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A B S T R A C T   

Currently, decision support tools (DSTs) for wastewater treatment and resource recovery from wastewater use 
oversimplified databases evaluate and design of treatment trains. The databases consist of only the average, 
minimum, and maximum process performances, whereas most processes perform differently depending on the 
process characteristics and operating conditions. To address this issue of oversimplification, this study demon
strates how a grey-box modelling approach for nanofiltration (NF) can serve as an alternative to extensive da
tabases. The membrane model used in this study is a modified version of the solution-diffusion imperfection 
model proposed by Niewersch et al. (2020). This model was used to estimate water and solute permeabilities 
(chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP)) based on flux and solute 
removal literature data at various transmembrane pressures (TMPs; between 4 and 24 bar) for the two mem
branes, Dow NF90 and NF270. The estimated parameters were cross-validated to predict flux and solute removal. 
The validation mean absolute percentage errors were below 20 % in most cases, except for the TN rejection, 
which was 51 %. The applicability and relevance of the NF model were then evaluated using an optimisation 
model aimed at meeting recovery targets and simultaneously minimising costs (operational and capital expen
diture defined by the membrane area and the pumping power, respectively). The optimisation results showed 
that the selection of an NF membrane (NF90 or NF270) and the operating condition (TMP) were sensitive to the 
resource recovery targets. In conclusion, a grey-box model can potentially improve the performance of DSTs for 
resource recovery from wastewater.   

1. Introduction 

1.1. Resource recovery from urban wastewater 

Wastewater is a source of environmental pollution and thus it is 
collected and transported to central wastewater treatment plants 
(WWTPs) to be treated before discharge into the environment. The 
treatment often entails energy-intensive physical, chemical, and bio
logical processes for the removal of pollutants including organic matter, 
nitrogen, and phosphorus to meet local discharge regulations. However, 
these ‘pollutants’ and the water are in fact valuable resources that can be 
recovered and reused to reduce the stress on natural resources. Careful 
and responsible recovery of resources from wastewater can contribute to 

the circular economy, a concept that is receiving increasing attention 
[1]. From a circular economy perspective, wastewater can play a role in 
tackling nutrient depletion and water scarcity as well as in supporting 
energy transition [2–5]. Furthermore, resource recovery-oriented 
wastewater treatment can also be part of the solution to increasingly 
stringent discharge regulation and even emerging contaminants [6]. As 
in some parts of the world, wastewater treatment infrastructure is aging, 
has reached its maximum capacity, or in other parts is non-existent 
[7,8], the implementation of resource recovery becomes a real oppor
tunity. Thus, the transition from treatment to recovery of resources from 
urban wastewater can become a game-changer, solving various chal
lenges in different sectors. These challenges range from environmental 
protection and fertiliser shortage to water stress in the industrial, 
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agricultural, nature conservation, and drinking water sectors. 
Resource recovery from urban wastewater has not yet been widely 

implemented despite being researched and advocated worldwide for 
several decades. The reasons for this lag between research and imple
mentation are clear. Conventional wastewater treatment plants (WWTP) 
were designed to last for decades, up to a century; therefore, so far there 
was little need for substantial updates [9]. Meanwhile, an increasing 
number of processes are reaching the stage of proven reliable technol
ogies. Technologies for energy, nutrients, and water recovery have been 
developed, tested, and implemented in various scenarios already for 
decades [10–13]. Nevertheless, technologies are not directly transfer
able as the success of these can strongly depend on the context defined 
by economic, environmental, and social aspects such as affordability, 
legal frameworks for resource reuse, and acceptability [13–17]. These 
aspects increased the complexity of decision-making regarding (i) which 
resources should be recovered, (ii) where in the treatment train recovery 
should occur and with which process, and (iii) under what conditions 
the resources should be recovered [18]; thus hindering the imple
mentation of resource recovery from wastewater. 

Decision support tools (DSTs) have been proven to effectively sup
port wastewater treatment process or treatment train evaluation and 
design [19,20]. Several studies have developed prototype DSTs that rely 
on mathematical programming models capable of selecting a specific 
number of processes. Together, these processes form a treatment train to 
remove or recover the targeted components from urban wastewater 
while accommodating technical, economic, environmental, or social 
impact [18,21–24]. However, these DSTs use knowledge libraries with 
only average, minimum, or maximum process performances [22,24,25]. 
The knowledge library of Oertle et al. [24] contains the following 
minimum, average, and maximum process performance values for 
nanofiltration (NF): 80 %, 90 %, and 95 % removal of chemical oxygen 
demand (COD); 40 %, 40 %, and 40 % removal of total nitrogen (TN); 
90 %, 95 %, and 99 % removal of total phosphorous (TP); and no values 
for water, respectively. In contrast, NF and most other processes used for 
wastewater treatment and resource recovery from wastewater perform 
differently depending on the characteristics of the configuration and 
process operations [26–28]. Not only DSTs for technology and treatment 
train evaluation and design but also life-cycle evaluations [29] and other 
tools for water sourcing [30], water circularity [31], circular economy 
[32], and water-energy-food nexus [33] evaluations could potentially 
benefit from wider process performance ranges. 

Process performance ranges are most commonly evaluated practi
cally by using measurement campaigns at the laboratory, pilot, or full- 
scale or theoretically by using deterministic (white-box), stochastic 
(black-box), or hybrid (grey-box) mathematical models [34,35]. While 
practical evaluations are time and capital-consuming, they are necessary 
for generating the data required for theoretical evaluations. Of the three 
types of mathematical models, white- and black-box models have been 
widely applied in the field of water and wastewater treatment for pro
cess and plant performance prediction and optimisation [36–38], White- 
box models rely solely on known biological, physical, and chemical 
process dynamics and thus the amount of information required to 
generate model outputs is often limiting their applicability. At the other 
end of the spectrum are black-box approaches which are based on input- 
output stochastic relationships. As large amounts of data become 
available, machine learning (ML) based black-box models in the field of 
water and wastewater treatment are gaining interest [39,40]. Applica
tion of ML models in the field range from single process [39,41] to plant- 
wide performance prediction and optimisation [42]. ML modelling is 
also often also used to correlate difficult- with easy-to-measure param
eters for fully ML-based [43] or in combination with white-box model
ling [44,45]. The latter is a hybrid (grey-box) modelling approach that 
can enable a wider application of the white-box models. Nevertheless, 
the reliability of the ML-based models is data quality and quantity 
dependent and their interpretability is limited [35]. Thus, the choice of a 
modelling approach depends on the purpose of the modelling task as 

