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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• WaPOR remote sensing database moni
tors biomass (B) and evapotranspiration 
(ET). 

• Variation in WaPOR data for B and ET 
was assessed through agronomic 
analyses. 

• Nearly all variation was attributed to 
crop, local climate and irrigation 
method. 

• Remaining (unexplained) variation falls 
within an accuracy range of +/− 9%. 

• Scope to improve biomass water pro
ductivity through WaPOR monitoring is 
very small.  

A R T I C L E  I N F O   

Editor: Kairsty Topp  

Keywords: 
Climate variability 
Biomass water productivity 
Remote sensing 
Agronomy 
WaPOR applicability 
Interdisciplinary 

A B S T R A C T   

CONTEXT: Improvements in agricultural water productivity with constrained water resources are often regarded 
a prerequisite to meet food demands of a growing world population. The WaPOR data portal was launched to 
monitor biomass, evapotranspiration and biomass water productivity in Africa and the Near East using remote 
sensing technologies. The WaPOR database shows spatial pixel variation in biomass, suggesting scope to improve 
water productivity at field level. 
OBJECTIVE: The aim of this paper is to assess with regression analyses for different spatial and temporal scales 
whether spatial variability in biomass and evapotranspiration as revealed by WaPOR can be attributed to human 
influenceable factors, variations in local climate, or methodologically inherent inacuracies of the WaPOR data. 
METHODS: Variation in biomass and evapotranspiration data was assessed through agronomic linear regression 
analyses, for two large-scale irrigated sugarcane estates in Ethiopia (Wonji) and Mozambique (Xinavane). 
RESULTS AND CONCLUSIONS: In these cases 82–94% of the variation in biomass and evapotranspiration is 
attributed to crop photosynthetic efficiency (very large influence), local climate (large influence) and irrigation 
technology (small influence). The remaining unexplained spatial variability is small (6–18%) and falls within an 
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error range of +/− 9%. In conclusion, WaPOR performed very well by neatly reproducing the conservative 
relationship between biomass and evapotranspiration, which also means there is very limited scope to improve 
biomass water productivity through WaPOR monitoring. Further research is recommended on the magnitude of 
WaPOR accuracy and other sources that explain variations in biomass and evapotranspiration. 
SIGNIFCANCE: Applicability of the WaPOR database to monitor biomass water productivity was assessed. Spatial 
variability in biomass and evapotranspiration data largely stemmed from photosynthesis and local climate, 
factors farmers and water managers can hardly influence.   

1. Introduction 

Given the worldwide growing pressure on water resources and 
increasing demand for food, improvements are desirable in agricultural 
water productivity. Improvements could potentially lead to higher levels 
of agricultural production, with reduced additional amounts of water 
(Bouman, 2007; Molden, 2007; Moore et al., 2011). There are many 
interpretations and definitions of agricultural water productivity (see for 
an overview Giordano et al., 2017). In this paper we focus on biomass 
water productivity, defined as the ratio between biomass produced and 
water consumed through evapotranspiration (Steduto et al., 2007; 
Giordano et al., 2017). Biomass water productivity indicates how effi
cient a crop is in transforming water into biomass; values for biomass 
water productivity differ per crop and crop variety due to different 
photosynthesis efficiencies of C3 and C4 crops with a general decrease 
from cereals, to legumes to oil crops (Sinclair et al., 1984; Steduto et al., 
2007). 

Whereas many organizations promote policy goals of increasing 
agricultural water productivity, the actual reporting remains vague with 
definitions mostly akin to ‘more-crop-per-drop’ interpretations without 
critically assessing changes in water availability for downstream uses, 
and with little attention for monitoring improvements in water pro
ductivity (Scheierling et al., 2014; Scheierling and Treguer, 2016). In the 
analysis of agricultural systems, remote sensing is increasingly used to 
assess biomass formation (Fritz et al., 2019; Nave et al., 2022) and crop 
evapotranspiration (Al Zayed et al., 2015; Bonfante et al., 2019). This 
paper focuses on WaPOR data to monitor biomass water productivity. In 
2017, the FAO Water Productivity Open-access Portal1 (WaPOR) was 
launched to monitor agricultural water productivity through open ac
cess of remotely sensed data in Africa and the Near East. Biomass water 
productivity is calculated as the sum of biomass produced divided by 
actual (seasonal) evapotranspiration (ETa). Different factors influence 
biomass production and actual evapotranspiration, key ones are 
photosynthesis pathways, climate, nutrients, irrigation and soils (Sin
clair et al., 1984; Allen et al., 1998; Ali and Talukder, 2008). 

Recent WaPOR applications show a keenness to improve biomass 
water productivity; not only in WaPOR reports (FAO, 2020a; FAO and 
IWMI, 2021), but also in scientific publications (Blatchford et al., 2018; 
Safi et al., 2022), and communication by the Dutch Government (Min
istry of Foreign Affairs of the Netherlands, 2015). Often, satellite studies 
in water productivity assess variability across an area and then formu
late recommendations towards achieving a targeted biomass produc
tivity value that was monitored (e.g. Zwart and Bastiaanssen, 2007; 
Ahmad et al., 2008; Bastiaanssen and Steduto, 2017; Safi et al., 2022). 
Instead of assuming (high) pixel values as absolute targets for biomass 
water productivity, this paper analyses spatial variability in biomass 
water productivity from an agronomic point of view with 
agronomically-informed regression analyses. Biomass and crop evapo
transpiration are linearly related (De Wit, 1958; Steduto et al., 2007), 
hence any real variation in biomass water productivity within an area 
should be manifested in a different linear regression of biomass and 
evapotranspiration data for different spatial and temporal scales. The 
WaPOR data is thus spatially and temporally disagreggated into smaller 

parts by linear regression and agronomic theory. 
It is relevant to take different linear regressions as criterion for 

spatial variation in biomass water productivity because variability in 
WaPOR data has different sources of origin that are not always agro
nomiccaly warranted. First, climate variability in temperature, rainfall, 
and relative humididity are factors that one cannot control and directly 
affect climatic evaporative demand. Second, agronomic variability in 
crop choice, seeds, irrigation and other crop inputs (e.g. nutrients) are 
factors on which farmers have influence. Third, there is (seeming) 
variation in WaPOR data which is related to the method of remote 
sensing, within this paper we label this type of variation methodological 
variability. Methodological variability is variation in WaPOR data on 
biomass and evapotranspiration that is caused by inaccuracies in sensor 
readings, different resolutions of sensors, spatial and temporal gapfilling 
due to cloud cover, and conversions of a heterogenous earth surface into 
squared spatial pixels with one value. 

