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ABSTRACT 

Over the last decades there has been a sharp increase in morbidity and mortality due to microbial infections, as 

increasingly more microbials are resistant against antimicrobials. This could be reduced by finding new antibiotics 

to which no resistance is present yet amongst microbials. However, there has been a discovery void of new 

antibiotics over the last 30 years. This void is partially due to the isolation and intensive laboratory screening 

which are required to determine whether a compound has antibiotic activity. A computational approach which 

allows selection before screening could accelerate the process of finding new antibiotics. Proposing that 

particular substructures within molecules would be the active part of the molecule, makes it interesting to look 

at substructures which are over enriched in current antibiotics compared to not-antibiotics. These substructures 

could serve as a first selection on which molecules to screen on antimicrobial activity in phenotypic assays. 

Previously, multiple tools, such as MoSS, gSpan and GASTON, have been developed which could retrieve the 

substructures of a molecule and even compare two groups. However, these tools are not encoded in python, are 

not able to compare more than two groups and do not perform enrichment analysis. The goal of this new tool, 

GraphMiner, is to mine all substructures of the molecules in each group and perform enrichment analysis for 

each group, as to show which substructures are over or under enriched. GraphMiner is a command line tool in 

python, which has proven to be able to mine the substructures of the molecules within each group. Followed by 

an enrichment analysis for each group to determine which substructures are significantly over or under enriched 

compared to the total input. Resulting in clustering, which makes the results more interpretable as providing 

images of the structures characteristic for each cluster within each group. This is shown with a synthetic data set, 

in which the over enriched substructures were found as expected. Furthermore, a test with (not-)antibacterials 

and (not-)antivirals was run, which showed that the beta-lactam ring was significantly over or under expressed in 

groups of not-antibacterials. This structure is known to often have an antibacterial effect, and so proved that the 

desired substructures are found.  
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LIST OF DEFINITIONS  

Closed substructures – substructures of which no supergraph is present which has the same support as the 

subgraph.  

Heavy Atom – all atoms that are not a hydrogen. 

Morgan Fingerprints – “enable mapping of certain structures of the molecule within certain radius of organic 

molecule bonds” [1]. 

SMILES – representation of molecules which is linear. 

Subgraph Mining – finding the subgraphs present in a graph or graph database. 

Supergraph – substructure that contains a subgraph and additional atom(s). 

Tanimoto coefficient – “ratio of the number of features common to both molecules to the total number of 

features” [2]. 
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INTRODUCTION 

Drug discovery enabled a sharp decrease in mortality and morbidity caused by infectious diseases, mainly by 

introducing antimicrobials [3]. However, nowadays drug-resistant pathogens are spreading, including multi- and 

pan-resistant bacteria, while barely any new antibiotics are discovered. Antimicrobial resistance has thus become 

one of the top 10 global public health threats according to the WHO, as it puts the success of modern medicine 

at increased risk [4]. A main strategy against antimicrobial resistance is to discover new antibiotics.  

One of the major sources of conventional medicine are natural products, making up for 25% of conventional 

medicine, although just 15% of plant species have been investigated [5]. Natural products can be found in 

microbial and animal sources as well [6]. A natural product could be defined as a ‘chemical substance produced 

by living organisms via primary and/or secondary metabolic pathways which usually exhibits pharmacological 

activities that can be useful in treating various kinds of diseases’ [5]. Natural products are structurally distinct and 

more complex than synthetic compounds due to more sp3-hybridized atoms and stereocenters. Additionally, 

natural products often do not fulfill Lipinski’s rule of five [7] and are biosynthetically accessible, thus suitable for 

improvement, innovation and flexibility [8–10]. But the isolation of these compounds is an essential first step for 

drug discovery. Several strategies to identify natural products include classical, laborious biological screening, 

analyzing multiple metabolites with computational approaches for identification and molecular networking; 

organizing MS/MS data to visualize clusters of analytes allowing for better prioritization [9]. Additionally, mass 

spectrometry can be used to detect metabolites in natural extracts by utilizing MS-based metabolomics [11]. But 

identification of these natural products can be challenging, just as obtaining sufficient biological material for 

research. 

To increase the efficiency of new drug discovery by simplifying the screening of molecules, multiple 

computational approaches have been developed [9,10]. Based on natural products, pharmacophore models can 

be established to illustrate ligand-target binding models [10,12]. Pharmacophores are ‘the ensemble of steric and 

electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological 

target structure and to trigger its biological response’ [12,13]. Pharmacophore modeling focuses on chemical 

functionalities, enabling target searching with similar biological functionalities. This allows generating a 

pharmacophore model based on 3D structures of target-bound ligands or single ligands, which could be improved 

by using molecular dynamic structures. These 3D pharmacophore models can be used for virtual screening 

through large libraries, to find potential (drug) candidates [12–14]. However, this approach requires a 3D 

structure of either a ligand or target, thereby focusing on a particular type of drug during screening of the library 

and requiring previous knowledge. 

Most of the research on natural products builds on phenotypic assays, making the straightening of molecular 

mechanisms and discovering of specific structures, in combination with ever-growing databases, time-consuming 

[9]. Therefore, the different groups of natural products with similar phenotypic results are explored. The aim is 

to determine whether there are (pharmacophoric) substructures with significant differences in enrichment 

between or commonalities within these groups. The substructures are obtained using (Frequent) Subgraph 

Mining. Subgraph Mining focuses on finding the subgraphs present in a graph or graph database [15]. Multiple 

mining strategies have been researched, using several algorithms including breadth-first search and depth-first 

search [16–21]. Breadth-first search starts with checking all subgraphs of a particular size and moves on by 

increasing the size by one [19]. Depth-first search first extends the first subgraph, until it is below the frequency 

threshold, and then moves on to the next subgraph [19]. Many graph mining algorithms are based on the Apriori 

principle; the frequency of a subgraph is at most the frequency of the subgraphs it contains [17–19].  

