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A B S T R A C T   

Outcome prediction is important for conservation; however, analysis may be hampered by specialist resource 
deficiencies. Mental modelling techniques offer a potential solution, drawing on accessible sources of knowledge 
held informally by local stakeholders. Mental models show linked social and ecological variables from the 
perspectives of community members, whose insights may otherwise be neglected. Currently, an important 
weakness in conservation mental modelling is inadequate attention paid to real-time model predictive validity. 
To address this knowledge gap, baseline mental model predictions concerning Beaver (Castor fiber) reintro
duction in Southwest England were followed up at three years. Participants were invited to submit outcome 
observations for concept variables identified in their original models, blind to inferences based on model dy
namic analysis, so that the two sets of data could be compared. Individual concept values and models were found 
to show weak and highly inconsistent predictive validity, however, multi-stakeholder aggregated mental models 
showed consistently strong predictive performance. This finding was enhanced by setting tighter thresholds for 
inclusion of individual model items in aggregation procedures. Threshold effects can be interpreted as a 
reflection of greater agreement: tighter thresholds retain more highly shared model components. It is proposed 
that enhanced real-time predictive validity for aggregated models is explained by a ‘wisdom of the crowd’ 
statistical effect, analogous to well-recognised crowd judgement effects observed in relation to much simpler 
questions. The findings show the scope for stakeholder mental modelling methods as an investigative tool, to 
supplement more conventional ecosystem assessments in predicting data-poor conservation outcomes.   

1. Introduction 

1.1. Conservation background to the study 

Conservation planners and managers are often expected to forecast 
the results of interventions including reintroductions, wildlife protec
tion measures and ecological restoration, increasingly typical of the 
urgent large-scale vision of recovery required to counteract ecosystem 
decline. To assist with the technical and resource challenges involved, 
stakeholder perception-based mental model methods have been devel
oped as a complement and sometimes as an alternative to conventional 
ecosystem assessments (Biggs et al., 2008; Jones et al., 2011; Moon 
et al., 2019). As such, mental models drawing on community knowledge 
can be elicited to show conceptual components and relationships, usu
ally represented on two-dimensional maps, analogous to their adaptive 
function in normal psychology (Johnson-Laird, 2010). Represented 

externally, mental models reveal insights into perceived ecosystem 
states, and thus help people make sense of their own and others’ per
spectives and expectations (Jones et al., 2011). How well mental model 
predictions are borne out by subsequent observations remains untested. 
This paper aims to help bridge this knowledge gap by examining the 
question empirically. 

A defining feature of mental modelling is capacity to make dynamic 
“predictions of future system states” (Rouse & Morris, 1986, p351). 
Predictive function is key to their purpose. As originally conceived, 
mental models support decision-making by allowing the subject to 
envisage and select between desirable and undesirable future predictive 
options (Craik, 1943). In perception-based research, mental models can 
be formatted as semi-quantitative ‘fuzzy cognitive maps’ (FCM) to make 
dynamic predictions which similarly set out alternative predictive future 
scenarios (Jetter & Kok, 2014). The potential of the technique has been 
shown in studies of policy in threatened Brazilian forest (Kok, 2009), 
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and comparing then combining perspectives on the Atlantic Summer 
Flounder, Paralichthys dentatus fishery (Gray et al., 2012). 

In mental model analysis, important differences exist between in
sights gained from individual and aggregated models. Both individual 
models and combined models from a single set of similar stakeholders 
should be considered “incomplete representations of ‘reality’ that are 
context dependent …” (Moon et al., 2019, p2), primarily of use to shed 
light on a distinctive point of view within a wider system. In contrast, 
multi-stakeholder aggregations drawing on more diverse sources of in
formation have been shown to tend towards an objectively verifiable 
reality for the system under examination (Gray et al., 2012). 

The use of combined data to improve the accuracy of real-world 
assessments has a long history. Galton (1907) first proposed combined 
judgements based on multiple observations for a simple task such as 
guessing the weight of a body, in which average results out-performed 
individuals including recognised ‘experts’. More complex predictive 
cognitive problems implicating diverse fields including economics, 
politics, sport and engineering for which multiple inputting factors are 
relevant, have also been shown amenable to crowd estimation effects 
(Surowiecki, 2005). Elaborating on Surowiecki’s theoretical insights, 
Estupiñán Ricardo et al. (2020) demonstrated a detailed mathematical 
approach to calculating uncertain relationships in a crowd-sourced 
FCM, based on averaged crowd estimations for each connection value. 

Termed ‘wisdom of the crowds’ (WOC), multiple source averaging 
methods have been adapted to complex problem evaluation in conser
vation (Arlinghaus & Krause, 2013). Examples show the potential for 
WOC methods applied to challenging wildlife management problems; 
for example, assessments of the declining abundance of culturally 
valued Manus Green Tree Snails, Papustyla pulcherrima in Papua New 
Guinea (Whitmore, 2016), and abundance of two threatened species of 
Asian Horse-shoe Crab, Tachypleus tridentatus and Carcinoscorpius 
rotundicauda off the coast of Guanxi Zhuang in southern China (Liao 
et al., 2019). 

Building on this approach, a WOC effect drawn from combined 
mental models has recently been demonstrated for a European fresh
water fishery, where aggregated mental models were found to perform 
well against independent assessments (Aminpour et al., 2020). To our 
knowledge, no attempt has been made to take the next step in reflecting 
back on the psychological forward-predictive role of mental models, 
applying WOC statistical inference to real-time predictive dynamic 
analysis of aggregated models in conservation. 

