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Luchuan pig, an obese indigenous Chinese porcine breed, has a desirable meat
quality and reproductive capacity. Duroc, a traditional western breed, shows a
faster growth rate, high feed efficiency and high lean meat rate. Given the unique
features these two porcine breeds have, it is of interest to investigate the
underlying molecular mechanisms behind their distinctive nature. In this study,
the metabolic and transcriptomic profiles of longissimus dorsi muscle from Duroc
and Luchuan pigs were compared. A total of 609metabolites were identified, 77 of
which were significantly decreased in Luchuan compared to Duroc, and 71 of
which were significantly elevated. Most differentially accumulated metabolites
(DAMs) upregulated in Luchuan were glycerophospholipids, fatty acids, oxidized
lipids, alcohols, and amines, while metabolites downregulated in Luchuan were
mostly amino acids, organic acids and nucleic acids, bile acids and hormones.
From our RNA-sequencing (RNA-seq) data we identified a total of
3638 differentially expressed genes (DEGs), 1802 upregulated and
1836 downregulated in Luchuan skeletal muscle compared to Duroc.
Combined multivariate and pathway enrichment analyses of metabolome and
transcriptome results revealed that many of the DEGs and DAMs are associated
with critical energy metabolic pathways, especially those related to glucose and
lipid metabolism. We examined the expression of important DEGs in two
pathways, AMP-activated protein kinase (AMPK) signaling pathway and fructose
and mannose metabolism, using Real-Time Quantitative Reverse Transcription
PCR (qRT-PCR). Genes related to glucose uptake, glycolysis, glycogen synthesis,
fatty acid synthesis (PFKFB1, PFKFB4, MPI, TPI1, GYS1, SLC2A4, FASN, IRS1, ULK1)
are more activated in Luchuan, while genes related to fatty acid oxidation,
cholesterol synthesis (CPT1A, HMGCR, FOXO3) are more suppressed. Energy
utilization can be a decisive factor to the distinctive metabolic, physiological
and nutritional characteristics in skeletal muscle of the two breeds we studied.
Our research may facilitate future porcine breeding projects and can be used to
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reveal the potential molecular basis of differences in complex traits between
various breeds.
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Duroc, Luchuan, metabolic profiling, RNA-seq, lipid metabolism, glycolysis, AMPK
signaling pathway, fructose and mannose metabolism

Introduction

China is the largest pork consuming and producing country in
the world and has a great variety of native porcine breeds. On one
hand, Luchuan pig, as one of the most famous indigenous Chinese
porcine breeds, is an obese breed that has a desirable meat quality
and reproductive capacity. On the other hand, Duroc, a traditional
breed developed from the United States, shows a faster growth rate,
high feed efficiency, strong reproductive characteristics and
relatively high lean meat rate. However, it has been reported that
pork from Duroc, Landrace and Yorkshire crosses has the tendency
to be of lower quality (Faucitano et al., 2010). Research has shown
that meat quality is related to muscle fiber characteristics and
intramuscular fat content (IMF) (Joo et al., 2013; Zhang et al.,
2021). Larger muscle fibers can form larger muscle bundles (Chen
et al., 2007; Kokoszynski et al., 2019), and therefore affect the
tenderness of meat. The IMF content, normally referred as the
lipid droplets accumulated in muscle fibers and fat cells, is essential
for meat tenderness and meat flavor (Katsumata, 2011; Hausman
et al., 2014; Sun, Chen et al., 2018). Given the respective advantages
and unique features that the Luchuan and Duroc pigs have, it is of
interest to investigate the underlying molecular mechanisms behind
their utterly distinctive nature.

Metabolites are fundamental for the formation of phenotypes.
Understanding the metabolite composition is key to illustrate the
mechanisms underlying specific biological traits. Metabolomic
profiling is a technique that identifies and quantifies low weight
molecules or metabolites in a given biological system. It has
frequently been applied in research that tracks changes in
metabolites and their associated biochemical pathways in relation
to, for example, disease (Hasin et al., 2017). In animal breeding, a
previous study utilized metabolomic networks to identify hub
metabolites and pathways under different feeding conditions in
Duroc and Landrace pigs, which has provided potential
biomarkers for improving feed efficiency (Carmelo et al., 2020).
It is noticeable that the integration of metabolic profiling and other
omics approaches such as transcriptomics can be very powerful to
study complex traits and biological problems (Hao et al., 2021).

