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Introduction

The mineral nutrient and trace elemental composition of 
organisms - the ionome [1, 2] - is an important expression of 
their physiological state [1], relating to a variety of biologi-
cal and ecological processes, including life history plasticity 
[3, 4], population growth [5, 6], foraging ecology [7], and 
carrion decomposition [8]. The ionome of animals - unlike 
plants - has long been assumed to be more or less constant, 
i.e. ‘homeostatic’ [9]. This assumption was based on obser-
vations of nearly constant ratios of carbon (C) to nitrogen 
(N) to phosphorous (P) [4], three elements that are most 
often considered in studies considering ecological stoichi-
ometry, i.e. the study of the balance of energy and multiple 
chemical elements in ecological interactions [10–12].

However, recent studies have shown that the assumption 
of ionomic homeostasis does not hold for chemical ele-
ments in general, and that many elements are in fact much 
more scattered throughout the whole body. Wenting et al. 
[8] examined the elemental composition of Fallow deer 
(Dama dama) and Eurasian otter (Lutra lutra) by measuring 
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Abstract
(1) In mammals, the mineral nutrient and trace elemental composition of the body - the ionome - differs among indi-
viduals. It has been hypothesized that these differences may be related to age and sex, both for ecotoxic and essential 
elements. (2) We investigated whether and how intraspecific ionomic variation is related to age and sex in Fallow deer 
(Dama dama). We tested the predictions that concentrations of ecotoxic elements increase with age, that ionomic variation 
is lower among young individuals than among older individuals, and that reproductive females (does) have the lowest con-
centrations of essential elements. (3) Culled animals of different sex and age were obtained from a single protected area. 
The animals were dissected to collect 13 tissues, and concentrations of 22 different elements were measured in a sample 
of each tissue. (4) We described substantial ionomic variation between individuals. Some of this variation was related to 
age and sex, as predicted. Based on the limited existing knowledge on chemical element allocation and metabolism in 
the body, sex-related differences were more difficult to interpret than age-related differences. Since reference values are 
absent, we could not judge about the consequences of the elemental values that we found. (5) More extensive ionomic 
surveys, based on a wide range of elements and tissues, are needed to enlarge the understanding of within-species ionomic 
variation and potential biological, ecological, and metabolic consequences.
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twelve elemental concentrations in twelve different organs 
and tissues and found differences in elemental concentra-
tion within and between the species. Ma et al. [13] found, 
based on four tissues of 26 species and 18 elements, lin-
eage-specific patterns and correlations between elements, 
tissues, and body mass. The causes of this variation within 
and among species remain unknown. Exploring drivers of 
ionomic variability requires extensive studies dealing with 
multiple chemical elements, tissues, and organs.

It has been suggested that age and sex are important 
drivers of intraspecific ionomic variation. Bioaccumula-
tion of toxic elements - e.g. aluminium (Al), cadmium (Cd) 
and lead (Pb) - increases with exposure time and thus age 
[14]. Young animals obtain essential elements from their 
mother via the placenta and milk [15], and may thus show 
less ionomic variation than adults, which must acquire these 
typically scarce elements through feeding [16]. Particu-
larly reproductive females, which transfer elements to their 
young, may show more ionomic variation than younger ani-
mals. However, to our knowledge, these relationships have 
never been examined for a wide range of elements across 
multiple tissues. Thus, the role of sex and age as driver of 
ionomic variation in mammals remains vastly unexplored.

Some variation has been described for specific tissue-
element combinations [e.g. 17–25]. For instance, Demesko 
et al. [26] found that concentrations of manganese (Mn) and 
zinc (Zn) in the teeth of Roe deer (Capreolus capreolus) 
increased with age. Lazarus et al. [27] found sex-related dif-
ferences in Cd, iron (Fe), and Zn concentration in the kid-
ney cortex, and for Pb in the jawbone, but did not report 
the magnitude of these differences. Cygan-Szczegielniak & 
Stasiak [28] measured higher concentrations of heavy met-
als in the liver of Roe deer females compared to younger 
individuals. However, these studies all considered only the 
few tissues and elements that are commonly used as bioin-
dicators, such as Cd and other ecotoxic heavy metals [e.g. 
29–32]. Thus, the overall magnitude of age- and sex-related 
variation, incorporating a wide range of elements and tis-
sues, remains unknown.