The present study compares mental model dynamic analysis with 
participant follow-up evaluations of the actual ‘outcome’ activity state 
for concept components identified in the original models. By this is 
meant whether a concept variable becomes more or less prominent in 
the participant’s evaluation of the ecosystem. We anticipated that a 
‘crowd’ combination of diversely sourced models would replicate WOC 
‘averaging’ effects, hence enhancing predictive validity for concept 
activation levels of aggregated models under dynamic analysis. 

Problematically for this method, defining a predictive ‘average’ 
mental model is not straightforward. A possible solution is to consider a 
rising set of model concept and connection frequency-inclusion thresh
olds in aggregation. The effect is to retain only those components 
showing increasing commonality and hence a plausible expression of 
‘average’ content in a combined model. In practice, it is important to 
understand how aggregation procedures affect the predictive validity of 
dynamic analysis, a question which can be explored by comparing 
model predictive validity while progressively tightening aggregation 
inclusion criteria. 

1.2. The River Otter Beaver Trial 

The opportunity to study mental model predictive validity followed 
earlier work on mental models and the reintroduction of a population of 
free-living Eurasian Beaver, Castor fiber into southwest England, the 
River Otter Beaver Trial or ROBT, (Brazier et al., 2020). The social 

dimension of ROBT has been extensively explored including approaches 
to human-wildlife conflict (Auster et al., 2021), perceived effectiveness 
of conservation mitigation actions (Blewett et al., 2021), and the role of 
emotion in responding to a changing ecosystem (Blewett et al., 2022). 
Beaver ecology is a rich focus for social dimensions of conservation 
research, as the beaver keystone function triggers rapid ecological 
change, impacting strongly on landscapes typical of present and former 
natural beaver range in northern Europe (Brazier et al., 2021). Given 
these effects, restoring beavers to England has unsurprisingly stimulated 
vigorous public debate, including how best to promote successful 
coexistence (Auster et al., 2020), highlighting categories of frequently 
identified human wildlife conflict applicable to a wide range of global 
conservation scenarios (Nyhus, 2016). 

1.3. Mental model aggregation and dynamic analysis 

Construction of mental models is most commonly done by partici
pant interviews followed by pre-specified rules for aggregation (Gray 
et al., 2014; Özesmi & Özesmi, 2004). Of note, as an alternative to ag
gregation, it is possible to build multi-stakeholder environmental FCM 
models using a participatory workshop format such as the method 
described by Verkerk et al. (2017). As the original baseline study 
focussed on individual mental models collected primarily to understand 
individual and sectoral perspectives (e.g., farmers compared with con
servationists), this methodology was not a later option to consider with 
the available dataset. The separate question of the predictive validity of 
appropriately constituted workshop FCMs is therefore outside the scope 
of this paper. We formatted FCMs from raw mental models using so- 
called ‘fuzzy logic’ methods to cope with subjectivity in judging causal 
influences between concepts (Kosko, 1986). Connection values from 
multiple models in FCM format can be combined mathematically. Dy
namic analysis (DA) is the predictive procedure whereby the collective 
strengths of connections are repeatedly applied to the ‘state values’ of 
the concepts in the model, which consequently evolve towards a steady 
state profile representing their relative activity in the system as 
perceived by the modeller. This can readily be done using one of several 
freely available on-line software products. 

1.4. Mental model predictions and the problem of time 

Informal knowledge-based mental models may include beliefs about 
time scales, however neither mental models nor FCMs standardise time. 
Punctual concept changes such as adjustments to the law are handled in 
the same way as ‘slow’ concepts such as climatic warming. Conse
quently, semi-quantification of both state and temporal evolution of the 
system requires care in interpreting meaning of change, because dy
namic analysis of FCMs is entirely relative, e.g., concepts are more or less 
present and or active, post interaction with the rest of the model. This 
non-specificity challenges the notion of model prediction as a future 
forecast. An additional challenge arises from accumulating events. For 
example, the present study follow-up period included both the traumatic 
rupture in U.K. relationships with the European Union (‘Brexit’), and 
imposition of Covid pandemic restrictions to social and economic ac
tivity. Elicited mental models have no in-built capacity to adjust for such 
novelties, and so one might expect ‘predictive decay’ as a result of 
incidental events over time. A prospective follow-up study embracing 
major disruptions over such a short time frame offers a unique oppor
tunity to assess mental model predictive robustness in the face of system 
shocks. 

1.5. Research hypotheses 

This study investigates the role of mental modelling in evaluating 
expected change within a conservation landscape. Although the species 
focus is on Eurasian beavers, the method has wider applications in 
conservation science and practice. To our knowledge future predictive 
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mental modelling is as yet unaddressed in this context (Conservation 
evidence base, https://www.conservationevidence.com). 

Thus, applying the potential value of aggregated mental modelling as 
a WOC tool to our case study of a beaver reintroduction in a typical 
multi-use lowland north European landscape, we proposed hypotheses 
H1 and H2; 

H1. FCM dynamic analysis of baseline stakeholder conservation 
mental models predicts subsequent follow-up observations, and 

H2. Aggregated FCM mental model predictive potential is superior to 
equivalent tests for either individual mental models or single concepts 
composing individual models, consistent with ‘wisdom of the crowd’ 
logic. 