Metabolic analysis is typically categorized as two
complementary methods: Targeted and untargeted. The targeted
approach focuses on identifying and quantifying selected
metabolites, while the untargeted approach measures all the
metabolites of a biological system (Man et al., 2021). A novel,
widely targeted metabolomics method was developed that could
detect hundreds of targeted metabolites (Sawada et al., 2009).
Compared to the total scan ESI (electrospray ionisation) based
non-targeted metabolomics (Matsuda et al., 2012), widely
targeted metabolomics based on multiple reaction monitoring
(MRM) is a very sensitive and accurate method for the
measurement of targeted metabolites (Chen et al., 2013). LC-MS/

MS (liquid chromatography-tandem mass spectrometry), one of the
commonly used techniques for metabolic analysis, combines
physical separation capabilities of liquid chromatography with
the mass analysis capabilities of mass spectrometry. UPLC-MS/
MS (ultraperformance LC-MS/MS), an upgraded method compared
to LC-MS/MS, produces significant improvements in sensitivity,
speed, and resolution (Churchwell et al., 2005). A recent study
adopted a UPLC-MS/MS based metabolomic approach to reveal
metabolic profiles of five commercial truffle species, and identified
the metabolites and pathways that were different among these
species (Li et al., 2019). Another research team compared the
longissimus dorsi lipidomes among cattle-yak, yak, and cattle,
and detected 296 lipids using the same UPLC-MS/MS approach.
They uncovered the variance in energy metabolism and lipid
nutrition quality between plateau cattle (cattle-yak and yak) and
cattle muscle samples (Gu et al., 2021).

In this research, we incorporated UPLC-MS/MS based widely
targeted metabolomics and RNA-sequencing method to compare
the two porcine breeds, Duroc and Luchuan. We aimed to
investigate metabolic and gene expression differences between the
two breeds and identify those impactful pathways involved. Our
study provides further insight in the molecular basis underlying the
characteristic differences between these representative breeds.

Materials and methods

Animals

The pigs in this study were obtained from a commercial pig farm in
Yangjiang city, Guangdong province, China. All piglets were fed the
same ensilage-concentrate fodder, provided with water ad libitum, and
were raised under the same environment. The pigs were slaughtered at
the age of 300 days, with an average weight of 108.5 kg (Duroc) and
69 kg (Luchuan), respectively. A total of 20 longissimus dorsi muscle
samples were collected in the same location from each animal
(10 samples per breed), and were immediately frozen in liquid
nitrogen. The samples were then stored at −80°C until metabolic
extraction. All animal procedures were performed according to
protocols approved by the Biological Studies Animal Care and Use
Committee in Guangdong Province, China, and guidelines for the Care
and Use of Experimental Animals established by the Ministry of
Agriculture and Rural Affairs of China.

Sample preparation and metabolite
extraction

The muscle tissue was thawed on ice and 50 ± 2 mg per sample
was homogenized with cold beads at 30 Hz for 3 min. The
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homogenate was added with 1 mL 70% methanol and whirled for
5 min, and subsequently centrifuged at 12,000 rpm at 4°C for
10 min. After centrifugation, 400 μL of supernatant was
transferred into a new 1.5 mL Eppendorf tube and then stored
at −20°C overnight. The extracts were then centrifuged at
12,000 rpm, at 4°C, for 3 min. We took 400 μL of supernatant
from each sample for the LC-MS/MS analysis.

ESI-Q TRAP-MS/MS analysis

The metabolite extracts were analyzed using an LC-ESI-MS/MS
system (UPLC, ExionLC AD system, https://www.sciex.com/,
Shanghai, China; MS, SCIEX Triple Quad 6500+ LC-MS/MS
system, https://www.sciex.com/, Shanghai, China). Precisely 2 μL
of aliquots were injected into a Waters ACQUITY UPLC HSS
T3 C18 column (1.8 μm, 2.1 mm*100 mm). The UPLC solvents
used were purified water (containing 0.1% formic acid, solvent A)
and acetonitrile (containing 0.1% formic acid, solvent B). The
column temperature was 40°C and the flow rate was set at 0.
4 mL/min. The gradient program was: 95:5 V/V at 0 min, 10:
90 V/V at 10.0 min, 10:90 V/V at 11.0 min, 95:5 V/V at 11.1 min,
95:5 V/V at 14.0 min.

