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Abstract

Strain AMPT has been previously suggested as a strain of the species Moorella thermoacetica Jiang et al. 2009 (based on the high 
16S rRNA gene identity, 98.3 %). However, genome-based phylogenetic analysis of strain AMPT reveals that this bacterium is in 
fact a novel species of the genus Moorella. Genome relatedness indices between strain AMPT and Moorella thermoacetica DSM 
521T were below the minimum threshold values required to consider them members of the same species (digital DNA–DNA 
hybridization, 52.2 % (<70%); average nucleotide identity, 93.2 % (<95%)). Based on phylogenetic and phenotypic results we rec-
ommend that strain AMPT (DSM 21394T=JCM 35360T) should be classified as representing new species, for which we propose 
the name Moorella caeni sp. nov.

INTRODUCTION
There are currently five species in the genus Moorella with validly published names: M. thermoacetica (type strains, DSM 521T 
and DSM 2955T), M. glycerini (type strain, DSM 11254T), M. mulderi (type strain, DSM 14911T), M. humiferrea (type strain, 
DSM 23265T) and M. stamsii (type strain, DSM 26217T), all with publicly available genomes (https://img.jgi.doe.gov). The first 
representative of the genus Moorella, strain DSM 521T, formerly Clostridium thermoaceticum, was isolated in 1943 by Fontaine 
et al. from horse faeces [1] and was used as model organism for the elucidation of the Wood–Ljungdahl pathway [2–5]. In 1983, 
another representative of this strain was re-isolated from a dried spore stock by Kerby and Zeikus [6] and deposited at DSMZ 
under number DSM 2955T; these authors also showed that this acetogen could grow autotrophically on CO or CO2/H2. The genus 
Moorella was created in 1994, after a reorganization of the genus Clostridium [7]. Moorella sp. strain AMPT (DSM 21394T) was 
isolated from a high-temperature methanogenic bioreactor fed with methanol, and its physiology was described by Jiang et al. [8]. 
In that study, strain AMPT was phylogenetically assigned as a new strain of M. thermoacetica, based on 16S rRNA gene identity 
(98.3 %) and an empirical DNA–DNA hybridization (DDH) of 75.2±4.7 %. In a more recent genomic comparison of Moorella 
strains, it was suggested [9] that strain AMPT is yet another Moorella species; based on average nucleotide identity (ANI) analysis 
on a MUMmer alignment, strain AMPT has an ANIm of 94 % with M. thermoacetica, which is below the threshold for the species 
boundary. Here, we provide the genomic and physiological evidence that strain AMPT represents a novel species of the genus 
Moorella, for which we propose the name Moorella caeni sp. nov. (DSM 21394T=JCM 35360T).

ENRICHMENT AND ISOLATION
Isolation of strain AMPT from a methanol-fed hight-temperature methanogenic bioreactor has been previously reported by 
Jiang et al. [8]. Here, we give an overview of the isolation procedure. Enrichment cultures were inoculated with granular sludge 
from a high-temperature (55 °C) lab reactor fed with methanol (for 130 days) [10, 11]. The source of original sludge was a pilot 
plant upflow anaerobic sludge bed (UASB) reactor treating paper mill wastewater at 55 °C (Paques Biosystems BV, Baulk, The 
Netherlands) that had been inoculated with mesophilic granular sludge from a UASB reactor treating paper mill wastewater at 
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40 °C [10]. Granules were crushed under anaerobic conditions, previous to inoculation in 120 ml serum bottles containing 50 ml 
sterile bicarbonate-buffered anaerobic medium prepared as described by Stams et al. [12]. Medium was supplemented with 
trace elements and vitamins, but was cobalt-deprived [13]. Headspace of the bottles was filled with N2:CO2 (80 : 20 %, v/v at 1.7 
atm). Enrichments were incubated at 55 °C in the dark without shaking. Cultures were successively transferred to fresh medium 
upon methanol consumption. Initially (first seven transfers) methanol was added at a final concentration of 28 mM [13], and 
subsequently to a concentration of 40 mM [8]. After enrichment, the culture was dominated by a spore-forming bacterium and 
a rod-shaped methanogen [8]. Isolation of the spore-forming bacterium was achieved by repeated serial dilutions in methanol-
containing medium (with addition of CoCl2) using an autoclaved (121 °C for 1 h) culture as inoculum, as detailed by Jiang et 
al. [8]. Purification of strain AMPT was done by picking colonies from soft-agar surface and further dilution in liquid medium 
containing the methanogenesis inhibitor bromoethanesulfonate (10 mM) [8]. The pure culture of strain AMPT was deposited at 
DSMZ in 2003 (DSM 21394T). In 2022 we deposited the strain also at the Japan Collection of Microorganisms (JCM 35360T).