For subgraph mining, multiple tools exist, including state-of-the-art tools GASTON and gSpan which both find 

frequent substructures above a threshold [22,23]. Another state-of-the-art tool is MoSS, which is based on finding 

frequent substructures and comparing the frequency of these substructures between two groups, as well as 
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finding all frequent substructures above a threshold  [24]. Therefore, the knowledge gap consists of three parts, 

as visible in table 1. Firstly, there is not yet a subgraph mining tool in python that focuses on natural products and 

preserving particular substructures. Secondly, previous tools allow comparison between just two groups, instead 

of multiple ones. Thirdly, the enrichment analysis and clustering are not yet included in one tool together with 

the subgraph mining. This tool combines all missing parts and applies new methods to increase the speed of the 

analysis. 

Table 1 Overview of GraphMiner vs. State-of-the-Art tools MoSS, gSPAN and GASTON. 

 
GraphMiner MoSS gSPAN GASTON 

Coding Language Python Java C++ C++ 

Searching Algorithm Breadth 

First Search 

Depth First Search, 

starting at most 

frequent atom 

Depth First Search, 

lexicographically 

Depth First Search, 

focused on frequent 

bonds 

Number of groups Any 2 1 1 

Performing 

statistical/enrichment 

analysis 

Yes No No No 

GraphMiner is built to facilitate the search for differences in substructures between groups. A case study is 

searching for new antimicrobials based on structural features found significantly more present in proven 

antimicrobials and/or structural features found significantly more present in proven not-antimicrobials. 

Therefore, the tool enables more efficient and easily accessible comparison of different natural product groups. 

It both presents the frequency of substructures within a group as well as determines which substructures are 

over or under enriched within a group. The tool presents new possible substructures in natural products. These 

natural products could be researched further in laboratory experiments as suitable drug candidates. This 

advances the drug discovery process, which is essential to restrain antimicrobial resistance from limiting modern 

medicine success. Furthermore, GraphMiner is encoded in python, increasing the interpretability of the tool 

amongst researchers, as python has become a more popular coding language [25]. 

METHODS & IMPLEMENTATION  

The GraphMiner tool consists of two main parts, which each produce their own output files. The overview of the 

tool is visible in figure 1. For GraphMiner the following packages are used; python 3.11.3, rdkit 2023.3.1, 

matplotlib 3.7.1, pandas 2.0.2, ipython 8.14.0, statsmodels 0.14.0, scipy 1.10.1, timer 0.2.2 and numpy 1.24.3. 

INPUT FILE  

The first step is the input file (figure 1.1). The input file should consist of the SMILES of a molecule and an 

indication to which group the molecule belongs, this could be either a number or a group name. The number of 

groups is not limited by the tool. The file should be in a csv file format, but the separator can be determined by 

the user.  
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FILTERING  

After loading the file, the molecules are split in groups, as indicated in the input file and thus supplied by the user, 

and for each group the filtering and search algorithm is performed separately. The filtering (figure 1.2) consists 

of multiple parts. The first selection takes place on the number of heavy atoms that is present in the molecule 

(see figure 2.A). Heavy atoms are all atoms except hydrogen. The default cut-off is set at 60 heavy atoms, as no 

molecules above 50 came through the graph mining within a timeout of 2 minutes. This is about 1/8 of the 

molecules in the dataset used in the test run of GraphMiner. To make sure, there is room for exceptions, the cut-

off is set slightly higher. Still, the cut-off enables huge time reduction, while the number of molecules that timed-

out is lowered with exactly the number of molecules that are filtered out based on size (appendix 1). The 

remaining molecules are filtered on whether they contain a dot in their SMILES. If a dot is present in the SMILES, 

this means the components of the molecule are disconnected, there is no covalent bond between the structures. 

Therefore, these parts are mined individually, but the results are combined together as one molecule to prevent 

influence on the statistical analysis later on.  

The filtering is continued with a timeout function. This timeout function is built in to cover the second part of the 

filtering and the graph mining. The default time of the timeout function is 30 seconds, as it is right in the middle 

of the trade-off between the number of molecules that time out and the time the tool takes (appendix 1).  

 

 
Figure 1 Overview method GraphMiner tool. 1. Input file – the 
input file should be a csv file containing the SMILES of a molecule 
and the groupname/-number. 2. Filtering – filtering on size and 
combination of substructures. 3. Graph Mining – performing 
breadth first search and mining all subgraphs. 4. File containing 
all substructures – first output file. 5. Enrichment test – using 
hypergeometric test on all substructures to find over/under 
enriched substructures. 6. Clustering of enriched substructures – 
making a dendrogram of all significantly different expressed 
substructures to determine different clusters. 7. Output files – 
files containing substructures, frequencies, p-values, 
dendrograms and images of significantly different expressed 
substructures. 

 

Figure 2 Overview of the filtering and graph mining. The steps of the 
filtering, reducing graph complexity and subgraph mining including 
replacing are shown. These are steps 2 and 3 in figure 1. A. Filter on 
size – filter on the number of heavy atoms a molecule contains. B. 
Combination of substructure COOH – the acid group is replaced by a 
single carbon atom and the corresponding atom map numbers are 
stored to be replaced back later.  C. Combination of substructure NC=O 
– the peptide bond is replaced by a single carbon atom and the 
corresponding atom map numbers are stored to be replaced back later. 
D. Graph Mining – Breadth First Search Algorithm is performed. E. The 
atom map numbers that were stored are replaced back in the 
substructures. 
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REDUCING GRAPH COMPLEXITY  

The last step of the filtering is the representation of a specific set of atoms, a substructure, as one atom, for an 

overview see figure 2. The representation is performed to reduce the time necessary for the graph mining by 

reducing the total number of possible substructures that need to be mined. The substructures that are combined 

are all chemical structures, nine in total. The substructures are an acid or ester group (C(=O)O), phosphoryl group 