well as the information available about the system to be modelled. 
The aim of this study is to incorporate a wider range of process 

characteristics and operating conditions and thus performance ranges 
into the decision-making for the design of new treatment plants. How
ever, having to account for a wide performance range per process in
creases the number of numerical evaluations in DSTs. DSTs can benefit 
from simple and fast models (or mathematical functions) with an 
adequate level of detail to cover the desired variations in the configu
rations and operational settings [26]. Therefore, in this study a grey-box 
modelling approach was chosen in which unknown parameters for a 
simplified deterministic model are estimated using data from the liter
ature. The process modelling approach in this study was applied to 
nanofiltration (NF) because it is a process of emerging interest for water 
and nutrient (nitrogen and phosphorous) recovery from urban waste
water [46–50]. The theoretical background of NF and the modelling 
approach is presented in Section 1.2. The full grey-box modelling 
approach and the methods used to evaluate the model's performance and 
practicality are described in Section 2. The results are presented and 
discussed in Sections 4 and 5, respectively. 

1.2. Nanofiltration membrane modelling 

Nanofiltration (NF) is a pressure-driven process that uses membranes 
with properties of ultrafiltration (UF) and reverse osmosis (RO) mem
branes [51]. NF rejects most organic matter and polyvalent ions, such as 
phosphate (PO4

3− ), while permeating monovalent ions, such as ammo
nium (NH4

+) and water [46,48,52]. Ion rejection, represented by the 
solute rejection percentage, and water permeation, represented by the 
water flux, vary with membrane type and net driving pressure (NDP) 
[53,54]. Membrane type is most commonly defined by the membrane 
material and molecular weight cut-off (MWCO, Da) [41]. However, 
there are more variables affecting the performance of NF membranes. 
Several studies employed ML-based approaches requiring large amounts 
of data to identify the key operational parameters as well as membrane, 
solute, and solvent properties for NF predictive modelling [41,55–57]. 
Santos et al. [58] found that combining ML-based and deterministic 
modelling could describe NF processes best. 

From a deterministic point of view, ion rejection and permeation in 
NF membranes are governed by two main mechanisms: steric exclusion, 
dependent on both the solute and pore/opening size, and Donnan 
exclusion, depending on the solute and membrane surface charge [59]. 
The NF process is best described by a transition model between solution- 
diffusion applied to non-porous membranes (RO) and pore-flow models 
applied to porous membranes (UF) [60]. Although solution-diffusion 
models are most commonly used to describe RO processes [61], 
several studies have demonstrated that they can also be used to describe 
NF processes [53,62–66]. Marchetti and Livingston [63] evaluated 
several types of irreversible thermodynamics, solution-diffusion, and 
pore-flow models to describe organic solvent NF membranes and found 
that solution-diffusion-based models best describe the NF process with 
irregular voids (flexible polymer backbone). Niewersch et al. [65] 
reviewed deterministic models to evaluate membrane integrity and 
identify damages in NF and RO membranes and concluded that solution- 
diffusion is appropriate for use in NF. Therefore, the solution-diffusion- 
imperfection model of Niewersch et al. [65] was marginally modified 
such that water and solute permeability would need to be estimated 
making use of data from the literature. 

2. Methodology 

The NF membrane model in this study (Section 2.1) is a grey-box 
model with fewer parameters to be estimated and thus requiring fewer 
data than the black-box modelling approach [67]. It is also less detailed, 
making it less computationally expensive than the white-box modelling 
approach [68]. The NF model was used to quantify capital (defined by 
membrane area, m2) and operational (defined by pumping power, kW) 
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expenditures. The membranes considered in this study were Dow NF90 
and NF270, both polyamide thin-film membranes with different pore 
sizes, described by the molecular weight cut-off (MWCO) (Section 2.2). 
The applicability and relevance of the NF model were then evaluated 
using an optimisation model (Section 2.3) which aims to minimise costs. 
The optimisation model determines the optimal combination of (i) 
membrane type and (ii) operating conditions to recover the targeted 
resources by minimising the capital and operational expenditures. The 
sensitivity of the optimisation model was evaluated by changing the 
influent quality and quantity, as well as the recovery targets (Section 
2.4). A schematic of the methodology used in this study is presented in 
Fig. 1. 

2.1. Nanofiltration grey-box model 

2.1.1. Simplified deterministic model 
The solution-diffusion imperfection model described by Niewersch 

et al. [65], without the leakage factor, was used to fit the experimental 
data obtained from the literature for the two NF membranes (NF90 and 
NF270). The membrane specifications and the data used per membrane 
are presented in Section 2.2. The parameters fitted for these membranes 
were water flux (Jw) and solute rejection (SR) for COD, TN, and TP. 
According to Niewersch et al. [65], flux is a function of the water 
permeability (A) and net driving pressure (NDP) as presented in Eq. (1); 
NDP is a function of the transmembrane pressure (TMP) and osmotic 
pressure difference (Δπ), as presented in Eq. (2). 

JW = A*NDP (1)  

NDP = (TMP − Δπ) (2) 

However, because all the data used for fitting the model were ob
tained from conventionally treated or MBR-treated municipal effluents 
with low conductivity, the osmotic pressure difference (Δπ) was 
neglected in this study. The osmotic pressures of the influent and 
permeate, or other related variables, such as electrical conductivity are 
rarely reported in the relevant literature. Therefore, Eq. (1) becomes Eq. 
(3) in this study. 

JW = A*TMP (3)  

where Jw is the water flux in L/m2⋅h, A is the water permeability coef
ficient in L/m2⋅h⋅bar and TMP is the transmembrane pressure in bar. 

