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A B S T R A C T   

Chemometrics and statistical ecology share interest in the analysis of multivariate data. In ecology, uncon-
strained and constrained ordination are popular methods to analyze and visualize multivariate data, with 
principal component analysis (PCA) and redundancy analysis (RDA) as prototype methods. Constraints give more 
insight and power by focusing on the response of the variables to particular external predictors or experimental 
factors, after optional adjustment for covariates. In chemometrics, analysis of variance - simultaneous component 
analysis (ASCA) was proposed decades later, with particular emphasis on the multivariate main and interaction 
effects in factorial experiments. This paper shows the similarities and differences between ASCA, its extensions, 
and (partial) RDA, alias reduced-rank regression. ASCA and RDA (understood as a sequence of partial RDAs, just 
as ASCA uses a sequence of PCAs) are shown to be mathematically identical for equireplicated designed ex-
periments. Differences appear with unequal replication. As a corollary we show that, with equal replication, a 
particularly attractive form of ASCA, which displays a main effect together with an interaction, is a special case 
of principal response curve analysis. RDA is a least-squares method and uses the optimal weights in the 
dimension reduction of the treatment effects, whereas ASCA extensions for unbalanced data use alternative, sub- 
optimal weights.   

1. Introduction 

Chemometrics brought partial least-squares (PLS) to statistics [1,2], 
it also brought analysis of variance (ANOVA)-simultaneous component 
analysis (ASCA) [3,4]. Both methods extract components; PLS for pre-
diction, ASCA for the analysis and visualization of effects of treatments 
on multivariate response in designed experiments. In terms of linear 
models, the treatments and other factors, such as (discrete) time, of such 
experiments can be viewed as predictors and the treatment effects as 
regression coefficients. Whereas PLS regression was designed for pre-
diction with correlated predictors, ASCA started from ANOVA in com-
plete (=equireplicated) designed experiments in which predictors are 
uncorrelated or, in mathematical terms, orthogonal [5] and was later 
extended under the name ASCA + to unbalanced experiments [6]. 

In statistical ecology, related methods were, and continue to be, 
popular, in particular constrained and unconstrained ordination [7,8]. 
These methods extract components from multivariate response for the 
analysis and visualization of both observational and experimental data 
[9,10]. The prototype method of unconstrained ordination is principal 
component analysis (PCA) with constrained form redundancy analysis 

(RDA), known in chemometrics as two-block ‘mode C’ PLS [11]. For a 
recent review see Ref. [12]. RDA and multivariate PLS regression are 
compared in Ref. [13]. RDA allows for variance decomposition [14] and 
for testing by permutation of specific null hypotheses [15–17]. Canoco 
[18] and the R-package vegan [19] contain user-friendly and versatile 
software implementations of these methods. In statistics, RDA is known 
as reduced-rank regression [20]. 

Whereas the original version of ASCA was based on traditional fixed- 
effects ANOVA followed by PCA of particular terms and later extended 
to multivariate linear regression in ASCA+ [6] and weighted effect 
ASCA (WE-ASCA) [21] for application in unbalanced designs, RDA was 
based from the start on PCA constrained by a linear model for analysis of 
both observational data and (incomplete) designed experiments [7]. In 
this paper we compare ASCA, its extensions and RDA and show their 
similarities and differences. We show mathematically that these 
methods are identical for complete data, but that differences appear 
with unequal replication. As a corollary we show that, for complete data, 
a particularly attractive form of ASCA, which displays a main effect 
together with an interaction, is a special case of principal response curve 
analysis (PRC) [22–24]. The fact that ASCA+ and WE-ASCA, which 
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differ in factor coding, are different versions of ASCA, shows that ASCA 
is coding dependent, whereas RDA is not. We show that RDA is a 
least-squares method whereas ASCA+ or WE-ASCA are not. 

2. Theory and methods 

2.1. Design, model and design matrices 

The similarity and differences between ASCA+ and RDA can be 
shown in models that decompose the variance into two sources. The 
easiest such model ignores interaction and decomposes the variance of a 
factorial design with two factors A and B in the variances due to the two 
main effects. The model formula of this decomposition is A + B. With 
interaction, and of practical importance, is the decomposition based on 
the model formula A + (B + A:B). This is the focal model of this paper, 
giving two sources of variance.  

a) the variance due to the main effect of factor A, and  
b) the variance due to the main effect of B and its interaction with A. 

Source b) thus includes the possible dependence of the effect of B on 
the levels of A. A common example is a repeated measurement design 
(with common time points) in which the factor A represents Time and 
factor B represents a Treatment, and our interest focusses on how the 
treatment differences vary across time or, said more formally, how the 
effect of Treatment depends on Time. This model is used in PRC, which is 
a method of analysis based on RDA [22,23] and in the applications in 
papers on ASCA [3,4,25,26]. Another way to specify the model is A + A: 
B. This is the usual specification for nested designs, where the main 
effect of B has little or no meaning. 

For multivariate response, these ANOVA models can be phrased as 
multivariate multiple regression models of the form 

Y = 1nμ′ + ZA + XB + E, (1)  

where Y is a n × m matrix with measurements of m response variables in 
n samples, Z is a design matrix coding for factor A, X a design matrix 
coding for the factor B (and its interaction with A, if included), 1n is a n 
column vector of ones, μ is a m column vector of unknown intercepts, 
and A and B are matrices of unknown regression coefficients with col-
umn k in each applying to response variable k, and E is an n × m error 
matrix. The unknowns need to be estimated for which we use least- 
squares. Implicitly we thus assume, as in many ASCA papers, that the 
errors are independent and identically distributed. This assumption can 
be relaxed [20,27–30]. 

The simplest coding of factors is perhaps indicator coding, in which 
each level of the factor is represented by a dummy (1/0) variable (col-
umn in the design matrix of the regression model). For factor A, for 
example, and focusing on rows, each row of Z then contain a single 1 in 
the column of the level of A of the corresponding sample and value 0 in 
the columns for the other levels. With intercept, one column (i.e. one 
dummy variable) is redundant (collinear) and either the first or the last 
column is often deleted, leading to the default treatment coding and to 
SAS coding, respectively, in R [31]. The deleted column determines the 
reference of this type of coding. ASCA+ [6] uses ‘sum coding’, also 
called ‘effect coding’ [32]. In sum coding, all 0-entries in the 
indicator-coded Z corresponding to cases with the last level of A are 
changed to − 1 and the last column is deleted. With sum coding in a 
complete design, the intercepts estimate the overall means of the 
response variables. For this to hold true in an incomplete design, we 
need weighted effect (WE) coding [32,33] which is slightly more 
complicated as it depends on the frequency of individual levels of the 
factor in the design. 

Coding for interaction is obtained by multiplying each column for 
factor A in Z with each similarly constructed column for factor B. 
Without deletion of redundant columns, encoding for factors A and for B 

using either treatment or sum coding, the “raw” interaction so consists of 
nA × nB columns, with nA and nB the number of levels of factor A and B, 
respectively. Of these columns, the nA columns involving the last level of 
B are redundant if the focal model is specified as A + A:B and are not 
included in matrix X. If the model is specified as A + (B + A:B), the first 
(nB − 1) columns of X encode for B and (nA − 1) × (nB − 1) columns 
encode for the interaction A:B, with the interaction columns obtained by 
deleting all columns from the raw interaction that involve the last level 
of either A or B. Either way, X contains nA × (nB − 1) columns, which 
corresponds to the number of A-dependent effects of treatment B. In WE- 
coding interactions are not simple multiplications of the main effect 
matrices; they are coded in a such way that interactions are orthogonal 
to (=uncorrelated with) the main effects [32]. Examples of these ways of 
coding are given in Supplement S3. See also chapter 6 in Ref. [34], 
where treatment and sum coding are treated in the sections “set-to-zero 
restrictions” and “sum-to-zero restrictions”, respectively. The effect of 
unbalance on the data analysis is discussed in Refs. [34,35]. 

Equation (1) is fitted to data by least-squares giving the estimates μ̂, 
Â and B̂ of the unknowns μ, A and B, respectively and residuals Ê. These 
estimates are used in both ASCA+ and RDA. While the estimates differ 
between different ways of encoding the design matrices, the fitted values 
Ŷ do not. 