Additionally, to address the methodological issue of how stringency 
of aggregation techniques influences the predictive validity of combined 
models, we pose a research question, RQ; 

RQ. How do decisions concerning inclusion thresholds for concepts 
and connections by degree of ‘sharedness’ between participants influ
ence the predictive potential of multi-stakeholder aggregated models? 

2. Method 

2.1. Study sample 

This study builds on a baseline sample of 48 participant mental 
models recruited over six months by the principal author in 2018/19 
(see Blewett et al., 2021), of which 31 provided usable follow-up data 
three years later. 

The study considered the ROBT geographical area. The river Otter 

runs south into the western English Channel, from a small catchment of 
approximately 250 Km2 on the Southwestern English peninsula. At the 
end of the ROBT in 2020, resident beavers formed a growing population 
approaching 50 animals within the catchment. The river passes through 
a mixed lowland and mostly agricultural region; riparian areas 
comprising grassland used for grazing, smaller areas of arable, wood
land, and small village and urban settlements with connecting 
infrastructure. 

Study participants were recruited on the basis of active engagement 
with the study area, and initially interviewed in their homes or work
place. Stakeholder affiliations were identified by discussion with the 
ROBT project manager, and through annual reports later summarized by 
Brazier et al. (2020). Categories include General Public, Conservation 
and Environmental Scientists, Landowners and Managers, Farmers, 
Anglers and a miscellaneous group of regulators and natural resource 
managers. 23 people, including most specialist participants were 
recruited by direct approach or snowballing, and 25 including most 
general public participants via social media adverts. As the focus is on 
knowledge, recruitment aimed “not to obtain a representative sample of 
a population, but to represent different knowledge areas”, (Olazabal 
et al., 2018: 800) and hence sampling up to ‘concept saturation’ (Özesmi 
& Özesmi, 2004) which arrived at 89 % by 25 interviews; however, 
recruitment was continued to better represent minority specialist 
stakeholder groups. 

Mental model interviews included an introduction to the study, with 
sharing photographs of a beaver, the river and trial area map. In addition 
to mandatory ‘Beaver presence’, participants were asked to write down 
and display their own ‘concepts’ framed under three categories, while 

Fig. 1. Example of a (Landowner) raw mental model. One concept was inverted for semantic consistency, its connections inverted in the FCM matrix for analysis to 
preserve the logic of the model. With kind permission. 
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considering a five-year time span: ‘Beavers and a) wildlife & vegetation, 
b) river & physical environment c) people & human activities’, using 
positive terms wherever possible. When the concept display was com
plete, participants were asked to add direct (+) or inverse (− ) fuzzy- 
weighted connecting ‘influence’ arrows (Very Strong ‘VS’, Strong ‘S’, 
Moderate ‘M’, and Weak ‘W’) starting from each concept in turn. The 
objective was to obtain representations as close as possible to the 
working mental model held by each participant, for the relevant 
domain; see for example, Fig. 1. 

2.2. Mental model representation as FCMs 

Initial cleansing reduced the raw sample from 657 to 600 mental 
model terms, after replicates on the same models were merged. 22 in
dividual terms plus 2 merged terms were inverted to express a positive 
meaning to facilitate comparison and aggregation. 

Mental model representation for FCM analysis follows published 
studies (Obiedat & Samarasinghe, 2016; Olazabal et al., 2018; Özesmi & 
Özesmi, 2004): (i) ‘raw’ concepts were standardised as 53 ‘condensed’ 
FCM concept-categories based on semantic similarity, (ii) FCMs were 
converted into square matrices, cells populated with numerical values 
equating to ‘fuzzy’ terms, (no influence = 0, W = ±0.2, M = ±0.4, S =
±0.6, VS = ±0.8), and for aggregated models, (iii) mean connection 
values were calculated for concatenated cell concept connections (Abel 
et al., 1998; Cannon-Bowers & Salas, 2001; Gray et al., 2014), following 
which, (iv) inferred concept activation states influenced by connections 
were calculated by dynamic analysis (DA). 

2.3. Dynamic analysis, DA 

Baseline DA was conducted using open access ‘FCMapper’ software 
(Wildenberg et al., 2010) for (i) 31 individual mental models for which 
participants agreed to follow-up, and (ii) ten versions of the 31-model 
aggregated FCM, determined by setting two concept inclusion thresh
olds and five connection inclusion thresholds. 

DA is done by allowing the vector set of ‘activation values’ for each 
concept in the model (A1, A2, A2…, An) to evolve under iterative 
multiplication with the constant matrix (n × n) of signed and weighted 
connections, until the vector set values stabilise. An initial standard 
value of ‘1’ is granted to all concepts comprising vector A at time-point 
k, the connection matrix w is composed of rows i and columns j. 
Multiplication arrives at k + 1, repeated until the values stabilise. No 
‘self-loops’ (i = j) were permitted. The procedure is set out in Equation 
(1); 

A(k+1)
i = ΣN

j ∕= i
j = 1

A(k)
j wji (1) 

FCMapper includes the option of logistic normalisation for each 
concept activation step. We analysed non-normalised data for aggre
gated models, to avoid an unnecessary additional step in data 
transformation. 

2.4. Follow-up observed data 

Follow-up comprised ‘Google Forms’ questionnaires following 
favorable email response to a request for participation covering views on 

how each concept identified in the original models had fared subsequent 
to baseline mental model interviews, as a point observation at approx
imately three years (range: 36–43 months). 32 forms were eventually 
completed, of which 31 could be analysed. 

