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Global sustainability issues such as climate change, biodiversity loss and food
security require food systems to become more resource efficient and better
embedded in the local environment. This needs a transition towards more diverse,
circular and low-input dairy farming systems with animals best suited to the
specific environmental conditions. When varying environmental challenges are
posed to animals, cows need to become resilient to disturbances they face. This
resilience of dairy cows for disturbances can be quantified using sensor features
and resilience indicators derived fromdailymilk yield records. The aim of this study
was to explore milk yield based sensor features and resilience indicators for
different cattle groups according to their breeds and herds. To this end, we
calculated 40 different features to describe the dynamics and variability in milk
production of first parity dairy cows. After correction for milk production level, we
found that various aspects of the milk yield dynamics, milk yield variability and
perturbation characteristics indeed differed across herds and breeds. On farms
with a lower breed proportion of Holstein Friesian across cows, there was more
variability in the milk yield, but perturbations were less severe upon critical
disturbances. Non-Holstein Friesian breeds had a more stable milk production
with less (severe) perturbations. These differences can be attributed to differences
in genetics, environments, or both. This study demonstrates the potential to use
milk yield sensor features and resilience indicators as a tool to quantify how cows
cope with more dynamic production conditions and select animals for features
that best suit a farms’ breeding goal and specific environment.
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1 Introduction

Global sustainability issues such as climate change, biodiversity loss and food security
require food systems to become more resource efficient and better embedded in the local
environment. For this reason, it is generally believed that an agricultural transition towards
more diverse, circular and low-input dairy farming with animals best suited to the specific
production situation is needed. This type of dairy farming can be a resource-efficient way of
producing high quality food for human consumption (van Hal et al., 2019). The design and
optimization of these non-intensive dairy farming systems largely depends on local
circumstances, but they have in common that mainly grass and rest products from other
industries are used as animal feed (van Hal et al., 2019). In less intensive dairy farming
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systems, cows might be exposed to more environmental
disturbances such as variable feed quality or weather extremes
when they are kept outdoors. Understanding to what extent cows
are affected by these environmental disturbances is crucial to
improve animal functioning and welfare in extensive farming
systems. More specifically, the cows should be minimally affected
by a disturbance or rapidly recover after exposure, generally
accepted as being “resilient” (Colditz and Hine, 2016; Berghof
et al., 2019) or “robust” (Ten Napel et al., 2009).

Farmers aim to maintain health, fertility, longevity and
production of cows at an acceptable level. One strategy is to
avoid exposure to any disturbances as much as possible by
controlling the production environment (Control Model; Ten
Napel et al., 2006). Breeds selected in such a regime tend to
depend more heavily on favourable conditions (so called
‘specialists’; Bryant et al., 2006; Parsons, 1997). Another strategy
is to minimise the impact in the presence of disturbances
(Adaptation Model; Ten Napel et al., 2006). Developing and
utilizing resilience of cows is particularly relevant in the latter
case. Breeds selected in more diverse and dynamic conditions are
referred to as ‘generalists’ (Parsons, 1997; Bryant et al., 2006).

Traits for which resilience is relevant such as health, fertility,
longevity and production level, differ between cattle breeds. For
instance, Bieber et al. (2019) showed that local breeds from Sweden,
Austria, Switzerland and Poland tend to live longer, have a better
health and fertility, but produce less than breeds such as Holstein
Friesian (HOL) or Brown Swiss (BSW) which are globally used in
intensive dairy farming systems. Bieber and others described the
local breeds to be more robust and, therefore, more suitable for
locally adapted organic or agroecological dairy farming (Bieber et al.,
2019).

Resilience of dairy cows may be improved via genetic selection
or farm management. For both methods, large-scale quantification
of this trait is required (Berghof et al., 2019). Scheffer et al. (2018)
proposed to quantify resilience using automated high-frequency
records of traits that could be affected by disturbances, for example,
milk yield in dairy cattle (Elgersma et al., 2018). Therefore, it was
proposed in previous work to use mathematical features of
fluctuations in daily milk yield (DMY) to quantify the level of
resilience of individual cows (Colditz and Hine, 2016; Elgersma
et al., 2018; Adriaens et al., 2020; Poppe et al., 2020). The main
limitation of this approach is that it only quantifies the ‘milk yield’
resilience, and it is not a direct measure of health or longevity. Still, it
was demonstrated to be a useful tool. For example, Poppe et al.
(2020) derived resilience indicators from the daily deviations of
DMY records from an expected lactation curve to be used for genetic
selection. Using a dataset consisting of purebred HOL cows only,
they found that a low variance and autocorrelation of daily
deviations was correlated with fewer health problems, suggesting
these cows had a high level of resilience. In another study that
focussed on farm management, mathematical features from DMY
records were used to create predictive models for the “lifetime
resilience rank” of animals in a herd (Adriaens et al., 2020;
Ouweltjes et al., 2021). This rank takes lifetime longevity, health,
fertility and production traits into account to quantify long-term
consequences of cows’ resilience (Friggens et al., 2022). These
previous studies demonstrated the potential of comparing how
cows are affected by disturbances based on mathematical features

calculated from first parity DMY curves. A main finding in this
regard is that, besides the level of milk yield resilience of individual
cows, also management and culling strategies strongly affect the
DMY dynamics, and that therefore differences in farm management
should be taken into account when studying resilience of dairy cattle.

To date, large scale analyses of resilience traits based on DMY
have been performed on HOL cows only, while in the context of
diversification of the dairy sector, it is crucial to understand and
quantify resilience also for breeds other than HOL, or for crossbred
animals. To this end, it is useful to explore the sensor features and
resilience indicators calculated on a more diverse set of data
including non-HOL breeds and animals with mixed genetics.
Unfortunately, a classical breed comparison for these features is
currently impossible, as it would require explicitly considering the
herd and environment effect. For this, insufficient data are available
from farms in which multiple animals of different breeds are kept in
the same environment to reach sufficient statistical power to draw a
conclusion. The aim of this study was to compare sensor features as
proposed by Adriaens et al. (2020) and resilience indicators as
defined by Poppe et al. (2020) 1) across breeds and cross-bred
animals, and 2) between herds with a low or high number of HOL
cows. This will indicate which sensor features and resilience
indicators can be used to differentiate between herds grouped by
non-HOL breed and herds using HOL almost exclusively. This is
needed to gain insight in to what extent high-frequency data can
help phenotyping complex traits and to formulate proper
recommendations towards a more sustainable and diverse dairy
sector.