(P(=O)(O)O), phosphate group (P(=O)(O)(O)O), sulfonyl group (S(=O)(=O)), sulfonic acid group (S(=O)(=O)O),  

peptide bond (NC=O), peptide bond with an oxygen group at the nitrogen (N(O)C(=O)), alcohol group or ether 

bond (CO) and carbonyl group (C=O). All these chemical groups are combined into a single atom, being either a 

C, P or S (see figure 2.B and 2.C). Each heavy atom in a molecule has been given a specific and unique atom map 

number (as visible in figure 2), to enable identifying the specific replaced atoms. The atom map numbers 

corresponding to the atoms that are removed from the molecule, are stored in a dictionary in a list of values. The 

key is the atom map number corresponding to the single atom that remains in the molecule. This is visualized in 

steps B and C in figure 2, where in step B, the two oxygens of the acid group are removed, and their corresponding 

atom map numbers (1 and 2) are stored as values, with the atom map number of the remaining carbon (3) as the 

key in the dictionary.  

GRAPH MINING  

After the filtering, the final molecule, on which the mining is performed, only contains the single atoms of the 

combined substructures. To perform graph mining, first all neighbours are determined. The neighbours are 

gathered using RDKit, which allows to retrieve all neighbouring atoms for a specific atom. This function works on 

each individual atom of the molecule. The atom map number of the atom is stored as the key in a dictionary, with 

as values a list of the atom map numbers of the neighbours of the specific atom. Based on this dictionary, a 

breadth first search approach is used to generate all possible substructures within the molecule, with the smallest 

all the single atom map numbers and the biggest the complete molecule. The breadth first search results in an 

output dictionary, with as key the length of the substructures and as a value a list of sets, with in each set an 

individual subgraph of atom map numbers. 

The graph mining is encoded with a breadth first search approach (figure 1.3 & 2.D), but the code for a depth first 

search is available as well. 

Due to the combination of substructures during the filtering, the resulting dictionary does not contain all atoms. 

Therefore, the removed atoms should be placed back in the retrieved substructures. This is encoded, based on 

the dictionary created during the filtering. The stored atom map numbers are placed back in the substructures 

where the single atom is present, thereby generating the full substructures (as visible in figure 2.E). In other 

words, the numbers in the values list are added to all substructures in which the atom map number of the key 

was present. The substructures are converted to SMILES, based on the atom map numbers. 

Of these substructures, each unique substructure within a molecule is stored. When the substructures of all 

molecules within a group are mined, they are counted and stored. Sometimes, substructures are still generated 

with dots in their structures. These dots indicate that the substructure contains two separate substructures, and 

the connection is unclear. Thus, these substructures are left out of the dataset, which is in the test dataset about 

3% to 4% of the substructures. 
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SUBSTRUCTURE FILE  

The first output is generated in a csv file (see figure 1.4). This file contains all substructures in SMILES format, 

followed by columns displaying the frequency of the substructure in each group. Secondly, another output file is 

generated containing the groupnames. Both these files are essential for the second part of the tool, which is 

automatically performed as well. 

ENRICHMENT TEST  

The second part of the tool focuses on the differences in frequencies of substructures between the groups. This 

is determined using the hypergeometric test of scipy.stats (figure 1.5). The hypergeometric test uses the following 

function: 

𝑝(𝑘, 𝑀, 𝑛, 𝑁) =  
(𝑛

𝑘)(𝑀−𝑛
𝑁−𝑘)

(𝑀
𝑁 )

  

In this formula, k = total number of molecules in the specific group that contain the specific substructure, M = 

total number of molecules of all groups combined, n = total number of molecules that contain a specific 

substructure in all groups, N = total number of molecules in a specific group. Using this formula, the p-value is 

calculated for each substructure for each group separately. These p-values are written to an output file, displaying 

both the frequencies and the p-values.  

As many substructures are generated, a multiple testing correction is performed. The default setting is Benjamini-

Hochberg multiple correction, as it controls the false discovery rate and therefore is less stringent and finds more 

true positives [26,27]. But this could easily be swapped out within the tool for multiple other options, including 

Bonferroni and Holm. After the multiple testing correction, the significantly under or over expressed 

substructures are retrieved for each group separately. This results in a final list of all substructures that are 

significantly different expressed for that specific group compared to the other groups. Thus, it could be either 

over or under expression. 

CLUSTERING OF SIGNIFICANTLY DIFFERENT SUBSTRUCTURES  

These found substructures are further analysed to generate interpretable results (figure 1.6). A dendrogram is 

generated based on the pairwise distances between the Morgan fingerprints of the mined substructures, which 

are calculated using the Tanimoto coefficient. In the dendrogram, groups of substructures are created based on 

a distance cut-off. The cut-off is set at 1.5 as default, which is based on the results of the test datasets to create 

feasible groups. The groups created are retrieved and the maximum common substructure within these groups 

are determined and drawn as a molecular substructure as well as the largest substructure within the group. 

OUTPUT FILES  

As output, multiple files are generated (see figure 1.7 & table 2). At first, the two files of the first part are 

generated as explained. During the statistical analysis, multiple files are generated as well. All files will be 

generated in a folder, which is default named ‘GraphMinerResults’, but can be adjusted. For all files, see the 

overview below. 
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Table 2 Output files. Overview of all output files and the contents therein.  

Output file name Contents 

substrfile.csv All substructures found in the input file, with all the 
frequencies per group. 

datafile.csv Contains the list of all group names and the total 
number of molecules in each group. 

pvaloverview.csv All substructures found in the input file, with all the 
frequencies per group and the p values per group. 

significantsubstr.csv All substructures that are significantly different 
expressed sorted per group. 

Images/groupname_dendrogram.png The dendrogram of all significantly different 
expressed substructures. 

Images/groupname/biggest_groupgroupnumber.png The biggest substructure of this particular group 

Images/groupname/mcs_groupgroupnumber.png The maximum common substructure of this particular 
group 

GRAPHMINER AS COMMAND LINE TOOL  

The tool can be used by downloading from GitHub via https://github.com/moltools/GraphMiner.  The tool can 

be installed on the command line using pip and run using multiple features (all visible in ReadMe on GitHub). 