The aim of this study was to describe whether and how 
intraspecific ionomic variation could be related to age and 
sex. Our approach was to measure the ionome, including a 
wide range of elements and tissues, of multiple individuals 
of Fallow deer, belonging to different sex and age groups, 
that were collected from a single protected area. We exam-
ined five predictions: (1) the total concentrations of essential 
elements are lower for reproductive females (does) than for 
younger females and males in general, while concentrations 
of toxic elements increase with age and are therefore high-
est for adults; (2) age-related differences are largest among 
females, with bioaccumulation of toxic elements increasing 
with age in tissues that excrete these elements (e.g. liver 

and kidney) and essential elements decreasing with age due 
to pregnancy; (3) age-related differences among males are 
more related to bioaccumulation of toxic elements than dif-
ferences in essential elements; and (4) the least sex-related 
differences are found among calves, both for essential and 
toxic elements; resulting in (5) most sex-related differences 
being found among yearlings due to increasing age, pre-
dominantly as lower concentrations of essential elements 
for yearling females compared to males due to pregnancy. 
In addition, we considered other sex and age-related differ-
ences and speculated on cause of differences in the context 
of their biological and physiological role.

Materials and Methods

Study Site and Species

The Fallow deer is a terrestrial ungulate herbivore with an 
adult body weight of 40–80 kg and a non-nomadic lifestyle 
[33]. After a gestation period of 31 to 32 weeks, a doe gives 
birth to a single calf. Calves are born in May or June and are 
weaned after seven to nine months. Yearling females can be 
pregnant as most females give birth to their first calf in their 
second year of life [34, 35]. Being an intermediate feeder 
[36], Fallow deer is an ideal model species for this study 
as its browsing behaviour might compensate for the low 
amount of trace elements in the average vegetation.

The freshly culled individuals that we used were obtained 
from Deelerwoud (52°08’N, 5°89’E). Deelerwoud is a pro-
tected area at the Veluwe, the Netherlands, characterized by 
a gently rolling forest and heathland landscape [37]. It is 
situated on partly glacier deposits and on cover sands over 
these deposits (“mineral-poor cover sands”), causing the 
mineral availability to be limited to very scarce [38–40]. 
Kuiters [41] found increasing levels of Cd and Pb with age 
in Red deer (Cervus elaphus) and Wild boar (Sus scrofa) 
from the Veluwe area, where concentrations varied over dif-
ferent food types (browse, grasses, dwarf shrubs, acorns, 
etc.) and over the season. Wolkers et al. [42] also reported 
that levels of Cd and Pb at the Veluwe increased with age, 
even to such an extent that liver and kidney of Red deer and 
Wild boar were seen as unsuitable for human consumption.

Carcass Collection and Dissection

We obtained twenty fresh Fallow deer carcasses from regu-
lar culling in the hunting season 2021–2022 (between Octo-
ber and March). Twelve of these carcasses were females: 
four calves, four yearlings, and four does. The yearlings 
and does were pregnant, with different embryotic stages 
depending on the moment of culling. We were not able to 
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age the does more precisely. The other eight carcasses were 
males: four calves and four yearlings. We did not include 
adult males (bucks) because none were culled during our 
study period. No animals were killed for the purpose of our 
study. According the Animal Welfare Officer of Wagenin-
gen University & Research, our study is not considered as 
experimentation on animals and thus permitted under Dutch 
law (Appendix A).