2 Materials and methods

2.1 Data selection and preparation

A dataset of 4,053 herds and 535,104 first parity lactation curves
with high-frequency DMY data was obtained from breeding
organisation CRV (Arnhem, the Netherlands). All DMY data
originated from farms with automated milk yield systems, but
details on the brand, type or specifics of these robots were not
available due to privacy and GDPR regulations. Still, as these data
are typically recorded by sensors approved by ICAR ensuring similar
accuracy and reliability, and the same data collection protocol is
used to collect the data from the farms, they can be considered
comparable over farms. Besides the first parity milk yield, the dataset
contained information on herd characteristics (e.g., herd size, date of
last milking available) and animal identification and ancillary
information (birth and calving dates, age at first calving, breed
information). Several data editing steps were applied to select
lactation curves with a sufficient amount and quality of milk
yield records. First, the cows that calved for the first time before
2010 were excluded. For the remaining animals, the first lactation
data was summarized. Only lactations for which at least 100 days of
data, starting within 5 days after calving and with at most
5 successive days of data missing were retained, similar to the
criteria as used by Poppe et al. (2020) utilizing the same dataset.
Next, the two subsets for the analysis were constructed. Subset A
contained data from cows selected based on breed criteria (Section
2.1.1). Subset B contained data of cows from herds selected based on
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the average percentage of HOL across cows in the herd
(Section 2.1.2).

The initial selection steps were performed with a bash script run
on the high performance computer of Wageningen University and
Research, using the AWK programming language (Aho et al., 1988)
and R (version 3.2.2; R Project for Statistical Computing, Vienna,
Austria). Lactation selection, data preparation and calculation of the
sensor features and resilience indicators (Section 2.2) was done using
Matlab R2020b (The Mathworks Inc., Natick, MA, United States).
The statistical analysis (Section 2.3) was implemented with Python
3.9, using the software packages “pandas-v1.4.2”, “numpy-v1.22.3”,
“statsmodels-v0.13.2”, and “matplotlib-v3.5.1” for the visualisations.

2.1.1 Subset A-selection based on breed criteria
For the comparison of sensor features and resilience indicators

across purebred animals of different breeds and HOL crossbred
animals given their specific production environment, we selected the
purebreds (at least 87.5% of the genes of a single breed) and
crossbreds (50% HOL and 50% of another known breed) of the
dataset. The resulting data were highly imbalanced towards

purebred HOL cows which might impact the statistical analysis.
Therefore, a representative sample of 22,100 HOL cows, equal to the
total number of animals available for the other breeds and
crossbreds, was selected for inclusion in the analysis. To this end,
we sorted the HOL cows (n = 395,654) successively for 1) age at first
calving; 2) average DMY; 3) calf date; and 4) maximal number of
herd mates. After each sorting step, a uniform sample of
5,525 animals was taken by selecting one animal every n/
5,525 animals, and removing these animals for the selection in
the next sorting step. This way, the entire population range for the
different traits of interest is included in the analysis and selection of
related cows is avoided. This selection was rather mild and still
captures the variability present within the HOL breed, while
bringing its size to an acceptable order of magnitude for the
statistical analysis. Breeds that were insufficiently represented in
the dataset (less than 10 unique crossbred and purebred animals
combined) were removed. This resulted in a dataset (Subset A) that
consisted of data from 39,643 cows from in total 3,393 herds. From
these, 22,911 cows were purebred animals originating from
3,184 unique herds. The remaining 16,732 crossbred cows

TABLE 1 Overview of the cows in Subset A selected for breed criteria. The data below the cross are the crossbred animals, for which 4/8th is Holstein Friesian (HOL),
and the remaining part the indicated breed. No correction for the herd-environment effect was applied, and therefore the breed differences in daily milk yield
(DMY) need to be interpreted as the combined effect of breed and farm environment.

Breeda No. cows No. herds DMYb

Mean Std.

HOL 19,740 3,087 27.2 5.2

MRY 1,320 58 20.4 3.8

JER 665 32 18.1 3.8

MON 432 16 20.4 4.4

SIM 397 48 22.3 5.1

DFR 256 8 21 3.1

BSW 90 12 21.8 4.2

GRO 11 3 14.9 4.4

Cross 16,732 1,770 25.4 5.1

MRY 761 250 23.4 4.6

JER 326 92 23 4.3

MON 3,002 396 26.7 5.1

SIM 6,267 782 25.5 5.2

DFR 51 27 24.5 4.1

BSW 2,622 582 25.2 5

GRO 127 74 21.4 4.8

SRB 1,882 380 24.4 4.7

NRF 1,264 304 26.3 4.6

BBL 393 286 24.7 5.7

AYR 37 20 24.1 4.5

aHOL, holstein friesian; MRY, Meuse-Rhine-Yssel, JER, jersey; MON, Montbéliarde; SIM, simmental fleckvieh; DFR, dutch friesian; BSW, brown swiss; GRO, groninger whiteheaded, cross =

crossbred animals, SRB, swedish red; NRF, norwegian red; BBL, belgian blue; AYR, Ayrshire.
bDMY, daily milk yield.
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originated from 1,770 herds. The most prevalent crosses in our
dataset were those with Simmental Fleckvieh (SIM) animals (n =
6,367), followed by Montbéliarde (MON) (n = 3,002), BSW (n =
2,622), Swedish Red (SRB) (n = 1,882) and Norwegian Red (NRF)
(n = 1,264). A full overview of the number of animals and herds per
breed and per crossbred combination, together with their average
DMY, uncorrected for herd effects, is given in Table 1. In summary,
the number of purebred animals included in the analysis ranged
from 11 Groninger Whiteheaded (GRO) to 19,740 (HOL). Some
breeds had no purebred animals and were only included via
crossbreds: NRF, SRB, Ayrshire (AYR) and Belgian Blue (BBL).

