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A B S T R A C T

Soil moisture (SM) datasets at high spatial resolutions are beneficial for a wide range of applications, such as
monitoring and prediction of hydrological extremes, numerical weather prediction, and precision agriculture.
For large scale applications in particular, remotely sensed SM has advantages over in situ data because it
provides gridded estimates and because it is less labour-intensive. However, until present, active microwave
SM data have not been presented at their native spatial resolution, since the quality of these data is limited
by speckle.

We explored the potential and limits of high spatial resolution of active microwave SM observations. We
used a Sentinel-1 C-band SAR SM dataset at six spatial resolutions ranging from 20 × 20 to 120 × 120 m2.
This was compared to a closely spaced (20 m) in situ dataset collected on a non-irrigated agricultural field
(±2.5 ha) in the Southeast of Luxembourg.

A comparison of the field and satellite datasets demonstrated how Sentinel-1 data with a high spatial
resolution can be used to quantify temporal within-field SM variability. SM was accurately estimated at spatial
resolutions of 60 × 60 m2 and coarser, where the temporal correlation was found to be 0.67 and sub-field
variations in SM were still detected. Spatial correlation was limited by the absence of SM variability within
the field.

These results indicate that high spatial resolution SM estimates from Sentinel-1 data can be valuable for
monitoring temporal SM variations within agricultural fields.
1. Introduction

Soil moisture (SM) is an important variable in the water cycle
as it controls the exchange of both water and energy between the
land surface and the atmosphere (Seneviratne et al., 2010; Vereecken
et al., 2014), in particular during droughts and heatwaves (Miralles
et al., 2019; Teuling, 2018). SM observations at high spatiotemporal
resolutions can improve numerical weather prediction (Lagasio et al.,
2019b,a), serve applications such as precision agriculture (Vereecken
et al., 2014), and enhance monitoring and prediction of hydro-
meteorological disasters (Wood et al., 2011; Bierkens et al., 2015; Peng
et al., 2021; Vergopolan et al., 2021).

In situ SM observations, though accurate, are still scarce because
of costs and man-hours involved in acquisition, installation, and main-
tenance of sensors. Furthermore, observations are effectively made at
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point scale and thus lack spatial representativeness and spatial cover-
age (Teuling et al., 2006; Seneviratne et al., 2010; Crow et al., 2012;
Babaeian et al., 2019; Peng et al., 2021). Remotely sensed SM products,
on the other hand, are less labour intensive and provide a gridded
estimate of SM with a large spatial coverage. Consequently, these data
can be assimilated in hydro-meteorological models directly (Hostache
et al., 2020).

Several global or continental gridded SM datasets are currently
available (Peng et al., 2021), such as ESA CCI soil moisture (Gruber
et al., 2020), NASA USDA Global Soil Moisture Data, and Copernicus
Global Land service Surface Soil Moisture (CSSM). These open data
can be very useful for modelling studies thanks to their large-scale
coverage. However, their spatial resolution (0.25 deg, 0.25 deg, 1 km,
respectively) does not yet allow for SM monitoring at the scale of
vailable online 24 May 2023
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individual fields or even at the sub-field scale that is most relevant for
(precision) agriculture.

SM can be observed at sub-field scales with the use of active mi-
crowave data, as provided for instance by the Sentinel-1 (S1) satellites.
Active microwave sensing has the benefits of a high native spatial
resolution, and can be performed day and night and under all weather
conditions (Babaeian et al., 2019). On the other hand, SM retrieval ac-
curacy is hampered by uncertainties caused by speckle, surface rough-
ness, the presence of vegetation, water bodies, and frozen soils. These
uncertainties have to be accounted for in the SM retrieval and might
limit the effective spatial resolution at which SM can be inferred.

An integral part of any SM retrieval is the forward model that
predicts the backscatter for given surface conditions. Multiple for-
ward models exist, such as the physical Advanced Integral Equation
Model (Fung et al., 1992), the Water Cloud Model (Attema and Ulaby,
1978), and the semi-empirical Oh model (Oh, 2004). The Oh model has
been applied successfully in many SM retrieval studies (e.g. Choker
et al., 2017; Pulvirenti et al., 2018; Wang et al., 2018; Ezzahar et al.,
2020). Retrieval algorithms are even more numerous, with differ-
ent underlying methods to account for uncertainties, such as change
detection (e.g. Wagner et al., 1999; Balenzano et al., 2011; Bauer-
Marschallinger et al., 2019), artificial neural network (Del Frate et al.,
2003; Elshorbagy and Parasuraman, 2008; El Hajj et al., 2017; Hachani
et al., 2019), or multiple least squares (Mattia et al., 2009; Kim et al.,
2014; Pierdicca et al., 2014; Zhu et al., 2019) methods.

In addition to the retrieval process, evaluating the accuracy of SM
retrievals with high spatial resolutions poses it own challenges (Gruber
et al., 2020). Since in situ SM data lack spatial representativeness,
the reference in situ point dataset must be of sufficient spatial den-
sity (i.e. small spacing, Western and Blöschl, 1999) and account for
sampling uncertainty. Big efforts have been made to monitor SM and
to make these datasets publicly available, such as in the International
Soil Moisture Network (ISMN, Dorigo et al., 2021) or during numer-
ous ground validation experiments (SGP97,NAFE’06,SMAPVEX12, 16,
SMAP Cal/Val Colliander et al., 2015, 2017, 2019). Unfortunately,
currently available in situ datasets like these do not have sufficiently
small spacing and/or their measurement period does not overlap with
S1 acquisitions. Dedicated field experiments using robust and intensive
spatio-temporal sampling are required for a fair analysis of a satellite
dataset on multiple high spatial resolutions: the pixel-average in situ
SM must be known at all of the studied resolutions. For that rea-
son, a field campaign with small spacing was set up in Luxembourg,
where topography is limited and a strong seasonality in surface SM
exists (Matgen et al., 2012).