Eq. (3) was then used to fit the solute rejection, which is a function of 
the flux and solute permeability, as presented in Eq. (4). 

1
SR

= 1+
B
Jw

(4)  

where SR is the solute rejection in %, and B is solute permeability in L/ 
m2⋅h. 

The experimental SR was determined using the solute concentration 
data in the influent (Cinfl) and permeate (Cperm), as shown in Eq. (5). 

SR = 1 −
Cinfl

Cperm
(5) 

Since the viscosity of water changes with temperature, both Jw and 
SR were corrected for the same temperature (i.e. 25 ◦C). The method 
used to correct for temperature is presented in Appendix A.1. 

Water permeability (A) and solute permeability (B) vary according to 
the membrane type (material and MWCO), influent type, and compo
nents [69–71]. Therefore, A and B were determined by estimating their 
values from experimental data [65]. The solutes of interest are COD, TN, 
and TP, and the solute permeability B for each of these solutes was 
estimated per membrane. The applied method for normalisation and re- 
scaling of the B values is described in Appendix A.2. 

2.1.2. Parameter estimation 
To estimate the water permeability A per membrane, the fluxes and 

TMPs obtained from the literature were fitted linearly using Eq. (3). To 
estimate the B values per membrane, Eq. (4) was implemented in 
MATLAB and solved using fminsearch, which aimed to minimise the sum 
of the squared errors between the model output and the experimental 
data available for each solute. The leave-one-out cross-validation 
method, which involves iterative model training and validation, was 
used to increase the estimation accuracy [72]. This cross-validation 
method implied the use of n-1 points for training and one point for 
validation, where n is the total number of data points available for 
parameter estimation (the full set of data). The training and validation 
were repeated k = n times, where k is the number of training folds 
composed of a different combination of data points from the full set. In 
each training fold, one value was generated for each estimated param
eter: A, BCOD, BTN, BTP. This value was then used for validation. Finally, 
the mean of all A and B values obtained from each training fold was used 
in the optimisation model presented in Section 2.3. 

2.1.3. Model quality evaluation 
The quality of the model was evaluated using two of the most 

Fig. 1. The methodological approach of this study.  
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commonly used statistical metrics: the root mean square error (RMSE, 
Eq. (6)) and mean absolute percentage error (MAPE, Eq. (7)). The RMSE 
and MAPE, were computed for all the n validations per set of variables, 
per membrane: Fw, SRCOD, SRTN, SRTP. RMSE was chosen because it 
evaluates errors throughout the validation. The advantage of the RMSE 
is that it is expressed in the same unit as the predicted values, enabling 
the calculation of the mean absolute error made by the model for the 
dataset used for validation. As an absolute error, the RMSE is case spe
cific; thus, it is not directly comparable to other cases and models. 
Therefore, MAPE, which is expressed as a percentage was also computed 
for the entire validation. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(ŷ − y)2

n

√

(6)  

MAPE =
1
n
∑n

i=1
∣
y − ŷ
y

∣ (7)  

where n is the number of predicted data points, y is the data point and ŷ 
is the predicted point. 

According to Başar and Küçükönder [73], MAPE values lower than 
10 % indicate highly accurate predictions, good predictions were be
tween 10 and 20 %, reasonable predictions are between 20 and 50 %, 
inaccurate predictions are above 50 %. The acceptance of error is case- 
dependent and the threshold can be determined through sensitivity 
analysis for decision-making; however, this was out of the scope of this 
study. 

2.2. Membrane types and data used for modelling 

The specifications of Dow NF90 and Dow NF270 and the data found 
in the literature are presented in Table 1. Owing to differences in 
MWCO, these membranes differ primarily in terms of water flux and TN 
rejection but are equally effective in rejecting COD and TP. TN and TP 
were the most common ions in urban wastewater effluents: ammonium 
(NH4

+), nitrate (NO3
− ), and nitrite (NO2

− ) for TN and phosphate (PO4
3− ) 

for TP. 

2.3. Optimisation model 

Capital and operational expenditures (CAPEX and OPEX, respec
tively) are two of the most commonly used economic indicators in the 
wastewater industry [91]. These factors are often decisive for the full- 
scale implementation of membrane filtration [92]. Similar to any 
pressure-driven membrane, the CAPEX of an NF membrane is deter
mined by the membrane area required for its purchase and installation. 
Often, these costs account for all auxiliary materials, such as piping and 
pumps [93]. The OPEX of the membranes can be translated into water 
treatment costs, which can be considered to be mostly determined by the 
energy requirement per m3 of treated water for the NF of effluent from a 
WWTP. Aspects, such as membrane replacement and labor re
quirements, are highly dependent on the influent type and level of 
automation [93,94]. 

In this study, CAPEX was the costs associated with purchasing and 
installing the membrane area required to treat the influent (Acost is the 
cost in €/m3 of influent), which was approximated using Eq. (8). 

Acost =
Area*

(
Pmembrane
Ltmembrane

+ INVcost
Ltinstallation

)

Q*T
(8)  

where Area is the total required membrane area in m2 (the equation is 
provided in Appendix A.3), Ltmembrane is the membrane life time in years, 
in this study assuming this to be 5 years [95], Ltinstallation is the instal
lation lifetime in years, in this study assuming this to be 15 years 
[95,96], Pmembrane is the price per m2 of membrane in €/m2, in this study 
assuming it to be 300 €/m2 for both NF membranes [96], Q is the 

influent flowrate in m3/h, T the operation time in h/year and INVcost is 
the investment costs in €/m2, representing installation related costs, in 
this study considered to be 1400 €/m2. 

The OPEX in this study is associated with the energy consumption 
which was approximated based on the pumping power required for the 
TMP [96,97]. The pumping power was then used to approximate the 
energy costs (Ecost in €/m3) of influent using Eq. (9). 