When using all default features, the command line looks as follows ‘GraphMiner -i name input file’. 

DATA USED FOR TESTING GRAPHMINER  

To perform tests on GraphMiner and retrieve the results, a dataset is used containing 250 molecules and 4 groups. 

The total dataset is retrieved from the Donphan database [28]. The same ratios are kept, making for 83 

antibacterials, 34 antivirals, 111 not-antibacterials and 22 not-antivirals, which are completely randomly selected 

from the total dataset. 

The synthetic data set test is performed using a dataset containing 120 molecules. In this dataset 4 groups of 30 

molecules are present. The first group contained just carbon and oxygen atoms, the second group contained the 

same molecules, but with 18 with a sulfonyl group, the third group similar but with 18 with a phosphoryl group 

and in the last group similar but with 24 with a nitrogen atom.  

RESULTS & DISCUSSION  

GRAPHMINER HAS MORE FEATURES AND (ANALYSED) RESULTS THAN MOSS  

To show that the tool is an improvement over the already present tools with similar function, a comparison is 

performed to MoSS. MoSS is a tool based on finding frequent substructures and comparing the frequency of 

these substructures between two classes, as well as finding all frequent substructures above a threshold  [24]. 

The MoSS tool is run on the command line, which opens a new interface to enable the tool. The tool requires an 

input dataset, which contains three columns; id number, value and description of molecule in SMILES. MoSS splits 

the input in two groups, based on the value. By default, the split takes place at 0.5, with everything <= 0.5 in the 

focus group. MoSS only obtains closed substructures. All closed substructures above a certain frequency are 

obtained for molecules in the focus groups. For these substructures, the frequency in the other group is 

calculated. The main differences between the tools are displayed in the table below. 

 

 

https://github.com/moltools/GraphMiner
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Table 3 Comparison GraphMiner & MoSS. Showing all differences and similarities between GraphMiner and MoSS. 

GraphMiner MoSS 

All substructures Closed substructures 

All substructures Only substructures above frequency (adjustable) 

All substructures of all groups Only substructures of focus group, and frequencies of 
other groups 

571,861 substructures 6214 substructures 

Multiple groups Two groups 

Runtime 3033 sec/50 min Runtime 906 sec/15 min 

As is visible, there are quite some differences between both tools. First of all, the GraphMiner tool results in many 

more substructures, which provides a bigger dataset for the enrichment analysis. This enables looking at, for 

example, maximum common substructures as to find the smallest substructure that is over/under enriched in 

particular groups. Furthermore, the substructures are obtained for each group in GraphMiner, while MoSS only 

returns frequent subgraphs for the focus group. Additionally, MoSS divides the input in two groups, while 

GraphMiner uses the groups supplied by the user, which could be any number of groups. On the other hand, the 

output of MoSS contains information on the absolute and relative presence, while GraphMiner focuses on the 

absolute presence, although performing enrichment analysis afterwards. Furthermore, MoSS works through all 

molecules, without requiring a time out function, and is thereby relatively quick. This could be due to a quicker 

algorithm, or due to the fact that MoSS just mines all substructures of one group, which was only a proportion of 

the molecules that GraphMiner has to mine through.  

Improving GraphMiner is thus certainly possible, compared to MoSS, by reducing the time for graph mining and 

including relative presence and possibilities to select on minimum frequency of substructures which end up in 

the results. However, this could influence the enrichment analysis. The usage of closed substructures, as in MoSS, 

is applied to the list of significantly different substructures, to shorten it and show the biggest substructures. 

COMBINING SUBSTRUCTURES AND CHANGING SEARCH ALGORITHM REDUCE TIME 

REQUIRED  

Obtaining all possible substructures of all lengths of a given molecule using graph mining is time intensive. To try 

and reduce the time used by the graph mining, while still obtaining (almost) all possible substructures, several 

strategies were applied. First of all, two different graph mining algorithms were written and used in the tool, 

being Breadth First Search (BFS) and Depth First Search (DFS). Literature research had shown that DFS would 

result in the quickest graph mining algorithm [22–24]. However, after both have been encoded, the following 

result was obtained (table 4).  

 

 

 

 

 



 11 

Table 4 Different runs with BFS or DFS and with or without substructure combining. The input molecules are the number of molecules which 

are in the input file of the algorithm. The passed molecules are the molecules passing the first filtering steps on size and whether a molecule 

is present. Substructures is the number of substructures resulting from the graph mining. Timed-out mol is the number of molecules that is 

timed-out during the graph mining and thus not taken up in the substructures. Time is the amount of time it took to run GraphMiner in total. 

  

As is visible in the table above, the BFS algorithm has shown to be quicker. Furthermore, fewer molecules are 

timed-out and more substructures are found, which shows that the results contain more different molecules, 

thus more information. Thus, all together this shows that the BFS algorithm works quicker and more efficiently 

in GraphMiner. However, this could be caused by the way the algorithms are encoded and therefore could be a 

bug in the program, as previous state-of-the-art tools are all encoded with a DFS algorithm. Thus, this could be 

solved by encoding a faster DFS algorithm to reduce the time mining takes even more. 

Secondly, the reduction of time is mainly caused by the combination of substructures as explained in the 

Materials & Methods. The results, for both BFS and DFS, are visible in the same table above. As is clearly shown, 

the combination of the substructures causes a huge decrease in time used for graph mining, as well as an increase 

in the number of structures that are completely mined within the timeout, and thus obtained in the results. 

Combining these two results, the fastest tool encoded is based on a breadth first search mining approach and 

thereby including the combination of substructures. The combined substructures do however cause a decrease 

in the number of substructures found, per analyzed molecule. This does not result in much loss of information, 

as the substructures that are combined, are chemical groups that are often found together in molecular 

structures.  