We hypothesise that even S1 data at its native spatial resolution
contains relevant information on sub-field moisture conditions and aim
to find the minimal spatial resolution at which speckle still allows for
accurate SM estimates. For this purpose, we use a multitemporal pixel-
based algorithm introduced by Pulvirenti et al. (2018) to retrieve SM
at different high spatial resolutions (20 × 20 – 120 × 120 m2). The
S1 retrieved SM dataset was then evaluated against an in situ dataset
whose spacing matches the S1 native spatial resolution. This dataset
resulted from a field campaign on a non-irrigated agricultural field of
±2.5 ha in the Southeast of Luxembourg during 2020 and 2021. The
evaluation for the entire time period is supplemented with a case study,
entailing a short period with strongly varying SM conditions. We then
discuss benefits and limitations of SM monitoring at these high spatial
resolutions.

2. Study area and data

2.1. Study area

We focused our study on a non-irrigated agricultural field (±110 by
250 m) in South-eastern Luxembourg (Fig. 1). Luxembourg is located
in Central Western Europe and marked by its moderate climate. The
2

Fig. 1. Location of the study area and the sampling points for the reference dataset
(centre at 6.31774◦E, 49.51109◦N). At each of the 72 sampling points, five TDR
measurements were taken, of which an example lay-out is given in the circular inset.
In total, 360 TDR measurements were thus taken per measurement day.

field’s soil can be classified as a moderately gleyic clay on a calcareous
substrate, according to the Luxembourgish Geoportal. Their high spatial
resolution elevation data shows a slight slope in the field from the
northern to the southern corner (±9 m elevation difference, Fig. A.14).

This specific field was chosen for its close proximity to a per-
manent meteorological station, and because of its availability for in
situ measurements over a long time period. The long time period
was necessary in order to obtain measurements at a large range of
moisture conditions. Vegetation state in the field varied throughout
the measurement period (Fig. A.13): during the 2020 growing season
maize covered the field, and winter wheat was sown in the fall of 2020.
The winter wheat grew to a few cm before low temperatures stagnated
their growth, hence a slight coverage of vegetation was present in the
2020–2021 winter season. Growth then continued from March onward.

2.2. In situ data

In situ SM data were gathered in the field 38 times between March
2020 and June 2021 (with a gap in between April and September 2020,
Fig. 2), on all days coinciding with S1 overpasses and under varying SM
and weather conditions. On each campaign day, five SM measurements
were taken at each location on a 12 × 6 grid, with a grid spacing of
approximately 20 meters (Fig. 1). SM was measured with a FieldScout
Time Domain Reflectivity (TDR) 350 with 3.8 cm metal pins. These
short pins were used to have a similarly superficial measurement depth
as the S1 retrieved SM estimates. Additionally, on some of the field
days, 12 volumetric soil samples were taken at random TDR sampling
locations. The soil samples were then weighed, oven-dried for 24 h, and
weighed again to determine the soil bulk density and the SM. These
SM values were used to calibrate the TDR measurements. Finally, on
field days, vegetation height was determined at various locations in the
field to be compared with NDVI data. No roughness measurements were
performed.

At a nearby permanent meteorological station (6.32893◦E,
49.49475◦N), hydrometeorological variables such as SM (at 10, 20, 40,
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60 cm depth), air temperature, and precipitation are measured con-
tinuously. These data were used in the analysis, where meteorological
conditions in the field were assumed to be similar to conditions at the
station.

2.3. Satellite data

Amongst the presently available active microwave sensors (see
e.g. Babaeian et al. (2019)), S1 data is the most promising: ESA freely
provides S1 data at a 20 × 22 m2 resolution (ESAS̃entinelÕnline,
2023), keeps the satellites under a strict acquisition scenario, and is ex-
pected to continue these observations for the next few decades (Bauer-
Marschallinger et al., 2019; Peng et al., 2021). Every S1 orbit provides
backscatter data at the exact same location every 6 days. Data from two
different descending orbits (RO37 and RO139) were retrieved, with an
average local incidence angle (LIA) of respectively 33.5◦ and 42.1◦ over
the study area. S1 data were downloaded in Level-1 high resolution
Interferometric Wide (IW) swath ground-range detected (GRD) format
in VV polarisation for the days indicated in Fig. 2.

As an indication of vegetation state over the study area, Normalized
Difference Vegetation Index (NDVI) data were used. These data were
derived from Level-2 optical data from the Sentinel-2 (S2) satellite.
Although each S2 orbit has a five day revisit frequency, fewer data
were available for this study because only images that are cloud-free
over the study area were used. Moreover, only data from the 108 orbit
were used. Data were finally retrieved on days shown in green in Fig. 2.