GENOME FEATURES AND PHYLOGENY
The genomes of strain AMPT and of other type strains of Moorella species are available in GenBank [14]; assembly accession 
numbers and general properties of the genomes used here for digital DNA–DNA hybridization (dDDH) and ANI analyses 
are summarized in Table 1. Besides the two M. thermoacetica type strains (DSM 521T and DSM 2955T) we also included  
M. thermoacetica ATCC 39073 in the comparison, as the physiology of this strain has been well studied.

dDDH calculations were done using the Type (Strain) Genome Server (TYGS), a free bioinformatics platform available at https://​
tygs.dsmz.de, for a whole genome-based taxonomic analysis [15, 16]. All pairwise comparisons among the set of genomes were 
conducted using genome blast distance phylogeny approach and accurate intergenomic distances inferred under the algorithm 
‘trimming’ and distance formula d5 [17]. Digital DDH values and confidence intervals were calculated using the recommended 
settings of the Genome-to-Genome Distance Calculator 3.0 [16, 17]. The dDDH values between strain AMPT and other Morella 
species (Table 1) were well below the typical 70 % cut-off value for species delineation [18], indicating that strain AMPT represents 
a novel species of the genus Moorella.

ANI values were calculated with scripts from the enveomics package [19] using blastp (ANIb) [20, 21]. Calculated ANIb 
between strain AMPT and M. thermoacetica type strains (Table 1) were the below 95 % ANI (used as the minimum threshold 
for definition of same species [22, 23]), once more indicating that strain AMPT is a novel species of the genus Moorella.

Table 1. General genome features and pairwise dDDH and ANI comparisons of strain AMP vs. type strain genomes of the genus Moorella

Results obtained from the comparison with the closest relative M. thermoacetica (type strains DSM 521T and DSM 2955T and with M. thermoacetica ATTC 
39073) are highlighted in grey. All values shown are in %; C.I., confidence interval. dDDH values and G+C content difference obtained with TYGS [15, 16]; 
results with formula d4 are shown according to recommendation for comparison of incomplete genomes [17]. ANIb values obtained with enveomics 
package [19, 24].

Genome features Genome comparison
(with strain AMP as query strain)

Assembly accession nr. Genome size
(MB)