LIT and triple quadrupole (QQQ) scans were obtained using a
triple quadrupole-linear ion trap mass spectrometer (QTRAP),
SCIEX Triple Quad 6500+ LC-MS/MS system, equipped with an
ESI Turbo Ion-Spray interface. The experiment was performed in
positive and negative ion mode and controlled by Analyst
1.6.3 software (AB Sciex). The ESI source operation parameters
were: Source temperature 500°C; ion spray voltage (IS) 5,500 V
(positive), −4,500 V (negative); ion source gas I (GSI), gas II (GSII),
curtain gas (CUR) were set at 55, 60, and 25.0 psi, respectively; the
collision gas (CAD) was set at high. We adopted 10 and 100 μmol/L
of polypropylene glycol solutions in QQQ and LIT modes for
Instrument tuning and mass calibration. To produce maximal
signal, collision energy (CE) and de-clustering potential (DP)
were optimized for each precursor–product ion transition (Chen
et al., 2013). A specific set of MRM transitions would be monitored
for each period based on the metabolites eluted within the period.

Metabolite identification and statistical
analysis

The MS data were processed, and the metabolites were annotated
using the Metware in-house MS2 spectral tag (MS2T) library (Wuhan
Metware Biotechnology Co., Ltd.; http://www.metware.cn, Wuhan,
China). The relative quantitation of metabolites was then performed
with unsupervised principal component analysis (PCA) using the
prcomp function embedded in R (https://www.r-project.org/). The
HCA (hierarchical cluster analysis) results of samples and
metabolites were plotted and presented as heatmaps with
dendrograms, while pearson correlation coefficients (PCC) between
samples were calculated by the cor function in R and presented as
heatmaps. Both HCA and PCC were carried out by ComplexHeatmap
(https://github.com/jokergoo/ComplexHeatmap) in R. For HCA,
normalized signal intensities of metabolites (unit variance scaling)
are visualized as a color spectrum.

Subsequently, supervised multiple regression orthogonal partial
least-squares discriminant analysis (OPLS-DA) was performed with
ropls in R (Thevenot et al., 2015). The data was log transformed
(log2) and mean-centered prior to OPLS-DA. The models were
validated with 200 permutation tests to prevent model overfitting.
Significant differentially accumulated metabolites (DAMs) between
the two breeds were filtered by the following criteria: Fold
change ≥2 would be considered as upregulated and fold
change ≤0.5 would be considered as downregulated (Luchuan vs.
Duroc); the variable importance in projection (VIP) score of
metabolites extracted from OPLS-DA result are greater than 1.
The significance of difference of the metabolites between the two
breeds was examined by an independent-sample t-test (p = 0.05).
Score plots and permutation plots were generated using the R
package MetaboAnalystR (https://www.metaboanalyst.ca/).

Annotated metabolites were mapped to the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database (http://www.kegg.jp/
kegg/pathway.html). A pathway enrichment analysis of significantly
regulated metabolites was performed on Metabolite Sets Enrichment
Analysis (MSEA; https://www.msea.ca/). The significance of a pathway
was determined by hypergeometric test’s p-values.

RNA-seq and integration analysis

Longissimus dorsi muscle tissues were collected from the
animals mentioned in the previous section, and total RNA was
extracted from each sample using TRIzol reagent (Invitrogen). The
RNA-seq libraries were constructed according to Illumina’s
standard operating protocols and pair-end RNA-seq was
performed on Illumina NovaSeq 6000, generating data with read
length of 150bp. All transcriptome datasets were stored in the China
National GenBank (https://db.cngb.org/) Nucleotide Sequence
Archive (CNSA) under accession number CNP0001159. We
downloaded the pig reference genome sequence and gene
annotation files from Ensembl (release 95), and our RNA-seq
reads were aligned to the pig reference genome (Sus scrofa 11.1)
using TopHat v2.1.0 (default settings). The number of mapped genes
were counted by Feature Counts v1.6.2 and were normalized to
TPM. Differential gene analysis was performed with DEGseq2 (v1.
38.1, default settings), and the significantly differentially expressed
genes were identified based on the following criteria: |log2(fold
change)| ≥ 1 and q < 0.05. Three biological replicates were used
for DEGseq2 analysis.

Pearson correlation analysis was performed between DEGs and
DAMs using the normalized expression of genes and metabolite
concentration. Pearson correlation coefficient (PCC) ≥ 0.8 and p <
0.05 (p) or p < 0.01 (pp) was used to indicate significance. Gene
Ontology (GO) enrichment analysis of DEGs was performed using
DAVID v6.8 (http://david.abcc.ncifcrf.gov/) and KOBAS (http://
kobas.cbi.pku.edu.cn/kobas3/) was used for KEGG pathway
enrichment analysis. We selected genes and metabolites that are
significant in our functional enrichment and correlation test, and
pathways that are present in both of our metabolomic and
transcriptomic analyses. In order to explore our metabolomic
and transcriptomic dataset and find out potential DEGs related
to breed characteristics, we narrowed down to two metabolic
pathways that were significant in the transcriptomic analysis and
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with the lowest p-values in the metabolomic analysis. Heatmap of
DEGs and DAMs was plotted to visualize the degree of correlation
between genes and metabolites.