EXPECTED SUBSTRUCTURES FOUND IN GROUPS OF SYNTHETIC DATASET AFTER 

ENRICHMENT TESTING  

To determine whether the expected results are in the output of GraphMiner, a synthetic dataset is created. This 

dataset contains 4 groups of 30 molecules. The 30 molecules in the first group contain carbon and oxygen atoms. 

The second group contained the same 30 molecules, but with 18 with a sulfonyl group, the third group similar 

but with 18 with a phosphoryl group and in the last group similar but with 24 with a nitrogen atom. It is expected 

that those groups and substructures containing these added groups/atoms will be found as significantly over 

enriched in the particular groups. The results of the sulfonyl group are visible in the figures below.  
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Figure 3 Dendrogram of differently expressed substructures of group with molecules containing sulfonyl group.  

A.  B.  C.  D.  

Figure 4 Overview of the results from clustering of group with molecules containing a sulfonyl group. A. Largest substructure first group 

from dendrogram, B. Maximum common substructure first group from dendrogram, C. Largest substructure second group from dendrogram, 

D. Maximum common substructure second group from dendrogram. 

As is clearly visible in figures 3 and 4, only (sub)structures containing a sulfonyl group are found to be statistically 

over or under enriched, therefore providing some prove for the method of GraphMiner. Furthermore, for the 

third group only (sub)structures containing a phosphoryl group resulted as significantly over (or under) enriched 

(see appendix 2). Similarly, for the fourth group only (sub)structures containing a nitrogen are identified as 

significantly over (or under) enriched (see appendix 2). All in all, this proves to some extent that the tool works 

as proposed, with the expected resulting substructures. However, it is just one example and therefore not definite 

proof. Thus, next a case study regarding antibacterials and antivirals is discussed.  

UNEXPECTED SUBSTRUCTURE FOUND IN NOT-ANTIBACTERIALS AFTER ENRICHMENT 

TESTING  

After all substructures are mined, the following step was to determine which substructures are significantly over 

or under enriched within each group. This is calculated using a hypergeometric test, with a default p-value of 

0.05. The enrichment is tested based on how many of the molecules contain a particular substructure. But many 

molecules are included in the testing, making multiple testing correction essential. This resulted in 

lists of structures which were significantly different expressed within the group tested compared to 

all molecules in the input dataset (appendix 3). To try and check whether the found substructures 

are as expected, the test dataset contained antibacterials, antivirals, not-antibacterials and 

not-antivirals. It is well known that when a beta-lactam ring is present in a molecule, often 

the molecule is an antibacterial (figure 5) [29], so this would be an expected result to be 

overexpressed in antibacterials. However, it is not found in the significantly different 

expressed substructures of the antibacterials (appendix 4.1). But it is shown in the significantly different 

expressed substructures of the not-antibacterials (figure 7), not as a ring structure, but with the same sequence 

of atoms. 

Figure 5 Beta-Lactam ring 
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However, these results of the hypergeometric test are quite dependent on multiple factors. At first, it is important 

which groups are put in the comparisons. If the comparison is between different groups of antibacterials, different 

results will be found, than by comparison between antibacterials and not-antibacterials. Therefore, there should 

be a clear goal as for which substructures to find, before determining which groups are entered into the tool. 

Furthermore, it is not for all molecules clear to which group they belong, and therefore this might cause some 

noise in the analysis. However, this would be a limitation on the dataset the user provided to the tool, not of the 

tool itself. Additionally, there are differences in the sizes of the group in the dataset, which could influence the 

results, as larger groups have a bigger impact on the results of the group in total than smaller groups. Lastly, the 

enrichment analysis is completely based on the results of the subgraph mining earlier in the tool, and thus all 

bigger molecules that do not come through the filter or the timeout function are not taken into account in this 

enrichment analysis, which could influence the results when a significant proportion of the molecules are 

removed. Therefore, both the filter on number of heavy atoms as the number of seconds the time out takes, are 

adjustable when using the tool to allow the user to make their own consideration. 

CLUSTERING PROVIDES INSIGHT INTO FOUND SUBSTRUCTURES  

The enrichment testing results in a list of significantly different expressed substructures for each group, which 

could be up to hundreds of substructures. To make the results interpretable and insightful, the substructures per 

group are clustered. The clustering is performed in a dendrogram and the clusters are formed using the cut-off 

of the dendrogram (appendix 4), for the not-anibacterials, the dendrogram is shown in figure 6. Based on the 

groups in the dendrogram, both the largest substructure found in the group as well as the maximum common 

substructure are determined. The structures of these are shown as a molecular figure (appendix 4), for not-

antibacterials shown in figure 7.  

 

Figure 6 Dendrogram of differently expressed substructures of not-antibacterial molecules.  

A.  B.  C.  D.  

Figure 7 Overview of the results from clustering of not-antibacterial. A. Largest substructure first group from dendrogram, B. Maximum 

common substructure first group from dendrogram, C. Largest substructure second group from dendrogram, D. Maximum common 

substructure first group from dendrogram. 
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As is visible in figure 6, two clusters are formed from the significantly different expressed structures found in the 

not-antibacterial group. For both of these groups, the largest and maximum common substructure are 

determined and depicted in figure 7. Looking at these structures, it is clear that the maximum common 

substructure is highly dependent on the clusters formed during the dendrogram, as they are much smaller than 

the largest substructures. Additionally, when comparing the substructures in the dendrogram, it becomes clear 

that if the cut-off was placed differently, other maximum common substructures would have been found, which 

could influence the interpretation of the results. Therefore, the cut-off should be determined for each group 

separately and based on how many substructures are present, but possibly on how different these are from each 

other as well. The largest substructure gives more insight in the structures causing a molecule to be antibacterial.  