2.2. ASCA+

ASCA and ASCA+ are essentially two step algorithms. ASCA uses 
traditional ANOVA computations for complete designs, essentially 
averaging per level or combination of levels [3], and ASCA+ uses 
multiple regression with sum coding of the model so as to extend ASCA 
to incomplete designs [6]. We focus on ASCA+. The first step is to fit 
equation (1) by least-squares. In a second step, a (column-centered) 
principal component analysis (PCA) is applied to ZÂ and a separate PCA 
to XB̂, yielding two sets of row scores (Ta

Z and Ta
X, say, with the su-

perscript a for ASCA to distinguish them from similar scores in RDA) and 
of loadings (Pa

Z and Pa
X) for the response variables on a number of PCA 

components (axes or dimensions). These PCAs lead to dimension 
reduction when only the first few components are used. The scores and 
loadings on the first few (usually 2) axes can be plotted as in a normal 
PCA to yield a biplot [36] of the form TP′ of the fitted values (ŶA = ZÂ 
for the first PCA and ŶB = XB̂ for the second PCA). In PCA, the scores 
can be derived from the loadings, so that, applied to ASCA+, Ta

Z = ZÂPa
Z 

and Ta
X = XB̂Pa

X with an additional centering by columns of the result-
ing scores (as the PCA was, tacitly in Thiel et al. [6], centered by col-
umns). The scores for A and B are constant within their levels. 
Additional scores, TEa

Z = Ta
Z + ÊP

a
Z and TEa

X = Ta
X + ÊPa

X, show vari-
ability among replicates within the levels of A and B [37]. The equation 
for such scores in Ref. [6] is inaccurate as it lacks the column-centering 
of Ta

Z and Ta
X. 

2.3. RDA 

The name RDA started with Ref. [38], but the method RDA dates 
back at least till Ref. [39] (Supplement S1). RDA is best known for its use 
with quantitative predictors and covariates in observational studies [8, 
40]. An early application to an experimental design, with an RDA-based 
analysis of variance, appeared in Ref. [10], re-analyzed in Ref. [41] and 
another is PRC [22,23] (see section 2.6 and Supplement 1.3 for further 
details). 

It is of interest to note that RDA has been developed further in the 
framework of generalized linear (mixed) models [42–45], but for the 
comparison with ASCA it is sufficient to consider fixed effects models 
fitted by least-squares. 

There are two ways of defining RDA [7,23](see also Appendix A1.3): 
1) RDA is a PCA constrained by a linear model; 2) RDA is a multivariate 
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regression with a rank-restriction on the matrix of regression co-
efficients. The second way is more general as it allows for explicit 
specification of the variances and covariances of the errors [28,46]. For 
easy comparison with ASCA, we use the version in which the errors are 
independent and of equal variance and the version of RDA with cova-
riates, also called covariables [7,8] or concomitant variables [20,47]. 

Let Z in equation (1) contain the covariates, in our focal model 
(section 2.1) coding for the factor A, and X the design matrix that codes 
for A:B or B + A:B, giving the same fitted values Ŷ in either way of model 
specification. While ASCA requires sum coding, any coding system can 
be used in RDA as is verified in the numerical comparisons for sum and 
treatment coding (section 4.1). Equation (1) is then fitted to the data Y 
by least-squares with the restriction that the matrix B has reduced rank r 
(with r smaller than the rank of X), whereas no restrictions are applied to 
A. Covariates thus differ from the other predictors (here X) in that they 
are fitted without dimension reduction. If B is of reduced rank r, it is of 

the form B = C[r] P[r]′, where the superscript [r] indicates that only the 
first r columns are used. Recall that PCA with two axes retained or 
plotted in a biplot [36] provides a rank 2 approximation of the matrix to 
which it was applied. Similarly, XB̂ is approximated in ASCA+ with r 

axes by Ta[r]
X Pa[r]′

X . 
For the comparison of ASCA+ and RDA it is useful to show how the 

least-squares solution is obtained in RDA. For a full derivation see Ap-
pendix A1.1. For ease of exposition, the intercept (1n) is added to Z as an 
extra column (as is standard in multiple regression using matrix nota-
tion), so that also A has an extra column, but that does not matter for 
now as the focus is on the reduced-rank estimation of B. How RDA is 
obtained can be understood by first projecting X on to Z, subtracting and 
adding the fit (the projected X) to equation (1) and then rearranging the 
equation [47] 

Y=ZA + ΠZXB + XB − ΠZXB + E = ZA* + X̃B + E (2)  

with ΠZ = Z(Z′Z)
− 1

Z′, the projection operator on to Z, A* = A+

(Z′Z)− Z′XB, and X̃ = (In − ΠZ)X. Note that X̃ is orthogonal to Z so that 
least-squares reduced-rank estimate of B can be obtained from the 

formal model Y ∼ X
∼

, a reduced rank model without covariates Z. 
Similarly, multiply the left- and right-hand side of equation (1) by 
(In − ΠZ) and obtain 

Y
∼

= (In − ΠZ)Y = (In − ΠZ)XB + E = X
∼

B + E. (3)  

For the same reason, the full-rank least-squares estimate of B in equation 
(3) is equal to B̂, the least-squares estimate of B in equation (1). Note 
that Ỹ and X̃ are the residuals of the multivariate regression of Y and X 
onto Z, respectively. 

In the simplest case of RDA, Z consists of the intercept only and X̃ is 
simply X after column-centering, a step that is included as a pre-
processing step in Ref. [47]. For this reason, we do not distinguish be-
tween “simple” RDA and partial RDA (or between reduced-rank 
regression and reduced-rank regression with concomitant variables), in 
line with the fact that all software for RDA does both by a single func-
tion, particularly the rda function in the R package vegan [19] and the 
f_rda.m function in the Phantom toolbox for Matlab [48]. 

The least-squares reduced-rank fit of B in equation (3) is obtained in 
two steps [20,47] 1) obtain the (full rank) least-squares-fit ŶB by 

multivariate regression of Ỹ on to X̃, giving fit X
∼

B̂ = X
∼(

X
∼

′X
∼)− 1

X
∼

′Y
∼

=

Π
X
∼Y
∼

, and 2) perform a PCA on X̃B̂ giving scores and loading matrices 

Tr
X̃ and Pr

X̃, respectively, which are related by Tr
X̃ = X̃B̂Pr

X̃ (the super-
script r stands for RDA to distinguish them from similar scores in ASCA). 
The scores Tr

X̃ are the standard scores in partial redundancy analysis [7, 

20] and are a function of both X and Z. As Tr
X̃ = X̃(B̂Pr

X̃) = X̃Cr
X , the 

canonical coefficients are Cr
X = B̂Pr

X̃ [7]. The least-squares reduced-rank 

estimate of B is thus Cr[r]
X Pr[r]′

X̃
. Key in the above is projection, so that any 

inverse can be replaced by a generalized inverse in case of singularity, 
for example, if indicator coding is used. 

The additional scores that show the variability among replicates around 
the scores Tr

X̃ are defined as, TEr
X̃ = (In − ΠZ)YPr

X [7,8]. Note that 

(In − ΠZ)Y= (In − ΠZ)(ẐA* + X̃B̂+ Ê)= X̃B̂+ Ê, so that TEr
X̃ = Tr

X̃+ ÊPr
X̃. 

The RDA scores that show variability among replicates are thus derived in 
the same way as in ASCA from their PCA scores and loadings in conjunction 
with the error matrix (which is the same for ASCA and RDA). The scores Tr

X̃ 
go under a variety of names: constrained scores, X-space scores, CaseE 
scores in Canoco 5 [derived from the explanatory variables] and LC-scores 
[linear combination scores] in R package vegan, whereas names for TEr

X̃ are 
unconstrained scores, Y-space scores, CaseR scores in Canoco 5 [derived 
from the response] and WA-scores [weighted averaging scores] in R 
package vegan. The name WA-scores is inherited from canonical corre-
spondence analysis, which relates to correspondence analysis as redun-
dancy analysis relates to PCA [7,12]. In (canonical) correspondence 
analysis the response values in Y are non-negative and the unconstrained 
scores are weighted averages of the column scores (‘loadings’) using the 
response values of the sample (a row of Y) as weights [7]. 

To obtain a reduced-rank decomposition of A as well, simply inter-
change the role of Z and X in equation (1), except that it may not be 
prudent to adjust a main effect for its interaction [49]. 

It is by now easy to formulate in which sense RDA is a constrained 
PCA. RDA is a PCA with linear restrictions on the scores T: T = X̃C, i.e. 
the scores must be a linear combination of X̃ or, equivalently, of both X 
and Z but orthogonal to the covariates Z (Z′T = 0). This view on RDA is 
exactly what is known as partial redundancy analysis in ter Braak & 
Prentice [7]. 