Breed and herd effects cannot be distinguished in these data.
Still, it enables quantifying the sensor features and resilience
indicators for the available animals and available differences
across the breeds (i.e., breed effects) can be interpreted as the
combined result of breed and environment.

2.1.2 Subset B- selection based on herd criteria
The second subset served the comparison of sensor features and

resilience indicators across herds with either very high (above 99%,
SEL99) or low (below 50%, SEL50) percentages of HOL genetics in
the herd. For this, we selected herds based on the average proportion
of HOL across cows in the herd. We included all cows of the selected
herds. First, herds with a herd size of less than 50 or more than
300 animals were discarded. Next, we selected all the herds with less
than 50% HOL (n = 181). A representative subset of the herds with
99% or more HOL (n = 406) was selected with a similar procedure as
described in Section 2.1.1. More specifically, the 406 farms were
consecutively sorted for 1) average age at first calving, 2) average
DMY, 3) total number of animals in the herd, and 4) maximal
number of animals in the herd in a single year. After each sorting
step, a uniform sample of 45 herds was selected, resulting in a
representative sample of in total 180 herds.

2.2 Calculation of sensor features and
resilience indicators

2.2.1 Milk yield modelling
For each cow in the dataset, we quantified the first parity DMY

dynamics. To this end, two models were fitted on the individual
lactation curves: 1) aWoodmodel to describe the lactation dynamics
as is on all the data regardless of perturbations, and 2) a 4th order
quantile regression curve to estimate the ‘expected’ lactation curve,
i.e., the production dynamics in the situation of no perturbations
present. The Wood model has 3 parameters (Wood, 1967) and is
calculated as follows: DMY = a*DIMb*e-c*DIM with DMY the daily
milk yield, DIM = days in milk and a, b and c the parameters
determining the shape of the lactation curve. The quantile regression
model represents the lactation dynamics in absence of milk yield
perturbations caused by, e.g., health or other environmental
disturbances. For this, we used a fourth order polynomial
quantile regression as proposed by Poppe et al. (2020), fitted on
the DMY from day 11–340 after calving with a conditional quantile
of 0.7.

2.2.2 Sensor features and resilience indicators
Milk yield based sensor features as defined by Adriaens et al.

(2020) and resilience indicators as proposed by Poppe et al. (2020),
40 in total, were calculated based on the first parity DMY and the
abovementioned milk yield models (Section 2.2.1). More
specifically, starting from the models’ parameters, we calculated
the shape and characteristics of the lactation curves, including the
peak and day in milk of peak, persistency, slope to peak of both the
fitted Wood model and the expected lactation curve. Furthermore,
the residuals of these models were characterised by calculating the
variance, autocorrelation, skewness, the maximal and average
residual to quantify the DMY variation. Besides the residuals,
also the perturbations, defined as deviations from the expected
lactation curve were quantified. A complete overview of the
sensor features and resilience indicators is given in the
Supplementary Material, Supplementary Table S1. We partitioned
the 40 sensor features and resilience indicators into six different
categories: 1) the dynamics of the first parity lactation curve as
calculated with the Wood model, including the slopes before and
after the peak, the peak production, peak DIM and accumulated
yield in the first 50–305 days; 2) the characteristics of the residuals of
the Wood model as fitted on all the data to quantify the lactation
shape including perturbations; 3) the dynamics of the expected
lactation curve including peak production, slope to peak, days in
milk at peak and persistency; 4) the characteristics of the residuals of
the expected lactation curve and its goodness-of-fit measures; 5) the
number of perturbations, defined as impact of a disturbance, and
their characteristics as calculated from the expected lactation curve;
and 6) the resilience indicators as proposed by Poppe et al. (2020),
i.e., the log transformed variance of the residuals calculated from the
expected lactation curve, and the lag-1 autocorrelation.

2.3 Statistical analyses

2.3.1 Outlier detection
Outliers in the sensor features and resilience indicators can

result both from mathematical or data artefacts and from biological
or physiological aberrations. Sensor feature observations with very
extreme values were removed based on the Cook’s distance which
represents for each observation how much it influences a regression
model. Its formula is as follows:

Di � r2i
p*MSE *

hii
1 − hii( )2 (1)

where ri is the ith residual, p is the number of coefficients in the
regression model, MSE the mean squared error calculated as
MSE � 1

n *∑
n
i�1(yi − ŷ)2, and hii the ith leverage value of the

model that quantifies how much the observation affects the
predicted response ŷ. The regression model fitted to calculate
these Cook’s distances were the same as detailed in Section 2.3.2
and Section 2.3.3. Observations that were in the 99.5th to 100th
quantile (the 0.5% most influential observations) were removed
from further analysis of each feature, resulting in a removal of
approximately 185 datapoints = 0.5% of observations per model.
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2.3.2 Subset A—Selection based on breed criteria
The combined effects of breed and environment on the

40 sensor features and resilience indicators were estimated using
a linear regression model. Before fitting the model, a min-max
standardisation was applied to the sensor features and resilience
indicators for better interpretation and scaling of the regression
coefficients. Furthermore, a covariate for the scaling effect of average
DMY was included as proposed by Bonekamp et al. (2022) and
Poppe et al. (2020), because an increase in the mean of a trait
typically results in a (proportional) increase of its variance (Falconer
and Mackey, 1996). The final model equation was (Eq. 2):

SF � 1 + SIM +MON + BSW + SRB + NRF +MRY + BBL + JER

+ GRO + DFR + AYR + cross + aDMY + ε

(2)
with SF the observed sensor feature or resilience indicator,

aDMY the min-max standardised average DMY of each cow, and
ε the a random error term. The HOL breed was combined with the
overall mean and taken as intercept (i.e., “1” in Eq. 2), whereas the
other variables represent the individual breed proportions, with
respectively SIM as Simmental Fleckvieh, MON as Montbéliarde,
BSW as Brown Swiss, SRB as Swedish Red, NRF as Norwegian Red,
MRY as Meuse-Rhine-Yssel, BBL as Belgian Blue, JER as Jersey,
GRO as Groninger Whiteheaded, DFR as Dutch Friesian and AYR
the proportion of Ayrshire. Purebred cows had a proportion of “1”
for the respective breed variable, whereas crossbred animals had a
“0.5” for the breed that was not HOL. “cross” was the fixed effect of
an animal being a crossbred 1) or purebred (0) cow to estimate the
heterosis effect. To determine whether the breed or heterosis had a
significant effect on the sensor features as compared with the HOL
cows, we set a significance threshold of α = 0.05/n = 0.05/40 =
0.00125, considering a Bonferroni correction for accumulation of
chance in multiple testing, as this model was fitted for 40 different
traits.