Given the ambitions to improve water productivity and the different 
sources of variability in WaPOR data on biomass water productivity, the 
aim of this paper is to assess with regression analyses for different spatial 
and temporal scales whether spatial variability in biomass and evapo
transpiration as revealed by WaPOR can be attributed to human influ
enceable factors, variations in local climate, or methodologically 
inherent inacuracies of the WaPOR data. In this paper we kept meth
odological variability as small as possible by conducting the analyses on 
two agricultural systems of irrigated sugarcane estates in Ethiopia and 
Mozambique. Sugarcane estates represent a favourable setting to anal
yse variability in WaPOR data as the uniform crop and fields can cope 
best with WaPOR limitations, these limitations are: a coarse resolution 
due to data inputs ranging from 30 m to 100 m, 1 km and 20 km; an 
inability to detect different crops as WaPOR provides biomass for C3 
crops; no information on yield formation due to the absence of (dy
namic) harvest indexes. 

2. Material and methods 

The methodology is explained in three sections, starting with the 
WaPOR calculation procedures (Section 2.1), followed by the case 
studies (Section 2.2) and conducted analyses (Section 2.3). 

2.1. WaPOR calculation procedures 

The WaPOR portal provides data on 21 parameters including above 
ground biomass and actual evapotranspiration, at spatial resolutions of 
30, 100 and 250 m at a 10 day interval. Based on numerous quality 
assessments, improvements in the portal and data layers were made, 
including a beta version, version 1.0, 1.1, 2.0, 2.1 (FAO and IHE Delft, 
2019; FAO, 2020a). This study was conducted with WaPOR version 2.1. 

WaPOR data are made available in different data layers, spatial 
resolutions and for different areas. Level 1 data is available at a reso
lution of 250 m for Africa and the Near East, level 2 data has a resolution 
of 100 m for a set of countries and river basins, and level 3 data has a 
resolution of 30 m for selected agricultural areas in Africa and the Near 
East. WaPOR data are available at daily, dekadal, monthly and annual 
temporal resolutions (FAO, 2020a). The time between data acquisition 
and availability is relative short; intermediate WaPOR data is available 
within 10 days, and this data is updated with the final product within 6 1 https://wapor.apps.fao.org/ 
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weeks. Fig. 1 shows which components are used in WaPOR to derive 
biomass water productivity (net water productivity in WaPOR termi
nology). The grey boxes are intermediate data components from 
external data, the blue boxes are data variables that are generated by 
WaPOR. 

The WaPOR data layers used in this paper are Net Primary Produc
tion (NPP), transpiration (T), evaporation (E) and reference evapo
transpiration (ETref). The data were processed to convert them into 
biomass, actual evapotranspiration (ETa) and ETref. Here we summarise 
the processing. More detailed information on the WaPOR data layers, 
processing and input data can be found in the WaPOR methodology 
manual (FAO, 2020b). 

Biomass is calculated using the WaPOR Net Primary Production 
(NPP, in gC/m2) layer. NPP expresses how carbon dioxide is converted 
into biomass through photosynthesis. The value of NPP is derived from 
weather data, soil moisture stress, solar radiation, the green active 
photosynthetic fraction (fAPAR) and land cover. Above ground biomass 
(B, in ton/ha) is calculated using the formula below. 

B = AOT*fc*
NPP*22.222
(1 − MC)

MC (− ) is the moisture content of the fresh biomass, fc (− ) is the light 
use efficiency (LUE) correction factor calculated by dividing the LUE of 
the crop (in this case sugarcane) by the LUE of a generic crop type that 
WaPOR NPP layer uses, and AOT (− ) is the ratio of above ground over 
total biomass. Values were selected from literature, with an an MC of 
0.59 (FAO and IHE Delft, 2019), fc of 1.6 (Villalobos and Fereres, 2016), 
and AOT of 1 (FAO, 2020a). 

Actual evapotranspiration (ETa, in mm) is calculated by adapting the 
Penman-Monteith equation to remotely sensed input data and corrected 
for water stress through the Land Surface Temperature (LST) data 
component. ETa was derived from the separately calculated Evaporation 
(E, in mm) and Transpiration (T, in mm). 

Reference evapotranspiration (ETref, in mm), defined as the climate 

driven evapotranspiration from a well-watered virtual uniform grass 
crop, is in WaPOR estimated using data from GEOS-5 and MSG satellite 
sensors at a resolution of 20 km (Blatchford et al., 2020a; FAO, 2020a) 

2.2. Case studies: sugarcane in Wonji (Ethiopia) and Xinavane 
(Mozambique) 

We selected two large sugarcane estates for our analyses, Wonji Es
tate in Ethiopia and Xinavane estate in Mozambique (see Fig. 2a/b). The 
estates are comparable in crop, estate size and irrigation methods, they 
thus represent an interesting comparison to assess different sources of 
spatial variability in the WaPOR database across similar contexts. 
WaPOR highest resolution data is available in level 2 (100 m) for 
Xinavane and level 3 (30 m) for Wonji. WaPOR biomass data was 
already validated against biomass data for Xinavane, Chukalla et al. 
(2022) found that in 65% of the comparisons the data was within a +/−
20% range (Chukalla et al., 2022). Also the WaPOR biomass data for 
Wonji are in line with values reported in literature (Gemechu et al., 
2020; Wakgari, 2021). 