The 100 × 100 m2 resolution Corine Land Cover map 2018 was
used as land cover input data for the soil moisture retrieval algorithm.
Although this is at a lower spatial resolution than the other input data,
the results of the present study are not affected since the studied field
is characterised under the same land cover type. Finally, the digital
elevation model (DEM) over the study area was extracted from the
Shuttle Radar Topography Mission (SRTM) (EROS, 2017).

3. Methods

3.1. Pre-processing

Prior to the analyses, the five TDR measurements at each sampling
location were averaged to obtain a single value per location. Then, raw
TDR data were calibrated making use of the volumetric SM samples
(Fig. 3). A linear relationship existed between the two measurement
types, so that a linear transformation could be applied to all raw TDR
data: TDR=0.098+0.97 ⋅rawTDR. The analyses described here were
performed with these calibrated TDR data.

S1 GRD backscatter intensity data (𝜎0) were preprocessed with
ENVI SARscape. The precise orbit files were applied, thermal noise
was removed, and data were radiometrically calibrated, multi-looked
(4 pixels in the range direction) and geocoded using the STRM DEM
on the WGS 84/UTM zone 32N coordinate system to finally obtain a
square pixel of 20 × 20 m2. The LIA and the slope over the study area
were also extracted using the SARscape tool.

S2 optical data was converted to NDVI data with ESA’s Sentinel
Application Platform (SNAP) 7.0 tool.

3.2. Soil moisture retrieval

3.2.1. The retrieval algorithm
The MUltitemporal LEast Square Moisture Estimator (MULESME)

algorithm (Pulvirenti et al., 2018) is a multitemporal physically-based
algorithm. It has been evaluated previously and has been shown to ac-
curately estimate SM on a pixel-by-pixel basis (Pulvirenti et al., 2018).
The inversion of SM content and surface roughness is performed in each
pixel using an least-square-errors approach. The algorithm assumes
that SM content changes considerably faster than surface roughness,
3

and in doing so reduces the ill-posedness of the soil moisture retrieval
Fig. 2. Overview of the timing of S1 (RO37, RO139), S2, and in situ data acquisitions.

problem (Pierdicca et al., 2014). If only one image was used, there
would be two unknown values (soil moisture and roughness) and one
known value (backscatter) per pixel. By using five images over a period
with constant roughness, the number of knowns increases to five, but
the number of unknowns only increases to six. Over shorter periods,
the constant roughness assumption is more likely to be valid. Over
longer periods, the estimation accuracy is higher but computation time
increases dramatically. The use of five images is thus a compromise
between accuracy and efficiency (Pierdicca et al., 2014). For more
information on the algorithm and its underlying theory, we refer to
Section 3.2.2, Pierdicca et al. (2014) and Pulvirenti et al. (2018).

In comparison to other retrieval algorithms, the first advantage
of the MULESME algorithm is that it is versatile in its application
since it can be run on a varying spatial resolution ’on demand’. Sec-
ondly, the algorithm does not require a calibration for every pixel
since the underlying empirical equations have been calibrated. This
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Fig. 3. A comparison of the two in situ measurement approaches. The 𝑥-axis shows the
SM content as measured by the TDR device, and the 𝑦-axis the SM content as derived
from the soil samples. The dashed line shows the linear regression model and the solid
line follows the 1:1 line.

pixel-by-pixel calibration is required for other methods relying on the
availability of a long record of backscatter data (Bauer-Marschallinger
et al., 2019). Thirdly, MULESME implements a multitemporal approach
which enables us to mitigate the uncertainty caused by roughness.

The MULESME algorithm first resamples all input data (LIA, 𝜎0,
NDVI, slope, land cover) to the specified spatial resolution. Then, each
𝜎0 pixel is corrected as described in Section 3.2.2. SM and surface
roughness are finally inverted, making use of a look up table (LUT) that
contains 7956 unique combinations of backscatter, SM, roughness and
LIA based on the Oh forward model using a least-squares minimisation
approach. The use of a LUT is considerably faster than computing the
forward model repeatedly (Pulvirenti et al., 2018).

One MULESME run finally results in five S1 SM maps, and a unique
roughness map. The algorithm was run with a temporally moving
window of five 𝜎0 images: for each new run, one new 𝜎0 image was
added and the eldest one was removed from the computation (Fig. 4).
This was repeated until all the S1 images indicated in Fig. 2 were
processed. The two different orbits were processed separately to ensure
constant geometrical acquisition conditions (e.g. the same incidence
angle) between the five consecutive backscatter images. Then, the SM
maps were further processed (Section 3.3) and the roughness maps
could be analysed immediately. Although no site-specific calibration
was performed, estimated roughness conditions did approach their
boundary conditions (Fig. 5) and their temporal dynamics were as ex-
pected, with large changes occurring only during sowing and harvesting
of the crops (Bousbih et al., 2017).

3.2.2. Minimising retrieval uncertainties
Several uncertainties in the retrieval have to be accounted for in the

analysis, most notably speckle, surface roughness, frozen soils and the
presence of vegetation.

Speckle in the 𝜎0 image is caused by inhomogeneities in the scatter-
ing natural target and results in grainy backscatter images (Lee, 1986).
Speckle is generally reduced with spatial aggregation (e.g. Attarzadeh
et al., 2018; Tripathi and Tiwari, 2020) or dedicated speckle filter-
ing (e.g. Schönbrodt-Stitt S. Ahmadian et al., 2021). In this case, we
only multi-looked the image 4 times in the range direction because
we aimed to catch SM variation at a high spatial resolution. Applying
a more rigorous speckle filter could hamper this since variations in
backscatter could be interpreted as speckle rather than SM variation.