Occupational, gender and age distributions are shown in Table1. 
Of note, three conservationists worked directly with the ROBT and 

two members of the general public had family links, however these in
dividuals were judged to be working and thinking independently, with 
different professional and personal priorities expressed through their 
mental models. No attempt was made to compare predictive validity by 
stakeholder group, as the aggregation focus was on the whole sample; 
the most diverse representation of stakeholder knowledge relevant to 
the principles of the WOC statistical effect. 

Overall gender balance, thirteen women and eighteen men, showed 
marginal male over-representation, probably reflecting community 
gender bias in farm ownership and forestry, and angling as a leisure 
activity, contrasting with a more balanced younger female age-group 
involvement in conservation, supported anecdotally. Female predomi
nance amongst interested members of the public is compatible with the 
possibility that women are poorly represented in some rural operational 
areas of control (e.g., of land use) but show a strong level of concern from 
‘outside’. The demographics are likely to be a simple reflection of 
gender-biased social roles in the study region. Ethnicity data was not 
collected. It is unlikely that any participants would have identified as 
other than white British or European. 

The follow-up questionnaire comprised a 7-point (-3 to 3) scale for 
perceived change to each term, according to one of seven labels; 
“Decreased a lot”, “Decreased moderately”, “Decreased a bit”, “Un
changed”, and conversely step-wise to “Increased a lot”, with an eighth 
“Don’t know” option where preferred. Participants did not have DA 
results available either from their own or the aggregated model, hence 
participant estimates were ‘blind’ to baseline DA, and dependent only on 
their updated perspectives on the developing beaver ecosystem. 

To complete the questionnaire, participants were instructed to 
consider change to concept activity, extent, and/or quality as applicable 
and irrespective of reason, in the three years since 2018/19. They were 
asked to use broad judgement to arrive at a net summary view reflecting 
experience, information or knowledge; stressing that the focus was on 
perception and not a supposed right or wrong response. Participants 
were asked to grade outcomes for their original mental model terms, 
reverted back to the standardised concept label for aggregation. 

2.5. Model predictive potential 

Predictive potential of the aggregated models was tested by regres
sion analysis for the set of predictive DA concept activation values and 
the corresponding set of mean follow-up questionnaire scores at three 
years. Activation values for concepts with outgoing connections only 
(transmitters) were excluded from correlation analysis because as static 
drivers, they cannot themselves show change in a future state of the 
system. 

Individual concept predictions and observations both show non- 
normal distributions on respective scales of concept activity change. 
Aggregated models generate relatively small data sets. All follow-up 
outcome observation data are measured on an ordinal scale. For these 
reasons non-parametric Spearman’s ρ was considered most appropriate 

Table 1 
Demographic structure of the follow-up sample, n = 31.   

General 
public 

Conservation and environmental 
science 

Landowners and estate 
managers 

Farmer and farmer 
representative 

Angler Forestry managers and 
regulators 

Number of mental 
models 

14 8 3 2 2 2 

F:M gender 9:5 4:4 0:3 0:2 0:2 0:2 
Age range 26–61+ 18–60 41–60 41–61+ 18–61+ 26–60  
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to test all predictive concept activation and outcome score correlations, 
and ρ2 to estimate proportions of explained variance. 

2.6. Non-aggregated data 

All 31 follow up mental models were dynamically analysed in 
FCMapper, independently of each other, such that individual model 
concept DA, and the whole sample of concept DA scores, could be 
compared with corresponding follow-up observations. In analysis of the 
whole sample of concept DAs, concept DA values were normalised 
because outcome values can otherwise only be compared within models 
but not between models. 

2.7. Aggregation: Threshold setting procedure for concepts 

There is no standardised approach to identifying a common set of 
concepts retained in aggregation. Aggregation methods include retain
ing all concepts and stronger summated connections (Özesmi & Özesmi, 
2004), and inclusion by expert-credibility weighting (Obiedat & 
Samarasinghe, 2013). We relied on frequency of concept inclusion by 
contributing stakeholders (see Blewett et al., 2022), retaining the most 
commonly identified concepts above the following thresholds; (i) a 
‘permissive’ cut-off retaining 25 concepts present in the upper two 
quartiles by concept frequency and excluding a long tail of rarer outlier 
concepts, and (ii) a ‘tight’ cut-off retaining 12 concepts present in the 
upper quartile only, to favour a much higher degree of concept- 
sharedness. 

The terms ‘permissive’ and ‘tight’ are used to distinguish concept 
inclusion thresholds hereafter. As connection thresholds are themselves 
tightened, rarer, less-shared concepts lose connections and are pro
gressively orphaned, falling out of the aggregated model. 

2.8. Aggregation: Threshold setting procedure for connections 

Mean connection values between retained concepts were calculated 
in Microsoft Excel for permissive and tight concept versions of the 
aggregated model. The procedure retains all same-signed (meaning 
positive-direct or negative-inverse causality) connections between 

equivalent concepts. The threshold selections chosen require ≥2, 3, 4, 5 
and 6 connections in the relevant concatenated FCM matrix ‘cell’, from 
which a final mean value is calculated. It was planned that each group 
would be extended to include a higher minimum, accepting no more 
than one contrary signed member which we anticipated we would then 
drop as an outlier in calculating a mean value; however, no such cases 
arose. 