In total, we dissected the carcasses to collect thirteen 
organs and tissues (henceforth ‘tissues’), belonging to dif-
ferent organ systems: skin and hair; muscle; brain; eyes; 
lungs; heart; spleen; kidney; liver; pancreas; stomach, 
including rumen; and intestines. In a shed at Deelerwoud, 
we dissected seven tissues: skin and hair, muscle, lungs, 
heart, spleen, kidney, and liver. We also dissected the entire 
guts - pancreas, stomach, and intestines -, the head - brain 
and eyes -, and the hind leg - bone -, that we further dis-
sected in the dissection room of Wageningen Environmental 
Research. We dissected the hind leg into a bone sample by 
sawing a piece of bone from the lower leg and putting it in 
boiling water for a few minutes to loosen the remaining tis-
sues, to retain a clean bone sample afterwards that we used 
in the next step of freeze-drying. We also further dissected 
the guts and head. All the collected tissues - frozen at minus 
18 °C after dissection - were homogenized using a blender, 
except the bone sample, that was used in its entirety. Three 
tablespoons − 15–25 g each - of the homogeneous tissue 
samples were stored in plastic bags in the freezer before we 
prepared them for chemical analyses. After dissection all 
carcass remains were returned to the study area.

Measurements

Before the chemical analyses, we freeze-dried the tissue 
samples. The dry samples were transported to Radboud 
University in ice blocks to prevent defrosting. At Radboud 
University, we used a microwave destruction - aka diges-
tion - method with 5 mL 65% nitric acid (HNO3) and 2 mL 
30% hydrogen peroxide (H2O2), after which the tissue sam-
ples were ready for measuring the elemental concentrations 
with Inductively Coupled Plasma Optical Emission Spec-
troscopy (ICP-OES) and Inductively Coupled Plasma Mass 
Spectroscopy (ICP-MS).

In total, we measured 22 elemental concentrations: Al, 
arsenic (As), boron (B), calcium (Ca), Cd, cobalt (Co), 
chromium (Cr), copper (Cu), Fe, potassium (K), magnesium 
(Mg), Mn, molybdenum (Mo), sodium (Na), nickel (Ni), P, 
Pb, sulfur (S), selenium (Se), silicon (Si), strontium (Sr), 
and Zn. Seven elements were measured using ICP-OES: Ca, 
K, Mg, Na, P, S, and Si. The other 15 elements were mea-
sured using ICP-MS. We used the same devices as Wenting 
et al. [8]. Correspondingly, the accuracy of these devices 

was guaranteed by using the following quality controls 
(QC): Multi element standard IV, Merck 1.11355; Phos-
phate standard, Merck 1.19898; Sulphate standard, Merck 
1.19813; and Silicium standard, Merck 1.70236. The QC 
matrices were considered to correspond to the sample matri-
ces since for both, any contamination of HNO3 and H2O2 
was eliminated by using blanks (see for more details Went-
ing et al. [8]).

Statistical Analyses

All statistical analyses were done in R version 4.0.2 [43]. 
The statistical analyses should be considered as indicative 
rather than steadfastly; due to the low sample sizes, they 
have limited meaning. Yet, we believe that the indicative 
nature is helpful for determining the most notable differ-
ences, although we acknowledge that it should be considered 
as descriptive. For the first prediction - focusing on the total 
elemental concentrations -, we calculated and visualized the 
total elemental concentration per element per individual. 
We used Kruskal-Wallis tests to test for differences between 
the groups per element with a Bonferroni-corrected alpha 
of 0.00227. The second prediction - focusing on age-related 
differences among females - was analyzed with Kruskal-
Wallis tests per tissue-element combination. We used Mann-
Whitney U tests to analyze each tissue-element combination 
for the third, fourth and fifth prediction - respectively focus-
ing on age-related differences among males, sex-related dif-
ferences among calves, and sex-related differences among 
yearlings. We used the step-up Benjamini and Hochberg 
procedure [44] to correct for multiple testing using the 
p.discrete.adjust function of the discreteMTP package [45] 
in the analyses of the second to fifth prediction. We only 
visualized the element-tissue combinations that turned out 
significant for these predictions. See Appendix B for all test 
statistics.

Results

The distribution of the elements over the body differed 
among the sex-age groups (Appendix C). Although we 
found no differences in total elemental concentrations per 
sex-age group (prediction 1; Fig. 1a-v), this is in line with 
the differences in tissue-element combinations that we 
found among the sex and age classes (Figs. 2, 3, 4 and 5).