Validation of gene expression

We obtained three duplicate tissue samples from each pig and
extracted total RNA using TRIzol reagent (OMEGA, United States;
Genstar, Beijing, China). Reverse transcription was completed by a
first strand cDNA synthesis kit (Takara, Dalian, China). Thermal
cycling conditions were as follows: 95°C for 1 min, followed by
40 cycles of 10 s at 95°C, 34 s at 60°C, and 1 min at 60°C. The primers
used in this study were designed by primer 5.0 (Supplementary
Table S1). We examined the expression of 13 genes presented in
AMPK signaling pathway and Fructose and mannose metabolism,
and those genes were significantly associated with the DAMs found
in these two pathways. We selected β-Actin gene as reference in all
our qRT-PCR experiments, and fold change was calculated by
means of the formula 2−ΔΔCT. Data processing, calculation and
histogram drawing was finished by Microsoft Excel 2019, and
variance analysis was done with Prism 8.0.2. All data was
expressed as mean ± SEM. Statistical analysis was performed by
the unpaired two-tailed Student’s t-test. p < 0.05 (p) or p < 0.01 (pp)
was used to indicate significance.

Results

Widely targeted metabolic profiling of
Luchuan and Duroc samples

Widely targeted UPLC-MS/MS approach was applied for
comprehensive metabolic profiling of 20 longissimus dorsi
muscle samples, from 10 Luchuan pigs and 10 Duroc pigs,
respectively. A total of 609 metabolites were detected, including
amino acids, lipids, fatty acids and other primary and secondary
metabolites that were enriched in skeletal muscle.

Multivariate analysis of metabolites

We performed PCA analysis based on the 609 metabolites that
were identified, and the two-dimension PCA plot showed separation
and difference among most of the samples on both principal
components, PC1 and PC2 (Figure 1A). Our OPLS-DA model
displayed satisfactory modeling and predictive abilities with
1 predictive component and 2 orthogonal components (R2X =
0.629, R2Ycum = 0.986, Q2cum = 0.888). Split of Luchuan and
Duroc was observed on the x-axis of the OPLS-DA score plot,
suggesting that the two porcine breeds contributed to their different
metabolic profile in skeletal muscle (Figure 1B). The respective VIP
of metabolites were used to discriminate DAMs, as it reflects the
importance of variables in the OPLS-DA model.

Subsequently, a hierarchical cluster analysis was conducted and
the result shows that the two breeds (Duroc, green; Luchuan,
orange) are in separate clusters (Figure 1C). The DAMs were
categorized into 16 classes. The expression of amino acids and

their derivatives, organic acids, nucleotide and their derivatives, bile
acids, and hormones, is substantially lower in the Luchuan group
compared to the Duroc group (Figure 1D). Meanwhile, the
concentration of glycerophospholipids, fatty acids, oxidized lipids,
alcohols, and amines from the Luchuan group is considerably higher
than the Duroc group. Our PCA and cluster analyses results suggest
that the two studied porcine breeds have their own distinctive
metabolic profile.

Differential analysis, functional annotation
and pathway enrichment of significant
metabolites

DAMs between the Luchuan and Duroc breeds were filtered
according to their fold change and VIP score, as mentioned in the
Methods section. A total of 148 significantly DAMs were identified
between the two porcine breeds. 77 metabolites were downregulated
while 71 were upregulated in Luchuan compared to Duroc
(Figure 2A). Metabolites with top 20 highest VIP score and log2-
transformed fold change were displayed (Figures 2B, C). Some of the
most significantly altered metabolites were listed below and were
sorted by their Log2 fold change (Table 1).

The significant DAMs were annotated and mapped to the
KEGG database. We summarized the number of metabolites
that were mapped to each of the pathways. The ABC
transporters (ATP-binding cassette transporters),
accountable for 22.5% of all the significant metabolites, are a
protein superfamily involved in a large variety of metabolic
processes, for instance, the translocation of lipids and sugars.
Some pathways related to growth such as protein digestion and
absorption, thyroid hormone signaling and thyroid synthesis,
are slightly augmented.