It is important to remark that the steps to obtain the least-squares 
reduced-rank fit of B are just one algorithm for RDA (Supplement S2). 
An iterative algorithm is provided in Ref. [7], implemented in the 
software Canoco [18] with sparse matrix operations, in which neither 
the fitted values Ŷ nor ŶB nor PLS-type deflation [13] appear. This al-
gorithm is based on simple steps that alternate between scores, loadings 
and coefficients and that together define the eigen equations of RDA [7]. 
See Ref. [50] for examples of such algorithms. The key point is that the 
algorithm solves the least-squares RDA problem: it minimizes the sum of 
squared residuals (Ê) under the rank constraint on B. 

2.4. Mathematical comparison 

ASCA(+) and RDA perform PCA on matrices XB̂ and (In − ΠZ)XB̂ =

XB̂ − ΠZXB̂ = X̃B̂, respectively, and are thus exactly identical if ΠZX 
vanishes, i.e. if X is orthogonal to Z, i.e. Z′X = 0. This happens for 
complete designs using sum coding, in which case RDA does not even 
need covariates for this equivalence. ASCA(+) and RDA are also the 
same if the full rank of B̂ is 1 so that no further rank- or dimension 
reduction is possible, e.g. in the model A + B with factor B having two 
levels only or in any (incomplete versions) of a 2p-factorial design, 
nevertheless used as example in Thiel et al. [6]. In the remainder of this 
paper we focus on (dimension reduction in) incomplete designs. If X is 
not orthogonal to Z, the methods are not identical; the difference is 
ΠZXB̂. Appendix A1.2 shows that RDA uses the optimal weights in the 
reduced-rank approximation of B̂, whereas ASCA+ uses alternative, 
sub-optimal weights. 

For our focal model, with Z coding for the factor A and X coding for 
the A-dependent effects of B, the difference between ASCA+ and RDA 
can be expressed in simple words. ASCA+ performs a PCA on the part of 
the fitted values corresponding to the A-dependent B-effects, whereas 
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RDA first subtracts from these values the means per level of A and then 
performs a PCA. ASCA+ thus applies PCA to a matrix (table) that has 
means that vary across levels of A in incomplete designs, whereas RDA 
applies PCA to a table that has, per level of A, zero mean for each var-
iable. The table used in ASCA+ does not even have zero mean overall in 
incomplete designs (but the PCA removes these non-zero means as it is 
column-centered by default). To link to the formulas, the fitted values of 
the term (A:B or B + A:B) are XB̂ and the means per level of A, when 
assigned to the corresponding samples of each level, are ΠZXB̂. In the 
formulas, the formation of means per level of A and the subtraction is 
indicated by (In − ΠZ). 

Consequently, the RDA-scores Tr
X̃ and TEr

X̃ have zero mean per level 
of A, whereas the ASCA-scores Ta

X and TEa
X may have non-zero means for 

levels of A, as we illustrate in Fig. 1. 
ASCA+ performs one multivariate regression and several PCAs 

which are all least-squares methods, but ASCA+ is not least-squares 
overall. RDA is least-squares for any prescribed reduced-rank for the 
focal term (XB in equations (1) and (2), and B + A:B in PRC) and full 
rank of the other terms (ZA in equations (1) and (2), and A in PRC), but is 
not least-squares either for prescribed reduced-ranks for all terms. Al-
gorithms to provide the overall least-squares solution for prescribed 
reduced-ranks of all terms are discussed in Velu [27] and Velu et al. [51] 
with an algorithm for a more general case in Takane et al. [52]. 

ASCA+ and RDA provide exactly the same decomposition of the 
variance, whatever the design. This equality is due to the choice in 
ASCA+ [6] to base explained variance on type III sum of squares. This 
choice introduces a slight inconsistency in ASCA+ in that the matrix 
analyzed by PCA in ASCA+ differs from the matrix from which the 
explained variance is computed [29]. For X, for example, the PCA is 
applied to XB̂ and the explained variance is computed from (In − ΠZ)XB̂ 
(Supplement S1). A corollary is that the sum of the eigenvalues of the 
PCA in ASCA+ will be bigger than (or equal to) the reported explained 
sum of squares. In RDA, the PCA and sum of squares are both computed 
from (In − ΠZ)XB̂. 

ASCA+ needs sum coding of factors and interactions, whereas in 
RDA any coding that preserves the spaces spanned by the terms gives the 
same eigenvalues and loadings. Consider the model A + B + A:B and its 
decomposition in A and B + A:B (the PRC model). In terms of fitted 
response, the model can be specified as A + A:B as well, but would 
ASCA+ always provide the same results for the two specifications and, if 
not, does any of these specifications perform as well as RDA? We 
investigate this question, and what the differences noted in this section 
can mean in practice, using simulation and real data. 

2.5. Remarks 

For the equivalence of RDA and ASCA in complete designs, RDA must 
be understood as a sequence of RDAs, just as ASCA uses a sequence of 
PCAs. In the theory of RDA the emphasis is on the decomposition of the 
focal term (i.e. the term that is rank-reduced; in this paper XB), but in the 
function rda of the R software library vegan [19] all terms in equation 
(1) are decomposed sequentially as in type I sums of squares, including a 
PCA of the residual Ê. In the Canoco software [18], the Z term is not 
decomposed, but the X and Ê terms are. Also, for variance decomposi-
tion, ASCA+ and RDA require the same sequence of analyses. 

The typical display of a factor with two levels in ASCA and RDA is 
embarrassingly uninteresting when the constrained scores are displayed 
as these contain two values only. ASCA+ and RDA are identical in this 
case, but rarely so in terms of what is displayed. In the standard RDA 
display, the unconstrained scores are added and the second dimension is 
used to display the first component of the residual matrix Ê. 

More, generally, there are two ways in which error and natural 
variability can be displayed in ASCA and RDA: 1) by the unconstrained 
scores and 2) by decomposition of the matrix of residuals Ê. The dis-

played rank of X can be limited to a single dimension in what is called 
‘hybrid ordination’ (namely a combination of constrained ordination 
and unconstrained ordination of the residuals), so that the second 
dimension is free to show the first component of the residuals Ê. Both 
Canoco and vegan allow the user to display either the constrained or the 
unconstrained scores of any term that is not a residual. Displays with 
unconstrained scores can also be enhanced with ellipsoids summarizing 
their dispersion [18,53] 

Note also that the highest order interaction in factorial design may be 
unreplicated and, thus, be indistinguishable from error. An example is 
the guinea pig example in Smilde et al. [4]. 

ASCA typically decomposes both main effects and interactions. 
However, interaction is a statistical concept that is perhaps easy to grasp 
theoretically, but nevertheless difficult to interpret in practice for two 
reasons. One reason is that an interaction, at least in a complete design, 
models the deviation from the main effects. So, one needs to keep the 
main effects in mind when interpreting the interactions. Moreover, the 
loadings differ between the PCA plots of main effects and interaction. 
The second reason becomes clear when the model is rephrased as a 
regression model, as it is in ASCA+. Regression coefficients have a 
simple interpretation when associated with quantitative variables. The 
regression coefficient gives the change in the response per unit change in 
a quantitative predictor, with the values of the other predictors held 
constant. But a regression coefficient associated with an interaction 
cannot have this interpretation. A change in the value of an interaction 
necessarily implies a change in at least one value of the constituting 
predictors. Analogously, the regression coefficient associated with a 
factor level estimates the change in response when changing from the 
reference level to the factor level, assuming treatment coding and con-
stant values of everything else in the model. In other words, it is the 
difference in response between the associated level and the reference 
level. A regression coefficient associated with an interaction is not a 
change in response due to changing levels. It is a difference of a differ-
ence, thus involving four levels (two of A and two of B). 

A simpler way of looking at interactions is to define interaction 
asymmetrically as the effect of B that changes with the level of A (or 
reversely). This simpler point of view is exploited in PRC [22,23]. It 
applies PCA to the model B + A.B, with covariate factor A, so that the 
main effect of B and its interaction with A can be interpreted simulta-
neously in terms of a single set of loadings as discussed further in the 
next subsection. 

2.6. Special cases 

2.6.1. Weighted effect ASCA (WE-ASCA) 
WE-ASCA [21] is ASCA+ with sum coding replaced by weighted 

effect coding [32]. Weighted effect coding is an ingenious way of coding 
a design matrix such that the main effects represent deviations from the 
overall sample mean (column-means of Y) and do not change when 
interactions are added to the model, properties that do not apply to sum 
coding in unbalanced designs. In WE coding, main effects and in-
teractions are orthogonal to the intercept and the interactions are also 
orthogonal to the main effects. The decomposition of the models A + B 
and A + B + A.B, may therefore yield different results for A and B in 
ASCA+, but these parts yield the same result with WE-coding. Main 
effects are not necessarily orthogonal to one another in WE-ASCA. 
Therefore, WE-ASCA is identical to RDA for the model decomposition 
(A + B) + A.B, but not for A + B or A + (B + A.B) as A is not necessarily 
orthogonal to B in incomplete designs. However, we discovered that the 
current implementation of WE coding [33] fails to fulfill these properties 
if some combinations of A and B levels are missing in the data. For 
complete designs, WE-ASCA is identical to ASCA and RDA. 