For 21 element-tissue combinations, concentrations dif-
fered significantly among age classes of females (predic-
tion 2; Fig. 2a-u). For example, the Cd concentration in 
eyes and kidney (Fig. 2a-b) was higher for adults than for 
calves and yearlings. The majority of the other differences 
were found in essential elements, of which some had higher 
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Concentrations in female calves were higher for 14 com-
binations - including Al in kidney (Fig. 4a), Co in lungs 
(Fig. 4c), P in lungs and spleen (Fig. 4l + m), and Sr in heart 
(Fig. 4p) -, compared to four combinations that were higher 
for male calves - As in muscle (Fig. 4b), Co in stomach 
(Fig. 4d), Fe in stomach (Fig. 4g), and Se in brain (Fig. 4o). 
Seven of the 18 differences were found in lungs: Co 
(Fig. 4c), K (Fig. 4h), Mg (Fig. 4i), Ni (Fig. 4k), P (Fig. 4l), 
S (Fig. 4n), and Zn (Fig. 4q).

For 25 element-tissue combinations, concentrations dif-
fered among sex classes for yearlings (prediction 5; Fig. 5a-
y). Female yearlings had the highest concentrations for 11 
of these element-tissue combinations - including B in liver 
(Fig. 5b), Cr in liver (Fig. 5e), Mn in eyes (Fig. 5m), and 
Zn in muscle (Fig. 5y). Yearling males had higher concen-
trations for the other 14 significant element-tissue combi-
nations - including Cu in heart (Fig. 5g), Fe in pancreas 
(Fig. 5i), K in intestines (Fig. 5k), and Sr in kidney (Fig. 5x). 
All these differences were for essential elements.

concentrations in adults (does) - including Fe in spleen 
(Fig. 2e), Se in stomach (Fig. 2p), and Zn in eyes (Fig. 2t) 
-, and some had higher concentrations in calves - including 
K in brain (Fig. 2f), Mg in brain (Fig. 2h), and P in spleen 
(Fig. 2m). Differences in Zn concentration were found four 
times, the most often of all elements: in bones (Fig. 2r), 
muscle (Fig. 2s), eyes (Fig. 2t), and stomach (Fig. 2u).

For 19 tissue-element combinations, concentrations 
differed significantly between calves and yearling males 
(prediction 3; Fig. 3a-s). This included just one ecotoxic 
element: the Al concentration in kidneys was higher in year-
lings than in calves (Fig. 3a). For 9 of these tissue-element 
combinations, calves showed higher concentrations than the 
yearlings, e.g. Mn in eyes (Fig. 3h), Si in muscle (Fig. 3p), 
and Zn in muscle (Fig. 3s). Yearlings had higher concentra-
tions than calves in the other tissue-element combinations, 
e.g. Co in eyes (Fig. 3b), Fe in muscle (Fig. 3e), and Sr in 
kidney (Fig. 3r).

For 18 element-tissue combinations, concentrations dif-
fered among sex classes for calves (prediction 4; Fig. 4a-r). 

Fig. 1 Total elemental concentrations per age-sex group of Fallow deer
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Fig. 2 Significantly different tissue-element combinations (according to adjusted p-values using the step-up Benjamini and Hochberg procedure 
[44]) between age groups in Fallow deer females
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(Fig. 1a-v). As predicted, we indeed found differences in 
concentrations between sex and age classes for a substantial 
number of tissue-element combinations (Figs. 2, 3, 4 and 5). 
We speculated about the biological and physiological role of 
the differences that we described.