3. Results 

3.1. H1, individual concepts and models 

Predicted change (using normalised DA values) was associated with 
observed change (ρ = 0.25, P < 0.001) for the whole sample of concepts 
(N = 361 pairs), conventionally considered to be a weak effect at 0.3 ≥ ρ 
> 0.1 (Cohen, 1992). Overall, only 6 % of the variance in observed 
change was explained by the predicted change (i.e., ρ2 = 0.06). 

Individual models analysed by non-normalised DA showed a very 
wide predictive spread. For six of 31 individual models, predicted 
change was strongly correlated with observed change (ρ ≥ 0.50, P <
0.05). For six other individual models, the association was negative. The 
six individuals with strong positive correlations were from four different 
stakeholder groups. Overall, individual model ρ values lie in the range 
− 0.41 to +0.77. 

3.2. H2, the aggregated model, with example 

Relationships between predicted changes (DA) and observed changes 
were tested for aggregated models based on two concept and five 
connection thresholds, generating ten versions of the aggregated model 
in total. 

The ‘tightest’, most strongly predictive aggregated mental model, 
(version 10, see Tables 2 and 4) has the highest thresholds for inclusion 
based on concepts shared or most frequently found amongst the thirty- 
one contributing individual mental models. Consequently, it has twelve 
concepts, of which three have lost all inputting connections because of 
the high connection threshold. The state value of these driver concepts is 
static, hence excluded from correlation calculations. For illustration, in 

Fig. 2. Illustrative aggregated mental model; version 10, shown in Tables 2 and 4. Transmitter (driver) concepts are green, receiver concepts yellow, concepts with 
both in and outputs are white. Connection values are direct - black, or inverse - red; all connection values (− 1 to +1), are rounded to one decimal place for clarity. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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addition to ‘Beaver presence’, model 10 shows the participant originated 
concepts ‘Beaver acceptance – General public’, ‘Beaver acceptance – 
Farmer, landowner, forestry’, and ‘Biodiversity – general’ as most con
nected (more incoming and outgoing influence arrows) and hence 
considered most salient in relation to the whole model; see Fig. 2. 

The relationship between predictive dynamic analysis concept state 
values in model version 10, are shown in relation to observed values 
representing mean participant perceptions of change in the state of the 
concepts at three years, in Table 2. 

Equivalent findings for all ten versions of the aggregated model 
examined are shown for permissive and tightly defined concept inclu
sion aggregated models in Tables 3 and 4 respectively. Each version 
shows strong predictive effects, considered as ρ ≥ 0.5 (Cohen, 1992), 
significant at P < 0.05 in all but model version 4. Across all aggregated 
models, between 38 % and 72 % of variance in observed change is 
explained by the predicted change (i.e., ρ2 = between 0.38 and 0.72). 

Predictive performance measured by ρ tends to increase as concept 
inclusion is tightened, demonstrated by the spread of ρ values compared 
between the permissive and tight concept inclusion models shown in 
Table 3 and 4. There is also a rising pattern of ρ values corresponding to 
increasing connection thresholds shown in the tight concept inclusion 

model, Table 4. Spearman’s ρ calculations excluded concepts which 
function as transmitters, i.e., only have outgoing connections and hence 
cannot be influenced within the model, which appear in aggregated 
model versions 9 and 10, also shown in Table 4. 

3.3. Interaction between connection and concept inclusion thresholds in 
aggregation 

Aggregated model DA values shown in rows for individual concepts 
and the corresponding mean observation value at three years are set out 
in Tables 5 and 6, again distinguishing between permissive and tighter 
thresholds based on concept frequency across the sample of individual 
mental models. The concept ‘Beaver presence’ was mandatory for all 
participants at elicitation, and so can be seen to occur in all 31 individual 
mental models. Columns of DA values for increasing connection 
thresholds are correlated with mean observations, (from which are 
derived the Spearman’s ρ values in Tables 3 and 4). The overall size of 
the model shrinks as ‘concept frequency’ declines below the mandatory 
‘Beaver presence’ concept, listed in column two of Tables 5 and 6. Rising 
connection thresholds tends to disconnect rarer concepts which are 
consequently orphaned from the aggregated model, as can be seen with 

Table 2 
Illustration of predictive and observed follow up states for aggregated model version 10, shown in Fig. 2. Transmitters are excluded; Spearman’s ρ = 0.85, P = 0.001.  

Concept Baseline Dynamic Analysis (non-normalised) Mean observed follow-up state (Scale − 3 to +3) 

Beaver presence - (mandatory concept)  1.52  1.9 
Riparian woodland/vegetation health  0.52  1.1 
Nature tourism  0.99  1.7 
Beaver acceptance - farmer, landowner, forestry  − 0.33  0.5 
Beaver acceptance - general public  2.14  1.9 
Biodiversity - general  1.42  1.6 
Beaver damming and impoundment of water  0.71  0.9 
Government policy/finance for nature  0.86  0.8 
Wetland - ecosystem health & services  0.64  1.5  

Table 3 
Correlations between predictive dynamic analysis (DA) and observed states for five versions of the ‘permissive’ aggregated model. The permissive model is defined by 
inclusion of the upper two quartiles of concepts by frequency shared between individual mental models, and varied according to additional thresholds for connections 
based on their frequency (≥2 to ≥6) across contributing mental models.  