2.6.2. Principal response curves (PRC) 
PRC was introduced as a model to summarize the multivariate time- 
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dependent response of aquatic species to a toxicant in a designed 
experiment and was estimated by RDA with covariates [22,23]. With A 
representing the factor time and B the factor representing the different 
levels of application of the toxicant, PRC is based on the model A + A.B 
or, equivalently A + (B + A.B), with Z coding for A and X coding for the 
second term. The regression coefficients of the second term are assumed 
to be of reduced rank and are estimated by RDA as in section 2.3. The 
full-rank regression coefficients are thereby approximated by their 
reduced-rank counterparts. PRC is thus precisely RDA applied to our 
focal model. 

A PRC graph is a plot of the canonical coefficients of the first axis, i.e. 
Cr[1]

X , against time, with points of the same treatment level connected by 
lines, and with a plot of the loadings Pr[1]

X on the (right-hand) vertical axis 
(Fig. S1). Canonical coefficients depend on the coding of matrix X. At its 
introduction, PRC [23] used treatment coding with the control treat-
ment as reference, so that the control is represented by the horizontal 
x-axis at y = 0 and the lines or curves of the other treatments are de-
viations from the control. Because RDA is invariant to the coding system, 
the coding can be adopted post-RDA. The canonical coefficients for the 
new coding system can be obtained by regression of the score vector (Tr

X̃ 

or TEr
X̃

) on newly coded X and Z. The coefficients can be computed even 
manually as they are the deviations, per time point, of the constrained 
scores from those of the reference. The variability of the PRC curves can 
be displayed using the unconstrained scores (TEr

X̃ ), optionally shifted, i.e. 
using the Tr

X̃ - scores of the reference as offset (so that the reference 
samples vary around the horizontal axis at y = 0). In other words, the 
PRCs do not need the canonical coefficients per se; they can equally well 
be obtained from the usual constrained RDA scores. The innovation of 
this paper is that the PRCs can be supplemented with the unconstrained 
RDA scores so as to show replicate variability. Figs. 1 and 3 show 
examples. 

PRC treats the factor interaction asymmetrically, while statistical 
interaction is a symmetric concept. There are a number of reasons why 
the asymmetric treatment in PRC is beneficial. First, the factors are often 
asymmetric in that one factor is of more scientific interest than the other. 
In the prototype example of PRC where A is the factor time and B is a 
treatment, the scientific question ‘how the treatment effect changes over 
time’ is already asymmetric. Second, while the statistical interaction 
may be statistically significant, it may be small or may not change the 
ranking of the treatments between different levels of the other factor(s). 
Ranking is often of greater practical interest than precise quantities. If 
the factors are of equal scientific importance, it seems sensible to 

construct both a PRC diagram based on the model A + A:B and one based 
on the model B + A:B. 

As ASCA+ and RDA are identical for complete designs, ASCA and 
PRC are identical for our focal model, herein after referred to as the PRC 
model. Opposite claims in the literature [3,25] were refuted in Vendrig 
et al. [54]. Fig. 4 in Timmerman et al. [26] is thus a regular PRC - 
particularly as the displayed scores are deviations from the reference - 
with loadings in a bar plot, a layout independently chosen in Verdon-
schot et al. [55]. 

3. Numerical comparison 

3.1. Simulation 

Three simulation series were performed, all based on the PRC model. 
We compare the methods and the two ways to specify the PRC model: A 
+ A.B and A + (B +A.B) for factors A and B, with dimension reduction of 
the terms A.B and B + A.B, respectively. The first series illustrates when 
ASCA+, WE-ASCA and RDA differ in results and how the differences 
depend on the design of the study and the way the model is specified and 
coded. The differences turn out to be largest in the design with one or 
more factorial combinations missing (‘empty cell’), which is investi-
gated further in a second series of analyses. In the third series hundreds 
of unbalanced data sets are simulated according to scenarios that 
differed in numbers of response variables and levels of factors, in size of 
the error variance and in balance of the design. 

Four types of designs were generated. Design ‘Complete’ is an equi- 
replicated design with all combinations of two factors A and B replicated 
twice. Sometimes one treatment level is replicated more (or less) often 
[23], and this is illustrated in design ‘Proportional’ in which the level B1 
has four replications instead of two (Table 1). The levels of the two 
factors were assigned equi-spaced numbers, then scaled to zero mean 
and unit variance, resulting in two quantitative predictors x1 and x2, 
which were then used to generate m response variables from the model 

yik = a0 + akx1i + bk(x2i + 0.5x1ix2i) + σεik
(i = 1,…, n; k = 1,…,m)

(4)  

with a0 = 10, ak and bk uniform random between − 1 and 1 and εik in-
dependent standard normal error with standard deviation σ (1, 2 or 3). 
The model has reduced-rank 1 because the coefficient of the interaction 
is a multiple (half) of the effect of x2. The model gives treatment dif-
ferences for levels of B that increase with the level of factor A without 
changing sign (Fig. S2). 

Table 1 
Design types: percentage squared difference between the fitted X-terms (Δ) and correlation (ρ) of the loadings of the first axis of ASCA versions with those of RDAa, or 
(in the last two rows) between those of the two ASCA versions, for the terms A.B and B + A.B in the models A + A.B and A + (B + A.B), respectively, for four examples 
with four response variables in designs with factors A and B (sum: sum coding; WE: weighted effect coding; λk: RDA eigenvalue of axis k).  

Design type Complete Proportional Unbalanced Empty cell 

Counts in 4 × 3 design 

λ1/λ2 1.6 1.4 2.7 2.4 
ASCA+ term Δ ρ Δ ρ Δ ρ Δ ρ 
Comparisons of ASCA extensions with RDA 
sum A.B 0% 1.00 4% 0.83 6% 0.66 16% 0.76 
sum B + A.B 0% 1.00 4% 0.83 6% 0.66 29% 0.69 
WE B + A.B 0% 1.00 0% 1.00 2% 0.98 25% 0.17 
Comparisons between ASCA extensions 
WEb B + A.B 0% 1.00 4% 0.83 3% 0.69 3% 0.60 
A.Bc B + A.B 0% 1.00 0% 1.00 0% 1.00 7% 0.98  

a RDA is invariant to coding and term and so would give Δ = 0 and ρ = 1 in all cases. 
b This row compares two versions of ASCA (WE-ASCA and ASCA+). 
c This row compares the two model specifications for ASCA+ using sum coding. 
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The remaining two designs are ‘Unbalanced’ and ‘Unbalanced with 
an empty cell’. These designs were generated by drawing the predictors 
x1 and x2 independently from the standard normal distribution and by 
subsequent discretization of x1 and x2 into factors A and B with equal 
numbers of observations per level. The number of observations for the 
first level of factor B could be doubled by starting with one category 
more and merging the first two levels. 

In the first series we simulated 4 × 3 factorial designs of each of the 
four types of designs with four response variables (Table 1). We report 
two statistics. The first is the percentage squared difference between the 
fitted X-terms (Δ), defined as 100 times the sum of squared differences 
between XB̂ for ASCA+ and WE-ASCA and X̃B̂ for RDA, divided by the 
sum of squares of X̃B̂. The second statistic is the correlation (ρ) of the 
loadings of the first axis of the X-term in ASCA+ and WE-ASCA with 
those in RDA. RDA was chosen as a reference because its results do not 
change with the way the model and design matrices are specified. 

In the second series we simulated a complete 10 × 5 design in two 
replications with 7 response variables. The first eigenvalue is 2.7 times 
the second, so that the first axis is well determined. From the 100 
samples in this design we deleted the two observations on the (A10,B5) 
combination, resulting in one empty cell in the A × B contingency table. 
The data set so obtained was re-analyzed repeatedly under random re- 
ordering of the levels of factors A and of B. We report the correlation 
between the loadings of the first axis and the loadings of the complete 
design as the latter do neither depend on the method nor on the way the 
model is specified nor on the order of the factor levels. We also report the 
variance explained of the first axis after deletion of the two observation, 
expressed as percentage of the variance explained in the complete data. 
The variance is adjusted for the effects of factor A. 

In the third series, the methods are compared on unbalanced data 
across all combinations of: 1) numbers of response variables (m = 10, 
100 or 1000), 2) numbers of levels of factors A (4 or 10) and B (3 or 5), 3) 
size of the error variance (σ = 1 or 4) and 4) balance of the design 
(doubling or no doubling of the first level of factor B). For each of these 
48 combinations (scenarios), 200 data sets were generated, many of 
which contained one or more empty cells. The comparison is in terms of 
the variance explained by the first axis, expressed as percentage of the 
variance explained by the first axis in a sum-coded RDA of the term A:B 
with model specification A + A:B. 