In Ethiopia, the Wonji sugar estate is in the downstream part of the 
Awash river basin, in the Oromia region 80–100 km southeast of Addis 
Ababa (see Fig. 2a). The estate is located between 8.33 and 8.62◦N and 
39.21–39.40◦E, and has a tropical savanna climate. The predominant 
soil types in the area of Wonji sugarcane estate are described as Fluvi
sols, Andosols and Leptosols (FAO et al., 1998). Wonji Main is the oldest 
part of the scheme, which was expanded from 2009 onwards with sub- 
schemes of Wake Tiyo, Welencheti, North Dodota and Ulaga. The total 
cropping area is about 15,000 ha (Alemayehu et al., 2020). The main 
irrigation methods are furrow, sprinkler and center pivot. The cropping 
schedule within the scheme is determined by the soil type that is being 
cropped. The areas with heavier soils have a shorter total cycle of 
planting crop and ratooning compared to the areas with lighter soils. 
The duration of the sugarcane growing season is on average 12 months, 
early and late harvest occurs to ensure year-round operation of the sugar 

Fig. 1. Input data components and output datasets of WaPOR database. Green outlines represent data compenents from internal data, orange outlines are solely 
based on external data. NDVI is Normalised Difference Vegetation Index, fAPAR is green active photosynthetic fraction, E is evaporation, T is transpiration, I is 
Interception, NPP is net primary production, TBP is Total Biomass production. Source: FAO, 2020b. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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mills. Within the estate different varieties of sugercane are cropped. The 
fertiliser application rates in the estate are the same, regardless of va
riety or soiltype. However, a differentiation is made between planting 
cane (200 kg/ha Urea) and ratooning cane (500 kg/ha Urea) (Ale
mayehu et al., 2020). The sugarcane yield in Wonji for the season 2017/ 
2018 was on average ~ 110 t per hectare (Alemayehu, 2020). 

The Xinavane sugar estate lies in Maputo province, southern 
Mozambique (see Fig. 2b) in the semi-arid Incomati Valley, between 
25.00 and 25.12◦S and 32.70–32.90◦E (Jelsma et al., 2010). The crop
ping area expanded from 12,000 ha in 2005 to 18,000 ha in 2016 (De 
Boer and Droogers, 2016). Also here, the main irrigation types are 
furrow, center pivot and sprinkler (Chukalla et al., 2020). Soil in the 
Xinavane sugarcane estate is dominated by sand content (Sonneveld, 
2012). The estate uses different crop management practices, such as 
mechanised and manual land preparation, planting, harvesting, weed
ing and irrigation (Sonneveld, 2012). The sugarcane crop is on average 
harvested after 12 months, yet earlier and later harvest takes place to 
ensure throughout the year a stable supply of sugarcane to the sugar 
mills. Based on an overview between 2008 and 2019, the sugarcane 
yield at Xinavane sugarcane estate ranged from 40 to 150 t per hectare, 
with an average of ~90 t per hectare depending on the variety, age, 
irrigation and fertilisation (Chukalla et al., 2022; Den Besten et al., 
2020, 2021). 

Table 1 summarises the WaPOR data analysed for both case studies. 
For Wonji and its sub-schemes, data was analysed from 2014/2015 to 
2018/2019. Two areas were excluded, the Welencheti as there was no 
data available at a 30 m resolution, and Wake Tio as the area was not 
continuously cropped for all seasons. For Xinavane, the data was ana
lysed on 8000 ha of the estate, from 2014/2015 to 2018/2019. Pre 2014 
data at Xinavane was discarded as it was obtained from another sensor 
(MODIS at 250 m resolution and then resampled) and showed a much 
larger scatter for biomass and ETa than the 2015–2019 data which was 
obtained from PROBA-V (Chukalla et al., 2020). This gives an indication 
of the sensitivity of WaPOR output to sensor accuracy. 

WaPOR data was extracted and prepared for analysis. The cropping 
areas of the sugar estates were demarcated in such a way that they fall 
within a few of the 20 × 20 km ETref cells with similar values for 

reference evapotranspiration and thus a similar local climate. Appendix 
A Figs. A and B show how the ETref cells overlay the sugarcane estates at 
Xinavane and Wonji. The WaPOR data were analysed at a spatial reso
lution of 100 m (Xinavane) and 30 m (Wonji). The precipitation and 
reference evapotranspiration datasets were resampled to 100 m (at 
Xinavane) and 30 m (at Wonji) using the nearest-neighbour method 
(GDAL, 2021). Next, different irrigation methods in the estates were 
digitized based on Google Earth maps and ground observations (Den 
Besten et al., 2020). Fig. 2 shows for both estates the areas for furrow, 
sprinkler and center pivot irrigation as analysed in this paper. 

The time unit of analysis, or growing season, had to be defined so 
that it resembles the growing season of sugarcane in each case. This is 
important as the biomass-ET relation is governed by the phenological 
crop cycle. It commences when the crop starts to grow and gradually 
builds up as the crop goes through different phenological stages and 
ends when the crop is being harvested (Allen et al., 1998). A too-early 
(before emergence) or too-late (after harvest) time frame will result in 
a higher accumulation of evapotranspiration that does not contribute to 
photosynthesis and biomass formation and thus results in a lower 
biomass water productivity. On-the-ground deviations from assumed 
growing seasons will add inaccuracy and seeming variation in data 
output. For both Xinavane and Wonji the hydrological year resembles 
the growing season for sugarcane most closely. The first month of the 
rainy season marks the start of the hydrological year. For Wonji the 
hydrological year runs from July untill June. For Xinavane the hydro
logical year runs from October to September (Chukalla et al., 2020). The 
two estates are thus analysed over different time horizons but in an 
identical unit of analysis of 365 days each. Biomass and evapotranspi
ration were thus annualized, by summing up dekal (E, T, NPP) or daily 
(ETref) values within the hydrological year. 

2.3. Agronomic regression analyses on WaPOR data 

The analyses presented in this paper on WaPOR data focus on a 
specific sub-field of agronomy that investigates how crop physiological 
processes govern water consumption and biomass production (De Wit, 
1958; Steduto et al., 2007). Two major insights in this field are i) the 

Fig. 2. Locations of sugarcane estates in Africa and identified spatial clusters for irrigation methods in a) Wonji, Ethiopia and b) Xinavane, Mozambique.  

Table 1 
WaPOR layers used in Wonji and Xinavane analyses. Adapted from Alemayehu et al. (2020) and Chukalla et al. (2022).   