Aggregated model 
version 

Aggregation: inclusion threshold for number of 
connections from contributing mental models 

Aggregation: n of concepts 
retained in upper two quartiles 

Connections: 
n 

Prediction: DA & observed 
change; spearman’s ρ 

P ρ2 

1 ≥2 25 136  0.61  0.013 38 
% 

2 ≥3 23 91  0.61  0.002 38 
% 

3 ≥4 21 60  0.66  0.001 43 
% 

4 ≥5 15 39  0.50  0.058 25 
% 

5 ≥6 12 27  0.64  0.025 41 
%  

Table 4 
Correlations between predictive dynamic analysis (DA) and observed states for five versions of the ‘tight’ aggregated model. The tight model is defined by inclusion of 
the upper quartile only of concepts by frequency shared between individual mental models, and varied according to additional thresholds for connections based on 
their frequency (≥2 to ≥ 6) across contributing mental models.  

Aggregated 
model version 

Aggregation: inclusion threshold for number of 
connections from contributing mental models 

Aggregation: n of concepts retained in 
upper quartile only (*Transmitters) 

Connections: 
n 

Prediction: DA & observed 
change; Spearman’s ρ 

P ρ2 

6 ≥2 12 56  0.67  0.018 44 
% 

7 ≥3 12 48  0.65  0.023 42 
% 

8 ≥4 12 33  0.81  0.001 65 
% 

9 ≥5 12 (of which *2) 28  0.84  0.001 70 
% 

10 ≥6 12 (of which *3) 21  0.85  0.001 72 
%  
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increasing frequency towards the foot of Tables 5 and 6. 
The overall effect of raising thresholds for both concept inclusion and 

then connection inclusion is to reduce the number of concepts with their 
respective activation scores from 25 to 12, noting that in models 9 and 
10 shown in Table 4, concepts were excluded from the correlation 
analysis because they are driver transmitters with fixed activation 
values. 

4. Discussion 

4.1. Findings - summary 

The findings in the present study provide partial support for H1 and 
strong support for H2, concerning the question of predictive validity and 
hence accuracy of same-concept follow-up observer assessments at three 
years. In addition, this study shows that in aggregated models, tighter 
thresholds for concept and connection inclusion based on increasingly 

restrictive criteria of sharedness further improves predictive validity. To 
our knowledge these contributions are new to the conservation litera
ture. Specifically; 

H1. Analysis of predictive and observed FCM activation values for 
non-aggregated data shows a weak predictive relationship at the level of 
individual concepts, and a highly variable, inconsistent relationship at 
the level of individual mental models. 

H2. Analysis of predictive and observed FCM activation values for 
the multi-stakeholder aggregated model shows a strong predictive 
relationship, statistically significant for nine of ten aggregation inclusion 
thresholds. 

RQ. Investigation of aggregated model concept and connection in
clusion thresholds specifying ‘sharedness’ between constituent mental 
models shows trade-offs between predictive validity of the aggregated 
model and model information-richness with respect to numbers of 
retained concepts and connections. 

Table 5 
‘Permissive’ aggregated model, (upper two quartiles of concepts by frequency): concepts are shown with (i) concept frequency across the contributing mental models, 
(ii) dynamic analysis (DA) predicted scores decided by minimum frequency of connections (≥2 to ≥6) as an inclusion threshold for aggregation, (iii) corresponding 
mean observed values at three years. Predictive correlations for columns of DA scores and mean observation scores are shown in Table 3.  

Concept category (n =
25) 

Concept 
frequency 

Predictive value: 
DA ≥ 2 
connections 

Predictive value: 
DA ≥ 3 
connections 

Predictive value: 
DA ≥ 4 
connections 

Predictive value: 
DA ≥ 5 
connections 

Predictive value: 
DA ≥ 6 
connections 

Mean 
ObservedValue; 3 
years 

Beaver presence 31  4.09  3.25  2.82  2.13  1.54  1.89 
Biodiversity - general 26  6.26  5.52  3.61  2.96  2.28  1.63 
Beaver acceptance - 

General public 
22  6.26  5.06  3.64  2.95  2.54  1.91 

Beaver acceptance - 
Farmer, landowner, 
forestry 

20  0.93  0.19  0.05  0.03  − 0.33  0.50 

Government policy/ 
finance for nature 

18  3.31  2.73  1.49  0.94  0.87  0.85 

Riparian woodland/ 
vegetation health 

16  1.25  1.24  0.86  0.54  0.52  1.09 

Wetland - ecosystem 
health & services 

16  3.43  2.73  2.22  1.60  0.64  1.50 

Nature tourism 15  3.44  2.22  1.60  1.05  1.02  1.73 
Beaver damming and 

impoundment of 
water 

14  0.77  0.76  0.75  0.74  0.71  0.93 

Science, education & 
knowledge 

14  2.71  1.63  1.19  0.69   1.50 

Wildlife NGO - effective 
leadership 

14  2.96  1.77  0.62    0.64 

Beaver flooding/impact 
on productive land 

13  0.68  0.82  0.54    0.25 

Sense of place/ 
specialness 

12  2.25  1.10  1.09  0.53  0.51  2.00 

Making space for wilder 
nature 

12  1.78  1.75  1.21  0.60  0.57  1.00 

Water retention - upper 
catchment 

12  1.13  1.12  0.40  0.40   1.10 

Conflict - public and 
private property/ 
amenity 

12  0.10  0.35  0.34    − 0.30 

Beaver acceptance - 
anglers 

11  2.27  1.83  1.21  0.06  − 0.40  − 0.29 

Business generation 11  2.61  1.21  1.18  1.14  0.00  0.70 
Holistic enrichment 

through valuing 
nature 

8  1.67  0.39     1.25 

Natural hydrology - 
wilder river 

8  0.87  0.87  0.46    1.33 

Flow rate/Problem 
flooding in lower 
reaches 

8  − 0.50  − 0.50  − 0.50    − 1.00 

Conflict & distress - 
natural resource 
stakeholder 

8  − 0.09  0.59  0.59    0.57 

Water quality 8  0.67      1.57 
Fish population health 8  3.13      1.00 
Beaver persecution 7  − 1.90  − 0.10     0.33  
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4.2. Implications of the findings 