Surface roughness influences the scattering of microwaves and is
corrected by assuming that moisture conditions change faster than
roughness conditions (Pulvirenti et al., 2018).
4

Fig. 4. Graphical illustration of the moving window approach.

Frozen soils decrease dielectric constant of the soil substantially (de
Rosnay et al., 2006; Hallikainen et al., 1985) and are therefore flagged
and removed after retrieval. Images acquired at a time when air temper-
atures at the meteorological station dropped below 2 ◦C were excluded
from the computation of the temporal performance metrics. They were
included in the spatial analysis because in that case the data show
how frozen soils affect the retrieval, but do not influence performance
metrics for the entire time period.

Vegetation water content influences the scattering of the microwave
signal and is often corrected in the retrieval as a dynamic parameter
that changes in time, as does MULESME. It uses NDVI as a proxy for
Plant Water Content (PWC), which is used to correct the 𝜎0 images
for signal scattering by vegetation following Section 2.3 in Pulvirenti
et al. (2018). PWC is derived from the NDVI images with an empirical
equation that depends on the land cover of the pixel. The studied field is
located in an area classified as agricultural, and as such, the conversion
follows Eq. (1) (Chan et al., 2011).

PWC = (1.9134 ⋅ NDVI2 − 0.3215 ⋅ NDVI) +

3.5 ⋅
(NDVI − 0.1)

0.9
(1)

𝜎0 is corrected for the vegetation signal if 0.25 kg∕m2 < PWC ≤
5 kg∕m2. When PWC > 5 kg∕m2, the pixel is masked from the backscat-
ter image.

Backscatter pixels that are higher than −2 dB or lower than −18
dB after vegetation correction are masked out, since these values lie
outside of the range of backscatter values under which soil moisture
can be accurately retrieved (Pulvirenti et al., 2018).

3.3. Post-processing

During post-processing, any MULESME runs that included a known
roughness change (e.g. due to ploughing in Oct 2020, Fig. A.13) were
removed from the analysis. Moreover, SM images were averaged to cre-
ate a single ensemble mean per overpass day (Fig. 4, Zhu et al., 2020;
Lee et al., 2021). A combination of a moving window and this averaging
has two advantages. First, a moving window allows us to work with a
shorter set of images so the hypothesis of constant roughness is more
reasonable. Second, the averaging reduces the uncertainty in the SM
estimate by exploiting more backscatter measurements.

Then, lower spatial resolution SM maps were created (i.e. 40 × 40,
60 × 60, 80 × 80, 100 × 100 , 120 × 120 m2) by multi-looking the retrieved
20 × 20 m2 SM map. Although multi-looking before SM retrieval is
a more common approach to reduce speckle, this approach leads to
the mixing of pixels that potentially have different SM, vegetation
and roughness conditions. This could hamper SM retrieval, especially
at high spatial resolutions. By retrieving SM first, and multi-looking
second, different conditions are accounted for in the retrieval. Both this
approach and the inverse (i.e. retrieving after multilooking) have been
tested in a synthetic experiment and over the study area, of which the
results are presented in van Hateren et al. (2023). They showed that
multi-looking after retrieval results in higher retrieval accuracy.
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Fig. 5. Illustration of the temporal dynamics of inferred roughness during the field campaign, provided in root mean square surface height [cm]. Boxplots with their minimum,
5th quartile, median, 75th quartile, maximum, and outliers as dots, are provided for every overpass day. The left panel shows results for RO37 and the right panel for RO139.
.4. Data analysis

The accuracy of the SM images was evaluated by comparing the S1
etrieved SM maps to the in situ reference data at all six derived spatial
esolutions. To that end, the in situ SM data were converted from point
o raster data by averaging all TDR estimates located in the overlying
ixel. Then, S1 retrieved and in situ SM images were compared to
nalyse the satellite’s ability to capture the spatial SM variability.

We also computed two performance metrics to quantify the accu-
acy and error of the SM retrieval at the six different spatial resolutions:
patial and temporal Pearson correlation coefficient (r, Eq. (2)) and spa-
ial and temporal unbiased root mean square error (ubRMSE, Eq. (3)).
he RMSE quadratically penalises any deviation from in situ observa-
ions, but is sensitive to any bias in the data. The ubRMSE removes
hat from the equation and is thus useful for SM datasets, since in their
pplication, an accurate estimate of the temporal SM variation is more
elevant than its exact value (Reichle et al., 2007; Entekhabi et al.,
010). The Pearson correlation is a useful addition as it quantifies the
greement in space or time between the satellite dataset and the in situ
ataset.

=
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥)
√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦)2

√

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

(2)

ubRMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
((𝑦𝑖 − ME) − 𝑥𝑖)2 (3)

ME = 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖 − 𝑥𝑖 (4)

In Eqs. (2) – (4), 𝑦 stands for the estimated SM, 𝑥 for the in situ observed
SM, 𝑛 for the number of samples and 𝑖 for each individual pair of
observations.