Wonji estate, Ethiopia Xinavane estate, Mozambique 

Remote sensing products Spatial resolutiona Temporal resolution, coverage Spatial resolutiona Temporal resolution, coverage 

Evaporation 30 m 10 days, 
2014/2015–2018/2019 

100 m 10 days, 2014/2015–2018/2019 
Transpiration 30 m 100 m 
Net Primary Production 30 m 100 m 
Reference Evapotranspiration 20 km 20 km 
Land surface Temperature (LST) 100 m  1 km  
Land Cover Classification   100 m annual, 2015–2019  

a Spatial resolution of both level 2 data (Xinavane) and level 3 (Wonji) make use of data components with different resolutions ranging for level 2 from 100 m to 20 
km, and for level 3 from 30 m to 20 km. For instance the Land Surface Temperature (LST) has in level 2 a resolution of 1 km and is one of the data components to 
calculate E, T, and NPP. 
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linear relationship between biomass and transpiration due to stomata 
being open or closed for photosynthesis and transpiration (De Wit, 
1958) and ii) the relative constant nature of this relationship, meaning 
biomass water productivity is approximately constant, once accounted 
for differences in evaporative demand and carbon dioxide concentra
tions (Steduto et al., 2007). Water productivity of biomass is thus taken 
to be fairly stable. Nutrient deficiencies do have a major constraining 
impact on biomass formation and evapotranspiration, in a range of 
26–32% (Steduto et al., 2007; Qi et al., 2020). 

Agronomic regression analyses were conducted to explore sources of 
spatial variability in WaPOR biomass – ETa data plots. The data plots 
can be analysed for spatial variability as each point in the plot represents 
a spatial pixel with a particular value for the end of the growing season. 
The spatial resolution of the pixels for the Wonji estate was 30 by 30 m, 
and Xinavane 100 by 100 m. Due to the linear relationship between 
biomass and transpiration, a simplified statistical approach of linear 
regression models was applied to examine spatial variability in biomass 
and ETa. It should be noted that in WaPOR biomass and ETa are 
calculated from a different set of remote sensing inputs (see also Fig. 1) 
and that the observed linear relationship between biomass and ET is not 
an artefact how WaPOR computes biomass and ETa (FAO, 2020b). 

In the agronomic regression analyses, the slope of the trendline in
dicates the biomass water productivity value, and the amount of scatter 
around the linear line forms an indication of the spatial variability of the 
dataset. The r2 is then a measure how well the linear model fits the data, 
and how much of the spatial variability is in line with what one would 
expect based on agronomic theory. For instance, an r2 of 0.85 implies 
that 85% of the data fit the linear model, and that 85% of the WaPOR- 
reported spatial variability is explained by the linear regression 
model. Linear regression models were fitted with an intercept of 0 in the 
biomass-ETa data plots because sugarcane is a perennial crop which is 
cut down above the ground. Hence there will be no fields and pixels with 
evaporation without biomass accumulation. The intercept for a linear 
trendline for biomass-ET is thus at 0 biomass and 0 ET. Where other 
studies of rainfed crops may report a typical evaporation of 150–250 mm 
before aboveground biomass is formed (Kang et al., 2002; Mueller et al., 
2005), this relates to the start of season being applied before the crop 
germinates and emerges. 

Agronomic regression analyses were conducted on multiple spatial 
and temporal scales for both sugarcane estates (see Table 2) on four 
aspects. First, biomass was plotted against ETa for the entire sugarcane 
estate, in an aggregated manner in which all growing seasons and irri
gation methods were combined to examine whether WaPOR would, in 
line with crop physiological processes (De Wit, 1958; Steduto et al., 
2007), largely reproduce the linear relation between biomass and 
transpiration. Second, biomass was plotted against ETa for all irrigation 
methods for the whole sugarcane estate (see Fig. 2a/b) per growing 
season, to examine how much of the variation could be attributed to 
differences in local growing seasons and to explore whether water 
productivity values are season-dependent due to interseasonal climate 
variability (e.g. Ilbeyi et al., 2006; Ray et al., 2015). 

Third, the area of the sugarcane estates was disagregated in 3 zones 
according to different irrigation methods to explore what part of the 

variation in biomass-ETa data could be linked to the irrigation types of 
sprinkler, furrow and center pivot in the sugarcane estates (zones shown 
in Fig. 2a/b); and whether furrow has a higher water productivity than 
sprinkler and pivot due to a lower soil wetting fraction and irrigation 
frequency (Allen et al., 1998). Fourth, evapotranspiration data per 
growing season for the sugarcane estates were normalised with ETref 
data from WaPOR to examine how much variation in biomass and 
evapotranspiration is attributed to variations in ETref, to examine 
whether ETref accounts for nearly all variation in climatic evaporative 
demand caused by weather and climate (Allen et al., 1998; Steduto et al., 
2007; Allen and Pereira, 2009). It should be noticed that no analysis on 
nutrient variations was conducted, it was assumed that both commer
cially managed sugarcane estates would apply sufficient nutrients 
because for Wonji uniform nitrogen application was reported depending 
on the cutting (first, second, third and more ratoons) of the sugarcane 
(Wakgari, 2021). In addition, our datasets did not indicate variations for 
biomass-ETa in the range of 20–30% which is typical for nutrient de
ficiencies. Nutrient variations were thus small, and they could not be 
observed and desegregated separately (a point which we elaborate in 
Discussion Section 4). 

Agronomical theory states a linear biomass-T relationship (De Wit, 
1958; Steduto et al., 2007), hence data was initially extracted to 
examine Biomass-T relationships. Yet in contradiction to theory the 
Xinavane plots of Biomass-T had more scatter than Biomass-ETa (Ap
pendix A Fig. C), due to incorrect separation of evaporation and tran
spiration in WaPOR. This suggests WaPOR has a problem in separating E 
from T, as a lower regression for Biomass-T than Biomass-ET cannot be 
explained by agronomic theory. Separation of E and T in WaPOR is 
guided by a factor αLAI (where α is a light extinction factor, LAI is leaf 
area index). WaPOR applies one fixed value for α (FAO and IHE Delft, 
2019; Chukalla et al., 2022), whereas in reality α differs substantially 
between and within land use classes (Zhang et al., 2014). Biomass-T data 
was therefore discarded, and the analysis focused on biomass-ETa data. 
Using ETa, and thus including E, will add some variation in the linear 
relationship of biomass-T, as E does not contribute to biomass and may 
be variable due to crop patterns, irrigation practices, climate and soil. 
This is acceptable as over a crop growing season the portion of E is 
relatively small and mostly limited to the initial crop stage when bare 
soil evaporates as it is not yet entirely covered by plant leaves (Allen 
et al., 1998). Thus it is expected that biomass-ETa still resembles a linear 
relationship, but with a slightly lower correlation factor as compared to 
an accurate biomass-T relation (Steduto et al., 2007). 

