INTERNATIONAL JOURNAL OF RESEARCH ARTICLE .ﬁ gﬂgg%BlOLOGY
SYSTEMATIC AND EVOLUTIONARY Santaella et al., Int. J. Syst. Evol. Microbiol. 2023;73:005905

MICROBIOLOGY DOI 10.1099/ijsem.0.005905 a5
RE€cess

Moorella caeni sp. nov., isolated from thermophilic anaerobic
sludge from a methanol-fed reactor
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Abstract

Strain AMPT has been previously suggested as a strain of the species Moorella thermoacetica Jiang et al. 2009 (based on the high
16S rRNA gene identity, 98.3%). However, genome-based phylogenetic analysis of strain AMPT reveals that this bacterium is in
fact a novel species of the genus Moorella. Genome relatedness indices between strain AMPT and Moorella thermoacetica DSM
5217 were below the minimum threshold values required to consider them members of the same species (digital DNA-DNA
hybridization, 52.2% (<70%); average nucleotide identity, 93.2% (<95%)). Based on phylogenetic and phenotypic results we rec-
ommend that strain AMPT (DSM 21394™=JCM 353607) should be classified as representing new species, for which we propose
the name Moorella caeni sp. nov.

INTRODUCTION

There are currently five species in the genus Moorella with validly published names: M. thermoacetica (type strains, DSM 5217
and DSM 2955"), M. glycerini (type strain, DSM 11254"), M. mulderi (type strain, DSM 14911%), M. humiferrea (type strain,
DSM 23265") and M. stamsii (type strain, DSM 262177), all with publicly available genomes (https://img.jgi.doe.gov). The first
representative of the genus Moorella, strain DSM 5217, formerly Clostridium thermoaceticum, was isolated in 1943 by Fontaine
et al. from horse faeces [1] and was used as model organism for the elucidation of the Wood-Ljungdahl pathway [2-5]. In 1983,
another representative of this strain was re-isolated from a dried spore stock by Kerby and Zeikus [6] and deposited at DSMZ
under number DSM 2955"; these authors also showed that this acetogen could grow autotrophically on CO or CO,/H,. The genus
Moorella was created in 1994, after a reorganization of the genus Clostridium [7]. Moorella sp. strain AMPT (DSM 21394") was
isolated from a high-temperature methanogenic bioreactor fed with methanol, and its physiology was described by Jiang et al. [8].
In that study, strain AMPT was phylogenetically assigned as a new strain of M. thermoacetica, based on 16S rRNA gene identity
(98.3%) and an empirical DNA-DNA hybridization (DDH) of 75.2+4.7%. In a more recent genomic comparison of Moorella
strains, it was suggested [9] that strain AMPT is yet another Moorella species; based on average nucleotide identity (ANI) analysis
on a MUMmer alignment, strain AMP™ has an ANIm of 94% with M. thermoacetica, which is below the threshold for the species
boundary. Here, we provide the genomic and physiological evidence that strain AMP” represents a novel species of the genus
Moorella, for which we propose the name Moorella caeni sp. nov. (DSM 21394"=]JCM 353607").