Ecost =
q*Penergy

Q
(9)  

where, q is the pumping power in kW (the equation is provided in Ap
pendix A.3), Penergy is the price of energy in €/kWh, in this study 
assuming it to be 0.0941 €/kWh, valid for year 2019 [98], and Q is the 
influent flowrate in m3/h. 

The optimisation model determines the optimal membrane type 
(distinguished by MWCO) and operational conditions (TMP) to recover 
the targeted resources from a specific influent at minimal total costs. The 
influent used in this study was the effluent of the Walcheren WWTP 

Table 1 
The membrane specifications, the influent type, and process data ranges used for 
parameter estimation. The full dataset with the respective reference per data 
point is provided in Appendix C Supplementary data.   

Unit Dow NF90 Dow NF270 

Membrane properties 
Material – Polymer-polyamide-thin-film composite 
MWCO Da 200 200–400  

Influent 
Type – Conventionally treated or MBR treated municipal 

effluent 
Temperature ◦C 20–27 14–27  

Operation and performance (data ranges from the literature) 
TMP bar 2–20 4.8–20 
Flux L/m2⋅h 13–87 29–186 
Rejection COD % 65–99 51–99 

TN % 37–92 4–34 
TP % 72–100 73–100 

EC μS/cm 781–7020 428–7020   

References 

Dow NF90 Dow NF270 

Bunani et al. [74] Comerton et al. [75] 
Bunani et al. [76] Bunani et al. [74] 
Azaïs et al. [77] Bunani et al. [76] 
Dos Santos [78] Azaïs et al. [77] 
Azaïs et al. [79] Azaïs et al. [79] 
EU [80] Palma et al. [81] 
Palma et al. [81] Arola et al. [82] 
Mamo et al. [83] Uçar [84] 
Dolar et al. [85] Hacıfazlıoğlu et al. [86] 
Racar et al. [87] Egea-Corbacho et al. [88] 

Dolar et al. [85] 
Gönder et al. [89] 
Racar et al. [87] 
de Souza et al. [90]  

Table 2 
The influent quantity and quality data used in the optimisation model: calcu
lated yearly averages of WWTP Walcheren effluent.  

Parameter Unit Yearly averages 

Flow (Q) L/h 1,505,521 
Chemical oxygen demand (COD) mg/L 40.38 
Total nitrogen (TN) mg/L 8.58 
Total phosphorus (TP) mg/L 0.48 

Data source: Waterschap Scheldestromen. 
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(Table 2) and the recoverable resources were water, COD, TN, and TP. 
The optimisation model (Fig. 2) was implemented in MATLAB and 
implied the enumeration of possibilities within the full TMP range 
(4–24 bar) in terms of the flux (defined by the membrane model) and the 
area required to meet the water recovery target. The model enumerated 
the solutions that met the solute rejection targets. The costs were 
calculated for solutions that simultaneously satisfied the solute rejection 
targets. Finally, the membrane type and TMP were chosen where the 
CAPEX and OPEX were minimised. If the targets were not simulta
neously satisfied, the model did not provide a solution. 

2.4. Sensitivity analysis 

Depending on the geographical location of a wastewater treatment 
facility, seasonal demographic, and climatic factors affect influent 
quality and quantity, which in turn are of great importance to the per
formance and design of a facility [99–101]. A few scenarios capturing 
yearly fluctuations in influent quality and quantity and 100 random 
influent quality variations (Monte Carlo approach) were used to eval
uate the effects of changing influent quality and quantity on the model 
output (Table 3). This was meant to evaluate the sensitivity of the model 
in terms of the membrane type selected to change the influent quality 
and quantity. As mentioned earlier, NF membranes can effectively 

Fig. 2. The detailed methodological approach of the membrane modelling and optimisation model in this study.  

Table 3 
The scenarios used for sensitivity analysis: changing pollutant concentration and flow within the minimum and maximum ranges measured at the WWTP Walcheren, 
and Monte Carlo simulation for concentrations (from 0 mg/L to common pollutant concentrations for effluents) and recovery targets (from 0 to 100 %).  

Scenario Description Calculation method* 

Varying influent quality and quantity 
BC Yearly average concentrations and flow Average of daily data for year 
BC-Cs(+) Increased concentrations, constant flow Yearly average concentrations + 1.96 * 

SDc
̅̅̅̅̅̅̅̅
NDP

√

BC-Cs(− ) Decreased concentrations, constant flow Yearly average concentrations − 1.96 * 
SDc
̅̅̅̅̅̅̅̅
NDP

√

BC-Q(+) Constant concentrations, increased flow Yearly average flow + 1.96 * 
SDQ
̅̅̅̅̅̅̅̅
NDP

√

BC-Q(− ) Constant concentrations, decreased flow Yearly average flow − 1.96 * 
SDQ
̅̅̅̅̅̅̅̅
NDP

√

Random 100 Simultaneous variation of all concentrations, constant flow 

MATLAB function randi 
COD range: 0–100 mg/L 
TN range: 0–40 mg/L 
TP range: 0–10 mg/L  

Varying recovery targets 

Random 1000 

Simultaneous variation of all targets 

MATLAB function randi 
Water recovery range: 0–100 % 
COD rejection range: 0–100 % 
TN rejection range: 0–100 % 
TP rejection range: 0–100 %  

* SDC=standard deviation in concentrations; SDQ=standard deviation in flow; NDP = number of data points.  
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purify water and separate mono- and polyvalent ions. Since the two NF 
membranes considered in this study in general perform differently from 
one another, it is expected that membranes can be selected depending on 
the permeate targets. Therefore, the effects of the permeate quality and 
targets on the model output were evaluated by changing the permeate 
targets, while maintaining constant the influent quality and quantity 
parameters. 1000 random variations of all targets were simultaneously 
generated (Monte Carlo approach) to explore the full solution space as 
explained in Table 3. 

