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ABSTRACT
Diet shapes our gut microbiome from the day we are born. The contribution of dietary non-protein 
nitrogen to normal and healthy nitrogen cycling in the infant gut is scarcely described. Herein, we 
review in vitro and in vivo findings that show the impact of Human Milk Nitrogen (HMN) on the gut 
microbiota that colonizes the gut in early human life. We describe that several non-protein 
nitrogen sources, that include creatine, creatinine, urea, polyamines and free amino acids, are 
key in establishing the bifidobacterium-dominated microbiome and thus are bifidogenic. 
Furthermore, several parts of HMN-related metabolism are associated with a healthy infant gut 
and commensal microbiota. We illustrate an overlap and great diversity in accessibility of HMN by 
large parts of the infant gut microbiota. This review nonetheless shows the importance of research 
on HMN and its effects on the activity and composition of the infant gut microbiota and its 
potential effect on early life infant health.
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Introduction

The human gut contains a microbial cell population, 
or microbiome, that through its presence and activity 
supports human immunology and prevents disease.1 

This microbial support in our gut starts immediately 
after birth and is efficiently supported by human milk 
(HM).2,3 Early life provides a unique opportunity to 
study the effect of diet on microbiota. Even though 
the process of defining a healthy infant microbiota is 
ongoing, we understand that breastfeeding promotes 
a Bifidobacterium-dominated microbiome in healthy 
infants.3,4 However, variations in microbiota compo
sition, geographically and inter-individually are 
high.2,5 Nonetheless, breastfed infants are considered 
a low-risk group for many health threats,6,7 thus 
making breastfeeding the golden standard for infant 
feeding. This guided research toward identifying pre
biotics in HM that promote a beneficial microbiota. 
Fundamentally, to understand metabolism in the 
breastfed infant’s gut and more applicably to improve 
infant feeding alternatives. Therefore, a recent 
research focus was the bacterial acquisition of carbon 
in the infant gut. Human Milk Oligosaccharides 
(HMOs), a dominant carbon source in HM, are 

selectively utilized by Bifidobacterium spp. and are 
therefore promoting Bifidobacterium spp. in the 
infant gut environment.8–10 HMOs are not the only 
nutrient class in HM, and the bacteria have likely 
adapted to other molecules and nutrients present. 
Moreover, nitrogen is a fundamental need for bac
teria to survive in any environment. This suggests that 
implementing oligosaccharides in the infant diet 
alone will not lead to a sufficient resemblance to 
a breastfed microbiota.5,11

An equally crucial pinnacle of survival for bac
teria in the infant gut is not well documented, 
namely the acquisition of nitrogen. Meanwhile, 
research shows that microbial communities are 
profoundly affected by nitrogen availability.12,13 

Breast milk is a complex bio-fluid and holds 
a thorough co-evolution orchestrated nitrogen 
content. While containing relatively low amounts 
of protein compared to the diet in later life, it has 
various other sources of nitrogen including secre
tory waste products of human metabolism, amino 
acids (AAs), polyamines and vitamins.6,14–23 The 
evolution of HM and a co-evolving microbiome 
makes it likely that the microbiota of the breastfed 
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infant is adapted to low protein concentrations is 
utilizing this specific nitrogen supply to gain 
a competitive advantage. The rapidly developing 
human infant is in high demand for nitrogen as 
well, sketching a vital and delicate balance between 
host and gut microbiota.

Many gut symbionts can incorporate ammo
nium (NH4) since most gut bacteria possess the 
capability to produce a glutamate dehydrogenase 
and use ammonium in their biosynthetic pathways. 
Not surprisingly, this usage of ammonium has 
proven to be one of the most dominant microbial 
pathways expressed in the infant gut microbiome.2 

This is important for detoxification, since high 
levels of ammonium can be detrimental to both 
microbiota and host.24 It can therefore be hypothe
sized that this is the most common source of nitro
gen available in the gut and that microbial 
metabolism centers around ammonium.25 

Ammonium itself is interestingly enough only pre
sent in trace amounts compared to other HMN 
sources.26 We suspect that the infant gut micro
biota catabolizes other nitrogenous compounds to 
acquire and share ammonium.

This review focuses on microbiome interactions 
with dietary nitrogen in the infant gut, during the 
first months of life, particularly with HMN sources. 
However, infant absorption of many of these com
ponents should be considered and is currently elu
sive. It is unknown exactly how much of the 
tailored non-protein nitrogen content reaches the 
colon and is accessible to the microbiota. However, 
since HM provides such a tailored nutrient input, 
hypotheses can be formed on how nitrogen is sal
vaged by the microbiome. A surge in expressional 
and metaproteomic studies provides information 
about which bacteria are actively metabolizing in 
the infant gut. This data contributes to our under
standing about which bacterial metabolic pathways 
are active in early life. This is especially relevant 
since a functional characterization of nitrogen 
metabolism is often lacking, while its importance 
for understanding the gut microbiota has been 
suggested.27 By linking the bacterial genomes, 
microbiomes in vitro findings of active symbionts 
to dietary input, new avenues for scientific experi
mentation can be found. Later, these findings can 
be used to directly link metabolism surrounding 
HMN to infant health and development.28 The 

nitrogen sources considered in this review are the 
mother’s secretory waste products, free AAs, poly
amines, nitrate and nitric oxide (NO) and nitrogen 
from HMOs which are all featured in HM.