G+C content (mol%) dDDH (d4) [C.I] ANIb G+C content 
difference

Strain AMP GCA_001875325 2.6 57.3  �   �   �

M. thermoacetica
DSM 521T

GCA_001267405  �  2.5 55.5 52.2 [49.5–54.8] 93.20 1.06

M. thermoacetica
DSM 2955T

 �  GCA_001267435 2.6 55.8 52.3 [49.6–55.0] 93.22 1.20

M. thermoacetica
ATCC 39073

GCA_006228565 2.6 55.8 52.4 [49.7–55.0] 93.20 1.20

M. mulderi
DSM 14980T

GCA_001594015 3.3 53.6 23.2 [20.9–25.7] 80.88 2.46

M. stamsii
DSM 26217T

GCA_002995805 3.3 57.3 23.1 [20.8–25.6] 81.20 3.20

M. glycerini
DSM 11254T

GCA_009735625 3.6 54.5 23.6 [21.3–26.1] 81.01 2.27

M. humiferrea
DSM 23265T

GCA_002995755 2.6 53.5 21.3 [19.1–23.7] 79.76 3.49
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16S rRNA genes were used to predict the phylogenetic placement of strain AMPT (Fig. 1). In addition, a genome phylogenetic 
comparison using the complete set of core genes of all type strains of Moorella species and strain AMPT (Fig. 2a) and a multilocus 
sequence analysis (MLSA) on the respiratory complex 1 (11 genes, nuoA-D and nuoH-N; Fig. 2b) were also performed. From 
these comparisons a clear separation of strain AMPT from other Moorella species is inferred, further supporting its classification 

Fig. 1. 16S rRNA gene-based phylogenetic tree of several strains (50) belonging to the family Thermoanaerobacteraceae. Acetobacterium woodii, a 
member of the family Eubacteriaceae, was used as outgroup to root the tree. The blue shaded box shows strain AMPT and repesentatives of the genus 
Moorella. 16S rRNA gene sequences were aligned using muscle [26]. The most suitable substitution model for the alignment was determined using 
ModelFinder [27] in iq-tree 1.6.12 [28, 29]. Phylogenetic analyses were performed with maximum likelihood and ultrafast bootstrap with 10.000 
replicates [33]. The obtained maximum-likelihood tree was edited using iTOL 6.5.8 [34] and only nodes supported by ultrafast bootstrap values >0.95 
were considered robust.
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Fig. 2. Phylogenetic trees based on (a) core genome and (b) respiratory complex one genes (11 genes, nuoA-D and nuoH-N). The blue shaded box 
shows strain AMPT. Alignment of core genes was done using the Roary pan genome pipeline [24], which uses mafft version 7 [25]. Alignment of 
respiratory complex I was done using muscle [26]. The most suitable substitution model for the alignment was determined using ModelFinder [27] in 
iq-tree 1.6.12 [28, 29]. Phylogenetic analyses were performed with maximum likelihood and ultrafast bootstrap with 10.000 replicates. The obtained 
maximum-likelihood tree was edited using iTOL 6.5.8 [34] and only nodes supported by ultrafast bootstrap values >0.95 were considered robust. The 
tree was rooted on Calderihabitans maritimus GenBank assembly accession number GCA_002207765. The GenBank assembly accession numbers for 
strain AMPT and other Moorella strains can be found in Table 1.

http://doi.org/10.1601/nm.24585
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as a new species of the genus Moorella. The core genome tree was based on the Roary pan genome pipeline [24] using 70 % blastp 
identity cutoff and uses the alignment tool mafft version 7 [25]. The 16S rRNA gene and MLSA sequences were aligned with 
muscle [26]. The most suitable substitution models for the alignments were determined using ModelFinder [27] in iq-tree 1.6.12 
[28, 29]. The phylogenetic 16S rRNA gene and MLSA analyses were done using a transition model (AC=CG, AT=GT and unequal 
base frequencies) with empirical base frequencies and rate heterogeneity across sites (Model: TIM3 +F+G4) [30, 31]. The core 
genome phylogenetic analysis was done with a general time reversible model (unequal rates and unequal base frequencies) with 
empirical base frequencies and rate heterogeneity across sites (Model: GTR+F+I+G4) [30–32]. Phylogenetic trees were inferred 
with maximum-likelihood and ultrafast bootstrap with 10000 replicates [33]. The obtained maximum-likelihood tree was edited 
using iTOL 6.5.8 [34] and only nodes supported by ultrafast bootstrap values >0.95 were considered robust.

PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERIZATION
Growth tests with strain AMPT were described by Jiang et al. [8]. Growth on the different substrates was tested in bicarbonate-
buffered media (prepared as described by Stams et al. [12]). Tests were monitored by measuring increase in medium turbidity 
and analyses of substrate consumption/product production. Optimal growth conditions were tested with methanol (40 mM) as 
substrate. Morphology of AMPT cells was observed by microscopic examination, using cells grown on methanol. A summary of 
the physiological characteristics of strain AMPT, in comparison with those of other Moorella type strains, is shown in Table 2. 
When applicable, gene prediction, functional annotation and comparison were performed using the tools on the Integrated 
Microbial Genomes system [35, 36].