3. Results 

3.1. Grey-box model 

The mean values of all the estimated water (A) and solute (B's) 
permeabilities, obtained through the leave-one-out cross-validation 
method and the standard deviations for the two membranes are pre
sented in Table 4. The water permeability values (A) are in accordance 
with those reported in the literature for both membranes [70]. The 
standard deviations between the values obtained in the training folds 

were 1.4 % and 2.3 % for the NF90 and NF270, respectively. The values 
of COD, TN, and TP permeability values (B) were not found in the 
literature. The standard deviations of the B values obtained for both 
membranes at each training step ranged between 7.1 and 13.5 %. The 
greater standard deviations of the B values are primarily related to the 
larger variety of data used to estimate these parameters. The greatest 
variation in the dataset was for TN and TP rejection by NF270. 

The predictions using the mean values of the estimated parameters 
for NF90 and NF270 are presented in Figs. 3 and 4, respectively. The 
prediction qualities evaluated using the MAPE show that the model 
performs well for most process variables, with MAPE values below 20 % 
(Table 5). The predictions for TN rejection were the least accurate for 
each membrane, with MAPE values of 17 % and 51 % for NF90 and 
NF270, respectively. The prediction quality depends on (i) the specifi
cations of the influent used to generate the data, (ii) the quality and 
quantity of the data used for the parameter estimation, and (iii) the level 
of detail of the model used in this study (Eqs. (1) and (3)). Membranes 
are selective for specific ions. However, the exact concentrations of 
NH4

+, NO3
− , and NO2

− in the influent were neglected. 

3.2. Optimisation model 

The optimisation model that minimises the costs per m3 of produced 
water was run in MATLAB. The required model inputs for the optimi
sation model were influent quality and quantity and targets for permeate 
quality, depending on the desired water quality and recovery of re
sources. The model output consisted of the selected membrane and TMP, 
the achieved permeate quality, removal percentages, and energy and 
area requirements with associated costs per m3 of the influent. The in
puts and outputs of the model are listed in Table 6. 

From all the possible combinations of membrane types and TMPs for 
the base case (BC) scenario, the optimisation model selected NF270 and 
a TMP of 8 bar (Fig. 5). The NF270 membrane was preferred over the 
NF90 membrane mainly because the target TN rejection was low; this 
membrane had a higher water permeability. Therefore, a smaller surface 
area was required to achieve the water recovery targets. The 

Table 4 
The mean estimated water (A) and solute (B) permeability values for NF90 and 
NF270 and the standard deviations.  

Parameter Unit NF90 NF270 

A Mean L/m2⋅h⋅bar 5.32 9.68 
SD L/m2⋅h⋅bar 0.08 0.22 
SD % 1.4 2.3 

BCOD Mean L/m2⋅h 9.53 31.5 
SD L/m2⋅h 0.91 2.23 
SD % 9.3 7.1 

BTN Mean L/m2⋅h 36.26 1251.10 
SD L/m2⋅h 3.35 154.75 
SD % 9.2 12.7 

BTP Mean L/m2⋅h 8.75 6.47 
SD L/m2⋅h 0.72 0.87 
SD % 8.3 13.5  

Fig. 3. Data and model prediction using the estimated parameters for the NF90 membrane.  
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optimisation model chose the TMP of 8 bar to meet the COD rejection 
targets which were set to ≥80 %. The resulting flux was 77.4 L/m2⋅h, 
and the required area was 15,654 m2, resulting in a CAPEX of 0.18 €/m3 

for the influent. This CAPEX was approximately 90 and 50 % higher than 
the CAPEX previously reported for water reclamation [102] and desa
lination with NF as a pre-treatment [103], considering inflation. These 
higher cost estimates could be related to a combination of aspects, such 
as the cost per m2 of the membrane (including investment), shorter 
lifetime, and differently quantified annual influent flows. In this study, 
the OPEX determined by the TMP and flow was 0.30 €/m3 of influent, 
similar to the production costs for water reclamation via RO membrane 
filtration reported previously Fane et al. [53], considering inflation. 

The NF270 membrane was generally more advantageous for flux 
than the NF90 membrane with the 70 % water recovery target for BC, 
and thus also more advantageous for area requirements and total costs. 
In addition, NF270 showed better performance in terms of TP removal 
but not in terms of COD and TN removal. Therefore, this membrane was 
likely to be chosen when water and TP recovery are priorities. However, 
the targets for COD and TN have not been set. The impact of different 
permeate targets is further evaluated in Section 3.3.2. 

3.3. Sensitivity analysis 

Sensitivity analysis was performed to evaluate the influence of the 
input parameters on the model output. The model outputs for the 
following changes are presented and discussed in this section: (i) 
influent quality and quantity and (ii) targets for permeate. 

Fig. 4. Data and model prediction using the estimated parameters for the NF270 membrane.  

Table 5 
The root mean square error (RMSE) and mean absolute percentage error (MAPE) 
of the membrane model predictions using the mean values of the estimated 
parameters.   

NF90 NF270 

RMSE MAPE RMSE MAPE 

Jw 9 L/m2⋅h 15 % 16 L/m2⋅h 15 % 
SR COD 7 % 7 % 10 % 13 % 
SR TN 15 % 17 % 11 % 51 % 
SR TP 8 % 8 % 8 % 7 %  

Table 6 
Optimisation model input (influent quality and quantity, targets for the 
permeate) and output (selected membrane and TMP, permeate quality and 
quantity, achieved SRs, CAPEX and OPEX) for the base case (BC).   

Item Unit BC 

Model 
input 

Influent Q L/h 1,505,521 
COD mg/L 40.38 
TN mg/L 8.58 
TP mg/L 0.48 

Targets for the 
permeate 

Water % recovery 70 
COD mg/L (SR %) ≤12 (≥70) 
TN mg/L (SR %) ≥4 (≤50) 
TP mg/L (SR %) ≤0.1 

(≥80) 
Model 

output 
Selected Membrane – NF270 

TMP bar 8 
Permeate Flux L/m2⋅h 77.4 

COD mg/L 11.68 
TN mg/L 8.06 
TP mg/L 0.04 

Achieved solute 
rejection (SR) 

COD % 71 
TN % 6 
TP % 92 

CAPEX and OPEX Area m2 15,654 
A cost €/m3 of 

influent 
0.18 

q kW 478 
E cost €/m3 of 

influent 
0.30  
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3.3.1. Influent quality and quantity 
The effects of yearly fluctuations in influent quantity and quality 

were evaluated through a few scenarios with annual values of 2.5 % and 
97.5 % values for influent flow and concentrations of COD, TN, and TP 
from the Walcheren WWTP, located in the Netherlands (approximately 

150,000 population equivalent (PE) treatment capacity; Table 3). The 
changes in the influent quality did not affect the selected membrane, 
only the selected TMP. This was primarily because of the target set for 
TN recovery (≥4 mg/L), which represented the maximisation of TN 
passage through the membrane; NF270 in general retains less TN 

Fig. 5. The selected membrane and TMP (black mark) from all possible choices with the two membranes from 4 to 24 bar for flux (A), COD rejection (B), TN rejection 
(C), and TP rejection (D). 