2.3.3 Subset B—Selection based on herd criteria
Also for this subset the sensor features and resilience indicators

were standardised with a min-max standardisation. The regression
model tested whether there was an effect of the selection on the
sensor features and resilience indicators, i.e., SEL50 vs. SEL99,
thereby considering a potential scaling effect of the average
DMY. The model equation was as follows:

SF � 1 + SEL + aDMY + ε (3)

With SF the sensor feature, SEL the categorical variable representing
the selection to which the farm belongs to (less than 50 or more than
99% HOL) and aDMY the min-max standardised covariate for the
average DMY of the cow in her first lactation. Also here, a
significance threshold of α = 0.00125 was used to determine
whether SEL had an effect on the sensor features and resilience
indicators.

2.3.3.1 Differences across HOL cows in SEL50 and SEL99
Differences in sensor features and resilience indicators can result

both from breed effects and differences in management across the
farms. We did not have access to information that allows to formally
distinguish between both effects. One way to get more insight in this

aspect, however, is to compare the sensor features and resilience
indicators of the purebred HOL animals of both datasets. We,
therefore, selected the purebred HOL cows of each SEL and
looked into the differences between their sensor features and
resilience indicators with the same model as defined in Eq. 3.

3 Results

3.1 Breed comparison

3.1.1 Dataset description
An overview of the animals in the dataset is given in Table 1 and

can be found in the Materials and Methods section. To give an idea
of the average production performance of the purebred and
crossbred animals, uncorrected for the herd effects, we included
the mean DMY. This varied for the purebreds from 14.9 kg (GRO)
to 27.2 kg (HOL). All purebred cows were older at first calving than
HOL and crossbred animals (data not shown).

3.1.2 Sensor features and resilience indicators
The statistical analysis highlights that a lot of variation in the

sensor features and resilience indicators exists, both within and
between the breeds when the environmental variation cannot be
quantified. The model coefficients and corresponding p-values are
given in the Supplementary Material (part II, Supplementary Tables
S5, S6, sheet ‘Regression’). More specifically, we found that the
individual-animal average DMY has a significant effect in more than
90% of the sensor features and resilience indicators, indicating that a
milk yield scaling effect indeed needs to be considered. The R2 of the
models was generally low, demonstrating that only a small part of
the variability is explained by the breed, heterosis or milk yield
scaling effect.

To understand which type or category of sensor features
(Section 2.2.2) differ most often from HOL, we summarized the
model results in Table 2. This table provides an overview of the
percentage of sensor features and resilience indicators that differ
significantly from those of HOL cows, for each breed separately.
More specifically, when, for example, the breed-environment effect
for 8 out of 11 features based on the residuals of the expected
lactation curve differed from HOL, this will be represented in the
table as (8/11)*100 = 72.7%. Below, we discuss these findings in
more detail.

For only 17.5% of the sensor features and resilience indicators a
significant heterosis effect was found. This indicates either that the
additional effect of a cow being crossbred seems to have no effect on
the sensor features and resilience indicators or that differences in
environments between pure and crossbred animals masks the effect.
Features that describe the shape and dynamics of the Wood curve
and the expected lactation curve (category 1 and 3, i.e., peak
production, days in milk of peak, persistency, etc.), and thus,
quantify the production rather than resilience, differed
significantly for most breeds when compared with HOL. More
specifically, the positive or negative sign of the estimates
consistently suggests that the non-HOL cows have a lower peak
production at earlier DIM, and a less steep slope towards the peak,
which is consistent with what is expected for cows with a
lower DMY.
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Category 2 (Table 2) contains the 6 sensor features calculated
from the residuals of the Wood curve. We found that these features
for the BSW, MON and SRB cows do generally not differ from the
HOL. This suggests that the variability in milk production of these
breeds is equally high as HOL cows. When the production
environment is similar to the one of HOL cows, it suggests that
they are equally affected by these disturbances. When their ‘average’
environment, however, differs from the average environment of the
HOL, it depends on the actual amount and severity of disturbances
whether the variability in milk production is lower or higher
than the HOL. The first is expected to be the case when the
animals are kept in environments with more disturbances,
whereas the latter is true when the cows are in herds with less
disturbances. Breeds such asMeuse-Rhine-Yssel (MRY), SIM, Jersey
(JER) and Dutch Friesian (DFR), had a significant breed effect with
the estimates suggesting that they have a lower variance, a lower
mean absolute residual and a smaller maximum residual. This
suggests that these animals are either kept in environments with
lower variability or disturbances, or that they cope better with the
disturbances present, and as a result, keep their milk production
more constant.

The daily deviations of the milk yield from the expected lactation
curve formed the basis of 11 sensor features (category 4, Table 2).
Our analysis suggests that, for these features, the MON, SRB and
BSW do not deviate from the HOL with at most 4 out of 11 (36.4%)
features different, similar to what we found for the features based on
the Wood curve residuals in category 2. For SIM, MRY, BBL, JER
and DFR cows, we found the most differences with up to 9 out of 11
(81.8%) features different. The model results show that these breeds
have a less variable milk production in the environment they are
kept in. Similar as for category 2, this suggests that either these cows

are kept in less variable environments, or that they cope better with
the disturbances present.