Sizeable efforts have been made to describe the 
composition of infants’ gut microbiota through 16S 
rRNA sequencing,2,5,29 and later through func
tional profiling with metagenomics, metaproteo
mics and metatranscriptomics.2,30–33 Potential 
functions and their relative occurrence have led to 
theories on what the microbiota is doing in early 
life. Furthermore, descriptive studies of infant gut 
bacteria are included to describe the potential of 
highlighted bacteria to interact with HMN sources. 
Combined, the included studies provide informa
tion on the bacterial genera Bifidobacterium, 
Enterococcus, Escherichia, Bacteroides, 
Enterobacter and Streptococcus and on their inter
actions with HMN during the first 6 months.

Breast milk derived secretory 
nitrogen-containing waste products

Secretory waste products, such as urea, creatinine 
and creatine, deriving from the mother’s metabo
lism end up in the breast milk.14,15,17 Currently, 
there is no known biological reason for the occur
rence of urea, creatinine and creatine in HM. 
However, gene content related to nitrogen meta
bolism of the infant gut microbiota has been shown 
to be responsive to diet.27,34 If a supportive micro
biome is dependent on receiving these compounds 
through breast milk, related nitrogen metabolism 
could prove crucial to our understanding of the 
early life colonization of the microbiome, especially 
considering the sensitive development of the gut 
microbiota during infancy.

The potential role of urea in the early life microbiota

Urea is the most abundant non-protein nitrogen 
compound in HM. Urea constitutes up to 15% of 
total nitrogen in HM.15,18,22,35 The human body is 
incapable of degrading urea through endogenous 
enzyme production. Urea is a product of human 
liver metabolism that constitutes of two amine 
groups connected by a carbonyl group and it is 
for the largest part secreted through urine produc
tion. In lesser extent, urea is secreted in human 
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milk and in the gut. Bacterial Urea Nitrogen 
Salvation (UNS) has often been suggested as 
being important for infant gut nitrogen 
cycling.15,34,36,37 Urease (EC3.5.1.5) is the first bac
terial enzyme ever described.38 It is widely spread 
across the bacterial kingdom and is especially 
known as a virulence factor for human pathogens. 
Regulation and activation of this enzyme have been 
studied in those pathogens. For example, nickel 
chelation is required for enzyme activation when 
studying urease activity in pathogen model systems 
like Helicobacter pylori and Klebsiella aerogenes. 
39,40 On the contrary, urease has been indicated as 
a health-associated factor.41 As the input metabo
lite, urea can derive from bacterial metabolism due 
to bacterial arginase activity.42 In Bifidobacterium 
infantis (B. infantis) it seems that urease activity is 
limited to the presence of urea.34 Urease is involved 
in microbial amino acid metabolism, yet has also 
been indicated as a pH regulator as part of an acid 
response, for intestinal bacteria.43–45 This is espe
cially important, since the healthy range of pH in 
the infant colon is considered between 4.5 and 5.5 
with B. infantis present.46

Bacteria removing urea from the infant gut can 
be crucial to infant health since liver and kidney 
systems are underdeveloped compared to adult 
life.47,48 In an adult human host, health status 
determines the availability of urea in the gut and 
that subsequently increases urease activity.41,49,50 

Clearly, urea is also available to the bacterial infant 
gut colonizers during early life, of which human 
milk is the major source. Besides originating in 
breast milk, it is likely to also be secreted into the 
gut lumen by the neonatal host, as with adults. 
Notably, in the early days of infant gut studies, it 
was shown that the urea fecal output is lower than 
the estimated input through breastfeeding, indicat
ing urea processing in the gut. Furthermore, 15N 
isotope studies in humans showed assimilation of 
urea into AAs.51,52 Interestingly, microbial nickel 
transporters were found to be abundant during 
early life,33 which are required as a cofactor for 
urease enzyme activation. Notably, nickel is found 
in HM at levels between 1.0 and 51.0 μg/L across 
studies.53 Furthermore, there is evidence that the 
potential of urease activity relates to the micro
biome of breastfed infants. As such, urease genes 

and the enzymatic activity are more abundant in 
exclusively breastfed infants.5,35

Interestingly, urease activity is linked to amino 
acid metabolism and thus the acquisition of nitro
gen for synthesis in bacterial gut species. 
Specifically, urease activity was shown in 
Streptococcus thermophilus to be associated with 
amino acid synthesis and cell growth.54,55 

Furthermore, Bifidobacterium spp. have shown to 
be urease active.34,56 However, it is also clear that 
not all Bifidobacterium are able to access urea as 
nitrogen source. Urease-active bifidobacteria 
might, however, prevent pathogens from utilizing 
this urea. The opportunistic pathogen group of 
Enterococcus spp. have been associated with lumi
nal urease activity, for example.57 Notably, 
Enterococcus spp. colonization of the infant gut 
negatively correlates with infant health status.32 

Enterobacteriaceae is an interesting group when 
considering urease activity,58 as well as 
Escherichia spp. that occur in the early life human 
gut.59,60 Finally, Bacteroides can be the genus that 
profits from urea in mature HM. For example, 
Bacteroides koreensis sp. nov. and Bacteroides 
kribbi sp. nov., two new members of the genus 
Bacteroides.61 Importantly, urease activity might 
be a way to survive in an acidic environment 
when fatty acid production is high. How nitrogen 
is further cycled by bacteria is still unclear, 
although the resulting ammonium should be 
a suitable nitrogen source for many other microbes 
in the environment. Thus, both beneficial bacteria 
and potentially infectious or harmful bacteria are 
potentially competing over breast milk urea. This 
competition over urea with commensals prevailing 
might be crucial for a healthy microbiome.