3. Results 

3.1. Overall biomass water productivity 

WaPOR data plots of five growing seasons of biomass versus ETa are 
shown for the sugarcane estates of Xinavane, Mozambique (Fig. 3) and 
Wonji, Ethiopia (Fig. 4). The data plots indicate that absolute numbers of 
ETa and biomass vary; Xinavane ETa in the range of 522–1688 mm and 
biomass 25–120 ton/ha, Wonji ETa in the range of 217–2382 mm and 
biomass 5–189 ton/ha. The range in ETa and biomass within a scheme is 
explained by harvest of the sugarcane crop; early harvest results in a 
lower ETa and biomass whereas late harvest allows the crop to prolong 
its transpiration and biomass formation. On the estates there is early and 
late harvest to have year-round operation of the sugar mills. The biomass 
is in range of the biomass targets adopted by the estate managers, for 
Xinavane the targeted biomass yield is about 80 ton/ha, whereas in 
Wonji the targeted biomass ranges from 110 ton/ha (Wonji main sub
scheme) to 150 ton/ha (Dodota and Wake Tio) and 200 ton/ha 
(Walencheti subshceme). The WaPOR biomass data is thus in line with 
local practices, and also in line with previous research conducted in the 
sugarcane estates of Xinavane (Gemechu et al., 2020; Chukalla et al., 
2022) and Wonji (Wakgari, 2021). 

Although absolute numbers of ETa and biomass vary spatially and 

Table 2 
Overview of agronomic regression analyses.  

WaPOR data Spatial scale Temporal 
scale 

Agricultural 
system 

Biomass – 
ETa 

Sugarcane estate 5 growing 
seasons 

Xinavane, Wonji 

Biomass – 
ETa 

Sugarcane estate 1 growing 
season 

Xinavane, Wonji 

Biomass – 
ETa 

Estate sub-areas for furrow, 
sprinkler, center pivot 

1 growing 
season 

Xinavane, Wonji 

Biomass – 
ETa/ETref 

Estate sub-areas for furrow, 
sprinkler, center pivot 

1 growing 
season 

Xinavane, Wonji  
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temporally, their ratio of productivity remains largely the same as a crop 
has a stable photosynthetic efficiency which governs the accumulation 
of carbon and release of water through stomata in the leaves. Both plots 
show a linear trend that represents a single biomass water productivity 
value. For Xinavane, the plot has an r2 of 0.69, indicating 69% of the 
variation in biomass is explained by variation in ETa. For Wonji the 
linear trend is even stronger, as the plot has an r2 of 0.90, indicating 90% 
of the variation in biomass is explained by variation in ETa. The 
regression analysis thus reveals that despite major variations in ETa and 
biomass values, the linear trend is clear and robust (within one season, 
across multiple seasons, and across case studies). This is conform agro
nomical theory: crop physiological processes govern photosynthesis and 
stomata control and link transpiration to carbon assimilation. Maximum 
biomass and ETa in Wonji are considerable higher than in Xinavane as 
Wonji is closer to the equator (Wonji 8.33◦N, Xinavane 25.00◦S), so 
there is more energy available to be converted into biomass and water 
vapour. In addition, the reference evapotranspiration is also higher at 
Wonji (see Appendix A table I), so a higher atmospheric demand for 
water in Wonji contributes to higher ETa values. 

3.2. Disaggregation of seasons and irrigation types 

Fig. 5 displays for Xinavane plots for each growing season of biomass 
versus ETa. Table 2 presents the agronomic regression analyses and 
biomass water productivity values. All growing seasons, except for 
season 2015/2016 which has an r2 of 0.66, have an r2 of 0.81 to 0.93 
which is much higher than the r2 of 0.69 of Fig. 3. The seasonal influence 
of ETa on biomass is indeed present, as reflected in an improved fit of the 
ETa and biomass data per season when compared to all seasons. There is 
a clear interseasonal (climate) influence of ETa on biomass as water 
productivity values fluctuate with 11% from 6.1 kg⋅m− 3 in 2015–2016 
to 6.9 kg⋅m− 3 in 2016–2017. The data plot of the 2015/2016 season 
shows much more variation in biomass compared to the other seasons. 
This may be explained by 2016 being a very dry year (Chukalla et al., 
2022) with the occurance of (severe) water stress affecting both ETa and 
biomass production. As water stress is accounted for through the LST 
sensor (in the case of Xinavane with a resolution of 1 km, for Wonji 100 
m), higher levels of data variations may be expected through coarseness 
of the value (resulting in over- and undercorrections for biomass and 
ETa), resulting in a broader data plot when compared to the other 
growing seasons in Fig. 5. 

So far the irrigation methods were aggregated in one combined 
dataset, yet ideally some of the variation in biomass and ETa should be 
attributed to differences in irrigation methods. Table 3 therefore pre
sents regression analyses and water productivity values for the identified 
spatial clusters of furrow, sprinkler and center pivot irrigation. The 
water productivity values are slightly higher or lower when compared to 
the combined irrigation dataset; with ranges in water productivity for 
furrow 6.3–7.0 kg⋅m− 3, sprinkler 6.0–6.9 kg⋅m− 3 and center pivot 
5.8–6.8 kg⋅m− 3. Furrow irrigation has in all seasons a higher water 
productivity than sprinkler and center pivot. When the seasonal r2 