Eleven sensor features (category 5, Table 2) were quantified for the
observed perturbations in DMY. In general, the non-HOL cows had
less (major) perturbations, their perturbations lasted shorter both in
the development and recovery phases, and they had lower milk losses.
Accordingly, the combined breed and herd effects showed that almost
all breeds had fewer or less severe perturbations than the HOL cows.
This effect was largest for JER, BBL and MRY.

The last category of features (category 6, Table 2) were the
resilience indicators developed by Poppe et al. (2020). Here, our
results were similar to earlier work from Bonekamp et al. (2022),
showing that 6 breeds (SIM, NRF, MRY, JER, GRO and DFR) had a
significantly lower “LnVar” (i.e., natural logarithm of the variance of
the residuals of the expected lactation curve) compared to HOL,
which suggests that they have less daily fluctuations in milk yield
either due to less variable environments or better coping with
disturbances, or both. The breed effect on autocorrelation was
significant for 5 of the breeds, but the direction of the effect
differed across the breeds, with both positive (SRB, NRF and DFR)
and negative estimates (MONandBSW) in comparisonwith theHOL
cows. This suggests that the values for this resilience indicator are less
consistent with other features and more difficult to interpret.

3.2 Herd comparison

3.2.1 Dataset description
Subset B consisted of 361 herds (SEL50: n = 180; SEL99: n = 181)

and 36,974 cows (n = 13,796 and n = 23,178 in SEL50 and SEL99,
respectively). In SEL99, only 167 cows (0.65%) at 78 unique farms in

TABLE 2 The percentages breed-environment effects on sensor features and resilience indicators that are significantly different from (HOL) purebred animals. The
categories and specific sensor feature descriptions are given in Supplementary Table S1 of the Supplementary Material.

Breeda Wood curve Wood residuals Expected curve Expected residuals Perturbations Resilience indicators Total

Category 1 2 3 4 5 6

No. of features 6 6 4 11 11 2 40

SIM 66.7 66.7 25.0 81.8 27.3 50.0 55.0

MON 83.3 33.3 50.0 18.2 54.5 50.0 45.0

BSW 66.7 0.0 75.0 36.4 9.1 50.0 32.5

SRB 66.7 16.7 50.0 9.1 0.0 50.0 22.5

NRF 0.0 50.0 25.0 54.5 45.5 100.0 42.5

MRY 83.3 83.3 75.0 63.6 72.7 50.0 72.5

BBL 33.3 33.3 75.0 72.7 81.8 0.0 60.0

JER 100.0 66.7 75.0 63.6 90.9 50.0 77.5

GRO 0.0 33.3 0.0 54.5 45.5 50.0 35.0

DFR 33.3 66.7 100.0 63.6 54.5 100.0 62.5

AYR 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cross 33.3 33.3 50.0 0.0 9.1 0.0 17.5

aBreeds: SIM, simmental fleckvieh; MON, Montbéliarde; BSW, brown swiss; SRB, swedish red; NRF, norwegian red; MRY, Meuse-Rhine-Yssel, BBL, belgian blue; JER, jersey; GRO, groninger

whiteheaded; DFR, dutch friesian; AYR, ayrshire, cross = crossbreds with Holstein Friesian (HOL).
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the dataset were less than 7/8 HOL, whereas in SEL50, 783 animals
(5.1%) at 112 unique farms had 7/8 HOL or more. SEL50 specifically
consisted of following “main” breed, in which a cow was attributed
to the breed with the largest breed part in this animal, without
criteria for the actual breed proportion (Table 3): SIM: 27%, HOL:
25%, MRY: 18%, MON: 12%, JER: 4%, BSW: 4%, NRF: 3%, SRB: 2%
DFR: 1%, GRO: 1%. For 3% of the animals, the main breed was
recorded as ‘other’ or ‘unknown’. Table 3 also gives the average
DMY for each of these categories based on the main breed. Cows
with the highest proportion HOL and NRF had the highest DMY
(24.3 and 24.6 kg respectively), which was lower than the average
DMY of the purebred HOL cows in SEL99 (29.0 kg), and of the
purebred HOL cows in Subset A (27.2 kg). The higher milk
production in SEL99 compared to that of the HOL cows in
Subset A suggests these SEL99 herds are highly specialised and
intensive dairy farms with a deep focus on milk production. The
cows in which the main breed part was GRO and JER had the lowest
DMY (16.3 and 18.4 kg respectively). The cows assigned to the other
breed categories all had average DMY between 20.4 and 23.0 kg per
day. Other details on DMY, age at first calving and number of
measurements are given in Supplementary Material (Supplementary
Table S2).

3.2.2 Sensor features and resilience indicators in
SEL50 vs. SEL99

Only a small proportion of the sensor feature variability could be
explained by the DMY covariate or the percentage HOL in the herd
(SEL), as demonstrated by the low R2 of the models. For 39 out of the
40 features, we found a significant effect of the daily average milk
yield (p < 0.00125). Only the number of sign changes of the residuals
from the expected lactation curve (ExpAutoCorr) was not affected
by the DMY scaling effect.

The SEL effect was small to very small but significant with a p-
value lower than 0.00125 for 21 out of the 40 features. From these,

9 features had a direct link with the lactation curve shape and total
milk production (category 1 and 3), as shown in Supplementary Table
S3 of the SupplementaryMaterial. The other 12 features for which the
SEL variable was found significant mainly belonged to category 4 and
5 and represent the variability and dynamics of the residuals from the
expected lactation curve and the perturbation characteristics
(Table 4). More specifically, the residuals of the expected lactation
curve showed a lower lag1 autocorrelation in SEL50 compared to
SEL99.We found that there are in total less days in which the residuals
of the expected lactation curve was negative, both per day and during
5 successive days. However, lactations in SEL50 had more individual
days in which the DMY drops below 85% of the expected value.When
considering the perturbation characteristics and dynamics, we see that
for cows in SEL50 farms, there are a higher number of perturbations
but that they last shorter both in the development and the recovery
phase. The resulting milk losses are lower and the perturbations are
less deep.