The potential role of creatinine in the early life 
microbiota

Both creatine and creatinine are transported into 
HM. Measured creatinine concentrations in HM 
vary greatly, but it was early established in the 
±41–65 µM range.62 Infant formula often contains 
higher levels of creatinine, due to its origins in 
cow’s milk.62,63 Creatinine originates in a human 
host as a secretory product of muscle use and 
repair.64,65 It is stored as phosphocreatine locally, 
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to provide plenty of phosphate for human energy 
metabolism and specifically ATP.66 It is most 
abundant in skeletal muscle as a reservoir for active 
outbursts by the host. During muscle metabolism, 
creatine turns into creatinine in an endogenously 
irreversible reaction. This creatinine will then be 
secreted from the host and functions as 
a biomarker in urine, blood and human milk. 
Clearing breast milk creatinine by the early life 
gut microbiome could impact neonatal gut health.

During life, creatinine will likely be available to 
the gut microbiome, especially during periods of 
low kidney functioning. Just as during early life, 
when kidney and other secretive functions of the 
human body are hindered or still in 
development.47,67–70 However, it is unclear how 
much creatinine is secreted in the infant gut by 
the host. Creatinine degradation occurs through 
bacterial creatininase activity wherever creatinine 
is available.64,71,72 This occurs via three routes: 1) 
a combined effort of creatinine iminohydrolase 
(creatinine deaminase; EC 3.5.4.21) and a cytosine 
aminohydrolase (cytosine deaminase; EC 
3.5.4.1); 2) creatinine amidohydrolase (creatini
nase; EC 3.5.2.10); 3) and finally a less character
ized route via creatol and methylguanidine 
(Figure 2).64 A major product of creatinine degra
dation via creatinine deaminase is 1-methylhydan
toin, an intrinsic hydroxyl radical scavenger or 
antioxidant.73,74 The use of13−C-labeling to prove 
that creatinine is oxidized by mammals into creatol 
and 5-hydroxy-1-methylhydantoin.74 Specific 
genes involved in this metabolism are hardly char
acterized by common infant gut symbionts. 
However, the infant gut microbiota gets a chance 
of interacting with this nitrogen source in early life.

For every HMN source, we studied its potential 
in selecting for a health-promoting microbiota. 
Creatinine is negatively correlated with the abun
dance of Bifidobacterium spp. during the first 
month of life, indicating a role for the genus in 
a detoxing effect.75 This was confirmed when 
applying a mixture of Bifidobacterium spp. and 
Lactobacillus spp. led to lower creatinine levels in 
broiler chickens, although the opposite has also 
been shown in broiler chickens.76,77 Therefore, 
the fate of creatinine in infant gut nitrogen cycling 
remains elusive. A possible explanation for the 
conflicting observations can lie in microbiota 

composition and activity. Perhaps it diffuses into 
the intestinal tract, to be degraded by the gut 
microbiome or to be secreted through urine. In 
the gut, through bacterial metabolism more crea
tine can become available for the bacteria, so crea
tine should be considered a potentially important 
part of HMN.

Creatine (Cr) is provided by HM in concentra
tions around 77 µM, while others established it at 
slightly lower concentration.62,78 In HM, there was 
no observed difference between Cr concentrations 
at 1–2 week postpartum and 5–6 weeks. 
Interestingly, the formula seems to hold higher 
concentrations of creatine (>4×), while others are 
almost deprived of it.78 The milk source of these 
formulas is explaining these levels, with, for exam
ple, cow’s milk being rich in Cr. Notably, guanidi
noacetate (GAA) is the precursor of Cr in the 
human body. Edison et al. 2013 established, how
ever, that HM is not a clear route of supplying 
infants with GAA, since a clear presence is 
lacking.78 Interestingly, calculated from intake 
and an estimated size of the Cr pool in infants, 
90% of creatine should originate in endogenous 
production from energy metabolism and muscle 
use, which potentially cycles into the intestine.

Creatine functions in bioenergetics for neurolo
gical and muscle cells by maintaining ATP 
levels.64,79 A Cr pool exists in the human body to 
maintain homeostasis in this concern, together 
with creatine phosphate that can accumulate up 
to approximately 100 g.62,64 As mentioned, creatine 
is linked to the availability of creatinine as well. 
Creatine kinase (EC 2.3.7.2) transforms Cr into 
phosphocreatine, a crucial step in human body 
energy homeostasis. Creatine kinase is , tradition
ally, an indicator of health80 and that might be 
impacted by bacterial Cr metabolism in the neona
tal gut. Furthermore, there are a few indications 
that high Cr is associated with infant fed 
formula.81,82 Bacteria that are capable of degrading 
Cr in the human gut have been identified.83 First 
indications of association of creatine with micro
biome composition also exist.84 It was shown that 
Cr negatively correlates with Bifidobacterium spp. 
and positively correlates with Klebsiella spp., 
further indicating the potential for a microbiome 
dominated by bifidobacteria to have a higher 
potential for clearing Cr.85 Furthermore, probiotic 
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supplementation of Bifidobacterium lactis has been 
shown to alter Cr amounts in rats indicating an 
improved energy metabolism for the host.86 

Finally, in the aging mice gut, Cr availability led 
to an increase in creatine degradation occurrence 
in the functional profile of the gut.87

Polyamines and their impact on the infant gut 
microbiota

Polyamines (PAs) are, under physiological pH, 
polycationic substances, rich in nitrogen that func
tion in human cell growth and tissue maturation. 
These biogenic amines can therefore be in high 
demand for rapidly growing tissues, like the devel
oping gastrointestinal tract of the newborn.21,88,89 