While accurate prediction of expected conservation outcomes is 
clearly important, mental models have often been viewed as sitting 
uneasily in this context because they are essentially subjective in nature 
(Özesmi & Özesmi, 2004). From this perspective, predictive validation 
of mental models appears questionable. Introducing wisdom of the 
crowd statistical treatment adds a different and more objective dimen
sion. In this case, the aim is not to show and compare unique individual 
or sectoral perspectives, but to use combined knowledge to create an 
objectively validate-able version of the ‘real world’, including confi
dence in a ‘real’ prospective time dimension. 

Capacity to make predictions following conservation actions con
tributes to their credibility and accountability, especially where re
sources are committed (Game et al., 2018), and outcomes are otherwise 
contested. Thus, assurance that what is believed will happen is later 
observed to happen in practice, is a valuable asset. As this and recent 
studies have shown, aggregation of data consistent with the WOC phe
nomenon can contribute a new layer of understanding and assurance to 
conservation planning and interventions. In addition, stakeholder 
engagement through mental model aggregation gives representative 
weight to findings which may also increase a sense of democratic 
legitimacy for policy and decision-makers. 

Better model predictions based on aggregation suggest confidence 
that combined models can be considered both consensual and stable. 
Additionally, our findings show that more frequent, more highly con
nected, and presumably important mental model components contribute 
more strongly to predictive validity at three years. Our most strongly 
predictive aggregated model (see Tables 2 and 4, model version 10) has 
twelve interacting concepts showing strong face validity with respect to 
the basic parameters of beaver reintroduction; items on hydrology and 
biodiversity, economic inputs and outputs, levels of beaver acceptance 
amongst various stakeholders, and a key role for conservation NGO 
leadership. 

As increased predictive confidence attaches to connections which 
survive into high threshold versions of the aggregated model, scholars 
need to consider whether they wish to focus on a narrower field of 
predictive accuracy, or retain a softer field of information touching on a 

wider range of socio-ecological interactions, including concepts and 
connections which still have the potential to set up scientific hypotheses 
or management investigations. We suggest that modelling a spectrum of 
thresholds of decreasing stringency might be valuable where the 
objective is to broaden a more varied discussion including scenarios 
featuring less well-validated or foreseeable outcomes. 

4.3. The meaning of prediction 

There are important limitations to the notion of DA interpreted as a 
forecast in time. While the iterative calculus used in DA appears at first 
sight analogous to measured time, what this actually represents is not so 
clear cut. Stepped models designed by experts to separate out short, 
medium and longer term futures offer a possible solution (Giordano 
et al., 2020; Gómez Martín et al., 2020) although these approaches are 
qualitatively different from perspectives we observe with many non- 
experts relying on relatively unstructured informal knowledge. 
Attempting to constrain models by specifying time parameters may in
crease elicitation stress for some participants, and specifying more 
‘rules’ during elicitation risks distorting perspectives away from the raw 
participant view towards the pre-conceptions of the researcher, poten
tially biasing a WOC effect. 

While three-year follow-up is modest, it is striking that predictive 
performance in this case survived Covid restrictions and the legal 
moment of Brexit, suggesting model robustness. By their nature, both 
events might be viewed as social rather than ecological drivers. It is 
possible that a more obviously ‘ecological’ disaster such as the cata
strophic flooding recently experienced in an adjoining county (2014), 
might have had a more marked impact on predictive validity. Never
theless, we anticipate that model dynamic analysis will show declining 
predictive accuracy in the absence of an up-date process. We also 
anticipate slower decay in model predictive validity in the presence of 
higher measures of system resilience, with less vulnerability to outcome 
deviation. 

While these questions are unresolved, aggregated mental model 
dynamic analysis might be thought of as an on-going emergent present, 
sometimes termed the “long now”, (Carpenter, 2002) which can be 
framed as a span such as ‘this year’, or ‘this decade’. Thinking about 

Table 6 
‘Tight’ aggregated model, (upper quartile of concepts by frequency only): concepts are shown with (i) (concept) frequency across the contributing mental models, (ii) 
dynamic analysis (DA) predicted scores decided by minimum frequency of connections (≥2 to ≥6) as an inclusion threshold for aggregation, (iii) corresponding mean 
observed values at three years. Predictive correlations for columns of DA scores and mean observation scores are shown in Table 4.  