Subsequently, KEGG pathway enrichment analysis was performed
to identify the pathways that contributed to the variance of metabolic
profiles between the two porcine breeds. No pathway was enriched at a
statistically significant level (p < 0.05) in our metabolomic analysis. We
demonstrated the top five pathways with the lowest non-significant
p-values (p < 0.1), which are fructose and mannose metabolism, biotin
metabolism, biosynthesis of unsaturated fatty acids, autoimmune
thyroid disease, and alpha-linolenic acid metabolism (Figure 2D).

Comparison of metabolic profiles between
Luchuan and Duroc

Among all the DAMs we identified, 9 lipids,
18 glycerophospholipids and 10 fatty acids from Luchuan were
substantially higher than in Duroc. Carnitines (especially carnitine
C4:0 and carnitine C5:1), punicic acid, 13 (R)-HODE and LysoPCs
(Lysophosphatidylcholines, especially LysoPC 18:2) showed the highest
concentration under the Fatty Acids (FA), Oxidized Lipids and
Glycerophospholipids (GP) categories. 22 amino acids and their
derivatives were significantly lower in Luchuan compared to Duroc.
L-aspartic acid and L-glutamic acid together made up the majority of
differentially accumulated amino acids; N, N-Dimethylglycine,
N-Methylalanine and aminoisobutyric acid were the most enriched
amino acid derivatives.
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We found that 14 organic acids and their derivatives were
downregulated in Luchuan. The concentration of citric acid,
succinic anhydride and L-2-aminobutyric acid exceeded other
organic acids or derivatives by far. In Luchuan, 10 sugars were
reduced while 8 were increased. D-glucose 6-phosphate and
D-mannose 6-phosphate were most abundant. Fructose and
mannose metabolism is one of the metabolic pathways with
lowest p-values in our metabolome KEGG result. Mannose-1-
phosphate, the most elevated metabolite under the sugars and
sugar phosphates class, is in the center of fructose and mannose
metabolism. In addition, 9-octadecenal, an aldehyde associated
with meat flavor and aroma (Calkins and Hodgen, 2007), was
significantly elevated in Luchuan.

Transcriptome analysis

High throughput transcriptome sequencing was performed
using the longissimus dorsi muscle of Luchuan and Duroc pigs.

We first calculated the correlation of gene expression among
individuals (Figure 3A), and the results showed higher
correlation of gene expression between individuals from the
same breed. Next, a differential analysis was done to identify
DEGs between Duroc and Luchuan. We identified a total of
22,909 genes of which 1802 were upregulated and 1836 were
downregulated in Luchuan compared to Duroc (Figure 3B). We
further examined these DEGs using GO and KEGG enrichment
analyses, and the result demonstrated similar pathways and
annotations as the analysis for the metabolome. The top
10 most significantly enriched KEGG pathways (p < 0.05) are
shown in Figure 3C. Noticeably, pathways related to glucose
metabolism and fatty acid uptake and oxidation such as
“Glycolysis/Gluconeogenesis” and “AMPK signaling pathway”,
pathways related to amino acid metabolism such as “Arginine
and proline metabolism” and “Biosynthesis of amino acids”, are
enriched. The GO enrichment revealed that many of the DEGs
are related to muscle contraction, muscle development and cell
adhesion (Figure 3D).

FIGURE 1
Multivariate and cluster analyses results of Duroc and Luchuan skeletal muscle metabolites. (A) PCA analysis of metabolites detected in Duroc and
Luchuan samples. Duroc is highlighted in green and Luchuan in orange. (B) OPLS-DA score plot demonstrates separation of the Duroc and Luchuan
groups. (C) Hierarchical cluster analysis of metabolites from Luchuan and Duroc samples. The color represents accumulation of metabolites, from low
(green) to high (red). The Z score scale marks the deviation from the mean by standard deviation units. (D) Heatmap of all DAMs. The metabolites
were classified into 16 classes, and the colors display the abundance of metabolites.
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Integration analysis of metabolome and
transcriptome