Strain AMPT is a rod-shaped bacterium that can form terminal endospores. When grown on methanol, cells have variable 
size from 0.4 to 1.2 µm wide and 1–14 µm long. Cells of strain AMPT stained Gram-positive. The genome of strain AMPT 
does not contain any of the typical marker genes for outer membrane components of Gram-negative cells, specifically the 
genes BamA, LpxA-D, KdsA-D and LptACFG [37], supporting cells are monoderm.

Table 3. Cellular fatty acid composition (%) of strain AMPT (this study) in comparison with other Moorella species (data from Alves et al. [38])

Strains were grown in bicarbonate-buffered medium supplemented with fructose (20 mM) and yeast extract (0.2 g l-1). nd, not detected/no data.

Fatty acids Strain AMPT M. stamsii
DSM 26217T

M. glycerini
DSM 11254T

M. humiferrea
DSM 23265T

C14 : 0 2.71 0.71 2.07 0.97

iso- C15 : 0 47.36 26.18 37.62 20.58

anteiso- C15 : 0 nd 2.23 nd nd

C15 : 0 nd 1.86 nd nd

iso- C15 : 0 DMA* 20.27 15.11 18.15 1.60

iso- C16 : 0 nd 5.39 nd nd

C16 : 0 9.10 7.11 10.56 21.65

C16 : 0 DMA* 1.66 3.35 2.50 3.29

iso- C17 : 0 5.45 6.52 11.30 21.85

antesio-C17 : 0 nd 2.15 nd nd

antesio-C17 : 0 DMA* nd 2.27 nd nd

C17 : 0 DMA 5.79 nd 1.15 2.99

C17 : 0 cyclopropane 3.04 nd nd 2.21

C18 : 0 DMA* nd nd nd 1.12

C18 : 0 1.76 1.38 1,79 13.49

C18 : 1 ω9c nd nd nd 0.90

C19 : 0 cyclo 11–12 DMA* nd nd 1.44 nd

*DMA, dimethylacetal.

http://doi.org/10.1601/nm.4533
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The optimal temperature range for growth of strain AMPT is 60–65 °C, but it can grow in a wider range from 42–75 °C. It grows 
within a pH range of 5.0–8.5, with an optimum at pH 6.9.

Strain AMPT grows on methanol and on some other one-carbon compounds, such as CO and formate (growth with formate 
was only observed with thiosulphate as electron acceptor), but not on CO2/H2. When growing on CO, strain AMPT produced 
mainly H2. This hydrogenogenic behaviour is also observed in M. stamsii DSM 26217T, and contrasts with the acetogenic 
behaviour of all the other Moorella strains able to grow on CO [38]. In the work by Jiang et al. [8] it is reported that strain 
AMPT could grow on formate in syntrophy with the methanogen Methanothermobacter thermoautrophicus strain NJ1. We 
were not able to reproduce these results when growing strain AMPT with Methanothermobacter thermoautotrophicus strain 
ΔH (sharing 99.5 % 16S rRNA gene identity with strain NJ1). Unfortunately, strain NJ1 was lost, and thus tests with the 
original syntrophic partner of strain AMPT are no longer possible.