Moreover, PAs are suggested to be involved in 
immune system maturation, functioning and mod
ulation of gut permeability.90–93 In HM, occurring 
PAs are spermine, spermidine, putrescine and 
cadaverine all have two or more amino groups.94 

PAs can derive from either host and bacterial meta
bolism or diet. The fact that PAs are rich in nitro
gen makes it an interesting nutrient source for the 
colonizing microbiome. In HM, polyamine con
centrations increase postpartum19,20,95 with con
centrations collapsing from the second month 
onwards.19,21,96 Gòmez-Gallego et al. investigated 
polyamine concentrations in HM of healthy 
mothers. The most abundant was spermine (6.1  
µM), followed by spermidine (4.2 µM) and finally, 
in lesser amounts, putrescine (0.7 µM), with slight 
variation due to geographic locations in spermi
dine and putrescine. It was, however, established 
early that concentrations vary greatly between 
mothers.19 Buts et al. (1995) established a similar 
polyamine profile in HM samples (spermine, 3.1  
µM; spermidine, 2.2 µM; and putrescine, 0.24 µM) 
with a total polyamine concentration of 5.57 µM 
(±0.18 µM).97

The availability of polyamines in the infant 
colon is currently enigmatic. According to current 
knowledge, most PAs are, however, absorbed in the 
upper intestine in support of growth processes of 
the human body.98 In the infant GI-tract, however, 
optimal adsorption might be developing in combi
nation with a large supply through HM, causing 
polyamines to reach the colon. PAs occur in the 

colon of healthy adults within the range of 0.5 to 1  
mM.99 There, PAs are adsorbed into the human 
body through the colonic mucosa.100 In the colon, 
bacteria are suggested to be largely responsible for 
the PAs present there. Bacteria can produce a wide 
range of PAs, including spermidine, homospermi
dine, sym-homospermidine, norspermidine, 
putrescine, cadaverine and 1,3-diaminopropane, 
while there are also bacteria that are not able to 
produce any.101,102

Synthesis of polyamines is mainly regulated and 
activated by ornithine carboxylases.103 These car
boxylases catalyze the decarboxylation of ornithine 
to produce putrescine. Followed by several meth
ods of elongation, for example spermidine synthase 
(EC 2.5.1.16), while in the meantime adding one or 
two more amine groups originating from other 
nitrogenous compounds (Figure 1). For a long 
time, biosynthesis of polyamines was mainly stu
died in Escherichia coli (E. coli) of which related 
spp. also occur in the infant gut, albeit as a minor 
component.29 More common microbiome mem
bers in the first 2 months of life, e.g. Streptococcus 
spp. and Enterococcus spp. have been shown to 
produce polyamines from AAs.104 This enzyme is 
broadly studied in Bacteroides spp.105,106 More 
recently, activity of a carboxyspermidine decarbox
ylase (casdc) was described in Bacteroides thetaio
taomicron, a representative of a genus highly 
present in many life stages, including infancy. 
This Bacteroides strain produces the polyamine 
spermidine in a polyamine free medium and more
over this that activity provided a growth benefit for 
the strain under these conditions.107 This provides 
an indication of polyamine metabolism potentially 
selecting for bacteria in a complex microbial envir
onment. In HM, however, the longer polyamines 
are more dominant than its precursors (Figure 1).

Polyamines might also provide a health benefit 
through gut microbiome modulation, and first evi
dence has been provided.108 In mice, supplementa
tion of PAs in formula led to a significant increase of 
Bifidobacterium spp., Bacteroides spp., Clostridium 
spp. and Verrucomicrobia spp. (as “Akkermansia- 
like bacteria”) in the large intestine. Bifidobacterium 
spp. were even higher than breastfed pup-mice. 
Interestingly, polyamine supplementation led to the 
promotion of autophagy in human cell lines, an 
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Figure 1. A representation of the important bacterial processes surrounding human milk nitrogen in the colon (HMN) and which 
bacterial genera are involved, concerning 6 nitrogen sources: Urea, Creatine (Cr)/Creatinine, Polyamines, Glutamate/Glutamine, Other 
Amino Acids (AAs), Nitrate. Absorption of components by host likely occurs in the small intestine. Hexagons represent relative 
abundance of components in HM. Abbreviations: assoc. = associated; corr. = correlated; metab. = metabolism; prod. = production; 
antib. = antibiotic.
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indicator of gut health which inhibited the propaga
tion of SARS-CoV-2.109 Since autophagy plays a role 
in gut barrier maintenance, polyamine as a part of our 
diet can have a health impact.110

Here, we summarize the understanding of polya
mine metabolism by infant gut bacteria. There is no 
current evidence of extracellular degradation of poly
amines by gut bacteria. However, within the 
Bifidobacterium genus the capability to synthesize 
and transport polyamines to the intracellular environ
ment has been reported111. With spermidine in vitro, 
spermidine is absorbed by the bacteria and in some 
cases is processed (Bifidobacterium scardovii).111 No 
known homologs were detected, indicating 
a possibility for novel methods of polyamine proces
sing in Bifidobacterium spp. Spermine, the longest 
naturally occurring polyamine in HM, was taken up 
by more Bifidobacterium strains in the study by 
Sugiyama et al. 111 Again, the system of choice for 
this type of transport, a potRABCD transport system, 
was not found in the genus.111,112 Moreover, extra
cellular concentrations of spermine were increasing 
during growth phase of, among others, B. infantis. 
Also, Bifidobacteirum adolescentis (B. adolescentis) 
was proven to export spermidine into the supernatant 
in vitro. 104The production of putrescine from 
ornithine seems to be prevalent in many species of 
the Bacteroides genus. For example, Bacteroides fragi
lis has been noted as possessing this capability with the 
goal to produce y-aminobutyric acid (GABA).113,114 

Most studies have shown that cultural conditions tend 
to be highly specific for strains, leading to low replic
ability. However, this is a promising mechanism by 
which the infant gut microbiota promotes health dur
ing early life. Especially, since initial evidence showed 
that polyamine supplementation in formula 

counteracts allergy occurrence and gut permeability 
issues.93 However, bacterial metabolism concerning 
polyamines has hardly been considered to play a role 
in infant health. According to the literature reviewed 
here, polyamines are bifidogenic. It makes this part of 
HMN interesting for future study.