3.5. Comparison with copernicus surface soil moisture

To confirm the suitability of the MULESME algorithm for SM re-
trieval, we not only include a comparison of MULESME SM to a field
study, but also to results of the more widely used TU Wien Change
Detection model (Bauer-Marschallinger et al., 2019). This model has
been used by the Copernicus Global Land Service to operationally
retrieve global SM from S1 on a 1 × 1 km2 resolution (CSSM dataset,
https://land.copernicus.eu/global/products/ssm). Whereas MULESME
retrieves absolute SM based on the forward Oh model, the TU Wien
5

model interprets changes in backscatter as changes in SM and thus ends
up with a relative estimate of SM in % saturation.

We performed a comparison with MULESME SM aggregated to
the same spatial resolution and with average field in situ values. All
three datasets were filtered for frozen soils and adverse vegetation
conditions. We hypothesised that MULESME SM trends align with TU
Wien SM trends, and assume that will be the same on higher spatial
resolutions. Conclusions drawn in applying this method will therefore
likely be transferable to the use of a different algorithm.

4. Results

4.1. Soil moisture conditions during field campaign

Data for the full time period are provided in the appendix.
Although a temporal average of SM (Fig. 6) shows that SM was

not homogeneous in the field, spatial variability within the field was
considerably smaller than temporal variability. On days coinciding with
the 139 overpass (RO139), the field was slightly wetter than on days
coinciding with the 37 overpass (RO37). A wetness gradient in the field
from northwest to southeast is visible in the high resolution satellite
images (i.e. 20, 40, 60 m), but it can no longer be detected in the images
with a larger pixel size. The gradient is comparable between the in situ
and satellite data and between the RO37 and RO139 data. However,
a clear bias exists in the results: the temporally averaged TDR values
range from 0.30 to 0.40, whereas the satellite values range from 0.16
to 0.26.

4.2. Temporal metrics

The bias in average SM conditions is also apparent in the temporal
SM dynamics (for the complete dataset we refer to the appendix:
Fig. B.15,B.16). The centre panel in Fig. 7 shows the S1 retrieved SM
time series, as well as air temperature and daily precipitation at the
permanent station at the time of the satellite overpass. The time series
show that the bias between satellite and in situ data is slightly more
severe in the RO37 data than in the RO139 data. At the same time,
the temporal evolution is generally well described in the satellite data:
The impact of the presence and absence of precipitation can be seen in
increasing and decreasing SM conditions, in satellite as well as in situ
data.

Differences in performance can be observed for different field condi-
tions. Some examples are highlighted in Fig. 7. In periods highlighted in

https://land.copernicus.eu/global/products/ssm


International Journal of Applied Earth Observation and Geoinformation 120 (2023) 103342T.C. van Hateren et al.
Fig. 6. Temporal average of SM content throughout the field measurement campaign. The points in the first column show the in situ TDR data, and the pixels in the remaining
columns show the S1 SM data on six different spatial resolutions. The two rows show the data for the two different orbits, and thus for different days in the measurement period
(Fig. 2). Data were removed from the analysis when temperatures were below 2 ◦C, when standing water was observed on the field and when vegetation hampered the SM retrieval
(Section 4.2).
green (Fig. 7a, b, c, e), the S1 SM estimates follow the in situ temporal
dynamics rather well. The photos taken in the field during these periods
show that soils were bare or covered with only minimal amounts of
vegetation. Moreover, the meteorological conditions were moderately
wet and moderately warm, with temperatures rarely dropping below
2 ◦C. A bias in the results still persists, albeit less so in October
2020 (Fig. 7b). In that period, temperatures stayed above 5 degrees
and precipitation occurred almost daily. In contrast, January 2021
(Fig. 7d) showed especially challenging conditions for SM retrieval. Air
temperatures were very low (<2 ◦C) for the first half of the month.
This led to frozen soils in mid January, when satellite estimates of
SM dropped to values of around 0.1, a clear underestimation of actual
moisture conditions. At the end of the month, frozen soils made way
for standing water on the field. This caused specular reflection that
decreased the backscatter intensity and again led to an underestimation
of SM conditions.

In April–May 2021 (Fig. 7f), vegetation hampered accurate SM
retrievals. S1 SM estimates dropped to extremely low values rapidly
before in situ conditions reflected this drop. S1 SM estimates did also
not reflect the expected signal after precipitation in the beginning of
May. The reduction in estimation accuracy in this period coincides with
a period of large uncertainty in roughness estimates (Fig. 5), that are
suddenly extremely low starting from mid April 2021, likely due to the
presence of vegetation. The vegetation attenuates the 𝜎0 signal, and
the algorithm is unable to distinguish this attenuation from surface
scattering. Hence, the backscatter is low not because of low SM, but
because of the small part of the signal that reaches the surface in the
first place.

Based on this analysis, several conditions that affect the perfor-
mance of S1 SM retrieval were filtered out before computing the
temporal metrics:

• days where air temperatures dropped below 2 ◦C;
• days where standing water was observed; and
• days during the height of the growing season (after 2021-04-15).

After filtering, 22 days with TDR measurements remained, 12 for the
RO37 data and 10 for RO139.