R-code [31] of the simulations and analyses can be found in Sup-
plements S2–S6. All numerical implementations of the methods used the 
same B̂, if their coding and model specification matched (Supplement 
S2.2). 

3.2. Real data: the Ossenkampen experiment 

The methods do not only differ in theory but may also differ in 
practice. This is demonstrated with an ecological, publicly available 
data set [9] which comes from the Ossenkampen experiment, a 
long-term fertilizer experiment (1958–2007) in grassland with 98 
response variables (abundances of the plant species that grew in the 
Ossenkampen plots, measured as counts in 100 subsamples). The anal-
ysis in Ref. [9] focused on the (non-linear) time trends in the species 
abundances in the plots and how these relate to nitrogen deposition. 
Here we focus on the time-dependent treatment effects (see also the 
supplementary information in Ref. [9]). The experiment started in 1958 
with 12 plots arranged in two randomized complete blocks with six 
treatments: four types of fertilizer (K, P, PK or NPK), liming and no 
fertilizer. Eight years later (in 1966) each block was extended with two 
plots, one with N and another with NPK fertilization. The two limed 
plots behaved rather differently from the rest and are omitted here. We 
combined the K and P plots with the no fertilizer plots so that the control 
treatment (Cntrl) consisted of 6 plots, with the aim to make the vari-
ability among replicates more interesting. Three plots of the control and 
one PK plot were not sampled in 1967 and two NPK samples were not 

sampled in 1984; these missing samples were not imputed in this paper; 
they were imputed in Ref. [9] so as to enable design-based permutation 
testing of plots (instead of individual samples) [23]. The data analyzed 
here consist of 512 samples from 14 plots with four treatments (Cntrl, 
PK, N and NPK) measured in 39 different (not necessarily consecutive) 
years, taken as unrelated levels in the analysis and plotted as number of 
years after the start of the experiment. Factor A is thus year (with 39 
levels) and factor B fertilizer treatment (with four levels) and the missing 
(A,B) combinations are due to the late start of the N treatment. The 
counts were log(y+1)-transformed. 

4. Results 

4.1. Simulation 

For a complete design, all methods are equal and do not depend on 
the model specification (Δ = 0 and ρ = 1 in Table 1). In the Proportional 
design, in which the levels of B differ in the number of replications 
(Table 1), WE-ASCA equals RDA (because the main effects are still 
orthogonal), but ASCA+ differs slightly (Δ = 4%; ρ = 0.83). The two 
versions of ASCA thus differ. The Proportional design allows an 
orthogonal ANOVA [56] and thus a unique ASCA solution, which is 
identical to the WE-ASCA and RDA solution. This example shows that 
ASCA+ does not include ASCA. The two ways to specify the model yield 
the same result with ASCA+ (last row in Table 1). With unbalanced data, 
WE-ASCA is no longer equal to RDA (because the main effects are not 
orthogonal any more), but the difference is small (Δ = 3%; ρ = 0.98). By 
removing the single (A3,B3) observation from the unbalanced data, a 
data set arises with an empty cell and all methods produce different 
results (Table 1, last column). This is investigated further in Table 2. 

In the example of Table 2, an empty cell was created by deleting two 
observations of the 100 observations in a complete twice replicated 10 
× 5 design. Applied to the complete data, all methods give the same 
result and the first eigenvalue is twice the second (so that the first axis is 
well determined). But after the deletion of two observations, the results 
of the ASCA extensions depend on the order of the factor levels. The 
dependence on factor level order is particularly large when the model is 
specified as A + (B + A.B) instead of as A + A.B (Table 2). A removal of 
2% of the data may give loadings that are almost uncorrelated (ρ = 0.01) 
to the loadings of the complete data and a reduction of about three- 
quarter of the variance explained (100–23 = 77% or, when compared 
to the best factor order, (87–23)/.87 = 74%). The deterioration in the 
performance of ASCA+ and WE-ASCA depends on method, model type 

Table 2 
Example, based on a 10 × 5 design in two replications with one empty cell and 7 
response variables, of the dependence of ASCA+ and WE-ASCA, and the inde-
pendence of RDA, to factor level order and model specification in designs with a 
single empty cell. Dependence is measured by the range of correlations (ρ) be-
tween the (first axis) loadings of the complete design (100 samples) and those of 
the design with one cell missing (98 samples) across 104 random reordering’s of 
the levels of the two factors and the corresponding percentage variance 
explained (Explained) compared to the fit by the first axis in the complete data. 
RDA is not dependent on factor level order, here visible in that minimum and 
maximum are equal. Two ways to specify the model are used, A + A.B and A+(B 
+ A.B), with focal terms A.B and B + A.B, respectively. (Min.: minimum; Max.: 
maximum; -: impossible specification; in bold the value that occurs in more than 
80% of the 50 possible positions of the empty cell).  

method term 

ρ Explained 

A.B B+A.B A.B B+A.B 

Min. Max. Min. Max. Min. Max. Min. Max. 

ASCA+ 0.75 0.98 0.01 0.98 84% 87% 23% 87% 
WE-ASCA - - 0.06 0.98 - - 23% 87% 
RDA 0.98 0.98 0.98 0.98 87% 87% 87% 87%  
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and position of the empty cell in the 10 × 5 cross-table (Supplement S4). 
WE-ASCA does somewhat better than ASCA+, in that it deteriorates in 
far fewer factor level orders. For RDA, minima and maxima are equal 
(Table 2), showing that RDA is neither dependent on factor level order 
nor on the way the model is specified. Table S1 shows qualitatively 
similar results for the Complete 4 × 3 design of Table 1, from which two 
observations of a single AB-combination are deleted. 

Fig. 1 show score plots of the data analyzed in Table 2. The graphs 
(except one) show that the treatment differences increase in size with 
the level of A (in agreement with the truth in Fig. S2). Because the 
loadings of all variables are positive (not shown), the values of all 
response variables are shown to decrease with the increase of the level of 
B, and the decrease become larger for increasing level of A. Note that the 
purple line for B5 in each graph ends at A9 as the (A10, B5)-combination 
is missing and that, at A10 in the top row, the lines differ between 
ASCA+ and RDA. RDA gives the same result for the two ways to specify 
the model, but ASCA+ gives different results with extreme scores at level 
A10 for model A+(B + A:B). For the complete data, the plots are iden-
tical across methods and model specifications and almost indistin-
guishable from those of RDA in Fig. 1 (not shown). 

Fig. 1 also shows the variation in the samples around the treatment 
lines. The points of the two individual replicates per (A,B) combination 
has not been connected as the simulated error was independent. The 
treatment lines are means of two points and thus lie precisely in middle 
of the two points per (A,B)- combination. 

In the bottom row of Fig. 1, the scores in the top row are re- 
expressed, for each level of A, as deviation from the mean. In other 

words, bottom row shows the residuals of the regression of the original 
scores onto factor A, i.e. using (In − ΠZ)XB̂P = X̃B̂P instead of XB̂P with 
additional column-centering and P the loadings of the method. The re- 
expression removes any effect of A (compare the top and bottom 
rows), thereby removing the defects of the original scores in the top row. 
Whereas RDA removes the effect of A before applying PCA, the re- 
expression of the ASCA scores removes the effect of A after PCA is 
applied. The explained variance reported in Table 2 and Fig. 2 are based 
on the re-expressed scores, and are thus not influenced by the extreme 
scores such as those in Fig. 1 for ASCA B + A:B. 

The third simulation series gives an impression how the ASCA ex-
tensions perform compared to RDA across 14400 data sets when the 
design is unbalanced with or without empty cells (Fig. 2). Without 
empty cells, the ASCA extensions are slightly inferior to RDA in terms of 
variance explained, and never better. Without empty cells WE-ASCA is 
slightly better than ASCA+, but slightly worse than RDA. With empty 
cells, RDA outperforms the ASCA extensions by large, and the different 
ways to specify and encode the model yield wildly different results in the 
ASCA extensions, but identical results in RDA (Fig. 2). 

