID switches. The enhanced
FairMOT method yields a similar and consistent conclusion compared
with the validation on short-duration videos.
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5. Discussion

In terms of the manual annotation effort, the procedure for col-
lecting the appropriate amount of annotation as ground truth is very
time-consuming. Considering the difference in moving speed between
pedestrians and pigs, we have adopted an annotation interval of 2 s
for pigs to improve annotation efficiency. Continuous annotation is
expected to yield a more precise tracking system. To highlight the
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Fig. 10. Sample frame of tracking results from the anchor-based (JDE) method. The correct number of detections is 10 out of 11, since one anchor box (dark green box No. 7)
detects two pigs. It shows the unfairness caused by the anchor-based method, which indicates that one anchor box can be assigned to multiple objects.
Fig. 11. Sample frame of tracking results from the anchor-free (FairMOT) method. All 11 pigs are detected using the anchor-free method, because the extra prediction (not in the
anchor-based methods) from the object center facilitates more accurate detection.
feasibility of long-duration tracking, we perform the enhanced Fair-
MOT on 5 one-hour videos without an annotation interval. Regarding
Tables 6 and 8, the average evaluation metrics of long-duration video
segments are comparable. Additionally, our ultimate objective is to
achieve good continuous animal tracking, so longer video recordings
are required to be tested for all developed models, combined with more
thorough evaluation. The obtained tracking performance is promising
for processing live-streaming videos considering tracking accuracy and
execution time.

Through the explanation of the anchor-based method (JDE and
YOLOv5s) and anchor-free method (FairMOT) in Section 3.2.3, we have
found that an anchor-free method obtains better capability for pig de-
tection. As can be observed in Table 6, the number of identity switches
achieved in enhanced FairMOT is around 300 less than enhanced JDE,
and 273 less than original YOLOv5s with DeepSORT. We also demon-
strate the visualized comparison between the anchor-based (see Fig. 10)
and the anchor-free (see Fig. 11) methods show corresponding tracking
results on the same frame. Regarding the anchor-based method, it is
possible that one bounding box can be assigned to multiple objects.
Therefore, JDE detects two pigs in one anchor box, as shown in the dark
green bounding box of Fig. 10, which causes a missed detection and
thus a tracking error. It can be observed in Fig. 10 that the detection
count is 10 out of 11 because one anchor box detects two pigs. Through
the anchor-free method in FairMOT, each pig is predicted from the
center which avoids the unfairness caused by the anchor-free method.
In this way, FairMOT detects and tracks the same pigs accurately, as
shown in Fig. 11. In contrast, the anchor-free method provides a larger
possibility to solve the challenge of close distance between objects
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during detection and tracking. Furthermore, original YOLOv5s with
DeepSORT results in higher MOTA and MOTP values. Therefore, the
idea to combine YOLO with the anchor-free method is expected in
future work, which is also implemented in a recent publication on
YOLOX (Ge et al., 2021). In future work, we will apply the detector
YOLOX and different trackers such as SORT and DeepSORT, with the
weighted-association algorithm proposed for further improvement.

The weighted association benefits both JDE and FairMOT tracking
models, as explained in Section 4.3.1. The weighted association method
applied on JDE reduces on average 40 identity switches. The original
FairMOT performs the least number of identity switches among all
methods, while the performance of weighted association on FairMOT is
even better. The enhanced FairMOT decreases the number of identity
switches with 46 counts lower than the original FairMOT. We have
found that the imported appearance embedding features compensate
data association compared to only relying on IOU calculation. However,
the expected improvements employed on YOLOv5s with DeepSORT are
not realized. One of the possible reasons is that DeepSORT has a two-
step association process, which filters out the unconfirmed detections
and tracklets at an early stage. In this scenario, tracking associa-
tion becomes constrained, and unconfirmed detections and tracks with
insufficient matching opportunities may be discarded prior to fully
completing the association process. Conversely, JDE and FairMOT have
proposed three-step association processes, which offer enhanced oppor-
tunities to match unconfirmed detections and tracklets. This approach
has the potential to improve tracking performance and increase accu-
racy. Therefore, improving tracking integrity in DeepSORT is necessary.
Some future work ideas include adding an additional association step
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prior to the final IoU matching step. The cost function utilized in the
extra association could be an IoU cost or an appearance similarity cost.
In the interim processing between the first and final step, a buffer pool
may be established to memorize the unmatched detections and tracks
following the matching cascade. A larger buffer pool size can then store
more candidates and provide more potential matching tracklets.