Similar findings were derived from the sensor features and
resilience indicators that were almost significant (p-values
between 0.05 and 0.00125), as detailed in Supplementary Material
(Supplementary Table S4). When all this is considered together, our
analysis suggests that the cows in farms that belong to SEL50 have a
higher variability in their milk production, but that this variability is
mainly caused by short perturbations or single days in which the
production drops. These differences suggest that either the average
production environment differs across SEL50 and SEL99, with
SEL50 having more disturbances that are generally milder or the
cows on these farms deal differently with their environmental
disturbances, or both.

3.2.3 Sensor features and resilience indicators of
purebred HOL cows in SEL50 and SEL99

To further investigate differences in sensor features and
resilience indicators across the herds in SEL50 and SEL99, we

TABLE 3 Average milk yield of cows with largest breed part in each breed in SEL50 and the contributions of breeds in SEL50.

Breed DMYa [kg] Proportion of cows with main breed part in SEL50 [%]

Mean Std

BSW 22.4 5.2 4

DFR 20.6 3.4 1

SIM 23.0 5.3 27

GRO 16.3 4.7 1

HOL 24.3 5.3 25

JER 18.4 4.2 4

MON 22.4 5.1 12

MRY 20.4 4.4 18

NR 24.6 4.7 3

UNK 23.0 4.9 3

SRB 23.0 5.4 2

aDMY: average daily milk yield, BSW, brown swiss; DFR, dutch friesian; SIM, simmental fleckvieh; GRO, groninger whiteheaded; HOL, holstein friesian; JER, jersey; MON,Montbéliarde; MRY,

Meuse-Rhine-Yssel, NRF, norwegian red, and UNK, other or unknown breeds; SRB, swedish red.
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compared the 782 purebred HOL cows in SEL50 with the
25,482 purebred HOL animals in SEL99. The average DMY of
the former was 24.4 ± 5.4 kg, whereas this was 29.0 ± 5.3 kg for
SEL99, demonstrating that either the HOL animals in SEL50 are less
selected for milk production (and a genetic difference exists between
the cows in each SEL despite they belong to the same breed), or they
are kept in circumstances that are less optimal for these cows,
or both.

To get a better view on differences in sensor features and
resilience indicators across SEL50 and SEL99 herds, independent
of the breed, the sensor features and resilience indicators from the
purebred HOL cows in both groups of herds were compared (see
Section 2.3.3.1; Eq. 3). The cows in SEL99 herds produced more milk
(305-day yield: 8,676 kg vs. 7,262 kg for SEL50 and SEL99,
respectively) and had a higher peak production (33.3 vs. 29.3 kg)
which was reached 10 days later (DIM 63 vs. 53). The milk yield
persistency was approximately equal. A similar result was found for
the expected lactation curve dynamics (features of category 3).
Features of category 2 calculated from the residuals of the Wood
model, showed that the absolute residual of the Wood curve was
slightly higher for SEL50 than for SEL99, indicating a bit more
variability in the DMY in the herds of SEL50. Similar to what we
found for the full dataset including all cows from all breeds, we
found that SEL50 lactations have more minor perturbations and an
equal number of major perturbations, but that both the development
and recovery phases of these perturbations last shorter, with lengths
of on average respectively 10 and 12 days for SEL50 vs. 13 and
15 days for SEL99. In conclusion, this analysis showed that purebred
HOL cows in SEL50 have a higher variability in milk yield as
captured with the LnVAR, RMSE and percentage negative
residuals, but that the number and severity of their perturbations
is lower. This suggests that the purebred HOL cows in the
SEL50 herds are less affected by or less subject to very severe
challenges or that the management and environment of these

cows allows them to recover more quickly from a disturbance
than HOL cows in SEL99 herds.

4 Discussion

4.1 Features based on high-frequency milk
yield can capture response on challenges in
the environment

When thinking of resilience, some non-HOL breeds are often
perceived to be more robust, less vulnerable to diseases and more
suited for more challenging environments in comparison with HOL
cows (Rodríguez-Bermúdez et al., 2019; Windig & Hoving-Bolink,
2021). Good quality data demonstrating these differences have not
been collected, as it requires quantification of all relevant aspects of
the management, challenges, environment and performance
characteristics of different farms (Dunne et al., 2019). An
alternative is to measure the impact the environment has on the
milk production dynamics. For example, Poppe et al. (2020) and
Adriaens et al. (2020) suggested to use widely and automatically
collected sensor data such as daily milk yield or activity measures to
characterise the response of an animal on an environmental
challenge. The idea is that, e.g., daily milk production strongly
reflects how an animal copes with disturbances, for example,
when a perturbation in milk production results from a health
problem. Generally, fewer perturbations that last shorter and
recover quickly are considered to reflect better resilience.

Our study used previously proposed sensor features and
resilience indicators to quantify the milk yield dynamics of cows
of different breeds and in herds with different breed proportions.We
found that these features showed differences across our proposed
groups in Subset A and B, suggesting that either the environments of
herds in which these cows are kept consistently differ or the cows in

TABLE 4 Sensor features from category 4 and 5 for which a statistically significant (p-value < 0.00125) was found for the effect of SEL and the correspondingmodel
interpretation.

Sensor featurea Category p-value β1 Interpretation

ExpAClag1 6 0 −0.007 the residuals of the expected lactation curve in SEL50 lactations have a lower autocorrelation lag 1

ExpPercNegative 4 0 −0.004 there are less days with negative residuals in SEL50 compared to SEL99

ExpPercLower85 4 0 0.0036 there are more days in which the negative residuals drop below 85% of the expected milk production in
SEL50 compared to SEL99

ExpNeg_5d 4 0 −0.0038 there are less periods in which the milk production drops below the expected for 5 successive days

PertNoMinor 5 0.0005 0.0033 there are more minor perturbations in SEL50 compared to SEL99

PertNoTotal 5 0 0.0053 there are more perturbations in total in SEL50 compared to SEL99

PertMinDaysRec 5 0 −0.0142 there are less days needed for recovery of minor perturbations in SEL50 than SEL99

PertMinDaysDev 5 0 −0.0092 there are less days needed for development of a minor perturbation in SEL50 than SEL99

PertMajMilkLoss 5 0.0006 −0.003 the total milk loss in minor perturbations is lower in SEL50 than in SEL99, despite correction for milk yield

PertMinMilkLoss 5 0 −0.0061 the total milk loss in major perturbations is lower in SEL50 than in SEL99, despite correction for milk yield

PertTotalLoss 5 0 −0.006 the total milk loss in all perturbations is lower in SEL50 than in SEL99, despite correction for milk yield

PertDeepest 5 0 0.0028 the largest perturbation has fewer milk loss at its deepest point compared in SEL50 compared to SEL99

aFor the detailed definitions of the sensor features, we refer to Supplementary Table S1 in the Supplementary Material of this manuscript.
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the different groups differ in their response to environmental
disturbances, or both. Unfortunately, the data did not allow to
further test this explicitly.