values of the specific irrigation methods (rows 3–5 in Table 3) are 
compared to the aggregated irrigation data (row 2, Table 3), similar or 
even higher r2 values are obtained for sprinkler and furrow. For center 
pivots the r2 values were lower for most seasons than the plot wherein all 
irrigation methods were combined.The high variation within the center 
pivot data plot is probably caused by the coarse LST sensor at a 1 km 
resolution. The pivot sprays irrigation water on the canopy, resulting in 
evaporation of intercepted irrigation water. This results in a cooler 
canopy temperature affecting LST and soil moisture correction calcula
tions of WaPOR. Pivot-irrigated areas which are not yet irrigated will 
return higher canopty temperatures. At a coarse resolution of LST, these 
values are averaged, potentially adding variation in output. Whereas 
furrows wet the soil and not the canopy, thus resulting in much smaller 
differences in canopy temperature between just irrigated pixels and not 
irrigated pixels and thus less noise in LST values. As a result, in a coarse 
LST sensor of 1 km pivot LST values are more blurred than furrow. 
Getting grip on the influence of LST on WaPOR level 1, 2 and level 3 data 
for biomass and ETa needs further research and is addressed in the 
Discussion. 

For Wonji, Fig. 6 and Table 4 present data plots, agronomic regres
sion analysis and water productivity values per growing season and 
irrigation method. 

Also for Wonji, the separation of the multi-season data plot (Fig. 4) 
into separate growing seasons (Fig. 6) results in r2 values of 0.90 to 0.95 
which are higher than the r2 of 0.90 of Fig. 4. The water productivity of 
the aggregated irrigation dataset fluctuates (Table 4, row 2), ranges from 
7.0 kg⋅m− 3 in 2016–2017 to 7.8 kg⋅m− 3 in 2017–2018. So also in Wonji 
the seasonal influence of ETa on biomass is present, resulting in water 
productivity values fluctuating with 11%. By further delineating the 
different irrigation methods in the dataset (Table 4, rows 3–5), the r2 

increases slightly from 0.93 to 0.94 for furrow, 0.95 for sprinkler and 
0.94 for center pivot. The water productivity values of the specific 
irrigation methods cover a wider range than the irrigation combined 
dataset, with sprinkler generally being higher (7.4–8.3 kg⋅m− 3) followed 
by center pivot (7.3–8.1 kg⋅m− 3) and furrow irrigation (6.9–7.6 

Fig. 3. Biomass versus ETa in different growing seasons in Xinavane (2014/ 
2015–2018/2019). Each point represents seasonal biomass and evapotranspi
ration for a spatial pixel of 100 × 100 meter, the plot has 32,297 points. 

Fig. 4. Biomass versus ETa in different growing seasons in Wonji (2014/ 
2015–2018/2019). Each point represents seasonal biomass and evapotranspi
ration for a spatial pixel of 30 × 30 meter, the plot has 526,300 points. 
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kg⋅m− 3). The order of water productivity values in Wonji is the reverse 
of Xinavane (where furrow was highest) probably due to incorrectly 
assigning soil moisture stress to furrow fields in Wonji. This point is 
further elaborated in the Discussion Section 4. 

3.3. Normalisation for local climate variability 

Efforts to normalise seasonal ETa data for seasonal climate vari
ability through ETref are provided in Appendix A Figs. D and E. The 
results were excluded from the analysis as the normalisation outcomes 
were inconsistent. Accumulation of daily or decadal ETa/ETref values as 
recommended by Steduto et al. (2007) was not feasible. In WaPOR ETa 
values are not generated on a daily basis, nor on a neat fixed interval. 
Instead WaPOR images are made available on an irregular interval as it 
can be 10 days, but also 8, 9, or 11 days, which are converted into 
decadal values with gap filling and interpolation processes. In Xinavane 

nearly all data lie in one ETref cell (see Appendix A Table 1) so the in
fluence of normalisation for ETref is expected to be small, yet the r2 

increased from 0.82 (disaggregated seasons and irrigation methods) to 
0.90 for normalised ETa/ETref data. Whereas in Wonji, the study area 
occupies four ETref cells and normalisation for ETref is expected to 
result in a better fit of biomass and normalised evapotranspiration data 
the opposite happened, as r2 reduced from 0.94 to 0.92. 

3.4. Comparison of agronomic regression analyses and cases 

Table 5 shows a comparison of the average r2 of the different datasets 
presented in this paper for Xinavane and Wonji. Table 5 shows that the 
agronomic regression analyses further improved the r2 to different de
grees. For Xinavane, at first 69% of the biomass and ETa data fitted the 
linear regression model indicating that 69% of the spatial variability in 
data fits the linear regression trend which exists between biomass and 

Fig. 5. Biomass versus ETa at Xinavane sugar estate categorized by irrigation methods from 2014/2015 to 2018/2019. The r2 shown in the graph relates to the entire 
data plot when all irrigation methods are combined. Each point represents seasonal biomass and evapotranspiration for a spatial pixel of 100 × 100 meter; the plot of 
year 2014/2015 has 6459 points, 2015/2016 has 6458 points, 2016/2017 has 6440 points, 2017/2018 has 6440 points, and 2018/2019 has 6440 points. 

Table 3 
Linear regression parameters and water productivity of biomass and ETa for sugarcane at Xinavane for different growing seasons and irrigation methods. a and r2 are 
the slope and regression coefficient of the regression line, WP_bm is biomass water productivity.   

2014–2015 2015–2016 2016–2017 2017–2018 2018–2019 Average 
r2   

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3)   