The temporal metrics for the two different orbits are visualised in
Fig. 8(a). The smaller amount of in situ data for RO139 leads to non-
significant correlations more often than for RO37: only at resolutions
lower than 80 m, the majority of pixels has a significant Pearson
correlation (P<0.05). For the RO37 data, this is already the case at
40 m. The temporal Pearson correlation (𝑟, Fig. 8(a)) is higher in the
RO37 data for high spatial resolutions, but for low spatial resolutions,
6

the RO139 data perform better. The RO37 20 m resolution has a
spatially averaged temporal 𝑟 with the in situ data of 0.39 (or 0.66 for
significant pixels). At 40 m resolution, the average correlation already
improves to 0.59 (or 0.68). The improvement in 𝑟 stagnates after 60 m
with a value of 0.67 (0.69) and does not get higher than 0.69 at a 100 m
resolution. In the RO139 data, 𝑟 improves until a lower resolution,
peaking at 0.76 at a 100 m resolution. Comparing the different pixels
within each resolution, spatial variation is limited for the RO37, except
on the 20 m resolution. For the 139 orbit, a higher spatial variation
exists, with higher correlations occurring in the northern part of the
field.

The temporal ubRMSE gives an indication how different the S1
SM estimates are from the in situ SM observations (Fig. 8(b)). At
lower spatial resolutions, the value decreases slightly from 0.09 to 0.05
(RO37) or 0.04 (RO139). Spatial variation in the ubRMSE is especially
apparent in the 20 m resolution images and is more pronounced in the
139 than the 37 orbit. In both cases, spatial variability decreases as
spatial resolution decreases.

4.3. Spatial metrics

Spatial metrics were computed for the entire field campaign, hence
including the days that were characterised by unfavourable retrieval
conditions. They are shown in Fig. 9 for each day on which field data
were collected, together with their averages over the entire time period.
To distinguish between favourable and less favourable conditions, tem-
perature and vegetation conditions are indicated in different shapes and
colours in the plot, respectively. Spatial metrics could not be computed
for the 120 m resolution because there was only one pixel at this size
that had more than 50% of its area located in the field (see Fig. 8).
It should also be noted that at lower spatial resolutions, fewer pixels
can be analysed and so the chances of finding a significant correlation
decrease.

The average spatial 𝑟 (printed in grey in Fig. 9) over the field is
low. In the case of RO37 (upper panels), 𝑟 increases as the spatial
resolution decreases, with its maximum at 0.232 at 100 m resolution.
For RO139 (lower panels), no clear trend exists between the average 𝑟
and spatial resolution. The highest 𝑟 does occur at the lowest spatial res-
olution, with a value of 0.062. In contrast, the average ubRMSE clearly
improves with increasing spatial resolution for both orbits. For both
orbits ubRMSE drops below 0.04 at 60 m resolution, further decreasing
to their respective minima at 100 m (RO139: 0.016; RO37: 0.017).
Differences in performance between the orbits are mostly visible at high
resolutions (up to 60 m), where RO37 outperforms RO139.
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Fig. 7. Illustration of the temporal SM dynamics during the field campaign. The centre panel shows TDR (purple) and S1 (green, orange) time series through the 2020–2021
winter and beginning of the 2021 growing season, with error bars indicating the standard deviation, and meteorological conditions: daily precipitation in blue and air temperature
at the time of overpass in red. Subplots a, b, c, d, e, and f zoom in on periods that are discussed in the manuscript. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
The separate shapes in Fig. 9 show the spatial performance metrics
for each day on which data were collected. The low average 𝑟 discussed
earlier is clearly not caused by outliers, since on most days the corre-
lation is rather low, especially at high spatial resolutions. Moreover,
in only a handful of cases the correlation was found to be significant
7

(P<0.05), shown by the filled shapes. In RO37, a significant correlation
was found on only two or three days for all studied spatial resolutions.
In most cases, these significant correlations were found to be positive.
Negative significant correlations only occur for temperatures below
2 ◦C, as shown by squares in the figure. For the RO139 on the other
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Fig. 8. Temporal performance metrics between S1 SM and in situ data, for all six different spatial resolutions studied here. Pixels with non-significant correlation values are
dashed. The grey text shows the metric averaged over the entire field, and the correlation for the significant correlations only are given between brackets. Data were removed
from the analysis when temperatures were below 2 ◦C, when standing water was observed on the field and when vegetation hampered the SM retrieval (Section 4.2).

Fig. 9. Spatial correlation and unbiased RMSE on each day of the field campaign, for different spatial resolutions (m). Colours show the value for field-averaged NDVI on that
measurement day. Filled shapes indicate that the correlation was significant (P<0.05) and shapes indicate the temperature range at the time of overpass. The text in grey shows
the average 𝑟 and ubRMSE. At a 120 m resolution, only one pixel is present in the field, so no values for spatial correlation exist and ubRMSE equals zero by definition.
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Fig. 10. Spatiotemporal SM dynamics in the field in February–March, 2021 at a 20,
40, and 60 m spatial resolution. The S1 SM is shown as pixels in the back and the
TDR measurements are plotted as points on top.
*Due to a lack of TDR data on 2021-02-27, TDR data from 2021-02-26 are shown.

hand, in all cases where correlation is significant, it is negative. Both
orbits show an increasing variability of 𝑟 at decreasing spatial resolu-
tions, shown by the spreading of values over the 𝑥-axis. Interestingly,
the ubRMSE shows an opposite trend in RO37: spread in the 𝑦-direction
decreases at lower resolutions. This trend is not visible in RO139. For
both orbits, the ubRMSE is lower than 0.05 for most days in 60, 80 and
100 m resolutions, but generally higher in 20 and 40 m resolutions.