AA metabolism & the GABA shunt

Both bacterial protein fermentation and human 
digestion can lead to the liberation of amino acids 
(AAs). Before that, proteases produced by the 
mother digest human milk protein.115 This review 
highlights that the commonly released AAs are at 
the core of bacterial metabolism and their 
survival.116 Where there are AAs, bacteria multiply. 
This review proposes that the infant gut is not any 
different. If the first meals to pass through the 
newborn’s GI-tract are developed to kick-start bac
terial metabolism, AAs might be key.

The role of glutamate, glutamine for the infant 
gut microbiota

The amino acid glutamate, however nutritionally 
nonessential, plays a role in many important meta
bolic processes, including the citric acid cycle, pro
tein synthesis and acts furthermore as a precursor 
for several bioactive compounds.117,118 Glutamate 
is the most dominantly occurring free amino acid 
in HM, only closed by its close relative glutamine. 
Glutamate as a dominant dispensable free amino 
acid occurs in the range of 960.1–1529.0 µM, reach
ing peak supply at 4 months into the lactational 
period. However, a higher concentration of 4.5  
mM has been argued.6,14,119,120 Free glutamate is 

Figure 2. A representation of creatine and creatinine metabolism with pathways important for the infant gut as described above; 
Abbreviations: creatine (Cr), creatine kinase (CK), guanidinoacetate (GAA).

GUT MICROBES 7



during this period proportional to the amount of 
glutamate supplied through protein, in which glu
tamate is also the most dominant AA.121 This level 
of free glutamate is significantly higher than the 
level found in the average cow’s milk-based 
formula.120,122 Interestingly, it is also higher than 
the 30 mg/kg BW (0.204 mmol/kg BW) per day 
acceptable daily intake (ADI) of free glutamate set 
by the European Food Safety Authority for infants, 
due to neurotoxicity concerns. An infant weighing 
5 kg receiving a recommended 0.75 L of human 
milk would, according to that standard, only 
receive 0,76 mmol (1,02 mM) of free glutamate. 
Breastfeeding being the infant feeding method of 
choice makes it likely potential health benefits 
underly the presence of these levels of glutamate. 
Bacterial interaction in the infant gut with gluta
mate is likely a very prominent part of infant gut 
nitrogen cycling.

Glutamate catabolism is achieved through glu
tamate dehydrogenase (GDH) or glutamate dec
arboxylase (GAD, Figure 3). The GDH enzyme 
leads to the assimilation of ammonia into AAs, 
with glutamate as the starting point. Glutamine 
synthetase (GS) catalyses the reaction of gluta
mate to glutamine.117,123 Glutamate metabolism 
can be part of bacterial stress responses, including 
acid responses.118 Glutamate decarboxylase is 
involved in acid stress response, causing decar
boxylation of glutamate to γ-aminobutyrate 
(GABA). GABA is the main inhibitory 

neurotransmitter, while glutamate, its precursor, 
is the main excitatory neurotransmitter.124,125 

Bacteria can then export it through a GadT2 
Glutamate/GABA antiporter, after which is 
absorbed into the human body, providing benefits 
for health and development in the nervous 
system.126,127 Notably, the human body can con
vert glutamate through GAD-activity, hence the 
high demand of glutamate for the infant body and 
its developing nervous system. Interestingly, 
a ferredoxin dependency occurs in the GABA- 
shunt via dependency of the glutamate 
synthase.128 This enzyme catalyses the production 
of glutamate from 2-oxoglutarate and glutamine 
as nitrogen source. However, ferredoxin metabo
lism is not commonly studied in the infant gut. 
Physiologically, an external supply of glutamate 
could replace a need for endemic production of 
this amino acid. In the developing human body 
glutamate serves a wide array of purposes in neu
rology and energy homeostasis. Bacteria-wise, 
a metaproteomics study by Xiong et al. showed 
that among conserved functional groups was glu
tamate dehydrogenase, in all studied infants.30 

The importance of glutamate is furthermore indi
cated by the fact that it is almost completely meta
bolized first pass in infant pigs. Such a scenario is 
likely in the human infant gut as well.129

There is evidence for glutamate metabolism by 
bifidobacteria.130 All included Bifidobacterium 
strains (Bifidobacterium breve, Bifidobacterium 

