
Computer Standards & Interfaces 87 (2024) 103774

Available online 16 July 2023
0920-5489/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Detecting deviations in the code using architecture view-based
drift analysis

Burak Uzun, Bedir Tekinerdogan *

Information Technology Group, Wageningen University and Research, Wageningen, the Netherlands

A R T I C L E I N F O

Keywords:
Software architecture reconstruction
Model-driven development
Architecture drift analysis
Architecture drift

A B S T R A C T

Context: One of the key requirements for the code is conformance with the architecture. Architectural drift
implies the diverging of the implemented code from the architecture design of the system. Manually checking the
consistency between the implemented code and architecture can be intractable and cumbersome for large-scale
systems.
Objective: This article proposes a holistic, automated architecture drift analysis approach that explicitly focuses
on the adoption of architecture views. The approach builds on, complements, and enhances existing architecture
conformance analysis methods that do not adopt a holistic approach or fail to address the architecture
viewpoints.
Method: A model-driven development approach is adopted in which architecture views are represented as
specifications of domain-specific languages. The code in its turn, is analyzed, and the architectural view speci
fications are reconstructed, which are then automatically checked with the corresponding architecture models.
Results: To illustrate the approach, we have applied a systematic case study research for an architecture drift
analysis of the business-to-customer (B2C) system within a large-scale software company.
Conclusion: The case study research showed that divergences and absences of architectural elements could be
detected in a cost-effective manner with the proposed approach.

1. Introduction

Software architecture design represents the gross level structure of
the system and defines the systemic design decisions. The architecture
design, together with the rationale of the design decision, is described in
the architecture documentation that can be used as a guideline for the
corresponding implementation. A well-documented architecture is
crucial for supporting communication among stakeholders, for guiding
and analysis of the design decisions, and for guiding the organizational
processes [1–3].

Unfortunately, software systems are rarely static and must be
adapted due to bug fixes or new requirements. If the code and/or the
architecture are adapted separately, this leads to the so-called architec
tural drift problem [4–8], which refers to the discrepancy between the
architecture description and the resulting implementation. Architectural
drift can occur even during the initial implementation of the architec
ture due to a lack of knowledge about the architecture or stringent
time-to-market constraints. This drift may directly lead to increased
maintenance time and cost because the important systemic design

decisions are not followed and lost. Eventually, this can result in a sys
tem where the difference between the code and the system’s architec
ture is so large that a complete system re-implementation is required.

Manually checking the consistency between the implemented code
and architecture can be cumbersome and intractable for large-scale
systems [9]. Hence, automated architecture drift analysis has been
proposed to automatically check the discrepancy between architecture
and code. To support architecture drift analysis, a model of the code is
usually reconstructed, which is then compared to a model of the archi
tecture, after which the discrepancies are highlighted. Three different
discrepancies can be distinguished: (1) missing architectural elements in
the implemented code (absence), (2) extra defined architectural ele
ments in the implemented code (divergence), and (3) the implemented
code having the same architectural elements as the architecture
(convergence).

Software architecture is typically modeled using so-called architec
ture views that represent the system from one or more stakeholders’
perspectives. By separating the architecture views, the ubiquitous
notion of the separation of concerns principle is applied, thereby

* Corresponding author.
E-mail address: bedir.tekinerdogan@wur.nl (B. Tekinerdogan).

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

https://doi.org/10.1016/j.csi.2023.103774
Received 5 March 2023; Received in revised form 5 May 2023; Accepted 15 July 2023

mailto:bedir.tekinerdogan@wur.nl
www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2023.103774
https://doi.org/10.1016/j.csi.2023.103774
https://doi.org/10.1016/j.csi.2023.103774
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2023.103774&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Standards & Interfaces 87 (2024) 103774

2

supporting the understandability, maintainability, and complexity
management of the overall system. Hence, to provide a proper archi
tecture drift analysis, it is important to check whether the guidelines of
all relevant architecture views have been addressed in the code.

Our approach builds on, complements, and enhances existing ar
chitecture drift analysis methods that do not adopt a holistic approach or
fail to address architecture viewpoints explicitly. We adopt a model-
driven development approach in which architecture views are repre
sented as specifications of domain-specific languages. In this context, the
given code is analyzed, and the architectural view specifications are
reconstructed from the code. Using architecture reconstruction, the code
is analyzed and the necessary views are provided. The architecture drift
analysis then checks the deviations in the code with respect to the ar
chitecture views. For the architecture framework, we have used selected
viewpoints from the views and beyond approach [2].

To illustrate the approach, we have applied a systematic case study
research for an architecture drift analysis of the business-to-customer
(B2C) system within a large-scale software company. The case study
research showed that divergences and absences of architectural ele
ments could be detected in a cost-effective manner with the proposed
approach.

The remainder of the article is organized as follows. Section 2 pro
vides the background on software architecture modeling, software ar
chitecture reconstruction, and architecture drift analysis. Section 3
presents the proposed architecture drift analysis method. Section 4
presents the derived metamodeling of architecture viewpoints. Section 5
describes the architecture viewpoint-oriented software architecture
reconstruction method in detail. Section 6 presents the implementation
and the corresponding tool of the presented drift analysis method.
Section 7 presents the case study research to illustrate and validate the
approach. Section 8 presents the discussion, Section 9 the related work,
and finally, Section 10 concludes the article.

2. Background

Before we describe the overall method, we first describe the key el
ements that are integrated in the overall process, including software
architecture modeling (Section 2.1), architecture reconstruction (Sec
tion 2.2), and architecture drift analysis (Section 2.3).