Only one clear high ubRMSE outlier in the data exists at the 80 m
resolution for orbit 37. Low outliers are visible in the 20 and 40 m res-
olutions at RO37, interestingly on days with high NDVI values. Judging
from the temporal analysis in Section 4.2, this seems to be a coincidence
rather than a result with a physical basis: both increased vegetation
9

and decreasing water content result in the same change in backscatter
and occurred simultaneously in the early summer of 2021. In terms of
temperature, correlations are often negative when temperatures were
below 2 ◦C (squares in Fig. 9). No substantial difference was found
between the spatial metrics on days where temperature was between
2 and 4 ◦C (triangles) and days where temperature was higher than
4 ◦C (circles).

4.4. Case study

Both the temporal and spatial analysis indicated that differences in
retrieval accuracy exist between individual days. Even though spatial
correlations are generally low due to the low variability in the field, we
expect that under favourable field conditions, MULESME is able to cap-
ture temporal dynamics on a high spatial resolution. In this case study,
we zoom in to a period with favourable field conditions and a clear
temporal variation in SM (Fig. 7): February–March 2021. This analysis
is performed for the RO37 data only, since higher performances were
found at higher spatial resolutions compared to the RO139 data.

Fig. 10 shows that the first two studied days are drier than the last
two days. The biggest change in SM is observed between the 5th and the
11th of March. Temporal in situ SM trends are accurately represented in
S1 SM conditions: wetter in situ conditions correspond with wetter S1
SM conditions and vice versa. This is not true for all spatial resolutions.
At a 20 m resolution, the satellite retrieval shows spatially varying SM
in the field that is not present in the in situ data. At lower spatial
resolutions, the agreement between different pixels in space improves,
and patterns in situ data are better represented in the satellite data.
However, the earlier identified bias is still visible.

To further test whether temporal trends are accurately represented
in the MULESME output, we plotted the temporal variation in SM
content in the field for the 20, 40, and 60 m resolution (Fig. 11). The
satellite data does bear a distinct resemblance to the in situ data. The
daily variations show that trends found in spatially aggregated in situ
data are well visible in satellite data with high a spatial resolution. This
is especially true for the centre date pair, when SM levels increased
substantially. At comparatively stable SM conditions, such as in the
March 17th–11th pair, the satellite retrieval is less accurate. Even at
Fig. 11. Temporal difference between SM on subsequent field days in February and March 2021, at 20 m, 40 m, and 60 m resolution. Histograms show the distribution of values,
with a vertical line at zero and tick marks at every 0.1.
*Due to a lack of in situ data on 2021-02-27, in situ data from 2021-02-26 are shown.
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Fig. 12. A comparison between MULESME RO37 and Copernicus SM data at a 1 × 1 km
scale (top) and in situ and Copernicus SM data (bottom) over the field.

the 60 m resolution, large S1 SM changes are visible on the studied
field whereas no substantial change showed in the in situ data.

4.5. Copernicus data

To be able to put the MULESME analysis into context, we include
an analysis of the CSSM dataset over our field (Fig. 12). The CSSM
dataset has a spatial resolution of 1 × 1 km. Since our S1 retrieved
SM data has a higher spatial resolution, we spatially aggregated the
MULESME dataset to the same resolution and normalised them both to
their minimum and maximum values. The top part of Fig. 12 shows
the agreement between the two datasets in the 1 × 1 km pixel over-
laying the field. This shows a good agreement and a strong temporal
correlation (0.803) between both datasets. The bottom part of Fig. 12
shows the agreement between the Copernicus SM and the field average
in situ SM measurements. These also showed a good agreement, with a
temporal correlation of 0.778, compared to 0.583 between the 1 × 1 km
MULESME and the field average. This is lower than the MULESME
estimates at higher resolutions (Fig. 8(a)), indicating that further mul-
tilooking the data to lower resolutions reduces retrieval accuracies.
10
Fig. A.13. Time series of average NDVI in the studied agricultural field, where maize
was grown in the first growing season, and winter wheat in the second.

Fig. A.14. DEM over the studied agricultural field, slowing a mild slope over the field.

5. Discussion

We compared a SM dataset retrieved from S1 data with a high
spatial resolution with a high spatial resolution field dataset with
extended temporal coverage. This comparison showed that temporal
SM variability was well reflected in the satellite data, although per-
formance increased with decreasing spatial resolution (Fig. 8). Spatial
performance behaved similarly, but 𝑟 was generally low and ubRMSE
was generally high (Fig. 9). Taking into account differences in perfor-
mance dependent on field conditions, the optimal retrieval accuracy
was finally identified at a 60 m resolution using the RO37 data (i.e. the
equivalent of 36 looks of native S1 data). At that resolution, a good
average temporal correlation (0.67, or 0.69 only taking into account
significant 𝑟 values) was found and sub-field SM variation could still
be distinguished.
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Fig. B.15. All RO37 SM retrievals at 20 m resolution, overlain with in situ TDR data.
Performance of the satellite dataset depended on the satellite orbit
and on field conditions (Fig. 7), most notably on temperature, veg-
etation and wetness. The performance difference between the orbits
could be caused by their different incidence angles (Palmisano et al.,
2021). Frozen soils caused negative spatial correlation (Fig. 9) due
to the inverse relationship between backscatter and SM under these
conditions as compared to ‘‘normal’’ conditions (de Rosnay et al.,
2006; Hallikainen et al., 1985). The presence of vegetation increased
the bias of the S1 SM retrievals (Fig. 7), as previously found by
for instance (Bindlish and Barros, 2001; Zhang et al., 2021; Yadav
et al., 2020). However, the spatial correlation was barely affected by
increased NDVI values, and the ubRMSE was even lower at higher
11
NDVI values (Fig. 9). Based on the sudden decrease in estimated
roughness during the same period (Fig. 5), it seems that the increase
in performance is coincidental. Wheat attenuates backscatter especially
at high incidence angles due to its geometry (Mattia et al., 2003),
as does a decreasing moisture content that occurs simultaneously.
Decreasing backscatter and hence decreasing moisture estimates are
therefore likely caused by vegetation growth rather than decreasing
moisture conditions, indicating that S1 SM estimates were unreliable
in that period.