Age-related Differences in Females

We predicted that most age-related differences occur within 
females, with bioaccumulation of toxic elements increasing 
with age, mostly in tissues that excrete these elements, and 
essential elements decreasing with age due to pregnancy 
(prediction 2). Some of the element-tissue combinations 

Discussion

This study aimed to determine whether and how ionomic 
variation, based on a wide range of elements and tissues, 
is influenced by age and sex. Fallow deer, collected from 
a single protected area, was used as a model species and 
we analyzed multiple individuals belonging to different 
age and sex classes. We predicted the total concentrations 
of essential elements to be lowest and the accumulation of 
toxic elements to be highest for does (prediction 1). The 
distribution over the tissues seemed to differ among the 
groups (Appendix B), but we found no differences in total 
concentrations per element between the age and sex classes 

Fig. 3 Significantly different tissue-element combinations (according to adjusted p-values using the step-up Benjamini and Hochberg procedure 
[44]) between age groups in Fallow deer males
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function and lower responsiveness since both K and Mg are 
important for pulse transmission and oxygen levels in the 
brain [e.g. 49]. However, it remains unclear why female 
calves might be more variable in their brain K and Mg con-
centrations compared to yearling females and does. This 
larger variation might be caused by the limited amount does 
can transfer to their young in these mineral-poor environ-
ments, although we do not have information on family rela-
tion of the culled animals.

Se functions as an important antioxidant, protecting 
against As and Cd toxicity, cancer, and heart disease [50, 
51]. Dietary Se has been shown to affect the gut microbial 
colonization [52, 53], which might be in alignment with our 

that turned out significant were in line with our prediction. 
For example, Cd increased with age in kidney (Fig. 2b), 
which is in line with previous studies [41, 42].

We found higher Cd concentrations for older females 
(Fig. 2a). An increase of Cd in eyes with age has been found 
in human retina as result of smoking, increasing risk of 
macular degeneration [46]. Jamall & Roque [47] found that 
a daily ingestion of 50 ppm Cd results in detectable accumu-
lation after seven weeks in the eye of rats, implying that Cd 
in the diet can result in Cd accumulation in the eyes.

We found that K and Mg decreased with age in brain 
(Fig. 2f + h). A decrease of K in brain with age has previ-
ously been found in humans [48]. It implies reduced brain 

Fig. 4 Significantly different tissue-element combinations (according to adjusted p-values using the step-up Benjamini and Hochberg procedure 
[44]) between sex groups in Fallow deer calves
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Fig. 5 Significantly different tissue-element combinations (according to adjusted p-values using the step-up Benjamini and Hochberg procedure 
[44]) between sex groups in Fallow deer yearlings
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DeRuisseau et al. [69] reported that, in humans, the total 
concentration of Fe in muscles increases during growth but 
stabilizes in senescence, which might be in line with our 
finding that yearling males have higher Fe concentrations in 
muscle compared to calves (Fig. 3e).

We found higher Fe concentrations in pancreas for year-
ling males than for calves (Fig. 3f). Fe in pancreas is associ-
ated with correct insulin synthesis and processing [70, 71]. 
Increased Fe levels in pancreas have been associated with an 
increased risk of pancreatic cancer [72], although this might 
not be relevant for wildlife. However, it seems unlikely that 
the animals in our study area, which is mineral poor, experi-
enced an Fe overload that could lead to this difference in Fe 
concentration, especially when the acidification of this area 
is taken into account which set more Fe (and Al) free [73].

Male calves had higher Si concentrations compared to 
yearling males (Fig. 3p). Si is needed for muscle building, 
and is found to decrease with age in rats [74]. However, it 
remains unclear whether this also applies to deer or is rel-
evant for wildlife.

We found higher Sr concentrations in bone and kidney 
for yearling males compared to calves (Fig. 3q + r). Sr is 
considered as the chemical analog of Ca and has a major 
role in the formation and breakdown of bones and prevent-
ing against osteoporosis [75–78]. Sr overload has been asso-
ciated with renal dysfunction [79, 80]. However, Sr toxicity 
seems very unlikely in our nutrient-poor study area.

Contrary to the higher Zn concentration in muscle of 
yearling females compared to female calves (Fig. 2s), we 
found lower Zn concentrations in muscle for yearling males 
compared to male calves (Fig. 3s). This might indicate that 
this difference is found by chance rather than driven by age 
or sex.