In order to identify genes that can contribute to changes in
metabolites and thus affect phenotypes, we first correlated all DAMs
and DEGs (Figure 4A). A strong positive correlation was observed in
upregulated DAMs against upregulated DEGs, and vice versa. A
strong negative correlation was observed in upregulated DAMs
against downregulated DEGs, and vice versa. We then chose two
pathways, AMPK signaling pathway and fructose and mannose
metabolism, which were present in both of our metabolomic and
transcriptomic analyses as our primary focus. Both pathways play
important roles in glucose uptake, glycolysis and energymetabolism.
D-Mannitol and D-Sorbitol are the shared metabolites, while
PFKFB1 and PFKFB4 are the shared significant genes between
these two pathways (Figures 4B–D). The expression of genes was
examined using qRT-PCR, and the results meet our expectations.
PRKAG3, ULK1, GYS1, TPI1, PFKFB1, FASN, MPI and IRS1, genes
significantly upregulated in Luchuan based on our RNA-seq data,
also present higher mRNA expression in our qPCR test. Similarly,
HK3, HMGCR, CPT1A and FOXO3 have significantly lower
expression levels in both of our RNA-seq and qPCR results
(Figure 4E and Supplementary Figure S1). Linear regression was
applied to check the connection between Log2 fold change of RNA-

seq and Log2 fold change of qRT-PCR, and strong positive
correlation (R2 = 0.87) was observed (Figure 4F).

Discussion

We applied UPLC-MS based widely targeted metabolomics to
identify and quantify low weight molecules and metabolites from
longissimus dorsi muscle of the two pig breeds Luchuan and Duroc.
Revealing the chemical composition of skeletal muscle provides
clues to the energy metabolism, growth, and meat characteristics in
animals. We managed to obtain total ions current (TIC)
chromatograms and multimodal maps detected by MRM from
our UPLC-MS experiments. A total of 609 metabolites were
identified and quantified, 148 of which were significantly altered
between our Luchuan and Duroc samples based on their fold change
and VIP score extracted from the OPLS-DAmodel. Metabolites with
a VIP score of more than 1 are considered important for the model,
and we focused on those with the highest fold change in our
differential, pathway enrichment and integrative analyses. Our
multivariate and hierarchical cluster analysis results confirmed
substantial intergroup differences between Luchuan and Duroc,
indicating that the two pig breeds have not only their distinctive
features, but also exclusive metabolic profiles.

FIGURE 2
Significant DAMs in Luchuan andDuroc. (A)Volcano plot of all 609metabolites detected. Upregulatedmetabolites were definedwith fold change ≥2
(red) while downregulated metabolites were with fold change ≤0.5 (green). In addition, a threshold of VIP>1 was applied to distinguish DAMs from the
unchanged ones. (B)Metabolites with the highest VIP score. (C)Metabolites with the highest log2-transformed fold change. (D) The top 20 pathways with
the lowest p-values. Rich factor is the ratio of the number of DAMs to all metabolites that were annotated to a pathway. The color of the dots
represents level of enrichment, varying from red (p = 0) to purple (p = 1). The size of the dots indicates the number of DAMs annotated to a pathway.
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Fatty acids, oxidized lipids and several glycerophospholipids
were significantly elevated in Luchuan compared to Duroc. The
oxidized lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-
DiHOME), substantially higher in Luchuan, has the highest VIP
score (2.077) among all DAMs. It was reported that 12,13-DiHOME
can promote fatty acid transport into brown adipose tissue (Lynes
et al., 2017), and be able to facilitate skeletal muscle fatty acid uptake
(Stanford et al., 2018). Several carnitines, which play critical roles in
energy production and chemical transportation, were found
upregulated. Carnitines are normally concentrated in tissues that
utilize fatty acids as dietary fuel since they can transport long-chain
fatty acids into the mitochondria (Rebouche et al., 1999).
Meanwhile, our KEGG result revealed a few pathways related to
fatty acid synthesis and lipid metabolism, including alpha-linolenic
acid metabolism, biotin metabolism and biosynthesis of unsaturated
fatty acids (p < 0.1). PPAR signaling pathway and ABC transporters,
closely related to energy metabolism and lipid transportation
(Barger and Kelly, 2000; Ide et al., 2003; Kennedy et al., 2005; Ito
et al., 2012), were likewise found in our KEGG result (p < 0.25).

Various amino acids and their derivatives, such as L-aspartic acid
and L-glutamic acid, which are common non-essential amino acids for
human, were considerably decreased in Luchuan. N-methyl-L-
glutamate, derived from L-glutamic acid, has the second highest VIP