Looking at the first group, the maximum common substructure, just a C (fig 7B), does not give any information 

on substructures that might be interesting to look at. This individual carbon atom could have ended up as an over 

or under enriched substructure due to differences in group size, while this should not have influenced the 

proportion of the molecules in which the carbon is present, as it should be present in all. Another possibility 

would be that at first aromatic carbon atoms and regular carbon atoms are counted separately and later all carbon 

atoms are displayed as regular carbon atoms. This could influence the result, when in one group much more or 

less aromatic carbon atoms were present. On the other hand, the branched carbon atoms of the largest 

substructure (fig 7A), provides some insight in interesting substructures. Same for the second group, where the 

maximum common substructure, is just a carbon-nitrogen (fig 7D), while the largest substructure shows the 

sequence of a beta-lactam ring (fig 7C), which has proven to be an interesting substructure. As previously 

mentioned, the cyclization within substructures is not always found by GraphMiner. Therefore, it is interesting to 

look at these substructures with an identical atom sequence, even if there is no ring shown.  

The clustering could be influenced by the way the distance is calculated, as it is currently based on the Tanimoto 

coefficient for the pairwise distances. Using another method could result in different clusters and/or different 

substructures displayed. How confident the distances are could be tested using bootstrapping, as it estimates the 

variability of the distance calculated by generating a distribution of estimates [30]. The clearest influence is, as 

discussed, the cut-off used in the dendrogram, as it determines the numbers and the content of the clusters and 

thus the resulting structures. Lastly, the clustering results in a summary of the output and thereby concentrates 

the output, which could cause some loss of insight, albeit necessary if the output is huge.  

However, the main set back of this method within GraphMiner is that large dataset (thousands of molecules) 

cannot yet easily be used within the tool, as too many significant over or under enriched substructures are found. 

For all these substructures, the pairwise distances have to be calculated and stored in a matrix, which takes up 

much space and could result in a storage issue. Thus, another possibility could be to combine all substructures 

based on substructure matches to the biggest substructure in such a group, which should be both less storage 

and time intensive, but poses some restrictions as there is no clustering and thus if one atom is different, the 

structure might end up in a different group. On the other side, completely different clustering approaches could 

be used, such as the CAST method, with approximate clique-finding, Jarvis-Patrick, with k nearest neighbors in 

common between groups, and more [31]. 

CONCLUSION AND FUTURE PERSPECTIVES  

The goal of GraphMiner was to develop a tool to mine for substructures within groups of molecules and to 

perform enrichment testing to determine which substructures were significantly different expressed and 

therefore over or under enriched. All in all, GraphMiner is working as proposed. Firstly, the tool can mine all 

substructures within a group of molecules and result in a single output file with all substructures and frequencies. 

Secondly, an enrichment test is performed on the output of the mining, resulting in the substructures that are 

over or under enriched, which can be performed on multiple groups. Thirdly, these results are clustered per group 

to gain more insight in them and show substructures that might be interesting to look at during research on new 



 15 

molecules. Lastly, it is all combined together in a command line tool encoded in python, with default settings for 

the adjustable parts, requiring just a single input file containing the molecules in SMILES and the group names or 

numbers.  

GraphMiner enables research to gain more insight in what distinguishes different groups of molecules from each 

other, and thereby forming an idea of which substructures are most likely to (not) be present in new 

antimicrobials. These substructures could provide an early selection criterium for molecules, to reduce the 

number of molecules for which laboratory testing for antimicrobial activity should be performed. But, besides 

searching for antimicrobials, GraphMiner could be used for comparing any two (or more) groups of molecules for 

their differences. This is quite some improvement over previous graph mining tools, as it is encoded in python, a 

more universal coding language [25], more than 2 groups can be compared at the same time, a full enrichment 

and clustering analysis is built in and a unique way of combining substructures to reduce time in graph mining is 

included in GraphMiner. 

GraphMiner could still be improved on a couple of fronts. First of all, it still takes quite some time to perform 

graph mining, and therefore a timeout function is required to ensure that the running time of the tool is within 

reason. Thus, trying to encode a faster or different algorithm or determining different methods as to speed up 

the graph mining, such as has been done with the substructure combining, could improve GraphMiner regarding 

the time sensitivity. However, a completely different approach could be to use multiple cores within the tool, as 

such each group can be mined using a separate core, which would improve the speed of the algorithm. 

Secondly, the features of GraphMiner could be extended. For example, for some purposes it might be interesting 

to include a function which could only look at substructure above a certain frequency. But more important is that 

it will become visible whether a substructure is differently expressed within a certain group due to under- or over 

enrichment compared to the other groups. As to know, whether the substructure should be there or not, if used 

for selection.  

Thirdly, adding more possibilities to GraphMiner regarding already present features would improve the tool as 

well. For example, multiple type of distance calculations could be useful for the dendrogram, to determine 

whether this has an impact or to base the distance calculations on the desired outcome. Similarly, different 

multiple testing corrections could be encoded, as this could result in different substructures after enrichment 

testing. Additionally, the possibility could be encoded for the user to supply their own (new) conserved 

substructures that could be combined before graph mining takes place. This would enable the user to cut out 

information on substructures that are known to be often found as a whole already and focus on new found 

substructures. 

Lastly, it would be useable, if the two parts of the tool could be used separately. This should still be encoded 

within GraphMiner and arguments will have to be added to the command line tool to allow for this. 

In conclusion, GraphMiner is working as proposed. However improvements could always be made and the tool 

could be built out further, improved working is shown compared to the current state-of-the-art tools. 
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CODE AVAILABILITY  

GraphMiner is a command line tool, which can be retrieved from GitHub 

(https://github.com/moltools/GraphMiner)  and installed on the command line using pip. For more information, 

see ReadMe on GitHub.  

https://github.com/moltools/GraphMiner
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APPENDIX  

APPENDIX 1 TABLES FOR DEFAULT SETTINGS  

Table 5 Different runs showing the difference between filtering or no filtering on size. 

 

 

Table 6 Different runs showing the difference between different time out settings. 
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APPENDIX 2 RESULTS OF CLUSTERING SYNTHETIC DATASET  

 

A.  B.  C.  D.  

Figure 8 Overview of the results from clustering of group of molecules with phosphoryl groups. A. Largest substructure first group from 

dendrogram, B. Maximum common substructure first group from dendrogram, C. Largest substructure second group from dendrogram, D. 