Concept category (n =
12) 

Concept 
frequency 

Predictive value: 
DA ≥ 2 
connections 

Predictive value: 
DA ≥ 3 
connections 

Predictive value: 
DA ≥ 4 
connections 

Predictive value: 
DA ≥ 5 
connections 

Predictive value: 
DA ≥ 6 
connections 

Mean 
ObservedValue; 3 
years 

Beaver presence 31  3.19  3.08  2.28  2.12  1.52  1.89 
Biodiversity - general 26  3.29  3.25  2.03  2.02  1.42  1.63 
Beaver acceptance - 

General public 
22  4.23  3.53  3.01  2.42  2.14  1.91 

Beaver acceptance - 
Farmer, landowner, 
forestry 

20  0.72  0.15  0.06  0.03  − 0.33  0.50 

Government policy/ 
finance for nature 

18  3.22  2.67  1.47  0.93  0.86  0.85 

Riparian woodland/ 
vegetation health 

16  0.89  0.89  0.55  0.54  0.52  1.09 

Wetland - ecosystem 
health & services 

16  2.41  1.72  1.24  1.24  0.64  1.50 

Nature tourism 15  1.57  1.07  1.04  1.03  0.99  1.73 
Beaver damming and 

impoundment of 
water 

14  0.76  0.76  0.74  0.74  0.71  0.93 

Science, education & 
knowledge 

14  1.88  1.27  1.18  0.69   1.50 

Wildlife NGO - effective 
leadership 

14  2.27  1.75  1.18  0.69   0.64 

Beaver flooding/impact 
on productive land 

13  0.43  0.82  0.53    0.25  
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model prediction as a description of an extended now is consistent with 
the instruction to participants in the present study that they consider a 
five-year span, inferring more nuanced conclusions such as “flow mod
ulation through the watershed is on an increasing trajectory”, rather 
than hazarding more time-bound statements about unfolding but 
inherently unstable trends and events. 

4.4. Some precautions in interpreting the results 

The study design invited participants to make judgements about 
states of the system which they had previously modelled, raising 
concern about possible confirmation bias. However, dynamic analysis 
from three years earlier was not available to participants when the 
models were elicited or subsequently, effectively single blinding the 
later evaluations. Awareness of system behaviour would have been 
based on updated participant perceptions rather than the mathemati
cally inferred dynamic analysis. 

Purposive recruitment raises the question of possible confounding of 
predictive accuracy by participant expertise. The ‘crowd’ recruited into 
the study and hence into the WOC estimation of system behaviour over 
time is unlikely to be representative of the wider population. In mental 
modelling, this is justified as the focus is on accessing knowledge about 
the social-ecological system, not a survey of public views within which 
many people may show relatively low levels of interest. The concept of a 
‘stakeholder’ deliberately skews the sample in the present study towards 
a community of people who have a greater than usual level of engage
ment with the beaver project and hence beaver interactions with the 
human and natural environment. Individual and sectoral mental 
modelling reveals more about beliefs people hold than an assessment of 
the system as might be measured by external criteria. Mental models are 
therefore pointers to the kinds of knowledge held by people in a given 
community, but cannot be generalised further in the way that survey 
data might be. 

In their study, Aminpour et al. (2020) found a paradoxical aggre
gated model accuracy fall-off when the crowd grew beyond an optimal 
number, explained by increasingly amplified bias from like-minded sub- 
groups. This finding makes clear that the problem arose less from the 
size of the crowd than its composition. It is not possible to infer whether 
the sample size in the present study is too small or too large. Aminpour 
et al. (2020) addressed the problem by imposing a two-stage analysis, 
first aggregating stakeholder groups likely to show within-group 
dependence, and then super-aggregating the resulting sectoral aggre
gations. In our study, we did not observe obviously co-dependent par
ticipants; although possible exceptions included three individuals 
working for the principal wildlife NGO managing the project. It was 
notable that these individuals, likely to be viewed as highly expert, 
chose to highlight dissimilar mental model content reflecting their 
respective professional focus. 

We did not set out to purposively sample for gender, age, or any other 
social category, focussing instead on affiliation to a relevant range of 
stakeholder groups. Consequently, it is possible that the recruitment 
process failed to find important sources of knowledge concealed by in
equalities of social profile. We do not know whether more socially in
clusive and representative sampling might have further improved 
predictive validity. 

To address some of these potential pitfalls, we suggest that studies 
combining mental model and wisdom of crowd approaches should 
consider basic ‘rules’ of wisdom of the crowd (WOC) theory (Surowiecki, 
2005): crowd parameters should (i) reflect the diversity of stakeholders, 
and (ii) take care to protect independence in modelling e.g., support 
confidentiality and consider pre-aggregation of larger subgroups at risk 
of within-group dependence, and (iii) ensure that stakeholders are able 
to make judgements free from centralised control. 

5. Conclusions 

The key finding of this paper is that dynamic analysis of broadly- 
based aggregated mental models showed strong predictive validity for 
a complex wildlife reintroduction project with important social di
mensions. We are not aware that this issue has previously been exam
ined in informal conservation-related stakeholder mental modelling 
research. We suggest that stronger predictive validity for aggregated 
mental models can be explained by a ‘wisdom of the crowd’ (WOC) 
‘averaging’ effect from a diverse group of stakeholders. The study period 
included major unanticipated intervening societal events, the influence 
of which cannot be determined from the study itself, however, the 
strength of the predictive effect in the face of these events is striking. As 
predictive validity is much weaker for single concepts and extremely 
inconsistent for individual models, interpretation of dynamic analysis in 
such cases should be done with greater caution. In summary, it appears 
that aggregated mental modelling generates stable knowledge from 
which more confident predictive inferences may be made, at least over 
short time frames. This observation is offered as an addition to the 
toolkit of predictive techniques available to conservation policy makers 
and managers, in the absence of or alongside conventional ecosystem 
assessments. 
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