ENRICHMENT AND ISOLATION

Isolation of strain AMP” from a methanol-fed hight-temperature methanogenic bioreactor has been previously reported by
Jiang et al. [8]. Here, we give an overview of the isolation procedure. Enrichment cultures were inoculated with granular sludge
from a high-temperature (55 °C) lab reactor fed with methanol (for 130 days) [10, 11]. The source of original sludge was a pilot
plant upflow anaerobic sludge bed (UASB) reactor treating paper mill wastewater at 55°C (Paques Biosystems BV, Baulk, The
Netherlands) that had been inoculated with mesophilic granular sludge from a UASB reactor treating paper mill wastewater at
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40°C [10]. Granules were crushed under anaerobic conditions, previous to inoculation in 120 ml serum bottles containing 50 ml
sterile bicarbonate-buffered anaerobic medium prepared as described by Stams et al. [12]. Medium was supplemented with
trace elements and vitamins, but was cobalt-deprived [13]. Headspace of the bottles was filled with N,:CO, (80:20%, v/v at 1.7
atm). Enrichments were incubated at 55 °C in the dark without shaking. Cultures were successively transferred to fresh medium
upon methanol consumption. Initially (first seven transfers) methanol was added at a final concentration of 28 mM [13], and
subsequently to a concentration of 40 mM [8]. After enrichment, the culture was dominated by a spore-forming bacterium and
a rod-shaped methanogen [8]. Isolation of the spore-forming bacterium was achieved by repeated serial dilutions in methanol-
containing medium (with addition of CoCl,) using an autoclaved (121°C for 1h) culture as inoculum, as detailed by Jiang et
al. [8]. Purification of strain AMP” was done by picking colonies from soft-agar surface and further dilution in liquid medium
containing the methanogenesis inhibitor bromoethanesulfonate (10 mM) [8]. The pure culture of strain AMP” was deposited at
DSMZ in 2003 (DSM 213947). In 2022 we deposited the strain also at the Japan Collection of Microorganisms (JCM 353607).

GENOME FEATURES AND PHYLOGENY

The genomes of strain AMP" and of other type strains of Moorella species are available in GenBank [14]; assembly accession
numbers and general properties of the genomes used here for digital DNA-DNA hybridization (ADDH) and ANI analyses
are summarized in Table 1. Besides the two M. thermoacetica type strains (DSM 521" and DSM 2955%) we also included
M. thermoacetica ATCC 39073 in the comparison, as the physiology of this strain has been well studied.

dDDH calculations were done using the Type (Strain) Genome Server (TYGS), a free bioinformatics platform available at https://
tygs.dsmz.de, for a whole genome-based taxonomic analysis [15, 16]. All pairwise comparisons among the set of genomes were
conducted using genome BLAST distance phylogeny approach and accurate intergenomic distances inferred under the algorithm
‘trimming’ and distance formula d5 [17]. Digital DDH values and confidence intervals were calculated using the recommended
settings of the Genome-to-Genome Distance Calculator 3.0 [16, 17]. The dDDH values between strain AMP" and other Morella
species (Table 1) were well below the typical 70% cut-oft value for species delineation [18], indicating that strain AMP” represents
a novel species of the genus Moorella.

ANI values were calculated with scripts from the enveomics package [19] using BLAsTp (ANIb) [20, 21]. Calculated ANIb
between strain AMPT and M. thermoacetica type strains (Table 1) were the below 95% ANI (used as the minimum threshold
for definition of same species [22, 23]), once more indicating that strain AMP" is a novel species of the genus Moorella.

Table 1. General genome features and pairwise dDDH and ANI comparisons of strain AMP vs. type strain genomes of the genus Moorella

Results obtained from the comparison with the closest relative M. thermoacetica (type strains DSM 5217 and DSM 2955" and with M. thermoacetica ATTC
39073) are highlighted in grey. All values shown are in %; C.I., confidence interval. dDDH values and G+C content difference obtained with TYGS [15, 16];
results with formula d4 are shown according to recommendation for comparison of incomplete genomes [17]. ANIb values obtained with enveomics
package [19, 24].