score (1.978), and was significantly reduced in Luchuan as well.
Glutamic acid is the major excitatory neurotransmitter conducive to
neuronal differentiation,migration, and survival in the developing brain
(Tapiero et al., 2002). It can be converted to glutamine, which is the
substrate and precursor for many metabolic processes such as
nucleotide and nucleic acid synthesis. Aspartic acid is the precursor
of several amino acids, and it can participate in various biosynthetic
pathways. In eukaryotes, the malate-aspartate shuttle is an important
biological system for translocating electrons during glycolysis. We
observed a significantly lower level of urea in Luchuan, which is one
of the end products of purine and pyrimidine metabolism. The nucleic
acids and nucleotides altered were mostly downregulated in Luchuan.
Deoxyguanosine, the final product of GTP catabolism, showed the
highest fold decrease of all metabolites. All this suggests a potentially
lower level of amino acid and nucleic acid metabolism in Luchuan.
Growing evidence shows that some amino acids are important
regulators of key metabolic pathways that are necessary for
maintenance, growth, reproduction, and immunity in animals,
therefore maximizing efficiency of food utilization, enhancing
protein accretion, reducing adiposity, and improving health (Wu,
2009). The amino acids that were downregulated in Luchuan could
potentially participate in muscle protein synthesis and degradation, and
hereby affecting meat quality by regulating important pathways of fatty

TABLE 1 Statistics of top 20 most significantly upregulated and downregulated metabolites in Luchuan and Duroc skeletal muscle (Sorted by log2-transformed
fold change, VIP>1).

Metabolites Log2 fold change VIP p-Value Type

Glycerol 3-phosphate 4.251 1.692 0.052 Up

9(S)-HODE 3.913 1.656 0.068 Up

Cis-9,10-epoxystearic acid 3.240 1.964 0.003 Up

Carnitine ph-C1 3.004 1.931 0.010 Up

12,13-DiHOME 2.766 2.077 0.003 Up

D-Fructose-1,6-Biphosphate-Trisodium Salt 2.531 1.570 0.040 Up

Arachidic Acid (C20:0) 2.355 1.737 0.044 Up

13-HpODE 2.326 1.692 0.049 Up

Mannose 1-phosphate 2.207 1.281 0.021 Up

Valyl-leucine 2.050 1.469 0.007 Up

Deoxyguanosine −4.920 1.534 0.018 Down

N-Methyl-L-Glutamate −3.536 1.978 0.022 Down

2′-Deoxyinosine −3.008 1.696 0.005 Down

2-Aminoadipic Acid −2.954 1.734 0.024 Down

N-Acetyl-L-Leucine −2.939 1.430 0.100 Down

Thymine −2.725 1.325 0.006 Down

Gamma-Mercholic Acid −2.604 1.447 0.001 Down

2-Pyrrolidinone −2.438 1.495 0.012 Down

L-Cystathionine −2.415 1.395 0.016 Down

Uric acid −2.324 1.178 0.013 Down
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acid metabolism and fiber characteristics in the skeletal muscle.
Meanwhile, nucleotides are required for a wide variety of biological
processes. When cells proliferate, increased nucleotide synthesis is
necessary for DNA replication and for RNA production to support
protein synthesis at different stages of the cell cycle (Lane and Fan,
2015). Decreased level of nucleic acidmetabolism could be coupledwith
decreased level of muscle protein synthesis, and therefore have a
substantial impact on muscle growth.

We identified 3638 DEGs based on our RNA-seq data, which
account for 15.9% of all annotated genes in the reference genome. The
number of DEGs is substantially larger than observed in some of the
other transcriptome studies between various pig breeds (Song et al.,
2019; Zhang et al., 2021), but the proportion of upregulated genes and
downregulated genes in our research is roughly the same as in these
studies. A stronger correlation in gene expression is observed between
individuals within the same breed compared to individuals from both
breeds, which coincides with our observation in the metabolic profile
that the Luchuan and Duroc pigs are very diverse. Several of the top
enriched pathways of DEGs are shared between transcriptome and
metabolome. Our GO analysis revealed that muscle contraction and
transition ofmuscle fiber type are highly enriched. Glycolysis and fatty

acid oxidation are the essential pathways generating energy for basic
functions of skeletal muscle (Kerth, 2013). Difference in these critical
energy metabolic pathways will likely affect muscle contraction, and
potentially lead to changes of growth and meat quality associated
phenotypes. Slow-twitch (type I) and fast-twitch (type II) muscle
fibers are basic structures of skeletal muscle. Fast-twitch fibers
contract faster and are larger in size compared to slow-twitch
fibers. Differences in muscle fiber composition can alter overall
fiber diameter, fiber density and fiber cross-sectional-area, and
therefore significantly impact meat quality (Huo et al., 2021).
Furthermore, it has been reported that muscle fiber composition
can influence athletic performance in both humans (Zierath and
Hawley, 2004) and in animals (Rivero et al., 1993), because Type I
muscle fibers display a relatively highermuscular efficiency (Horowitz
et al., 1994).