Sex-related Differences in Calves

As predicted, we indeed found the least significant tissue-
element combinations when comparing sex-related dif-
ferences among calves (prediction 4). However, we were 
unable to put most of our findings into the context of their 
biological and physiological role based on sex-related 
differences.

Female calves were more variable in their Al concentra-
tion in kidney and As concentration in muscle (Fig. 4a-b). 
We expected accumulation of these elements to increase 
with age since Al is not transferred via milk [81] and thus 
should be taken up through the environment.

Higher Na concentrations in bones, as we found for 
female calves (Fig. 4j), are associated with increased chance 
of osteoporosis at later age [82]. Although females tend to 
have higher risks of osteoporosis in general [83], it is unclear 
whether this might be associated with our finding.

finding that Se in stomach increased with age (Fig. 2p). This 
increase might improve the uptake of other minerals when 
animals get older [51].

We found four tissues that differed in Zn concentration 
among the female age groups (Fig. 2r-u). First, Zn is essen-
tial for normal skeletal growth and bone homeostasis [54], 
and decreased with age (Fig. 2r). This might be because 
bone mineral density tends to decline with age [55], causing 
the bone Zn concentration in younger animals more vari-
able and lower in does. Second, Zn plays a role in muscle 
regeneration due to its effects on muscle cell activation [56]. 
This might be most needed in young animals, although it 
remains unclear why we found higher Zn concentrations in 
muscle for yearling females compared to calves and does 
(Fig. 2s). Third, Zn plays an integral role in maintaining a 
normal ocular function [57]. This might be more needed for 
older animals to slow down age-related macular degenera-
tion [58], resulting in increasing Zn concentrations in eyes 
(Fig. 2t). Last, Zn plays an important role in the production 
of digestive enzymes [59]. However, it remains unclear why 
we found decreasing Zn concentrations with age (Fig. 2u).

Some of the other significant differences in element-
tissue combinations were found in tissues where these ele-
ments play an important role. For example, the spleen has 
been mentioned to store the major Fe pool (Fig. 2e) [60]. 
Ni in the lungs is associated with an increased risk of lung 
cancer (Fig. 2l) [61], and S is a constituent of bones and 
collagen, associated with an increased risk of osteoporosis 
(Fig. 2n) [62]. However, we were unable to interpret their 
potential relationship with age.

Age-related Differences in Males

We predicted age-related differences among males to be 
more related to bioaccumulation of toxic elements than 
differences in essential elements (prediction 3). However, 
the only toxic element that turned out significant was Al in 
the kidney (Fig. 3a). Kidney’s Al concentration was more 
variable, and for some much higher, for yearling males 
compared to calves, which was in alignment with previous 
studies [e.g. 63]. Free Al concentrations in the environment 
increase with decreasing pH due to anthropogenic acidifica-
tion [64], which might be related to this finding.

We found higher Co concentrations and lower Mn con-
centrations in the eyes of yearling males compared to calves 
(Fig. 3b + h). The Co concentration in eyes is associated 
with age-related macular degeneration in humans [65], 
while senile cataractous has been associated with lower 
Mn levels in humans [66]. However, it remains unknown 
whether this also applies to animals, specifically deer.

Fe in muscles is important for many metabolic functions 
and electron transfer during energy production [e.g. 67–68]. 
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the gut microbiota [99, 100], although we could only specu-
late whether this would result in higher S concentrations in 
males.

We found a higher Se concentration in the bones of 
males (Fig. 5u) and in the spleen of females (Fig. 5v). Se 
is crucial for bone development and bone mineral density 
maintenance [101, 102]. Also, both low and high Se concen-
trations can have negative effects on the immune function of 
the spleen (Zhang et al. 2022). However, although there are 
sex-related differences in Se metabolism [103], it is unclear 
how the differences that we found could be explained.