4.2. Real data: the Ossenkampen experiment 

Fig. 3 compares ASCA+ and RDA for the Ossenkampen experiment. 
The differences are largest for the original scores in the top row, in 
particular for the first ten years of the experiment when the N treatment 
was not yet included. When the scores are re-expressed as differences 
from the mean per year or, as in the bottom row of Fig. 3, from the 

Fig. 1. ASCA+ and RDA scores of principal response 
(first axis) to factor B in dependence of the levels of 
factor A (horizontal) for the data of Table 2 (empty 
cell A10B5). Top row: ASCA+ scores (Ta

X and TEa
X ) 

and the constrained and unconstrained scores of RDA 
(lines and points, respectively). The bottom row re- 
expresses the scores in the top row as deviation 
from mean per A category (which does not change the 
RDA scores). WE-ASCA gave the same result as ASCA 
with model specification A + (B + A:B) and the nat-
ural order of factor levels (A1-A10 and B1–B5); for 
other orders of levels their results may differ 
(Table 2). Extreme negative scores in the top row are 
truncated to − 4.   

Fig. 2. Histograms of percentage variance explained 
by the first axis of the PRC term (A:B or B + A:B, both 
given A) compared to that of a sum-coded redun-
dancy analysis (RDA) of the term A:B given A, 
showing that RDA with model B + A:B (sum or 
treatment coded) given A gives the same results 
(relative variance explained 100%) and the ASCA 
extensions (ASCA+ and WE-ASCA) yield results 
which depend on model specification and factor 
coding with less than or equal to 100% relative 
variance explained. The data were simulated from the 
one-dimensional PRC model of equation (4) accord-
ing to 72 scenarios from each of which 200 data sets 
were generated. The scenarios were all combinations 
of numbers of response variables (10, 100 or 1000), 
numbers of levels of factor A (4 or 10), and factor B (3 
or 5), σ (1, 2 or 3), and doubling (yes or no) of the 
number of observations for the first level of factor B. 
The height of the bars at 100% for RDA has been 
reduced to the maximum per row, so as to allow 
maximum visual detail in the histograms of the other 

methods (empty cell: a factor combination without observations).   
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control treatment in each year, the differences are rather small. 
The factor block was not used in the ASCA and RDA analyses, but is 

visible in Fig. 3 in the form of the individual plot lines of the 14 plots 
(solid versus dotted lines). The block effects, if any, appear small on the 
first axis of the analysis shown in Fig. 3, as do the differences between 
the six plots classified here as control but that in the experiment were 
different treatments (reference, P and K). The factor block could have 
been added to Z as it was in Ref. [9]. 

The individual plot lines in Fig. 3 of the two N and two NPK plots that 
started after ten years, are initially close to the lines for the control but 
move later on in the direction of the two NPK plots that were included 
from the start of the experiment. The individual plot lines suggest that 
the NPK plots that started later might have been better classified as 

control for the first few years. Because the plant species composition lags 
behind the fertilization, the immediate classification of these plots as 
NPK potentially underestimated the NPK effect in these years in Fig. 3. 

Fig. 3 shows just one of the many ASCA solutions. Fig. 4 shows some 
other solutions, obtained by reordering the levels of the treatment factor 
(three orders: in order of the legend of Fig. 4, alphabetical order, 
alphabetical but with the N treatment moved to last). Fig. 4 (first col-
umn) shows that the ASCA solution shown in Fig. 3 is not the one that is 
most similar to the RDA solution, but after re-expression of the scores to 
remove any effect of years (A) all solutions with model A + A:B shown 
are very similar to RDA. However, with model A + (B + A:B) there are 
more solutions that differ appreciably from RDA and among one- 
another. WE-ASCA (last column) gave about the same solution as RDA 

Fig. 3. Ossenkampen experiment: principal time-dependent (factor A) response of 98 grassland plant species to fertilizers (factor B) as analyzed by ASCA+ and RDA 
with the original scores (top row) and re-expressed scores (bottom row). The RDA plot in the bottom right is identical to a traditional PRC, without loadings for the 
individual variables, but with lines that show the natural variation around the treatment lines. The ratio of first two RDA eigenvalues is 6.3. 

Fig. 4. Ossenkampen experiment: Dependence of 
ASCA+ and WE-ASCA on the order levels of factor B 
(fertilizer: Cntrl, PK, N, NPK) and the model specifi-
cation (A + (A:B) or A+ (B + A:B)), of which the 
second term is analyzed here. Shown are three type of 
scores: (scores as is: the standard scores of section 2 
(Ta

X for ASCA versions and Tr
X̃ for RDA); centered: 

scores that are centered per level of A; Reference 
Cntrl: the standard PRC scores, i.e. scores expressed as 
deviation of Cntrl (the reference level)). Excessive 
negative scores in the top row are truncated to − 10. 
The black lines in each panel are the corresponding 
scores of RDA.   
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for some orders (as is visible by the colored lines with a thinner black 
line close or overlying), but not for all, whereas ASCA+ with the same 
model (middle column) resulted in completely different treatment lines 
throughout (the black lines are separate from the colored lines). 

5. Discussion and conclusions 

This research highlights issues in the ASCA extensions ASCA+ and 
WE-ASCA, particularly when applied to incomplete experimental de-
signs with missing factor combinations, and a slight inconsistency that 
went unnoticed so far (the variance decomposed by PCA is not equal to 
that used in the variance decomposition) [29].The good news is 
two-fold: 1) in slightly incomplete designs the ASCA extensions perform 
reasonably well (Fig. 2) so that almost no ASCA application needs to be 
revised, and 2) an alternative exists, RDA, which has a solid mathe-
matical basis and for which user-friendly, versatile software imple-
mentations exists [18,19]. 

The model A + (B + A:B), the PRC model, was taken as an example to 
show the similarities and differences between RDA and ASCA exten-
sions, but the theory in section 2 is quite general and, in particular, is 
neither limited to models that combine a main effect and an interaction 
nor limited to a particular experimental design. With minor disbalance, 
the differences appear small. The biggest issues of the ASCA extensions 
appear with empty cells; models with main effects only are expected to 
show small differences because marginal cells of main effects are rarely 
completely empty. 

RDA and the ASCA extensions use the same multivariate regression 
fit Ŷ (which can be obtained by a sequence of univariate fits), and RDA 
can use the same coding for factors and interactions as ASCA+ and WE- 
ASCA (but also indicator and treatment coding). The key difference is 
that RDA first makes the focal term orthogonal to the covariates and 
then performs PCA, whereas the ASCA extensions do it the other way 
round, as in the bottom and middle rows of Figs. 1 and 4, respectively, or 
PCA on XB̂ only as in the top rows of Figs. 1, 3 and 4. Consequently, RDA 
and the ASCA extension perform PCA on different matrices. In the PRC 
model, orthogonalization means: take out the means per level of the 
covariate factor A. This is presumably the first paper that considers post- 
processing of the ASCA+ and WE-ASCA scores by projection in order to 
circumvent the issue of extreme scores that may arise in designs with 
empty cells (Figs. 1 and 4). The extreme scores are taken care of by this 
post-processing/projection step and improved the summary statistics on 
the basis of which we compared the methods quantitatively (Table 2 and 
Fig. 2). Without the post-processing step, ASCA+ and WE-ASCA per-
formed even worse. 

The multivariate regression step in ASCA+ takes care of unbiased 
estimation of the parameters. However, with rank-reduction of an ASCA 
term, bias is introduced again as terms (submatrices) are not orthogonal 
in unbalanced designs (see the issues at A10 in Fig. 1). This is why, in 
RDA, the focal submatrix is made orthogonal with respect to the other 
submatrices before PCA is applied. Such an orthogonalization might also 
be of interest to improve performance of ASCA extensions for random 
effects [57,58]. Specifically, the suggestion is to make each focal sub-
matrix of a fixed effect orthogonal to submatrices of other fixed effects, 
before PCA is applied. 

By-products of this work are three-fold.  

1) The proportional design allows an orthogonal decomposition, which 
WE-ASCA reveals but ASCA+ does not (Table 1). Consequently, 
ASCA+ does not include ASCA.  

2) Principal response curves are traditionally based on the canonical 
coefficients. This paper shows that they can be equally well derived 
from the constrained RDA scores. In consequence, replicate vari-
ability can be shown by also plotting the unconstrained scores 
(Figs. 1 and 3).  

3) An error was detected in the function summary.prc of vegan version 
2.6–4, which affects the results of PRC on unbalanced data and which 
will likely be repaired in the next version. This shows the importance 
of continued scrutiny and maintenance of software. 

RDA is typically introduced with dimension reduction of the entire 
model or a single part of it, as in equation (2). In contrast, ASCA typically 
starts with a complete decomposition of the model into main effects and 
interactions and PCA is applied to each term of the decomposition. It is 
difficult to interpret all PCA plots simultaneously, particularly because 
they have different loadings. For the decomposition of one term (or a 
combination of terms) RDA is optimal. We see little reason to aim for 
joint optimality of the decompositions, although technically possible 
[27,52]. It is wiser to go beyond ordinary least-squares and to introduce 
explicit weighting with the inverse of the error variance [20,28] and 
covariance [46,59]. 