More specifically, the sensor features and resilience indicators
were assigned to six categories, each quantifying a different aspect of
the milk yield dynamics. The lactation curve and expected lactation
curve characteristics (category 1 and 3) represent the general milk
production level over time, whereas category 2 and 4 quantify day-to-
day variation, for example, reflecting response to differences in feeding
or climate. The perturbations on the other hand (category 5) give
more information on how cows respond to health challenges (e.g.,
mastitis) or other short or long-term environmental disturbances (e.g.,
heat stress). Hence, calculating and analysing these features separately
has the advantage that the variability of the milk production for
different situations can be obtained, all relevant for an aspect of the
resilience of the animals. Besides a general view on how each animal
individually thrives in its farm environment, a farmer can thus select
and breed the animals that best suit their preference or the challenges
posed on that specific farm. Additionally, this approach can be used to
highlight aspects of the production environment and management
within farm over time. For example, by monitoring the DMY based
sensor features and resilience indicators, farm performance can be
monitored, providing insight, e.g., in the effect of altered infection
pressure or in management decisions such as changes in feed quality
or grazing management.

Poor resilience shows differently in different cows, depending on
their health history, age, management, nutrition, etc., and definition of
one single indicator for resilience, e.g., based on a latent variable
combining the features is deemed suboptimal. Hence, by quantifying
each of the sensor features and resilience indicators separately, these
variables can be used more intelligently than when they would be
united in (a few) latent variables, for example, by performing principal
component analysis or clustering. Keeping the features separate in the
different categories allows to quantify the type of resilience that is best
suited to the farmer’s preferences and facilitates tailoring the herd to a
specific farm situation. Thus, a more black box approach would be
only interesting when there would be a universal idea on what
‘resilience’ is and how to measure it. Given the lack of consensus
in literature, and the fact that each environment poses different
challenges to the animals and therefore requires cows that respond
to these challenges in a different way, a combined approach in which
all the variables are given similar weights is not considered optimal.
Still, when a specific breeding goal is defined, a gold standard is
available and the production environment is known, using latent
variables with the different sensor features and resilience indicators
combined is possible and potentially useful. The analysis and
definitions presented in this study provide a good basis to perform
these next steps.

We found that the scaling effect of milk production indeed affected
almost all sensor features and resilience indicators. This was the only
factor that we could explicitly include in the statistical analysis, and we
chose for entering it in the regression as a linear covariate to keep
consistency with previous work (Poppe et al., 2020; Bonekamp et al.,
2022). The true impact of milk yield on the sensor feature values might
differ across sensor features and resilience indicators.

The remaining sensor feature variability is probably caused by
multiple, potentially also interacting factors, such as the difference in
data quality, difference in model fit of the expected lactation curves,

management factors, the specifics for each sensor feature calculation
and their potential interactions. For example, when looking at the
number of perturbations, a single long perturbation can coincide
with multiple shorter ones with a different cause. Ben Abdelkrim
et al. (2021) suggested to also model the nested perturbations
(perturbations in perturbations) to overcome this problem, but
this would increase the complexity of the analysis, which
together with its computational cost was not feasible for our data.

4.2 Sensor features and resilience indicators
differ in herds with high and low proportion
of HOL

We quantified sensor features and resilience indicators on farms
with a low and high percentage of HOL genetics in their herds. The
expectation was that farms with HOL cows only have specialised
management that is strongly focused on high levels of milk production
in which disturbances are kept out asmuch as possible (control model,
Ten Napel et al., 2006). As no breed criteria were applied to SEL50, we
expected to find higher standard deviations for the sensor features and
resilience indicators across the cows in SEL50. Although the high
average DMY (29.0 kg) in SEL99 indeed suggests that these farms are
highly specialised to achieve the best production, the standard
deviations of the sensor features and resilience indicators in
SEL99 was as large as in SEL50.

Besides a scaling effect for milk yield, we found that many sensor
features and resilience indicators differed across SEL50 and SEL99,
suggesting that 1) the environment; 2) challenges the cows are subject
to; and 3) the way cows react to these challenges vary across farms
with high and low percentage HOL genetics. More specifically, we
found that in general the milk production on the SEL50 farms was
more variable, but that once it goes critically wrong, the SEL99 cows
had more severe (longer, more milk loss) perturbations than the cows
in SEL50, even after correction for differences in milk yield levels.
Resilience quantified as deviation from a curve is only expressed in the
presence of disturbances. Themore successful a farm is in keeping out
disturbances, the fewer perturbations will be visible. As cows are
therefore relatively unprepared for disturbances, once the cows are
challenged, the perturbation will likely be larger and longer. The
results suggest thus that SEL99 herds offer a more controlled
production environment than SEL50 herds (farmers allowing cows
to adapt; ‘adaptation model’, Ten Napel et al., 2006). Besides a
difference in environment, this can also be due to the fact that
cows in SEL50 are less “challenged” metabolically, and thus have
more spare capacity to deal with their environmental disturbances.
Pinpointing the exact causes, however, is not feasible with the current
data, nor do we expect that a single causality can be isolated to explain
these effects.