Table 7 
The results for sensitivity analysis with yearly fluctuations in influent quality and quantity. Colour coding: blue-flux; yellow-ach
ieved solute rejections; red-area and associated costs; green-energy and associated costs. 
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(Fig. 5). The increase in concentration, potentially representing dry 
weather conditions, resulted in the selection of a higher TMP (9 bar, 1 
bar higher than that of BC). The decrease in influent concentrations, 
potentially representing rainy weather conditions, resulted in the se
lection of a slightly lower TMP (7 bar, 1 bar lower than that of BC). The 
changes in the TMP were small; the changes in CAPEX and OPEX were 
minor: CAPEX between 0.16 €/m3 and 0.21 €/m3 of influent and OPEX 
between 0.26 €/m3 and 0.34 €/m3 of influent. Changes to the influent 
quantity (flow), potentially representing fluctuations in population, 
since the area of the Walcheren WWTP is touristic, did not affect the 
choice of membrane or TMP. However, the surface area and energy 
requirements were proportional to the changes in the influent flow. This 
was anticipated since both the area and energy calculations were flow- 
dependent. Therefore, fluctuations in the flow might imply the 
requirement for buffers, or at times a certain number of membrane 
modules would be redundant. Redundancy can be a positive aspect 
because it generally increases the flexibility of a process [91]. The re
sults for each scenario are presented in Table 7. 

The model outputs for the water recovery target of 70 % with 
randomised influent quality are presented in Table 8. From 100 random 
combinations of influent qualities, the optimisation model found 
feasible solutions for only 30 combinations. No feasible solution was 
found to satisfy the target and fixed permeate quality for the remaining 
combinations. NF90 was selected twice out of the 30 solutions identi
fied. The NF90 membrane was chosen for a specific influent: COD was 
70 and 78 mg/L, TN was 26 and 17 mg/L, and TP was 0 mg/L. The 

combination of membrane type (NF90) and selected TMPs (9 and 10 
bar) resulted in low energy requirements but the highest required area of 
all 30 solutions. The NF270 membrane was selected for 28 of the 30 

Table 8 
Model output for 100 Monte Carlo simulations with influent quality varying within the provided ranges and influent quantity and targets for the permeate of the BC.   

Parameter Unit Range 

Model input Influent Q L/h Base case 
COD range mg/L 0–100 
TN range mg/L 0–40 
TP range mg/L 0–10 

Targets for the permeate Water % recovery Base case 
COD mg/L 
TN mg/L 
TP mg/L 

Model output Selected Membrane – NF90 
Times selected – 2 out of 100 
TMP bar 9 10 

Influent COD mg/L 70 78 
TN mg/L 26 17 
TP mg/L 0 0 

Permeate quality COD mg/L 11.63 11.86 
TN mg/L 11.21 6.89 
TP mg/L 0.00 0.00 

Achieved solute rejection (SR) COD % 83 85 
TN % 57 59 
TP % 85 86 

CAPEX and OPEX Area m2 25,331 22,798 
Acost €/m3 of influent 0.29 0.26 
q kW 538 597 
Ecost €/m3 of influent 0.34 0.37 

Selected Membrane – NF270 
Times selected – 28 out of 100   

Min. Max. Mean (calculated) SD (±) (calculated) 
TMP bar 6 24 13 5 

Influent COD mg/L 5 99 40.93 25.43 
TN mg/L 5 40 22.00 12.01 
TP mg/L 0 3 1.57 0.94 

Permeate quality Flux L/m2⋅h 31.9 127.6 69.1  
COD mg/L 1.00 11.83 7.88 3.74 
TN mg/L 4.74 37.95 20.07 10.92 
TP mg/L 0.00 0.10 0.07 0.03 

Achieved solute rejection (SR) COD % 65 88 78 8 
TN % 4 16 9 3 
TP % 90 97 94 2 

CAPEX and OPEX Area m2 5218 20,872 12,431 5848 
Acost €/m3 of influent 0.06 0.24 0.14 0.07 
q kW 358 1434 761 307 
Ecost €/m3 of influent 0.22 0.90 0.48 0.19  

Fig. 6. CAPEX (area costs), OPEX (energy costs) and total costs varying with 
TMP for a water recovery target of 70 %. 
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solutions, comprising almost the full range of influent COD and TN but 
only influent TP concentrations between 0 and 3 mg/L. The model did 
not identify feasible solutions for wastewater streams with phosphorus 
concentrations exceeding 3 mg/L. The selected TMPs ranged from 6 to 
24 bar. The area and energy requirements for the 28 solutions were 
based on the general trends presented in Fig. 6. As TMP increased from 6 
to 24 bar, the energy requirement increased from 358 to 1433 kWh. 
Thus, the OPEX increased from 0.22 to 0.90 €/m3 of influent. However, 
the area requirement decreased from 20,872 to 5218 m2, and the CAPEX 
decreased from 0.24 to 0.06 €/m3 of influent. 