To reduce the number of identity switches, we are working on
using multiple cameras to acquire more features of objects from dif-
ferent perspectives. More features can enhance detection accuracy and
help further data association. Apart from investigating deep learning
models, we also consider to combine the video-based tracking results
with contact-based sensor information such as RFID. In this way, we
can explore an alternative input information channel to assist ani-
mal re-identification and thereby improve the long-duration tracking
performance.

The visualization of the trajectory of pigs with the enhanced Fair-
MOT method is shown in Fig. 9. Through this systematic visualization,
it is possible to observe pig movements and habits that facilitate the
combination of behavior and genetic analysis. These two examples
show more inactive behavior (e.g. resting) in pigs, whereas there are
also some situations, where pigs are extremely active or even fight with
each other. These challenging cases introduce multiple difficulties to
MOT systems.

We have collected 238,924 video frames of 96 videos with manually
annotated bounding boxes for K-fold cross-validation. There are also
5 long-duration video segments for longer continuous tracking evalu-
ation. The model generalization has been tested for different pens in
different days, and various activity levels. The recordings are selected
on uncontrolled lighting conditions, including morning and afternoon
periods. In future work, the proposed models can be further tested using
recordings from different farms.

Different from prevailing pedestrian datasets that people are coming
and leaving continuously in the scene, pigs on real farms are growing in
fixed pens. The camera of each pen captures all individuals. From the
perspective of monitoring, a consistent identity is crucial to check the
behavior of the specific pig. Therefore, the number of identity switches
has an important role among all evaluation items.

As described in Section 4.2, all experiments are carried out on
an RTX 2080Ti GPU. However, this leads to many limitations for
parameter settings of machine learning. Apart from the sake of effi-
ciency, the main reason we have selected the input image resolution
as 864 × 480 pixels is that the GPU cannot support more expensive
computations for higher image resolution during JDE implementation.
Therefore, we expect better comparisons and more effective training
of various A.I. algorithms by implementing modern high-performance
computing solutions based on open source and scalable cloud native
computing architectures in the near future.

6. Conclusion

We have investigated three state-of-the-art automated multi-object
tracking methods on 2 pig datasets. Both datasets contain manual
annotations of pigs in real farms. The video segments have diverse chal-
lenging conditions such as occlusion, active and high-speed movements.
In this way, the generalization and robustness of the tracking models
are evaluated based on K-fold cross-validation. We have proposed a
weighted-association strategy to enhance the association algorithm of
animal re-ID on JDE and FairMOT methods, which increase the per-
formance of IDF1 by 1.97% at most, and reduces the mean number of
identity switches by 46 at most. It can be concluded that the enhanced
FairMOT performs the best in terms of multi-object tracking, indicated
by an IDF1 of 80.94%, MOTA of 88.55%, MOTP of 82.60%, number
of identity switches of 213. All tracking systems achieve nearly and/or
real-time execution rate. For the purpose of a continuous MOT system,
all proposed methods are sufficient in terms of the execution rate.
13
In conclusion, the experimental results of evaluation metrics demon-
strate the effectiveness and robustness of the three proposed methods
on multi-object tracking systems. FairMOT with the proposed weighted-
association strategy achieves the best tracking performance for individ-
ual pigs in a real farm.
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