Figure 3. A representation of glutamate metabolism by both bacteria and the human host as an important nitrogen cycle for the early 
life gut. Abbreviations: glutamine synthetase (GS), glutamate dehydrogenase (GDH), glutamate decarboxylase (GAD), γ-aminobutyrate 
(GABA).
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longum subspp, Bifidobacterium pseudolongum, 
B. adolescentis) showed both synthethase and dehy
drogenase activity for all, although at different 
levels.130 Interestingly, lower Km values for the 
glutamate synthetase of Bifidobacterium spp. com
pared to almost every other included strain except 
a Lactobacillus sp., indicating that Bifidobacterium 
is an efficient genus in detoxifying the infant gut 
from ammonia. Indicating a key role for 
Bifidobacterium spp. in glutamate cycling, the pur
ified GS of B. bifidum reacted optimally in an acidic 
environment, which was not the case for the non- 
Bifidobacterium spp.131 This would match the 
infant gut’s acidic conditions. Glutamine and glu
tamate cycling by Enterococcus and Streptococcus 
spp. has been studied, but in the small intestine of 
ruminants or in the bird gut.132,133 Finally, the 
production of GABA from glutamate as an impor
tant metabolic route should be investigated. E. coli 
was one of the organisms in which it was shown 
that GABA metabolism conferred acid resistance in 
bacteria.134 Recently, The production of GABA has 
been contributed to more common infant gut sym
bionts like Bacteroides spp.114

Other predominant amino acids: Taurine and 
Cysteine

Taurine or aminoethylsulfonate (a C2 sulfonate) 
is a sulfur-containing amino acid in HM. 
Taurine is the third most dominant-free amino 
acid in HM.16,17,135,136 Moreover, the infant’s 
body can synthesize taurine but not degrade it, 
making plenty of the amino acid available for 
microorganisms. Namely, a large portion of 
taurine is secreted from the human body in the 
form of taurine-conjugated bile salts.137 This 
requires the release of taurine by bile salt hydro
lases by bacteria. One of those genera is 
Bacteroides.138,139 Fermentation of taurine is 
dependent on the cleavage of the inert sulfonate 
C-S bond.140 A process not commonly described 
for anaerobic human gut bacteria, even though 
it is closely linked to the production of H2S, 
toxic to the human body. Moreover, when it 
does occur, like e.g in E. coli, it concerns 
a process involved in aerobic growth.141,142 

There is a diverse range of strategies for cleaving 
the C-S bond, yet not all are anaerobically fea
sible. Among the known pathways is a thiamine 
pyrophosphate-dependent sulfoacetaldehyde 
acetyltransferase system (Xsc) which occurs 
under both aerobic and anaerobic 
conditions.140,143 Further anoxic options are 
still poorly understood. One of the more 
remarkable is the description of an IseG- 
dependent system, where also L-alanine can be 
produced, in opportunistic pathogen Bilophila 
wadsworthia and Desulfovibrio piger. 143 

Collard et al. went further and described taurine 
and its related physiological processes as key 
contribution to resistance to new infections.144 

In another study, taurine alone did not alter 
immune responses in the lamina propria.145 

However, it did affect gene expression in epithe
lial cells and, more interestingly, it showed the 
importance of a taurine trained microbiota. That 
led to a greater systemic resistance against 
Klebsiella pneumoniae and lower oxygen 
availability.145 The relation to oxygen makes it 
so that the lack of a taurine-trained microbiota 
could lead to more potential for opportunists to 
colonize, like Enterococcus spp., a common 
pediatric infection source in the neonatal period. 
In another study, a healthy infant control group 
showed significant higher levels of taurine meta
bolism through a metagenomic approach, con
firming a role in the healthy infant’s 
metabolism.146–148 Targeting of taurine utilizers 
can benefit options for infant health care and 
nutrition.

Cysteine is another amino acid in HM that is 
potentially important to the microbiome. The bio
synthesis of the amino acid cysteine serves to incor
porate inorganic sulfur into organic matter.149 

Cysteine then plays a crucial role in many catalytic 
sites of subsequent protein and protein folding by 
being part of disulfide bonds.150 Interestingly, bifi
dobacteria as dominant colonizers of the gut seem to 
be auxotrophic for the amino acid.151 B. bifidum 
(multiple strains) has shown reduced growth only 
when cysteine is lacking in an evaluation of auxo
trophy across AAs occurring in HM.151 Cysteine 
metabolism has also been indicated as a key 
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metabolite that inhibits gut-related oxidative 
stress.152,153 Conclusively, both these AAs need to 
be considered in relation to infant feeding and the 
infant gut microbiota (Figure 1).

Breast milk derived nitric oxide, nitrate & nitrite

Nitric Oxide (NO) is involved in physiological 
processes in the gut that can determine an indivi
dual’s health.27,154,155 Nitric oxide is synthesized 
from L-arginine by a nitric oxide synthase (NOS) 
and is involved in vasodilation, neurotransmission, 
the immune system, gene expression and regula
tion. Notably, NO is involved in triggering of lacta
tion and might, for that reason, be featured in 
HM.156 Notably, NO occurs in HM and concentra
tions peak in the first week postpartum.157 

Furthermore, it seems to be important for the oxi
dant and antioxidant status of human breast milk 
during lactation period.158 The role of NO for the 
microbiota is currently elusive, but it might have 
a function that is lacking from the gut of infants fed 
formula products.159 Interestingly, NO is involved 
in interactions between bacterium and host.160 

However, NO synthesis by bacteria in the infant 
gut, which handles oxidative stress, electron trans
port or antibiotic tolerance by the strains, can 
potentially be harmful as well.160

In healthy adults, 1/3 of dietary nitrate ends up 
in the lower intestine, but only up to 1% ends up in 
the feces.161 Nitrate can provide a growth advan
tage for strains belonging to the genera Escherichia, 
Bifidobacterium spp. and Lactobacillus spp. under 
anaerobic conditions and low oxygen conditions 
(Figure 1).162 Furthermore, nitrate is an electron 
acceptor when oxygen is limiting, a realistic sce
nario in the infant gut a few week postpartum.162– 

165 E. coli even possesses three nitrate reductases 
that are active under anaerobic conditions.162,166 

Nitrite can be toxic at higher concentrations and 
is therefore excreted to the environment. 
Interestingly, a study by Tiso & Schechter showed 
that in vitro culturing of infant gut symbionts pro
duces large amounts of fatty acids and the subse
quent acidification drives nitrite 
disproportionation to NO.162 To our current 
knowledge, Bifidobacterium spp. do not possess 

enzymes to produce NO from nitrite. However, 
an environment dominated by Bifidobacterium 
spp. could theoretically produce levels of NO that 
affect gut health and integrity because of their role 
in the acidification of the environment.