3.3.2. Recovery and rejection targets 
In addition to variations in the influent, the targeted rejections were 

changed to evaluate how they affect the choice of the membrane, TMP, 
and associated overall costs. Therefore, 1000 random variations of re
covery and rejection targets between 0 and 100 % for water, COD, TN, 
and TP were tested with the same influent quality and quantity. The 
model outputs for 1000 random targets are presented in Fig. 7. These 
outputs were used to visualise the theoretical solution space for all 
targets by plotting the results for different target pairs. The results 
plotted in Fig. 7 are thus not reflecting the actual design limits of the two 
membranes considered in this study. 

For the 1000 random variations of recovery and rejection targets, 
NF90 was selected 633 times, whereas NF270 was preferred only 59 
times. While the choice of one of these two membranes was evident 
regarding TN rejection (graphs B, D, F-no overlap), it was less evident for 
water recovery, COD, and TP rejection (graphs A and C-the overlap). 
Theoretically, both membranes could recover between 0 and 100 % 
water (graphs A, B, and C). When only water recovery targets were set, a 
trade-off was generally made between the membrane surface area 
required to maximise water recovery (determined by the membrane 

type) and the required energy (determined by the TMP). When the COD 
or TP rejection targets were set simultaneously with water recovery 
targets, the preference was not obvious (graph A and C-the overlap). 
However, when COD and TP were set simultaneously, there was a clear 
difference between the two membranes (graph E). Thus, depending on 
the combination of the recovery and rejection targets and cost consid
erations, a specific membrane and TMP were most advantageous. An 
optimisation model was used to evaluate some of the most common 
scenarios related to recovery targets to confirm these results. The model 
outputs for these scenarios are presented and discussed in Appendix B. 
The most notable result was the scenario that aimed to maximise water 
recovery without specific permeate quality targets (M–W, Table B.1). 
The selected membrane was NF90 with a TMP of 12 bar. This was un
expected because NF270 permeates water better at even lower TMPs; 
however, the model optimises the best permeate quality at the lowest 
possible cost. 

4. Discussion 

The basic performance and cost optimisation of the NF membranes 
was achieved by modelling the water flux (Jw) and solute rejection (SR) 
as functions of the TMP. Empirical data were required to estimate the 
unknown parameters for these variables (Jw and SR). Thus, model reli
ability and applicability are highly dependent on the quality of the 
empirical data. The empirical data used for parameter estimation can 
contain random and systematic errors that affect the precision and ac
curacy of the model outputs. Although random errors can be easily 
identified and quantified by computing the standard deviations of the 
measurement, systematic errors are less apparent, making it difficult to 
quantify and correct [104]. However, in this study, the data used for 
parameter estimation came from at least 10 different references with 

Fig. 7. The selected membranes and TMPs for the 1000 Monte Carlo simulations presented per water recovery and solute rejection targeted pairs: COD and water 
(A); TN and water (B); TP and water (C); TN and COD (D); TP and COD (E); TP and TN (F). 
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similar but different influent streams and operating conditions (see 
Appendix C Supplementary data). Thus, the impact of random and 
systematic errors in the data collected by each reference on the model 
output was minimised [34]. 

The effect of errors in the empirical data on the model output can be 
enhanced by the lack of model details. The level of detail of a model is 
defined by its mechanistic and physical complexity. Intuitively, the more 
details accounted for by a model, the more accurate it is [63]. However, 
physically detailed models require data as inputs that are often un
available [92]. The membrane model used in this study can be improved 
by accounting for osmotic pressure differences. The concentrations of 
multiple ions or the electrical conductivity (EC) of both the feed and 
permeate streams are required, but these data are mostly not reported. 
Therefore, the advantage of the grey-box membrane model in this study 
over more detailed physical models (white-box models) is that aspects 
that affect water and solute permeability are captured in the data used 
for model training. Examples include osmotic pressure difference, con
centration polarisation, membrane fouling, as well as specific membrane 
properties such as surface charge or zeta potential [57,105,106]. How
ever, this also implies that grey-box models are applicable only in con
texts similar to those in which the model was trained. In this study, the 
estimated parameters were applicable to feed streams that were in the 
same quality range with respect to COD, TN, TP concentrations, and EC 
as the data used for training. 

For the membrane model to be applicable in decision-making 
frameworks and tools such as those described previously [18], multi
ple A and B values per solute would need to be estimated per membrane 
type per specific range of feed stream quality [47,107]. The optimisation 
model in this study implies the simultaneous enumeration of all solu
tions satisfying the targets. From these, the model selects the solution 
with the minimum total cost. However, considering the constantly 
increasing number of processes available on the market, enumeration 
could be replaced with multi-objective optimisation models such as goal 
programming [18]. Nevertheless, future research should evaluate the 
trade-offs in terms of speed and computational efforts required when 
one or the other approach for optimisation is used. Finally, the mem
brane model and optimisation approach presented in this study would 
need to be extended to quantify other economic, technical, environ
mental, or social indicators. Recovered resource quality and safety play 
key roles in decision-making for resource recovery from urban waste
water [6,91,108]. Therefore, models should be able to predict other 
relevant recovered resource quality indicators. van Schaik et al. [91] 
proposed two indicators that can also be used as constraints in a 
decision-making problem: the risk of toxic compounds and the risk of 
infection. To quantify these two indicators, the NF model would need to 
predict the rejection of heavy metals, bacteria, and viruses. 

5. Conclusions 

This study demonstrates how a grey-box model for NF can be used as 

an alternative to extensive databases for decision-making regarding 
resource recovery from urban wastewater. The grey-box process 
modelling implies the use of a deterministic model (modified version of 
the solution-diffusion imperfection model of [65]) and literature data to 
estimate the unknown parameters. In this study, the unknown process 
parameters were the water and solute (COD, TN, and TP) permeabilities. 
These parameters were estimated using literature data for fluxes and 
solute rejection at various TMPs for two different membranes, Dow 
NF90 and NF270. The estimated parameters and membrane model were 
then used in an optimisation model developed to choose a membrane 
type and TMP to recover the targeted resources from WWTP effluent at 
minimum costs. Depending on the combination of the recovery and 
rejection targets a specific membrane and TMP were chosen to minimise 
costs. Therefore, an NF membrane can be more appropriately selected 
by a DST for treatment train design when a wider range of process 
characteristics and operating conditions and thus process performance 
range is considered. Thus, this study contributes to understanding the 
value of process models and provides insight into the level of detail 
required by the DSTs to design treatment trains more accurately. Future 
studies should evaluate the additional computational efforts required 
when DSTs use different process models rather than extensive databases 
and other optimisation approaches. 