The paper introducing PRC [23] using RDA had a proportional 
design and therefore would have allowed a similar analysis using 
WE-ASCA, but not ASCA+ (Table 1). A recent PRC application with a 
complete design is Ref. [60]. 

The response variables in real data example consisted of counts, 
which we analyzed after the logarithmic transformation log(count+1). 
A log-transformation generally avoids that variables with large variation 
ranges will overly influence the dimension reduction of a term of in-
terest. After log-transformation, large variation is of natural interest, as 
it reflects large percentage change on the original scale [50]. For data 
with zeroes, addition of a pseudo count is needed to avoid problems with 
the zeroes. This is a simple approach that we find often effective. 
However, it is good to mention canonical correspondence analysis [7] 
which is particularly attractive for count-like strictly compositional data 
with many zeros, i.e. count-like data, the sample sum of which is a 
technical artefact, such as microbiome data [16,18], and to also mention 
novel approaches that extend RDA to the framework of generalized 
linear modeling with [44,45] and without [42,43] additional random 
effects, with software implementations in Stata [45] and R [43,61]. 
These are the types of method the ASCA extension for random effects 
[57] has to be compared with. Also, reduced-rank regression is an active 
research area in statistics [62]. 

Statistical inference in RDA, ASCA and its extensions must proceed 
via resampling methods (permutation testing, bootstrapping and/or 
cross-validation). The possibilities, issues and pitfalls are many, but do 
not differ between RDA and ASCA variants. Nevertheless, we list some 
important points to consider: 1) restrictions on permutations or boot-
straps [15,18,63,64] (e.g. restrictions to permute samples within blocks 
only, to keep samples of the same experimental unit together, the 
balanced bootstrap [65]), 2) what aspect of the data must be resampled 
(e.g. the raw data value, a response or predictor residual) [17,66,67] and 
3) what statistic is used (mean square or F-statistic in testing [68], naïve 
bootstrap or t-value bootstrap [65]). Specifically, each individual term 
essentially requires its own permutation test. It is tempting to save 
computer time by performing a single set of permutations only (rows of 
Y, or levels within each factor of the design). However, this does not 
leads to good significance tests for individual terms [68,69]. 

RDA obviates the necessity to impute missing samples or to other-
wise rebalance a data set. Nevertheless, the statistical inference can 
sometimes be simplified or be made more robust by rebalancing the 
data. An example in case is the repeated measurement design in the 
Ossenkampen experiment. For statistical inference only, the missing 
values (after 1965) were imputed in Ref. [9], so that samples of the same 
plot could be kept together and the consecutive samples could be 
permuted cyclic so as to allow for autocorrelation in each sequence of 
samples of the same plot [18,63,64]. 

In the Ossenkampen analysis, year is treated as a factor with 39 
levels, giving irregular treatment curves. These curves can be make 
smoother by replacing the factor year by a set of B-splines [70] and 
including their interaction with the treatments. This presents no 
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problem to RDA as it is based on regression resulting in a regression 
spline fit. Smoothing splines or P-splines [71] would be even nicer, but 
require a modification of the RDA algorithm because they require a 
ridge regression version of RDA (and, likely, a cross-validation approach 
to choose the smoothing parameter). 

With resampling and Bayesian computing, repeated analysis of a 
single data set may result in slightly different results, but otherwise one 
might expect that a statistical method gives reproducible results. If one 
or more factor combinations of a factorial design are missing, the results 
of ASCA extensions are not reproducible without explicit specification of 
the factor order used in the analysis and the precise way the model is 
specified and encoded. Some ways to specify and encode the PRC model 
lead to inferior results in both ASCA+ and WE-ASCA. These issues can be 
prevented by using RDA instead. 

The results of this paper can be summarized by the highlights.  

1. A sequence of redundancy analyses (RDA) is more general in theory 
and practice than ASCA.  

2. The ASCA extensions for unbalanced data, ASCA+ and WE-ASCA, 
are unstable in designs with a missing factor combination.  

3. RDA outperforms ASCA+ and WE-ASCA. 

Consequently, extensions should be based on RDA’s statistical model 
rather than ASCA-related algorithms and this should be clear in the 
name of new extensions. 
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Appendix A1: theory 

A1.1. Derivation and algorithm of RDA and relation to PCA and multivariate regression 

This section provides an original and complete derivation of RDA. We start with the model in which the intercept is included in the matrix Z 

Y=ZA + XB + E (A1)  

and estimate the unknown parameter matrices A and B by least-squares by minimizing the sum of squares of residuals 

‖Y − (ZA + XB)‖2
, (A2)  

subject to the restriction that the rank of B is r, where ‖F‖2
= tr(F′F), the Frobenius norm of F. Let ΠZ = Z(Z′Z)

−
Z′, the projection operator on to Z with 

(Z′Z)− a generalized inverse. For brevity, we define E = Y − (ZA + XB), the matrix of residuals, so that we must minimize 

‖E‖2
= ‖ΠZE + (In − ΠZ)E‖2

= ‖ΠZE‖2
+ ‖(In − ΠZ)E‖2

, (A3)  

because ΠZE is orthogonal to (In − ΠZ)E. The last two terms in equation (A3) are developed further. The argument of the first term 

ΠZE=ΠZ(Y − (ZA+XB))=ΠZY − (ZA+ΠZXB)=ΠZY − ZA* (A4)  

with A* = A+ (Z′Z)− Z′XB. Because A is without constraint, A* is without constraint so that the minimum of ‖ΠZE‖2 is 0. Note that the least-squares 
estimate of A* consists of the regression coefficients of the formal model Y ~ Z. 

With Ỹ = (In − ΠZ)Y and X̃ = (In − ΠZ)X, the argument of the second term in equation (A3) 

(In − ΠZ)E = (In − ΠZ)(Y − (ZA + XB) ) = Y
∼

− X
∼

B. (A5)  

The minimum of ‖Ỹ − X̃B‖2 is derived, starting as in equation (A3) with Π
X
∼ = X

∼(
X
∼

′X
∼)−

X
∼

′ replacing ΠZ, Ỹ replacing Y and Ỹ − X̃B replacing E giving 
⃦
⃦
⃦Y

∼

− X
∼

B
⃦
⃦
⃦

2
=

⃦
⃦
⃦Π

X
∼

(
Y
∼

− X
∼

B
)⃦
⃦
⃦

2
+

⃦
⃦
⃦
(
In − Π

X
∼

)
Y
∼⃦⃦
⃦

2
=

⃦
⃦
⃦Π

X
∼Y
∼

− X
∼

B
⃦
⃦
⃦

2
+ ‖Ê‖

2 (A6)  

with Ê the residuals of the (full-rank) fit to equation (A1), which are independent of the differences in the preceding term. The reduced-rank estimate 
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of B is thus obtained by minimizing ‖ΠX̃Ỹ − X̃B‖2. Because B is of reduced rank r, it can be factorized as the product of two matrices 

C[r] and P[r]: B = C[r]P[r]′, so that X
∼

B = X
∼

C[r]P[r]′ = T[r]P[r]′, with scores T[r] = X̃C[r]. We seek thus the minimum of 
⃦
⃦ΠX̃Ỹ − T[r]P[r]′⃦⃦2. By the Eckhart- 

Young theorem, the minimum follows from the singular value decomposition [43] which, because ΠX̃Ỹ has zero column-means, is the same as a PCA 
[12] of the fitted values ΠX̃Ỹ = X̃B̂, with B̂ the least-squares estimate without rank restriction. Let Tr[r] and Pr[r] be the scores and loadings of the first r 
axes of this PCA. Then, because of the properties of PCA, Tr[r] = X̃B̂Pr[r], but we also have for any constrained score matrix T[r] = X̃C[r], so that the 

canonical coefficients of RDA [7] are Cr[r] = B̂ Tr[r] and the least-squares reduced rank estimate of B is Cr[r]Pr[r]′. 

Remark 
The derivation of RDA hinges on A being unconstrained. If A is constrained in some way, alternative methods are needed [27,46,52]. It is argued in 

the Discussion that these methods are of little practical interest. 

Number of parameters 
A rank r RDA has (m-r)(p-r) parameters less than multivariate regression [43]. The number of parameters in RDA given in Ref. [7] did not account 

for the rotational freedom in the loadings and canonical weights. 