The role of Nitrogen from Human Milk 
Oligosaccharides and other glycoconjugates for 
the infant gut microbiome

Human Milk Oligosaccharides (HMOs) are indi
gestible carbohydrate structures in amount and 
complexity unique to the milk composition of us 
humans. HMOs are the third most dominant car
bohydrate source (after lactose and fat) available to 
the microbiome, occurring as high as 15 g/L.167,168 

Especially so, since the infant is incapable of 
degrading these complex polysaccharides and 
only small amounts will be absorbed intact and 
thus they will reach the colon largely 
unscathed.169,170 So far, proven prebiotics such as 
galacto-oligosaccharides (GOS) and fructo- 
oligosaccharides (FOS) have been used in infant 
nutrition. In recent years, the first synthetic HMO 
structures are available. The oligosaccharides are 
the main prebiotics used to enforce formula pro
ducts, so that they better promote Bifidobacterium 
spp.10,170–172 HMOs, besides being a major carbon 
source for the infant gut microbiota, were shown as 
a nitrogen for those same bacteria.173 The simplest 
HMOs are derivatized lactoses such as galactosyl
lactoses and fucosyl and sialyllactoses. The usual 
composition of detected HMOs follows the for
mula Lx/y-z (with L: lactose; x: Gal-GlcNac disac
charide units; y: fucoses and z: sialic acids).174

Nitrogen in HMOs is provided via 
(N-Acetylglucosamine) GlcNac and sialic 
acid.175,176 Neutral HMOs following this formula 
were detected between 8 kDa and 10 kDa which 
means that the majority of HMO-structures con
tains nitrogen with GlcNAc. It was also determined 
that acidic HMOs of 3.5 kDa and higher provide 
additional nitrogen from sialic acids beyond the 
core GlcNAc nitrogens.177,178 On a different reso
lution, the HMO lacto-N-tetraose (LNT) and lacto- 
N-neotetraose (LNnT) contain this nitrogen, which 
are, respectively, featured in Type I and Type II 
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HMOs.167 The classification of the types is depen
dent on the different linkages of the GlcNAc to the 
galactose. Namely, β1–3 or β1–4 linkages, for Types 
I and II, respectively.179 Notably, for some bacterial 
species, GlcNac is even a strict requirement.180 

GlcNAc nitrogen is likely utilizable by more infant 
gut colonizers in the early stages of infancy. 
N-Acetylneuraminic acid (Neu5Ac) nitrogen can 
also prove to be a key nitrogen source as it is the 
predominant sialic acid in HM.175,181 Furthermore, 
HM is not only rich in HMO glycoconjugates, since 
other components in HM are rich in glycosylation. 
These can exhibit certain biological functions, 
digestive survival and serve, just like the indigenous 
host mucins,as substrates for saccharolytic bacteria. 
In particular, glycolipids and glycoproteins need to 
be considered.182–184

Several bacteria thriving in the breastfed 
infant’s gut have been shown to degrade 
HMOs or parts of them. This activity is thus 
also potentially liberating some nitrogen sources, 
although that specific focus is rare. They are 
specifically interesting because there are strong 
indications that HMOs reach the infant gut lar
gely undigested. Upper-small intestinal enzymes 
do not have a significant impact on the HMO 
structure.169 James et al. established that 
Bifidobacterium breve (B. breve), among many 
Bifidobacterium spp., holds the capability to 
degrade LNT, LNnT via different pathways.167 

HMO utilization by Enterobacteriaceae has also 
been studied.185 The study showed that none of 
the Enterobacteriaceae strains grow on 6-sially
lactose (6-SL) and LNnT. Although the potential 
to interact with LNnT for some infant gut bac
teria is apparent, the role and effect of the 
included nitrogen on bacterial metabolism is 
clearly under established. Meanwhile, there are 
several bacterial species from the genus 
Bacteroides and probiotic Akkermansia mucini
phila that have been shown to interact with LNT 
and LnNT.186,187 Since these bacteria, specifi
cally, are promoted by breastfeeding, the rela
tionship between the unique structure of HMOs 
and their prevalence is confirmed. The obvious 
suggestion is that HMOs are a preferred sub
strate for Bifidobacterium, meanwhile making 
the nutrients and the nitrogen less available for 

less beneficial bacteria. The bonus of having 
almost exclusive access to nitrogen embedded 
in HMOs should not be underestimated for 
bacteria in an increasingly competitive 
infant gut.