Maximum common substructure second group from dendrogram. 

 

 

Figure 9 Dendrogram of differently expressed substructures of group of molecules with phosphoryl groups.  

 

Figure 10 Dendrogram of differently expressed substructures of group of molecules with a nitrogen.  
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A.  B.  C.  D.  

Figure 11 Overview of the results from clustering of group of molecules with nitrogen. A. Largest substructure first group from dendrogram, 

B. Maximum common substructure first group from dendrogram, C. Largest substructure fourth group from dendrogram, D. Maximum 

common substructure fourth group from dendrogram. 

  



 22 

APPENDIX 3 SIGNFICANTLY DIFFERENT EXPRESSED SUBSTRUCTURES  

Table 7 Overview of all significantly different expressed substructures found per group. 

Antiviral  Antibacterial Not-Antibacterial 

No significantly different 
expressed substructures present 

CCC(C)(C)C, CC(C)(C)C, 
CCCC(C)CC, cccC(=O)O, CCCC(C)C, 
CCC(C)CC, CCC(C)C, cocC 

ccC(N)=O, ccccccn, Cc(c)cc, cC(N)=O, 
Cc(c)c, NNC=O, NC=O, C 

Not-Antiviral 

CCN(C)C=CN=Nc1ccccc1,Nc1cccc(C(F)(F)F)c1,cccc(c)N=NC=CN(C)CC,ccc(cc)N=NC=CN(C)CC,CN(C)C=CN=Nc1cc
ccc1,cc(N)cc(c)C(F)(F)F,ccc(c)N=NC=CN(C)CC,cccc(c)N=NC=CN(C)C,ccc(cc)N=NC=CN(C)C,cc(c)N=NC=CN(C)CC,c
cc(c)N=NC=CN(C)C,cccccN=NC=CN(C)CC,CCNC=CN=Nc1ccccc1,cnc(c(c)Cl)c(c)c,ccc(c)c(n)c(c)Cl,Clc1cccc2cccnc
12,cc(c)N=NC=CN(C)C,Nc1cccc(C(F)F)c1,ccc(N)ccC(F)(F)F,ccc(ccN)C(F)(F)F,FC(F)(F)c1ccccc1,ccccN=NC=CN(C)C
C,cccccN=NC=CN(C)C,CNC=CN=Nc1ccccc1,cccc(c)N=NC=CNCC,ccc(cc)N=NC=CNCC,cc(Cl)c(n)c(c)c,ccc(Cl)c1ccc
cn1,cnc1c(Cl)cccc1c,cc(Cl)c1ncccc1c,ccc1cccc(Cl)c1n,cccc1cccc(Cl)c1,cc(N)cc(c)C(F)F,cc(N)ccC(F)(F)F,cc(ccN)C(
F)(F)F,cccc(c)C(F)(F)F,ccc(cc)C(F)(F)F,cccN=NC=CN(C)CC,ccccN=NC=CN(C)C,cccc(c)N=NC=CNC,ccc(cc)N=NC=C
NC,ccc(c)N=NC=CNCC,NC=CN=Nc1ccccc1,ccccnc1ccccc1,ccc1cccc(Cl)c1,ccnc(c)c(Cl)cc,ccc(Cl)c(cc)nc,cc(Cl)c1c
cccn1,ccnc(cc)c(c)Cl,cccc(n)c(Cl)cc,cc1cccc(Cl)c1n,cccc(c)cc(c)Cl,ccc(c)c(cCl)nc,ccc(cc)c(n)cCl,ccc(c)C(F)(F)F,cc
N=NC=CN(C)CC,cccN=NC=CN(C)C,ccc(c)N=NC=CNC,cc(c)N=NC=CNCC,ccc(cc)N=NC=CN,cccc(c)N=NC=CN,C=CN
=Nc1ccccc1,NcccccC(F)(F)F,cccccN=NC=CNCC,Cn1ccc(N)nc1=O,Nc1ccnc(=O)n1,ccc(nc)c(c)Cl,ccc(Cl)c(c)nc,cccc
nc(cc)cc,ccccnc(c)ccc,cccnc1ccccc1,cc1cccc(Cl)c1,ccc(c)cc(c)Cl,ccnc(c)c(c)Cl,ccc(Cl)c(n)cc,cccc(n)c(c)Cl,cnc(cCl)
c(c)c,ccc(c)c(n)cCl,ccnc1ccccc1Cl,cccncc(Cl)ccc,ccc1cccnc1cCl,cc(c)C(F)(F)F,cN=NC=CN(C)CC,ccN=NC=CN(C)C,c
c(c)N=NC=CNC,ccc(c)N=NC=CN,C=CN=Nc(cc)cc,C=CN=Nc(c)ccc,Nc1cccc(CF)c1,ccc(N)ccC(F)F,ccc(ccN)C(F)F,FC(
F)c1ccccc1,cccccC(F)(F)F,cccccN=NC=CNC,ccccN=NC=CNCC,cc(N)nc(=O)nC,cn(C)c(=O)ncN,cc(N)nc(n)=O,cnc(c)
c(c)Cl,ccc(n)c(c)Cl,ccc(Cl)c(c)n,cnc1ccccc1Cl,ccccnc(c)cc,cccnc(c)ccc,cccnc(cc)cc,ccnc1ccccc1,cc(Cl)cc(c)c,Cc1c
ccc(N)c1,cc(c)c(n)cCl,cccncc(Cl)cc,cccc(Cl)cncc,cccccc(Cl)cc,cc1cccnc1cCl,cccc(cCl)ncc,cccc(cc)ccCl,CCN(C)C=C
N=N,cN=NC=CN(C)C,cc(c)N=NC=CN,C=CN=Nc(c)cc,cc(N)cc(c)CF,cc(N)ccC(F)F,cc(ccN)C(F)F,NcccC(F)(F)F,cccc(c)
C(F)F,ccccC(F)(F)F,ccc(cc)C(F)F,CN=Nc1ccccc1,ccccN=NC=CNC,cccN=NC=CNCC,cccccN=NC=CN,cnc(=O)n(c)C,c