Genome features Genome comparison
(with strain AMP as query strain)
Assembly accession nr. Genome size G+C content (mol%) | dDDH (d4) [C.I] ANIb G+C content
(MB) difference
Strain AMP GCA_001875325 2.6 57.3
M. thermoacetica GCA_001267405 2.5 55.5 52.2 [49.5-54.8] 93.20 1.06
DSM 5217
M. thermoacetica GCA_001267435 2.6 55.8 52.3 [49.6-55.0] 93.22 1.20
DSM 29557
M. thermoacetica GCA_006228565 2.6 55.8 52.4 [49.7-55.0] 93.20 1.20
ATCC 39073
M. mulderi GCA_001594015 33 53.6 23.2[20.9-25.7] 80.88 2.46
DSM 14980"
M. stamsii GCA_002995805 3.3 57.3 23.1 [20.8-25.6] 81.20 3.20
DSM 26217"
M. glycerini GCA_009735625 3.6 54.5 23.6 [21.3-26.1] 81.01 2.27
DSM 11254"
M. humiferrea GCA_002995755 2.6 53.5 21.3[19.1-23.7] 79.76 3.49
DSM 23265"
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Fig. 1. 16S rRNA gene-based phylogenetic tree of several strains (50) belonging to the family Thermoanaerobacteraceae. Acetobacterium woodii, a
member of the family Eubacteriaceae, was used as outgroup to root the tree. The blue shaded box shows strain AMPT and repesentatives of the genus
Moorella. 16S rRNA gene sequences were aligned using MUSCLE [26]. The most suitable substitution model for the alignment was determined using
ModelFinder [27] in 1a-TREE 1.6.12 [28, 29]. Phylogenetic analyses were performed with maximum likelihood and ultrafast bootstrap with 10.000
replicates [33]. The obtained maximum-likelihood tree was edited using iTOL 6.5.8 [34] and only nodes supported by ultrafast bootstrap values >0.95
were considered robust.

16S rRNA genes were used to predict the phylogenetic placement of strain AMPT (Fig. 1). In addition, a genome phylogenetic
comparison using the complete set of core genes of all type strains of Moorella species and strain AMP" (Fig. 2a) and a multilocus
sequence analysis (MLSA) on the respiratory complex 1 (11 genes, nuoA-D and nuoH-N; Fig. 2b) were also performed. From
these comparisons a clear separation of strain AMP” from other Moorella species is inferred, further supporting its classification
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Fig. 2. Phylogenetic trees based on (a) core genome and (b) respiratory complex one genes (11 genes, nuoA-D and nuoH-N). The blue shaded box
shows strain AMPT. Alignment of core genes was done using the Roary pan genome pipeline [24], which uses MAFFT version 7 [25]. Alignment of
respiratory complex | was done using MUSCLE [26]. The most suitable substitution model for the alignment was determined using ModelFinder [27] in
1Q-TREE 1.6.12 [28, 29]. Phylogenetic analyses were performed with maximum likelihood and ultrafast bootstrap with 10.000 replicates. The obtained
maximume-likelihood tree was edited using iTOL 6.5.8 [34] and only nodes supported by ultrafast bootstrap values >0.95 were considered robust. The
tree was rooted on Calderihabitans maritimus GenBank assembly accession number GCA_002207765. The GenBank assembly accession numbers for
strain AMPT and other Moorella strains can be found in Table 1.
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Table 3. Cellular fatty acid composition (%) of strain AMPT (this study) in comparison with other Moorella species (data from Alves et al. [38])

Strains were grown in bicarbonate-buffered medium supplemented with fructose (20 mM) and yeast extract (0.2g |'"). ND, not detected/no data.

Fatty acids Strain AMP” M. stamsii M. glycerini M. humiferrea
DSM 26217" DSM 11254" DSM 23265"

Co 2.71 0.71 2.07 0.97

iso- C_, 47.36 26.18 37.62 20.58
anteiso- C , | ND 2.23 ND ND

Co ND 1.86 ND ND

iso- C,,, DMA* 20.27 15.11 18.15 1.60

iso-C . ND 5.39 ND ND

Ciso 9.10 7.11 10.56 21.65
C,,, DMA* 1.66 3.35 2.50 3.29
iso-C,_, 5.45 6.52 11.30 21.85
antesio-C ND 2.15 ND ND
antesio-C,  DMA* ND 2.27 ND ND
C,,DMA 5.79 ND 1.15 2.99
C,,,, cyclopropane 3.04 ND ND 2.21
C,0 DMA* ND ND ND 1.12
Ceo 1.76 1.38 1,79 13.49