A stable algorithm for RDA 

Step 1. Perform a multivariate regression of Y onto covariate matrix Z and predictor matrix X (with intercept included in Z). Retain the fitted values 
Ŷ and residuals Ê. 
Step 2. Perform a multivariate regression of the fitted values Ŷ from Step 1 on covariate matrix Z. Retain the residuals and name them R̂. 
Step 3. Perform a PCA on the residuals R̂ from Step 2. Retain the loadings P and scores T, which are constrained scores. 
Step 4. Calculate the unconstrained scores TE = T + ÊP . 
Step 5. Perform a multivariate regression of TE onto Z and X. Retain regression coefficients with their standard errors. The subset of coefficients 
corresponding to X are the canonical coefficients Cr. 

Remarks 
Step 1 gives Ŷ = ZÂ + XB̂ so that R̂ in step 2 is equal to (In − ΠZ)(ZÂ + XB̂) = (In − ΠZ)XB̂ = X̃B̂. The potential advantage of Steps 1 and 2 over 

alternatives is that the steps do not involve regression coefficients, which can be numerically unstable. This algorithm is essentially the one used since 
decades in the rda function of vegan [8,19] except that Y is column-centered and Z and X are scaled to zero mean and unit variance in vegan for 
increased numerical stability of Step 1. With these preprocessing steps, the intercept does not need to be included, but the intercept is still needed in 
weighted RDA [17]. 

The standard errors of the canonical coefficients in Step 5 are an underestimate of the true standard errors, as they do not account for the un-
certainty in the loadings P. 

The scores T are a function of both Z and X. In an early stage of this work, we also defined alternative scores XCr (with X column-centered) which 
are a function of X only, but we could not find substantive advantages over the usual constrained scores of RDA. See also Figure 1 and 3 that show this 
type of scores for ASCA+ and WE-ASCA in the top row. 

For the computations in this paper, we took B̂ from equation (A1) and calculated (In − ΠZ)XB̂, so that the differences between RDA, ASCA+ and 
WE-ASCA cannot be explained by the use of a potentially more stable algorithm for RDA (Supplement S2). 

A1.2. Dimension-reduction of the treatment effects in ASCA+ and RDA 

The scores and loadings receive all attention in ASCA and its extensions. The scores contain the treatments effects, but there is little attention for 
the rank-reduction (dimension-reduction) of the treatment effects themselves. In this section we show that ASCA+ and RDA yield a weighted least- 
squares approximation to the treatment effects, whereby the weighting matrix differs between the methods. In RDA the weighting matrix is the inverse 
of the variance of the treatment effects (as is optimal), in the ASCA extensions it is slightly different. 

In sections 2.2 and 2.3 RDA and the ASCA extensions are obtained via a PCA of a particular matrix, yielding loadings and scores. From this PCA an 
explicit decomposition of the treatment effects B̂ can be derived as in ter Braak and Looman [20] for RDA. We start with ASCA. 

ASCA+ and WE-ASCA perform a PCA on XB̂ which we column center if it is not already column-centered, giving the PCA decomposition 

XB̂ = TaPa′ with Ta′Ta = Λa and Pa′Pa = I (A7)  

with Λa a diagonal matrix with the eigen values in decreasing order on the diagonal, Ta the score matrix, Pa the loading matrix and I the identity 
matrix, so that 

(XB̂)
′XB̂ = B̂

′
X′XB̂ = Pa ΛaPa′

. (A8) 

The loading matrix Pa and the diagonal matrix with eigenvalues, Λa, also appear in the singular value decomposition 

(X′X)
1/2 B̂ = Ra (Λa)

1/2Pa′with Ra′Ra = I. (A9) 

This can be checked by noting that equation (A8) follows from equation (A9) because Ra′Ra = I. By equation (A9), ASCA+ provides the solution to 
the least-squares problem of minimizing 
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⃦
⃦
⃦(X′X)

1/2
(B̂ − CP′)

⃦
⃦
⃦

2
(A10) 

with respect to the matrices C and P, both having r columns. Here 
⃦
⃦W1/2M

⃦
⃦2

= tr(M′WM) =
∑

i,jwijm2
ij is the Frobenius norm in a notation (with 

W = X′X and M = B̂ − CP′) that shows that this gives the weighted least-squares approximation to the matrix B̂. The solution to equation (A10) gives 
the rank r weighted least-squares approximation to B̂ using weight matrix X′X. By the Eckhart-Young theorem, the solution follows from the singular 
value decomposition in equation (A9), which gives the canonical coefficients C = (X′X)

− 1/2Ra[r](Λa[r])
1/2 and loadings P = Pa[r]. 

RDA performs a PCA on X̃B̂. By a similar route as above for ASCA+, starting from the PCA decomposition X̃B̂ = TrPr′, it can be shown that RDA 
minimizes 
⃦
⃦
⃦
⃦

(
X
∼

′X
∼)1/2

(B̂ − CP′)

⃦
⃦
⃦
⃦

2

, (A11)  

with the solution obtained by the singular value decomposition 
(

X
∼

′X
∼)1/2

B̂ = Rr (Λr)
1/2 Pr′with Rr′Rr = I, (A12)  

so that, for RDA, the minimum is obtained with canonical coefficients C = (X̃′X̃)
− 1/2Rr[r] (Λr[r])

1/2 and loadings P = Pr[r]. 
In conclusion, ASCA+ and RDA both provide a weighted least-squares approximation to the matrix of regression coefficients B̂. The weights used in 

RDA are proportional to the inverse of the variance of B̂ [20] under the simplifying assumption that the error covariance matrix is σIm, whereas as the 
weights used in ASCA+ and WE-ASCA are non-standard and sub-optimal. 

These results can easily be generalized to the case where the error variances and covariances [sij] are of a different form. Let S = [sij]. Before S can 
be used in the reduced-rank approximation; S or its inverse may need to be regularized, particularly with many response variables (m > n) [30,59]. 
With Φ the (regularized) inverse of the (regularized) error variance-covariance matrix, the optimal weighted least-squares approximation of the 
treatment effects is obtained from 
⃦
⃦
⃦
⃦

(
X
∼

′X
∼)1/2

(B̂ − CP′)Φ1/2
⃦
⃦
⃦
⃦

2

(A13)  

with the solution obtained by the singular value decomposition 
(

X
∼

′X
∼)1/2

B̂ Φ1/2 = Rrs (Λrs)
1/2 Prs′with Rrs’Rrs = I, (A14)  

so that, for RDA, the minimum is obtained with canonical coefficients C =
(

X
∼

′X
∼)− 1/2

Rrs[r]
(

Λrs[r]
)1/2 

and loadings P = Φ− 1/2Prs[r]. The superscript s is 

added to distinguish the matrices from those of Eqn A12. 
A simple case of particularly interest (available in Canoco [18]) is that in which the variables are assumed independent given X and Z but have 

different variances sii so that Φ = diag(s− 1
11 ,…, s− 1

mm). This weights the response variables in dependence of how well they can be predicted without 

dimension reduction [28]. This simple case is obtained by starting from the PCA of X
∼

B̂Φ1/2 instead of from X̃B̂ [20].1 

Equation (A13) covers the scaling options in Timmerman et al. [26], as Φ is free to choose. 

A1.3. Summary of RDA 

RDA (Section 2.2) can be viewed in three complementary ways [7,23], which are here summarized first in formulas and thereafter in words: 
Start with a (partial) PCA, with the intercept included in the covariate matrix Z: 

Y=ZA* + TP′ + E (A15)  

with T and P with r columns each. In the least-squares solution for T and P, we have Z′T = 0. By requiring that T = X̃C we obtain the constrained form 
of PCA, i.e. RDA 

Y=ZA* +(X̃C)P′ + E (A16)  

which can be rewritten to the reduced-rank form 

Y=ZA* + X̃(CP′) + E (A17)  

or, with B = CP′ (also C has necessarily r columns), 

Y=ZA* + X̃B + E. (A18) 

1 Note that ter Braak and Looman [19] used a different notation, in which Γ = Φ1/2. 
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With the constraints on T, we have 

(In − ΠZ)Ŷ = TP′. (A19)  

In words: 
Ad (A16):It is a partial PCA in which the components (axes) are constrained, compared to (A15), to be linear combinations of all predictor variables 

and to be uncorrelated to any covariates. 
Ad (A17): It is multivariate regression with, compared to (A18), a restriction on the rank of the matrix of regression coefficients [27,47]. With 

covariates, the restriction applies to a subset of this matrix. The technical term “reduced rank” simply means that the matrix is a product of two 
matrices with, for rank 2, two columns each, just as in PCA. The difference is that PCA decomposes the original response data, whereas RDA 
decompose the fitted values and the matrix of regression coefficients. 

Ad (A19): RDA is a form of PCA applied to the fitted values of the regression [47] after adjustment for any covariates. This last view follows from 
the previous as shown in section 2.3 of the main text, and in more detail in Appendix 1.1. 
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