For our combined analysis, we selected two pathways presented in
both metabolome and transcriptome: the AMPK signaling pathway
and the fructose and mannose metabolism pathway. AMPK is key in
maintaining skeletal muscle energy homeostasis, and we observed an
elevated level of PRKAG3 (encodes a regulatory subunit of AMPK) in
Luchuan. AMPK activates lipid catabolism by promoting fatty acid

FIGURE 3
Analysis of DEGs between Luchuan and Duroc. (A) Correlation of gene expression of DEGs based on TPM. (B) Number of upregulated and
downregulated DEGs. (C) Top 10 most enriched pathways of the DEGs based on p-value. (D) Top 10 GO enrichment terms based on p-value; the size of
dots indicates number of genes related to the term.
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FIGURE 4
Integrative analysis of metabolome and transcriptome. (A)Heatmap of correlation between all upregulated and downregulated DEGs and DAMs. (B)
Correlation between genes and metabolites, and the expression level of several key genes in AMPK signaling pathway in different individuals. (C)
Correlation between genes and metabolites, and the expression level of several key genes in fructose and mannose metabolism in different individuals.
(D)The Log2 Fold Change (FC) of several metabolites involved in these two pathways. (E)RelativemRNA expression level (qPCR) of several genes that
are essential in these two pathways. (F) Linear regression between Log2 FC of gene expression (RNA-seq) and Log2 FC of relative mRNA expression
(qPCR).
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oxidation (Dzamko and Steinberg, 2009) and inhibiting the de novo
biosynthesis of fatty acids and triglycerides (Jeon, 2016). At the same
time, AMPK can stimulate glucose uptake and glycolysis by activating
PFKFB (Marsin et al., 2000; Marsin et al., 2002), while inhibiting
glycogen synthesis (Leclerc et al., 2001; Koo et al., 2005). This is
confirmed by our RNA-seq and qPCR result that PFKFB1 and
PFKFB4 are upregulated while HMGCR and FOXO3 are
downregulated in Luchuan. However, we observed that the
expression of GYS1 (glycogen synthesis) and FASN (fatty acid
synthesis) is higher, while that of CPT1A (fatty acid oxidation) is
lower in Luchuan, suggesting that there could be excessive energy
uptake or potential balancing mechanisms in glucose and lipid
metabolism in obese types of pigs. Fatty acid synthesis is essential
for the IMF content, yet the effect of fatty acid oxidation in obese
individuals is still debatable (O’Neill et al., 2013). Fructose and
mannose metabolism is closely linked with glycolysis and can
provide substrates for sugar nucleotide synthesis. The
interconversion of fructose-6-phosphate and mannose-6-phosphate
is decisive in maintaining the balance of substrates required for
glycolysis and glycosylation reactions. We examined 5 key DEGs
and the qRT-PCR results supported our RNA-seq data, showing that
PFKFB1, PFKFB4, MPI and TPI1 are activated while HK3 is
suppressed. Our integration analysis of metabolome and
transcriptome revealed a considerably higher level of glycolysis and
lower level of fatty acid oxidation in Luchuan, which implies energy
utilization can play an important role in determining the unique
features in an obese pig breed.

In general, the chemical compounds that vary between the two
breeds reflect a critical divergence in metabolism and physiology.
In addition, fatty acids and amino acids are notably related to the
nutritional value of pork, which indicates that the nutritional
properties of these two breeds are highly diverse. Differential
expression and pathway enrichment analysis indicated that
glucose and lipid metabolism can be instrumental in separating
the two selected breeds. Further studies are required to determine
how changes in genes and metabolic pathways contribute to the
phenotypic variation between the Western lean breeds and
Chinese indigenous obese breeds. Comparison of metabolome
and transcriptome can promote our understanding to the inner
differences of these breeds, which will be beneficial for cultivating
and selecting pigs with the desirable features in the future.

Conclusion

This study revealed substantial metabolic and transcriptomic
differences in the skeletal muscle of Luchuan and Duroc pigs, and
a considerable number of DAMs and DEGs were identified. The
pathway enrichment analysis indicated that glucose and lipid
metabolism are responsible for the majority of the differences in
metabolome and gene expression between these two breeds. Energy
utilization likely determines the distinctive metabolic, physiological
and nutritional characteristics in the skeletal muscle of these two
breeds. Studying the association of a combination of metabolome,
transcriptome and genome with variation in phenotypes of pig breeds
will provide insight in the potentialmolecularmechanisms underlying
these complex traits.
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