C . @09¢ ND ND ND 0.90
C,,, cyclo 11-12 DMA* ND ND 1.44 ND

*DMA, dimethylacetal.

as a new species of the genus Moorella. The core genome tree was based on the Roary pan genome pipeline [24] using 70% blastp
identity cutoff and uses the alignment tool MAFFT version 7 [25]. The 16S rRNA gene and MLSA sequences were aligned with
MUSCLE [26]. The most suitable substitution models for the alignments were determined using ModelFinder [27] in 1Q-TREE 1.6.12
[28,29]. The phylogenetic 16S rRNA gene and MLSA analyses were done using a transition model (AC=CG, AT=GT and unequal
base frequencies) with empirical base frequencies and rate heterogeneity across sites (Model: TIM3 +F+G4) [30, 31]. The core
genome phylogenetic analysis was done with a general time reversible model (unequal rates and unequal base frequencies) with
empirical base frequencies and rate heterogeneity across sites (Model: GTR+F+1+G4) [30-32]. Phylogenetic trees were inferred
with maximum-likelihood and ultrafast bootstrap with 10000 replicates [33]. The obtained maximum-likelihood tree was edited
using iTOL 6.5.8 [34] and only nodes supported by ultrafast bootstrap values >0.95 were considered robust.

PHYSIOLOGICAL AND MORPHOLOGICAL CHARACTERIZATION

Growth tests with strain AMPT were described by Jiang et al. [8]. Growth on the different substrates was tested in bicarbonate-
buffered media (prepared as described by Stams et al. [12]). Tests were monitored by measuring increase in medium turbidity
and analyses of substrate consumption/product production. Optimal growth conditions were tested with methanol (40 mM) as
substrate. Morphology of AMPT cells was observed by microscopic examination, using cells grown on methanol. A summary of
the physiological characteristics of strain AMP?, in comparison with those of other Moorella type strains, is shown in Table 2.
When applicable, gene prediction, functional annotation and comparison were performed using the tools on the Integrated
Microbial Genomes system [35, 36].

Strain AMPT is a rod-shaped bacterium that can form terminal endospores. When grown on methanol, cells have variable
size from 0.4 to 1.2 pum wide and 1-14 um long. Cells of strain AMP" stained Gram-positive. The genome of strain AMP”
does not contain any of the typical marker genes for outer membrane components of Gram-negative cells, specifically the
genes BamA, LpxA-D, KdsA-D and LptACFG [37], supporting cells are monoderm.
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The optimal temperature range for growth of strain AMP? is 60-65 °C, but it can grow in a wider range from 42-75°C. It grows
within a pH range of 5.0-8.5, with an optimum at pH 6.9.

Strain AMP” grows on methanol and on some other one-carbon compounds, such as CO and formate (growth with formate
was only observed with thiosulphate as electron acceptor), but not on CO,/H,. When growing on CO, strain AMP” produced
mainly H,. This hydrogenogenic behaviour is also observed in M. stamsii DSM 262177, and contrasts with the acetogenic
behaviour of all the other Moorella strains able to grow on CO [38]. In the work by Jiang et al. [8] it is reported that strain
AMPT could grow on formate in syntrophy with the methanogen Methanothermobacter thermoautrophicus strain NJ1. We
were not able to reproduce these results when growing strain AMPT with Methanothermobacter thermoautotrophicus strain
AH (sharing 99.5% 16S rRNA gene identity with strain NJ1). Unfortunately, strain NJ1 was lost, and thus tests with the
original syntrophic partner of strain AMPT are no longer possible.