Part of the differences in farm environment is also reflected by
the comparison of the purebred HOL cows of SEL50 and SEL99.
Despite that these cows have a similar genetic background, bothmilk
yield, and variability and perturbation-related features differed. In
theory, several explanations can be put forward for these differences:
1) they originate from differences in the management, e.g., feed
quality; 2) the cows were submitted to different breeding strategies,
for example, less focussed on milk production and more on health,
resulting in altered genetic backgrounds of the cows despite that they
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belong to the same breed; 3) these cows are challenged less in terms
of production, allowing them to have a different energy partitioning
to deal with the imposed disturbances, resulting in a quicker
recovery upon a challenge. In practice, it is unlikely that the
78 SEL99 and 112 SEL50 farms differ substantially and
consistently between groups in their breeding strategy, as all data
originate from farms with an automated milking system in the
Netherlands. Hence, differences in management and controlling
production conditions may have a bigger influence on the
differences observed than genetic background. Unfortunately,
further investigating or quantifying this was not possible with the
current dataset.

4.3 Sensor features and resilience indicators
differ across breeds

The HOL breed is globally the most used breed on intensive dairy
farms (Oltenacu & Broom, 2010), as these cows are known for their
highmilk yields.With a changing climate, more interest in sustainable
production, circular farming and diversification of food production
systems, there is a higher need for cows that can thrive inmore diverse
environments and cope with low feed quality. Using alternative breeds
with different characteristics could helpmeeting this need (Rodríguez-
Bermúdez et al., 2019). The non-HOL cows in our study all had a
lower production compared to the HOL cows. Our results showed
that, after considering the scaling effect of milk production on the
sensor feature values, differences across the different breeds exist, with
non-HOL breeds having less variability in milk yield, and fewer severe
perturbations. This can result from 1) a difference in their production
environment (e.g., these cows are kept in herds with lower
environmental variability, cows are better prepared for common
disturbances or are less challenged metabolically), 2) a breed
difference, in which the non-HOL cows cope better with the
disturbances present, and as a result, keep their milk production
more constant; 3) a combination of both. It is plausible that non-HOL
purebred cows are kept on herds for which the management
environment is closer to the SEL50 herds than the SEL99 herds.
Therefore, the probability that the differences found are solely the
result from a less variable production environment, is small. Hence, by
quantifying these differences with the sensor features and resilience
indicators, opportunities arise to better understand differences
between animals and find the best animal-in-environment herd.

For most breeds, the results for the expected lactation curve
residuals and perturbation sensor features were consistent.
Nonetheless, it is interesting to see that in some cases the sensor
features in either category differ, suggesting that these indeed
quantify different aspects of the disturbances in a production
environment or a cow’s response thereon. Summarising lactation
dynamics in a single trait ignores the true variability in the possible
responses of cows to challenges. For example, for SIM cows, 81% of
the sensor features of the fourth category (expected lactation
residuals) differed from the HOL, whereas only 27% of the
perturbation features were significant. This suggests that the way
a cow reacts to a disturbance, e.g., by showing shorter deviations and
quicker recovery vs. having longer milder or more severe
perturbations, can give different information on how animals
cope with the challenges their environment poses.

Accordingly, the choice for using non-HOL breeds for improving
resilience largely depends on the farm context and what aspect of
resilience farmers wish to improve in their herd. It can be that some
breeds show a better resilience when focussing on the residuals of the
expected milk yield curve (e.g., SIM cows), while other breeds show a
better resilience when considering the perturbations (e.g., JER cows).
These differences offer opportunities to select the breed according to
the specific environment and preferences of the farmers. It is important
to keep in mind that the favourable combination of breed and herd
effects on milk yield variability as a proxy of resilience were in this
study always associated with a lower milk production level.

4.4 Study limitations, implications and future
work

We studied milk yield sensor features and resilience indicators
for a large number of lactations and compared them across different
breeds and herds. The breed effects we estimated were confounded
with the herd effect, as including this explicitly in the model was not
possibly with our current dataset. As a result, we could only
highlight differences between the groups knowing that they
possibly result from herd and environment aspects alone, and the
interpretation of the results should be made accordingly.
Additionally, high-frequency milk meter data is typically only
available for herds with an automated milking system, limiting
its extrapolation possibilities to other farm types and restricting
the conclusions to farms with a milking robot only. Still, we found
substantial differences between farms when studying the sensor
features and resilience indicators. In specific farm contexts, these
features can be used as precision phenotypes for breeding and
management decisions, for example, to move towards cows that
are less dependent on favourable farming conditions. This allows
diversification of dairy production according to different breeding
and production goals, which supports the development towards a
more diverse production landscape in which the sustainability is
improved with minimal impact on the environment. Future research
on data for which information on farm environment, management
and breeding goals are available would be helpful to further clarify
and understand the differences that we found in this study.

5 Conclusion

This study provides a first quantification into differences across
milk yield sensor features and resilience indicators of cows at
different herds and from different breeds. We found that these
features are useful to quantify different aspects of how cows respond
to environmental disturbances, and potentially also how farm
environments differ in the type of challenges they pose to the
cows. This information is valuable to support breeding and
management decisions, and follow milk yield variability over
time within farm. On farms with a low and high percentage
HOL genetics respectively, we found that the cows in the former
had more variable milk production but fewer severe perturbations.
This suggests that the farms with less HOL have in general a more
variable production environment, but once it goes wrong for the
cows in the more specialised farms, the effect of the disturbance is
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larger. Comparing the purebred HOL cows thereby eliminating
breed effects confirmed these findings. After correcting for a milk
yield scaling effect, different aspects of the milk yield dynamics, milk
yield variability and perturbation characteristics differed across
breeds as compared to HOL cows. These differences can result
from the herd environment being different, from the cows reacting
differently to the disturbances or both. More specifically, our data
suggest that the milk production of non-HOL cows and crossbred
animals is more stable with less (severe) perturbations. The current
data did not allow to further investigate which factors affect sensor
features and dynamics most. Still, this study demonstrates the
potential to use milk yield sensor features and resilience
indicators as a tool to quantify how cows perform in their
specific environment. The present variability suggests that it
could be possible in the future to select within farm for features
that best suit a farms’ breeding goal and environment in terms of
milk yield resilience.
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