Growth of strain AMPT on vanillin and vanillate was also tested and positive, similarly to what has been observed for  
M. thermoacetica ATCC 39073 [39–43]. These methoxylated compounds are important intermediates in lignin degradation. 
In M. thermoacetica, vanillin is suggested to be degraded via vanillate [42]; further, the conversion of vanillate involves the 
O-demethylation-transfer of the methyl group to the Wood–Ljungdahl pathway [44]. Protocatechuate was one of the main 
products from vanillin degradation by M. thermoacetica (besides acetate), as reported by Lux et al. [43]; when CO was supple-
mented, cultures of M. thermoacetica seemed to decarboxylate protocatechuate to catechol. We performed a genome search 
for O-demethylase system in all Moorella species, specifically the genes mtvA, mtvB and mtvC (methyltransferase for vanillate 
system (Mtv) characterized by Naidu and Ragsdale [44]). MtvB catalyses methyl transfer from vanillate to the cobalt centre of 
MtvC, and MtvA catalyses transmethylation from MtvC to tetrahydrofolate, forming methyltetrahydrofolate. At least one copy of 
each of these genes is present in all analysed Moorella species (Table S1, available in the online version of this article), indicating 
conversion of vanillin/vanillate is likely a common feature of these acetogens.

Analysis of fatty acid profile of strain AMPT was carried out at the Identification Service, Leibniz Institut DSMZ – Deutsche 
Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany. The cellular fatty acid profile revealed that 
the most abundant fatty acids in strain AMPT are iso-C15 : 0 (47.36 %), iso-C15 : 0 DMA (20.27 %) and C16 : 0 (9.10 %). The differences 
observed in the fatty acid profile of strain AMPT when compared with M. stamsii, M. glycerini and M. humiferrea, are shown 
in Table 3; the predominant fatty acid in all the four Moorella species is iso-C15 : 0. The second most abundant fatty acid, iso-C15 : 0 
DMA, is also abundant in M. stamsii (15.11 %) and in M. glycerini (18.15 %). M. humiferrea presents substantially more abundant 
C16 : 0, iso- C17 : 0 and C18 : 0 fatty acid profile than in strain AMPT, M. glycerini and M. humiferrea.

M. thermoacetica is known to contain menaquinone and b-type cytochromes [45], though their role in metabolism is not yet 
understood [46]. Strain AMPT has analogues to genes in M. thermoacetica for the synthesis of menaquinone (mqnACE) (Table S2). 
In fact, these genes are found in all the other Moorella strains suggesting menaquinones are intrinsic to this genus. Cytochrome 
bd oxidase genes are also present in all representatives of the genus Moorella (Table S3). In M. thermoacetica cytochrome bd 
oxidase has been implicated in protection against oxidative stress [47], but the involvement of b-type cytochromes in electron 
transfer to Wood–Ljungdahl pathway enzymes is also hypothesized by some [46].

DESCRIPTION OF MOORELLA CAENI SP. NOV.
Moorella caeni (cae’ni. L. gen. n. caeni, of sludge).

The physiological and morphological description is largely based on the work by Jiang et al. [8]. Isolated from thermophilic 
methanogenic sludge from a bioreactor fed with methanol. Cells are Gram-positive, long-rod shaped measuring 0.4–1.2×5–14 µm 
and can form swollen endospores. It is a strict anaerobic bacterium. Optimal temperature for growth is between 60–65 °C (grows 
at 42–75 °C), and optimal pH 6.9 (grows at 5.0–8.5). Growth rates remained unchanged when NaCl concentrations were below 
12 g l−1, and no growth occurred at a NaCl concentration higher than 23 g l−1. It can utilize methanol, pyruvate, lactate, mannose, 
vanillate and vanillin, forming acetate as the main reduced end product. It grows hydrogenogenically on 100 % CO. Weak growth 
on fructose was observed. It uses thiosulphate, but not nitrate, sulphate or fumarate as electron acceptor. It does not grow (in 
the absence of thiosulphate) on H2/CO2, formate, glucose, acetate, ethanol, n-propanol, glycerol, melibiose, raffinose, rhamnose, 
trehalose, arabinose, cellobiose, cellulose, galactose, lactose, maltose, xylose, mannitol, melezitose, ribose, sorbitol, starch, sucrose 
and benzoate. G+C content of genomic DNA is 57.3 mol%. The major fatty acids are iso-C15 : 0, iso-C15 : 0 DMA, C16 : 0.
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