B vs ETa,  
irrigation 
combined 

a 0.065 

6.5 

a 0.061 

6.1 

a 0.069 

6.9 

a 0.068 

6.8 

a 0.062 

6.2   r2 0.93 r2 0.66 r2 0.81 r2 0.86 r2 0.82 0.82  
B vs ETa, 

furrow 
a 0.066 

6.6 
a 0.064 

6.4 
a 0.070 

7.0 
a 0.069 

6.9 
a 0.063 

6.3   r2 0.93 r2 0.76 r2 0.89 r2 0.89 r2 0.88 0.87  
B vs ETa, 

sprinkler 
a 0.064 

6.4 
a 0.060 

6.0 
a 0.069 

6.9 
a 0.068 

6.8 
a 0.061 

6.1   r2 0.93 r2 0.696 r2 0.78 r2 0.87 r2 0.82 0.82  
B vs ETa, 

center pivot 
a 0.065 

6.5 
a 0.058 

5.8 
a 0.068 

6.8 
a 0.066 

6.6 
a 0.059 

5.9   r2 0.93 r2 0.65 r2 0.72 r2 0.77 r2 0.72 0.76   
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ETa. The r2 increased to 0.82 when different growing seasons were 
identified. Separation of the dataset into different irrigation methods 
had no influence. In Wonji smaller increases were achieved. Here, 
already 90% of the biomass and ETa data across all growing seasons 
fitted the linear regression model, indicating that 90% of the spatial 

variability fits the linear regression trend. The explanation of spatial 
variability only slightly increased from 90% to 93% and 94% when the 
dataset was subdivided by growing season and irrigation method. When 
the two cases are compared, the explained spatial variation in WaPOR 
data was greatly increased up to 82% in Xinavane and 94% in Wonji. 
The remaining unexplained spatial variability in both cases is similarly 
small, namely 18% for Xinavane and 6% for Wonji. 

4. Discussion 

The aim of this paper was to assess with agronomic regression ana
lyses for diferent spatial and temporal scales wether spatial variability in 
biomass and evapotranspiration data as revealed by WaPOR can be 
attributed to human influenceable factors variations in local climate, or 
methodologically inherent accuracies of WaPOR data. Generally, 
WaPOR performed very well under these monocropping circumstances 
of large sugarcane estates as WaPOR reproduced the linear relation 
between biomass and crop evapotranspiration. The spatial variability of 

Fig. 6. Biomass versus ETa at Wonji sugar estate categorized by irrigation methods from 2014/2015 to 2018/2019. Each point represents seasonal biomass and 
evapotranspiration for a spatial pixel of 30 × 30 meter; the plot of year 2014/2015 has 105,263 points, 2015/2016 has 105,255 points, 2016/2017 has 105,256 
points, 2017/2018 has 105,263 points, and 2018/2019 has 105,263 points. 

Table 4 
Linear regression parameters and water productivity of biomass and ETa for sugarcane at Wonji for different growing seasons and irrigation methods. a and r2 are the 
slope and regression coefficient of the regression line, WP_bm is biomass water productivity.  

Dataset 2014–2015 2015–2016 2016–2017 2017–2018 2018–2019 Average 
r2  

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3) 

Regression 
parameters 

WP_bm 
(kg/m3)  

B vs ETa,  
irrigation 
combined 

a 0.076 
7.6 

a 0.076 
7.6 

a 0.070 
7.0 

a 0.078 
7.8 

a 0.071 
7.1  

r2 0.95 r2 0.94 r2 0.91 r2 0.90 r2 0.93 0.93 
B vs ETa, 

furrow 
a 0.076 7.6 a 0.075 7.5 a 0.069 6.9 a 0.076 7.6 a 0.069 6.9  
r2 0.96 r2 0.95 r2 0.93 r2 0.92 r2 0.94 0.94 

B vs ETa, 
sprinkler 

a 0.077 
7.7 

a 0.078 
7.8 

a 0.074 
7.4 

a 0.083 
8.3 

a 0.074 
7.4  r2 0.95 r2 0.95 r2 0.94 r2 0.94 r2 0.96 0.95 

B vs ETa, 
center pivot 

a 0.080 
8.0 

a 0.079 
7.9 

a 0.073 
7.3 

a 0.081 
8.1 

a 0.074 
7.4  

r2 0.97 r2 0.96 r2 0.97 r2 0.94 r2 0.87 0.94  

Table 5 
Summary of r2 for different agronomic analyses at Xinavane and Wonji.  

Dataset Xinavane Wonji Source 

B vs ETa 0.69 0.90 Fig. 3 and 4 
all seasons 
irrigation combined 
B vs ETa 

0.82 0.93 Tables 3 and 4, row 2 
by season 
irrigation combined 
B vs ETa 

0.82 0.94 Tables 3 and 4, row 3–5 
by season 
by irrigation method  
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WaPOR biomass-ETa data in our case study is largely related to factors 
which are difficult to influence, namely crop-determined photosynthetic 
efficiency of sugarcane and local inter-seasonal climate variability. The 
variation that was explained by differences in irrigation technology, a 
factor that humans can influence, was small. In both cases, the 
remaining share of unexplained spatial variability was small, with 6% in 
Wonji and 18% in Xinavane. When we assume WaPOR data outputs 
have an error range of +/− 9%, which is in range with the acuracy 
assessed in similar models, for instance the SEBAL model has an error 
range of +/− 5 to 15% (Bastiaanssen et al., 2005), all observed unex
plained variation of our study falls well within the accuracy range of 
WaPOR output. WaPOR thus confirms the stable relation of biomass 
water productivity. Although variations in biomass and ETa were found 
in the two agricultural systems, their ratio of productivity did not change 
which means that increasing biomass production of a crop (e.g. vary in 
sowing density, planting and harvesting date) is largely a matter of 
producing more biomass with more water consumption without real 
opportunities for physical water savings. 

Our insight on the limited applicability of WaPOR to detect spatial 
variations in biomass water productivity is consistent with previous 
research. Agronomists have claimed for decades that biomass water 
productivity of a crop is a conservative relationship, meaning that there 
is limited scope to make gains in biomass water productivity (Sinclair 
et al., 1984; Bouman, 2007; Molden and Oweis, 2007; Steduto et al., 
2007). Furthermore, other WaPOR studies did also not present reliable 
results on spatial variations in biomass water productivity at a field 
scale. Instead, they presented reliable results on the aggregated (coarse) 
spatial-temporal scale of river basin-wide long term annual evapo
transpiration (Weerasinghe et al., 2020) or, they report for one cropping 
season large discrepancies up to +/− 50% of ETa between WaPOR data 
and field studies for alfalfa in Iran (Javadian et al., 2019) and maize, 
sugar beet, and orchard fields in the Nile Delta (Swelam et al., 2019). 
Due to coarse input parameters like reference evapotranspiration at a 
resolution of 20 by 20 km and soil moisture stress with an LST sensor at a 
resolution of 1 km for level 1 and 2, we concur with Nhamo et al. (2020) 
and Blatchford et al. (2020b) that the WaPOR resolution is too coarse to 
analyse smallholder croplands. 