cn(C)c(n)=O,cc(Cl)c(c)n,cccc(cCl)nc,cccc(Cl)cnc,nc1ccccc1Cl,ccccnc(c)c,cccnc(c)cc,ccnc(c)ccc,ccnc(cc)cc,ccccnc
cccc,ccc(cc)ccCl,ccccc(Cl)cc,cccccc(c)Cl,cc(C)cc(c)N,ccc(n)c(c)n,ccncc(Cl)cc,cccncc(c)Cl,Clcc1ccccn1,ccnc(cCl)cc,
cccc(c)ccCl,nccccccccCl,CN(C)C=CN=N,C=CN=Nc(c)c,ccc(c)C(F)F,cccC(F)(F)F,CN=Nc(cc)cc,CN=Nc(c)ccc,N=Nc1c
cccc1,cccN=NC=CNC,ccN=NC=CNCC,ccccN=NC=CN,C=CN=Nccccc,NcccccC(F)F,cn(C)c(n)=O,Cn(c=O)cccN,Cn1c
ccnc1=O,O=c1ncccn1,cnc(=O)ncN,ccc(N)nc=O,cnc1ccccc1,ccc(cCl)nc,ccc(Cl)cnc,cccc(n)cCl,cccc(Cl)cn,cccnc(c)c
,ccnc(c)cc,ccccncccc,cccnccccc,ccc(c)ccCl,cccc(Cl)cc,cc(n)c(c)n,ccncc(c)Cl,ccnc(c)cCl,nc1ccccc1n,ccccccccCl,cc(
c)C(F)F,ccC(F)(F)F,CCN(C)C=CN,CN=Nc(c)cc,ccc(cc)N=N,cccc(c)N=N,ccN=NC=CNC,cN=NC=CNCC,cccN=NC=CN,
C=CN=Ncccc,ccc(N)ccCF,ccc(ccN)CF,FCc1ccccc1,cccccC(F)F,Cnc(=O)ncN,ccnc(=O)nC,cccn(C)c=O,ccnc(n)=O,cnc
(=O)nc,Ncnc(n)=O,cc(N)nc=O,cccc(c)nc,ccc(cc)nc,nc1ccccc1,cnc(c)cCl,cncc(c)Cl,ccc(n)cCl,ccc(Cl)cn,CN=Nccccc,
Cnccc(n)N,ccnc(c)c,ccccnccc,cccncccc,ccnccccc,cc(c)ccCl,ccc(C)ccN,ccc(N)ccC,cccc(n)cn,cC(F)(F)F,CN(C)C=CN,
C=CN(C)CC,CCC(N)=CN,CN=Nc(c)c,ccc(c)N=N,cN=NC=CNC,CCNC=CN=N,ccN=NC=CN,C=CN=Nccc,cc(N)ccCF,cc(
ccN)CF,NcccC(F)F,cccc(c)CF,ccccC(F)F,ccc(cc)CF,cnc(=O)nC,ccn(C)c=O,ccc(c)nc,cnc(n)=O,Ncccnc=O,ccc(n)cc,cc
cc(c)n,cc(n)cCl,cc(Cl)cn,CN=Ncccc,cccccN=N,cn(C)c=O,cccnccc,ccncccc,cc(N)ccC,ccc(n)cn,ccnc[nH],cccnccCl,C
=CN(C)C,CC(N)=CN,C=C(N)CC,cc(c)N=N,CNC=CN=N,cN=NC=CN,C=CN=Ncc,ccc(c)CF,cccC(F)F,NcccccCF,Cnc(n)=
O,cnc(c)c,nc(n)=O,CN(C)CC,cccnc=O,cccccnc,ccccN=N,CN=Nccc,cc(n)cn,ccnccc,CcccccN,cnc[nH],ccnccCl,C=C(
C)N,N=NC=CN,cN=NC=C,cc(c)CF,ccC(F)F,CCNC=CN,cccccCF,CCncccn,cc(c)n,Ncnc=O,ccccnc,cccccn,cnccCl,cccN
=N,CN=Ncc,ccnCCO,Cncccn,cncccn,FC(F)F,CCnccn,nc[nH],C=CN=N,cC(F)F,CNC=CN,C=CNCC,CCC=CN,NcccCF,c
cccCF,c[nH],ncccn,nccCl,ccN=N,Cnccn,cnCCO,C=CNC,NC=CN,CC=CN,CccBr,cccCF,nccn,cccn,cccN,CNCC,ccnC,C

=CN,cN=N,CN=N,ccCF,ncN,ccn,ccc,ccN,CCn,cnC,N=N,FCF,cCF,cN,cn,cc,Cn,CF,N,c,n 
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APPENDIX 4 RESULTS OF CLUSTERING ANTIBACTERIAL/ANTIVIRAL  

APPENDIX 4.1 ANTIBACTERIAL  

 

Figure 12 Dendrogram of differently expressed substructures of antibacterial molecules.  

A.  B.  C.  D . 

Figure 13 Overview of the results from clustering of antibacterial. A. Largest substructure first group from dendrogram, B. Maximum 

common substructure first group from dendrogram, C. Largest substructure second group from dendrogram, D. Maximum common 

substructure second group from dendrogram. 

APPENDIX 4.2 NOT-ANTIVIRAL  

 

Figure 14 Dendrogram of differently expressed substructures of antibacterial molecules.  
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Figure 15 Couple of the largest substructures retrieved from the groups from the dendrogram of not-antiviral. Same groups and order as 

the figure below. 

    

    

Figure 16 Couple of the maximum common substructures retrieved from the groups from the dendrogram of not-antiviral. Same groups 

and order as the figure above. 
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