Discussion

Although this research field is in its early stages, 
plenty of evidence shows that from the early onset 
of life, the gut microbiota is involved in catabolic 
and synthetic activities involving HMN. The neo
natal microbiota is highly susceptible to outside 
influences, like the diet. This makes the early life 
gut microbiota a very suitable platform to study the 
impact of nitrogen on the microbiota and on sub
sequent health. This review focused on the rela
tionship between the settling infant gut microbiota 
and the non-protein part of HMN. Moreover, it is 
becoming clear that the human host stands to ben
efit from this early life bacterial nitrogen cycling. 
We can also conclude that more data is needed, 
quantitatively and qualitatively, in vivo and in vitro, 
on an -omics scale, and through an in-vitro 
approach with early life microbiota members. 
Metabolomic, (meta-)proteomic and metagenomic 
data from clinical studies can help elucidate what 
the bacteria do in the infant gut, while breastfeed
ing ensues. For example, ever since the first attempt 
by Klaassens et al. to use metaproteomics to func
tionally characterize the infant gut microbiota,188 

meta-studies have become increasingly effective at 
describing bacterial activity in the gut. On the other 
hand, studying how important (Bifidobacterium) 
species react in vitro to HMN can provide evidence 
as well.34,186 This review provides further evidence 
on the fact that many aspects of breastfeeding are 
tailored to suit the infant’s and gut microbiota’s 
early life needs. The many relations between 
HMN and bifidobacteria can explain why the 
genus is successful in the infant gut.

For some nitrogen sources, bacterial species 
seem to have somewhat exclusive access. While 
for others, like urea, many of the early life sym
bionts of the breastfed infant have the capability to 
process it. As the main non-protein nitrogen 
source in HM, this component might prove a key 
metabolite in establishing the early life microbiota. 
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The knowledge of specific bacteria degrading and 
processing creatinine, creatine, or polyamines is far 
more elusive. For example, for creatine and creati
nine metabolism genes are hardly found or 
described in the common infant gut symbionts. 
Nonetheless, both metabolites/nutrients are 
involved in host health and the impact of these 
nitrogen sources should be investigated more in 
depth to explain the role of HM. This will help 
develop formula products in such a way that they 
promote a health-inducing microbiota in a similar 
fashion. As has been hopefully indicated by this 
review, many of the described nitrogenous com
pounds can be the result of existing interspecies 
networks between common infant gut symbionts. 
Clinical studies specifically focused on dietary 
nitrogen and infant gut microbiota can therefore 
elucidate which processes matter the most in vivo. 
In contrast, future in vitro studies should deter
mine if and under what conditions these bacteria 
produce or consume the HMN. Furthermore, 
future research should focus on determining if 
nitrogen cycling is part of metabolic interspecies 
networks, to what extent competition over HMN 
occurs and if certain interactions exist with human 
cells in that environment.

There is more nitrogen in HM, besides the non- 
protein part, there is of course bioactive protein. 
This review does not understate the potential 
importance of bioactive protein or other nitrogen
ous substrates in the early life diet. For example, 
lactoferrin (LF) is among the most detected pro
teins in the early life gut, indicating its availability 
to the microbiota and showing the potential for this 
(±700 AAs) protein to have a beneficial effect in 
lowering pathogen colonization.189,190 

Furthermore, products of the bacterial colonists 
of the infant gut could prove to be crucial vitamins. 
Vitamins are at the center of human health and are 
a product of our diet and bacterial 
metabolism.116,191 HMN could ensure that bacteria 
are producing vitamins at the right place and at the 
right time. Is that dependent on the right nitrogen 
source as input?

In general, the HMN supply seems fit for pro
moting microbial growth and making sure the gut 
is colonized in the early life stages. This is accom
plished by the presence of GABA-shunt metabo
lites. The role of these free AAs in HM has once 

again been confirmed. Namely, much of the early 
life gut symbionts seem to possess the potential to 
process glutamine and glutamate, the two main 
free AAs in HM. The free AAs seem to be there 
to promote general microbial growth when the gut 
is still relatively low on microbial mass. This nitro
gen is perhaps cycled into vitamins and neurogenic 
compounds that can have a profound effect on the 
development of the infant.

Nitrogen input can steer a microbiome in 
a certain direction and affects the output toward 
a human host. Direct connections to infant health 
are hard to establish, however due to the function 
or risks of certain HMN metabolites we can 
hypothesize on the importance of the microbes 
for infant health. This review serves to establish 
the connections between the microbes and the 
HM diet and to indicate that plenty concerning 
nitrogen metabolism is elusive. For example, 
when looking at the expression levels of 
a B. longum strain in breast milk compared to 
glucose medium and formula, a nitrogen regula
tory protein (N-II EP) e.g. is up-regulated,192 indi
cating underlying regulation and response to the 
presence of HMN. Determination of HMN con
centrations that are suitable for infant formulas is 
difficult due to the lack of consensus of HM 
concentrations.21 Concentrations of HMN sources 
described are largely dependent on time of day, 
lactation stage or type, maternal diet, among 
others.193,194 Clearly, the GABA shunt and urea 
provide a crucial research window in studying 
infant gut nitrogen cycling and its relationship to 
bacterial survival and health. The involved meta
bolites surround one of the most conserved and 
active metabolic pathways in the infant gut, and its 
products are crucial for both bacterium and host.

Conclusive words

We have only just started to unravel the digestive 
microbial processes that lead to a healthy infant 
gut. It is clear, however, that much can be learned 
by studying the interaction between nitrogen and 
the settling of the infant gut microbiota. 
Nonetheless, the review indicates the importance 
of specific HMN-constituents that include urea, 
glutamate and polyamines for the infant gut micro
biota and human health. This contradicts the major 
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premise that there just needs to be dietary nitrogen 
available through protein. However, there is a lot to 
be achieved mechanistically describing the impor
tance of the composition of HMN. We have 
described the occurrence of dominant microbial 
pathways and the effects of the occurrence of 
these nitrogen sources on gut microbiota composi
tion from available literature. Combined, this 
review provides an overview of the current rela
tionship between HMN and the most prevalent gut 
symbionts during early life.
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