Limitations

A strength of this study was the use of individuals of a sin-
gle population that roamed the same protected area and that 
were culled in the same hunting season. However, we also 
see three major limitations. First, we did not include bucks 
in our analysis since no bucks were culled in the area. Sec-
ond, we used a small sample size, with four individuals in 
each group. Therefore, we cannot rule out that some dif-
ferences that we found were due to outliers. Third, in min-
eral-poor areas such as our study area, certain elements are 
scarce and not distributed uniformly across the landscape. 
Thus, we cannot judge but only speculate whether some 
variation in elemental concentrations arose from differences 
between individuals in where they foraged, as differences in 
habitat and diet selection across age and sex classes of Fal-
low deer may occur [104]. These limitations, however, do 
not invalidate our comparisons.

Conclusion and Recommendations

We speculated on the biological and physiological role of 
chemical elements, focusing on age- and sex-related dif-
ferences. In general, sex-related differences were more dif-
ficult to explain. This suggests that the current knowledge 
on chemical element allocation and metabolism in the body 
seems to be biased towards age-related patterns.

We found some ionomic differences between age and 
sex classes, as hypothesized, but the drivers of this varia-
tion remain unknown. Previous studies have suggested that 
diet might drive both sex-related [90] and age-related [105] 
variation within species. Life-history traits and ontogeny 
are also mentioned as causes of ionomic variation [106]. 
A number of decreasing elemental concentrations with age 
might refer to a decreased health condition of Fallow deer 
in this nutrient-poor environment (e.g. lower K in brains, 
lower Zn in muscles), although this is highly speculative. 
However, extensive studies in various species - including a 
wide range of elements and tissues - are missing to further 

We found higher Sr concentrations in the heart for 
females (Fig. 4p + Fig. 5w). Sr can protect the heart against 
heart infarct [84], although any sex-related differences 
remain unexplained, and it remains unknown whether this 
is applicable to deer as well.

Zn concentrations in the lungs and stomach were higher 
for females than for males (Fig. 4q-r). Zn has anti-inflam-
matory, antioxidant and antiviral effects in lungs [85]. It is 
also important for the production of digestive enzymes [86]. 
However, it is unknown how this might be associated with 
sex.

Sex-related Differences in Yearlings

We found most sex-related differences in element-tissue 
combinations when comparing the female and male year-
lings (prediction 5). As expected, we found that for most of 
these element-tissue combinations, males had higher con-
centrations than females (14 and 11, respectively; Fig. 5a-
y). We were, however, unable to judge whether pregnancy 
was a major cause of these differences.

We found higher B concentrations in the liver of female 
yearlings compared to males (Fig. 5b). Liver is the first 
tissue that will be affected by overexposure to B [87, 88]. 
However, this seems unlikely due to our nutrient-poor study 
area. Any sex-specific causes remain unknown.

For Co, we found higher concentrations in the eyes for 
males (Fig. 5c) and in the liver of females (Fig. 5d). Regard-
ing the liver, it has been shown that supplemental Co did 
not increase the Co storage in the liver [89]. This suggests 
that liver might not be the main target tissue for Co. Any 
sex-related differences in Co target tissues remain unknown.

We found higher Cr concentrations in the liver for females 
than for males (Fig. 5e). This contradicts previous findings 
in ducks [90] and horses [91], where males had higher Cr 
liver concentrations than females.

We found higher Cu concentrations in the brain of 
females (Fig. 5f) and in the heart of males (Fig. 5g). Quinn 
et al. [92] also found higher Cu concentrations in the brain 
of female rats and humans. This may be due to Cu-mediated 
pathological events in the brain. Besides, Cu deficiency 
might be a cause of ischaemic heart disease [93] - of which 
symptoms are sex-specific [94, 95] -, although it is unclear 
whether this is directly related to Cu levels in heart tissue.

For Na, we found higher concentrations in the eyes, heart 
and liver of males (Fig. 5p-r). Regarding the heart, Na in 
heart is associated with blood pressure [96], which is gener-
ally higher for males compared to females [97].

We found higher S concentrations in the intestines of 
males than for females (Fig. 5t). S amino acid metabolism is 
important for gut health [98]. It has been suggested that sex-
related differences could be due to sex-related differences of 
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