The reported water productivity values, ranging from 5.8 to 7.0 
kg⋅m− 3 in Xinavane and 6.9–8.3 kg⋅m− 3 in Wonji are in line with those 
reported by Da Silva et al. (2013) for a Brazilian sugarcane estate whose 
values ranged from 5.6 to 8.3 kg⋅m− 3.The hypothesised differences in 
water productivity among different irrigation methods, with furrow 
having a higher water productivity due to infrequent and partial wetting 
of the soil, were present in Xinavane but not present in Wonji. This 
discrepancy may be explained by the influence of the soil moisture stress 
correction factor applied by WaPOR on the biomass and ET data output. 
In the case of Wonji, this is based on the Land Surface Temperature (LST) 
sensor with a pixel resolution of 30 m and the application of the 
improved trapezoid method of Yang et al. (Yang et al., 2015; FAO, 
2020b). The soil moisture correction factor then depends on the deter
mination of the cold and warm edge of surface temperature to determine 
the interpolation range for water stress correction between non-stressed 
(cold edge full canopy) and stressed (warm edge full canopy) pixels 
(FAO, 2020b). An interpolation and trapezoid that needs to be deter
mined for each obtained satellite image (covering typically 180 by 180 
km for Landsat images). 

In the case of Wonji, the cold edge full canopy (point C of the trap
ezoid, Fig. 20 in FAO, 2020b) representing the coldest surface temper
ature at full canopy, will by definition be a pixel under pivot and/or 
sprinkler irrigation that has just been, or is, irrigated and returns the 
lowest surface temperature due to intercepted irrigation water on the 
canopy. Furrow irrigation, in contrast, even when just irrigated will 
have a dry canopy of higher temperature whilst evaporation of furrows 
under a full canopy will be minimal. This introduces a methodological 
bias in WaPOR, whereby furrow irrigation will be slightly corrected for 
water stress, even when just irrigated, as the cold edge of the trapezoid is 

determined by the wet canopy of sprinkler/pivot. A correction that af
fects both biomass and ETa, and may also influence the high biomass 
values obtained in Wonji. This methodological limitation for irrigation 
types especially at high resolution, as imposed by the improved trape
zoid method, merrits further assessment and quantification. In Xinavane 
this is less of an issue, as the LST sensor has a pixel resolution of 1 km, 
and by definition will not be “clean” in its value, but return averaged 
values for 1 km2 areas. How these may affect the overall WaPOR values 
for biomass and ET will need to be assessed in the future as areas become 
available that are covered by both level 2 and level 3 data for the same 
time periods. 

Having found that WaPOR performed very well in those uniform 
cropped areas, and as three factors were successfully identified that 
influence biomass water productivity (crop photosynthetic efficiency, 
inter-seasonal climate variability, irrigation method), further research is 
recommended to identify with agronomic regression analysis other 
sources of variation in WaPOR biomass – ETa data for case studies on a 
similar scale of 10,000–20,000 ha. The influence of nutrients could be 
compared within one watershed or irrigation division, with spatial 
clusters of sub-optimal and optimal nutrient conditions, to examine 
whether optimal nutrients increase crop water productivity in similar 
ranges as the 26–32% reported in literature (Steduto et al., 2007; Qi 
et al., 2020). Differences between head- and tail-end farmers could be 
explored (e.g. FAO and IWMI, 2021), where it is expected that head-end 
fields generally return a higher biomass water productivity than tail-end 
fields as head-end farmers frequently have better access to nutrients and 
water resources. Alternatively, the influence of soils could be investi
gated when local climate and crops are comparable, because heavy soils 
(clays, clay-loam) have a higher capacity to hold water, organic material 
and nutrients, which results generally in higher water productivity 
values than medium (loam) and light soils (sand) (Ali and Talukder, 
2008; Ahmadi et al., 2010; Safi et al., 2022). Focusing on uniform- 
cropped regions is important as heterogenous crops and smaller field 
sizes will only introduce noise in WaPOR data which does not reflect 
field level variations in biomass and evapotranspiration. Furthermore, 
the variation caused by WaPOR methodology has different origins 
ranging from inaccuracies in satellite observation, input data processing, 
different spatial resolutions and parameterisation (e.g. coarse separation 
of E and T), and therefore justifies further study how large its influence is 
on WaPOR data for biomass and evapotranspiration. Having found that 
WaPOR neatly reproduces the conservative relationship of biomass 
water productivity it would be interesting to systematically explore how 
other regional-global agricultural monitoring systems perform such as 
MODIS and USDA-FAS (Fritz et al., 2019). 

In conclusion, although the WaPOR database contains data which 
suggest variation in local biomass and evapotranspiration, and although 
these variations inform ambitions to improve (agricultural) water pro
ductivity (Ministry of Foreign Affairs of the Netherlands, 2015; FAO, 
2020a), we have demonstrated in this paper that from an agronomical 
point of view little additional insight is obtained from WaPOR as almost 
all variation can be attributed to the photosynthetic efficiency of sug
arcane (very large influence), local climate variability (large influence), 
and irrigation technology (small influence). The remaining unexplained 
spatial variability falls within an error range of +/− 9%. We thus show 
that the origin of variability in biomass and evapotranspiration largely 
lies in factors farmers and water managers cannot control, and that there 
is thus very limited scope to improve biomass water productivity based 
on WaPOR data and agronomic theory. The limited scope also means 
that increases in food production are achieved through (nearly) linear 
increases in water consumed. Variabiliy in yield, as opposed to biomass, 
may be considerable. This is, however, governed by the crop variety 
specific responses to stresses (water, temperature) that result in a high 
variation of harvest indexes (Steduto et al., 2012). WaPOR, however, 
cannot deal with these and adopts for yield cacluations a fixed harvest 
index that is agronomically not warranted and requires expertise to 
transform it into a better variable harvest index tailored to local climate- 
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crop development dynamics (e.g. heat and cold stress, rainfall supply 
between crop flowering and harvest). This study thus forms a key step 
towards enhancing our understanding how WaPOR variations in 
biomass and evapotranspiration should be analysed with agronomic 
theory. 
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