Growth of strain AMP” on vanillin and vanillate was also tested and positive, similarly to what has been observed for
M. thermoacetica ATCC 39073 [39-43]. These methoxylated compounds are important intermediates in lignin degradation.
In M. thermoacetica, vanillin is suggested to be degraded via vanillate [42]; further, the conversion of vanillate involves the
O-demethylation-transfer of the methyl group to the Wood-Ljungdahl pathway [44]. Protocatechuate was one of the main
products from vanillin degradation by M. thermoacetica (besides acetate), as reported by Lux et al. [43]; when CO was supple-
mented, cultures of M. thermoacetica seemed to decarboxylate protocatechuate to catechol. We performed a genome search
for O-demethylase system in all Moorella species, specifically the genes mtvA, mtvB and mtvC (methyltransferase for vanillate
system (Mtv) characterized by Naidu and Ragsdale [44]). MtvB catalyses methyl transfer from vanillate to the cobalt centre of
MtvC, and MtvA catalyses transmethylation from MtvC to tetrahydrofolate, forming methyltetrahydrofolate. At least one copy of
each of these genes is present in all analysed Moorella species (Table S1, available in the online version of this article), indicating
conversion of vanillin/vanillate is likely a common feature of these acetogens.

Analysis of fatty acid profile of strain AMPT was carried out at the Identification Service, Leibniz Institut DSMZ - Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany. The cellular fatty acid profile revealed that
the most abundant fatty acids in strain AMP" are iso-C , / (47.36%), iso-C .  DMA (20.27%) and C  (9.10%). The differences
observed in the fatty acid profile of strain AMP” when compared with M. stamsii, M. glycerini and M. humiferrea, are shown
in Table 3; the predominant fatty acid in all the four Moorella species is iso-C,, . The second most abundant fatty acid, iso-C , ,
DMA, is also abundant in M. stamsii (15.11%) and in M. glycerini (18.15%). M. humiferrea presents substantially more abundant
C,..p 1s0- C and C fatty acid profile than in strain AMP", M. glycerini and M. humiferrea.

16:0°
M. thermoacetica is known to contain menaquinone and b-type cytochromes [45], though their role in metabolism is not yet
understood [46]. Strain AMPT has analogues to genes in M. thermoacetica for the synthesis of menaquinone (mqnACE) (Table S2).
In fact, these genes are found in all the other Moorella strains suggesting menaquinones are intrinsic to this genus. Cytochrome
bd oxidase genes are also present in all representatives of the genus Moorella (Table S3). In M. thermoacetica cytochrome bd
oxidase has been implicated in protection against oxidative stress [47], but the involvement of b-type cytochromes in electron
transfer to Wood-Ljungdahl pathway enzymes is also hypothesized by some [46].

DESCRIPTION OF MOORELLA CAENI SP. NOV.

Moorella caeni (cae’ni. L. gen. n. caeni, of sludge).

The physiological and morphological description is largely based on the work by Jiang et al. [8]. Isolated from thermophilic
methanogenic sludge from a bioreactor fed with methanol. Cells are Gram-positive, long-rod shaped measuring 0.4-1.2x5-14 pm
and can form swollen endospores. It is a strict anaerobic bacterium. Optimal temperature for growth is between 60-65°C (grows
at 42-75°C), and optimal pH 6.9 (grows at 5.0-8.5). Growth rates remained unchanged when NaCl concentrations were below
12g17, and no growth occurred at a NaCl concentration higher than 23 g1™". It can utilize methanol, pyruvate, lactate, mannose,
vanillate and vanillin, forming acetate as the main reduced end product. It grows hydrogenogenically on 100% CO. Weak growth
on fructose was observed. It uses thiosulphate, but not nitrate, sulphate or fumarate as electron acceptor. It does not grow (in
the absence of thiosulphate) on H,/CO,, formate, glucose, acetate, ethanol, n-propanol, glycerol, melibiose, raffinose, rhamnose,
trehalose, arabinose, cellobiose, cellulose, galactose, lactose, maltose, xylose, mannitol, melezitose, ribose, sorbitol, starch, sucrose
and benzoate. G+C content of genomic DNA is 57.3 mol%. The major fatty acids are iso-C , , iso-C ,  DMA, C .
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