MATLAB code 

The MATLAB codes of the models presented in this study are avail
able for download from GitHub using the following link: https://github. 
com/iarima-mendonca/nf-greybox-model. 
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Appendix A. Calculation methods 

A.1. Temperature correction 

The methods applied in this study to correct flux and solute retention for temperature are provided in Eqs. (1) and (A.2), respectively. 

JW25 = JWt*
μt
μ25

(A.1)  

SR25 = SRt*
μ25

μt
(A.2)  

where JW25 and SR25 are the permeate flux and the solute rejection at 25 ◦C, JWt and SRt are the permeate flux and the solute rejection at the 
experimental temperatures, μt and μ25 are the dynamic water viscosity's at the experimental temperatures and at 25 ◦C, respectively. 
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A.2. Normalisation 

In this study, first, the normalised B values were estimated with normalised fluxes using Eqs. (A.3) and (A.4). Then the normalised B values were re- 
scaled as presented in Eq. (A.5). 

Bnorm =
Jnorm
SR25

*(1 − SR25) (A.3)  

Jnorm =
Jw25

Jmax25
(A.4)  

B = Jmax25*Bnorm (A.5)  

where Bnorm is the normalised B value, Jnorm is the normalised fluxes (Jw25) using the maximum flux form the dataset (Jmax25), and SR25 is the solute 
rejection, all corrected for temperature. 

A.3. Energy and area requirement 

The pumping power (q, kW) can be quantified as presented in Eq. (A.6) ([96,97]). 

q =
Q*TMP
ηpump

(A.6)  

where q is the pumping power in kW, Q is the flow rate m3/s, TMP is the transmembrane pressure in Pa, since this study assumes a single stage NF, and 
ηpump is the pump efficiency in %, in this study assuming it to be 70 % so ηpump=0.70. 

The membrane area requirement was quantified as shown in Eq. (A.7). 

Area =
Q*Rw

Jw
*F (A.7)  

where Area is the total required membrane area in m2, Q is the influent flowrate in L/h, Rw is the targeted water recovery in %, J is the permeate flux in 
L/m2⋅h and F is a factor representing the assumption that the actual area actually required is larger than the theoretical value, in this study assuming it 
to be 15 % so F = 1.15. 

Appendix B. Optimisation model output for scenarios with specific targets 

Five scenarios with specific targets for water recovery and component rejection were used to evaluate the sensitivity of the optimisation model. The 
optimisation model outputs are listed in Table B.1.  

Table B.1 
Optimisation model output for the scenarios* with different targets for permeate in terms of: quantity (% recovery) and quality (concentration of COD, TN, and TP in 
mg/L). Colour coding: blue-water recovery percentage and flux, yellow-achieved solute rejection (SR), red-area and associated costs, green-energy and associated 
costs. 
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* BC: base case permeate quality and quantity (70\% water recovery); BC-W50: base case permeate quality but 50\% water recovery; BC-W90: base case permeate 
quality but 90\% water recovery; M-W: maximize water recovery with flexible permeate quality; BC-M-RCNP: base case permeate quantity but maximize rejection of 
COD, TN, and TP; BC-M-RP-PN: base case permeate quantity but flexible COD rejection, maximize TP rejection, and maximize TN permeation. 

Changing the targets influenced both the selected membrane and TMP, and therefore the energy and surface area requirements. Reducing the 
water recovery target from 70 % (BC) to 50 % (BC-W50) or increasing it to 90 % (BC-W90), while keeping the water quality targets the same, resulted 
in the selection of the same membrane and TMP as the BC: NF270 and 8 bar. Therefore, the only difference between these three scenarios was the 
surface area requirement: BC-W50, recovering 20 % less water required 29 % less surface area; BC-W90, recovering 20 % more water required 29 % 
more surface area. 

If the target water recovery was 90 %, but no water quality targets were set (M-W), the NF90 membrane and a TMP of 12 bar were chosen by the 
optimisation model. This can be explained by the fact that in the absence of permeate quality targets, the model optimises the maximisation of 
recovered water quality while minimising the associated energy and area requirements. Thus, the permeate quality improved in terms of COD and TN 
compared with that in the BC, with 16 % and 58 % higher removal rates, respectively. However, TP removal decreased from 92 % (BC) to 88 % (M-W). 
Compared with BC, the associated area and energy requirements for the selected membrane and TMP increased by 56 % and 50 %, respectively. This is 
in accordance with the differences in the areas and energy costs of the two membranes for the various TMPs. 

Maximising the removal of all components while keeping the water recovery the same as that in the BC (BC-M-RCNP) resulted in the selection of 
membrane NF90 and a TMP of 21 bar. NF90 was selected because it has a smaller MWCO and is better at removing components, particularly TN. The 
chosen TMP was the highest of all these scenarios, to ensure high TN removal. The selected TMP resulted in the highest energy requirements and, thus, 
the highest energy costs yet the lowest required area for all scenarios. 

Setting no target for COD removal while maximising the TP removal and the permeation of TN and keeping the water recovery the same as that of 
BC (BC-M-RP-PN) resulted in the selection of the membrane NF270, the same as for the BC. The selected TMP was 6 bar (2 bar lower than that of BC), 
mostly to favour permeation of: 8.20 mg/L TN (0.14 mg/L more than that of BC). The lower selected TMP for this scenario resulted in the lowest 
energy of all five and, thus, a lower OPEX at 0.08 €/m3 lower than that of BC. The required area was one of the highest of all five scenarios at 0.06 €/m3 

more than in the BC. This can be explained by the low TMP, which resulted in the lowest flux of approximately 29 L/m2⋅h lower than that in BC, 
whereas the water recovery target was the same as that in the BC (70 %). 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jwpe.2023.104014. 
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