The case study showed that temporal variability could be described
better when clear variations in SM existed. Unfortunately, since the
study area was not irrigated, spatial variation in SM was limited
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Fig. B.16. All RO139 SM retrievals at 20 m resolution, overlain with in situ TDR data.
(Fig. 6). Meanwhile, a large spatial variability existed in S1 SM, es-
pecially in images with a high spatial resolution. This indicates that
the sub-field variation in SM is smaller than the spatial variation in
the backscatter data. This high spatial variation is not caused by the
retrieval algorithm, because the algorithm is pixel-based and so SM
values do not depend on neighbouring pixels. The spatial variations in
S1 SM were thus caused by speckle, indicating that at high spatial res-
olutions, the spatial signal is smaller than the noise. Speckle introduces
spatially uncorrelated fluctuation, whereas it is quite correlated in time
due to the small orbital tube of S1 (Torres et al., 2012). Hence, temporal
variation in speckle is limited. This explains why temporal performance
was better than the spatial performance. High spatial resolution S1 data
12
thus contain information on temporal variability of SM that could be
further exploited.

While speckle did influence SM retrievals at a high spatial resolu-
tion, a correlation with reference data as high as 1 is near to impossible
because in situ data have their own uncertainties. Uncertainties in SM
observations are a common issue: due to small-scale variations in SM
caused by for instance local topography, heterogeneous soil properties
and plant water uptake, point scale SM can be different from gridded
SM (e.g. Western and Blöschl, 1999; Teuling et al., 2006; Famiglietti
et al., 2008; Vereecken et al., 2008; Babaeian et al., 2019). The uncer-
tainty of in situ SM observations makes it difficult to relate the in situ
SM to the ground truth. Therefore the uncertainty was limited as much
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as possible by taking five measurements at each sampling location and
by calibrating the data with volumetric soil samples.

The MULESME algorithm assumes that roughness in each pixel
remains constant over the five considered backscatter images. The
assumption of constant roughness always is a major part of a multitem-
poral algorithm, but the way this assumption is handled depends on the
algorithm. Results from a second multitemporal algorithm (TU Wien)
were therefore also compared to the in situ data. This analysis showed
that the TU Wien algorithm results in higher temporal correlations than
the MULESME dataset. At the same time, the MULESME dataset was
able to accurately depict temporal SM variations at a much higher
spatial resolution. In light of the high temporal correlation between the
two products at a 1 × 1 km resolution, we believe that the use of a
ifferent SM retrieval algorithm for the present study would not have
onsiderably affected the results.

The measurements presented in this paper were made in a mod-
rate climate under varying moisture, meteorological and vegetation
onditions. Since the entire range of valid SM conditions was observed,
he chosen location for the field campaign had sufficient seasonality
n moisture conditions, as well as sufficient different meteorological
onditions and vegetation states. Finally, the studied field is a ‘‘normal’’
gricultural field by European standards in terms of size, slope and soil
ype. Because of these wide ranging conditions, conclusions from this
tudy are expected to be valid under most conditions and perhaps even
n other climatic zones.

. Conclusion and outlook

A high spatial resolution SM dataset resulting from S1 backscatter
ata was used to explore the limits in spatial resolution of active
icrowave SM measurements. The performance of this 6-day dataset
as evaluated with a closely spaced in situ SM data that was collected

n a dedicated field campaign in Southeastern Luxembourg. This com-
arison showed that the optimal retrieval accuracy could be found
t a 60 m resolution, equivalent to 36 looks on a native S1 spatial
esolution: a good average temporal correlation was found and spatial
ariation could still be distinguished. Spatial correlation, on the other
and, was low, likely due to the limited spatial variability over the field.
case study under favourable field conditions did show that short-term

M variability could be captured on a 60 m resolution regardless of the
ow spatial correlation.

Though high spatial resolution SM data have been presented before,
o the best of our knowledge, this is the first time that they were
ompared to an extensive in situ dataset whose spacing matches the
1 native spatial resolution. We demonstrated that high resolution
ackscatter intensity images can contain temporal information on SM
t a spatial scale smaller than the field scale, and future research
hould focus on further exploiting this merit. Another path to explore
ould be an analysis on a larger scale, with larger spatial variability in
M, thereby also including other land cover types, soil types and soil
extures. It would be interesting to study how large scale SM monitoring
n high resolutions would compare to a similar analysis on lower
esolutions. Sub-field variations might be of significant importance for
he evolution of SM droughts and can thus be of interest for the drought
ommunity, as well as for precision agriculture applications.
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