2.1. Software architecture modeling

A common practice for describing the architecture according to the
stakeholders’ concerns is to model different architectural views [2,3,
10]. Fig. 1 shows the conceptual model related to architecture views. An
architectural view represents a set of system elements and relations
associated with them to support a particular concern. Usually, multiple
architectural views are needed to separate the concerns and as such
support the modeling, understanding, communication and analysis of
the software architecture for different stakeholders. Architectural views
conform to viewpoints that represent the conventions for constructing
and using a view. Having multiple views helps separate the concerns and
support the modeling, understanding, communication and analysis of

the software architecture for different stakeholders. A comprehensive
approach for modeling software architecture based on viewpoints is the
Views and Beyond (V&B) approach. The V&B approach defines the
following view categories: Module view category that is used for doc
umenting a system’s principal units of implementation. Component and
Connector category that is used for documenting the system’s units of
execution. Deployment View category is used to document the relation
ships between a system’s software and its development and execution
environments. Viewpoints are defined as styles which are used to define
views. Although the V&B approach has defined a predefined set of
architectural styles, it is also possible to define new styles for particular
concerns.

2.2. Software architecture reconstruction

Software architecture reconstruction (SAR) is a reverse engineering
process in which the architectural structure of a software system is
extracted from system entities such as code, log, and documentation.
Fig. 2 shows a conceptual model for architecture reconstruction. SAR is
often needed to derive missing or incomplete architecture documenta
tion or to identify and manage architecture drift. SAR methods can be
applied to derive a single abstract model or extract architecture views of
the system [11,12]. Hereby, since manual handling of the architecture
reconstruction process is usually time-consuming and costly, automa
tized methods and tools are proposed. The SAR process results in ar
chitecture documentation that includes a description of a set of
architecture views for addressing stakeholder concerns.

2.3. Software architecture drift analysis

Within the architecture-driven development context, the code must
be consistent with the architecture (and vice versa). In Table 1 we list the
definitions for the terms that we use related to architecture drift anal
ysis. In case the architecture elements and the corresponding design
decisions are not correctly reflected in the code, then we can identify this
as an architecture drift. The notion of drift also implies the dynamic
behavior of the problem due to the bugs introduced in the code or the
need to adapt the code for changing requirements [13]. When
comparing the architecture elements with the code then we can identify
three different scenarios. If the relations that are present in the archi
tecture are also found in the implementation, then this is convergent
relation. In case the architecture relation is not present in the imple
mentation, then this is called an absence relation. Absence relations
occur of course, during the initial development of the system in which
the architecture is defined but the implementation is not ready yet. As
such, in the early phases of the development these absence relations
might be a lesser concern. Finally, if the implementation includes rela
tion that is not present in the architecture, then this is called divergence
relation. Architectural violations are due to absence or divergence
relations.

An often-used architecture consistency approach is the reflexion
modeling approach as proposed by Murphy et al. [13]. In principle, a
reflexion model allows a software developer to view the structure of a

Fig. 1. Architecture Viewpoint Concepts and their relations (adopted from: [27]).

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

3

system’s source through a chosen high-level (often architectural) view.
To check the consistency between the architecture model and the code,
an abstract model of the code is derived. The two models are then
compared to each other with respect to earlier defined mapping rules
between the code and the implementation. The results of the comparison
are presented to the user through a Reflexion Model. Usually architecture
drift analysis approaches that apply reflexion modeling include tools for
modeling the architecture, modeling the mappings, deriving the abstract
model from the source code, the consistency analysis checker, and the
generator of the resulting reflexion model.

3. Viewpoint oriented software architecture drift analysis

In this section, we present our viewpoint-oriented software archi
tecture drift analysis method. Fig. 3 presents the workflow model that
defines the steps of the presented approach. Four different swimlanes
are defined, each representing a distinct role: software architect, soft
ware developer, conformance tool, and reconstruction tool. The left part
of the figure shows the role of the software architect who creates the

architecture view models for the system. The right part of the figure
illustrates the role of the software developer who implements the code
based on the provided architecture view models. Both processes
continue throughout the lifecycle of the software system, and thus, over
time, architecture drift can occur. In many projects, the architecture
drift is checked manually; however, this does not scale with the
increasing size and complexity of software projects. Therefore, auto
mated drift analysis is required, which is realized by a dedicated tool, as
represented by the swimlane, Software Architecture Conformance Tool.

The tool expects two inputs: architecture models based on the
various views, and the architecture models based on the implementa
tion. Both inputs, the original architecture model specification and the
extracted architecture models from the code, reflect architecture views.
The software architecture reconstruction process extracts architectural
elements from the code developed by software developers. The extracted
architectural elements are then analyzed and formed into architecture
components, which are subsequently derived into architecture view
models. The models derived from architecture reconstruction and those
provided by the software architect are compared against each other to

Fig. 2. Conceptual Model for Architecture Reconstruction.

Table 1
Adopted definitions related to architecture drift analysis.

Architectural
Drift

is a phenomenon that occurs when the implemented code of a software system deviates from its intended architecture. This deviation can take the form of
divergence or absence, as long as it does not violate the architectural constraints. Architectural drift can lead to inconsistencies and increased complexity in the
system, negatively impacting its maintainability and evolvability.

Divergence Divergence refers to the situation when the implemented code contains extra architectural elements that were not part of the system’s intended architecture.
These elements may not violate the architecture but may still introduce inconsistencies or complexities that were not anticipated in the design.

Absence Absence occurs when the implemented code is missing architectural elements that were part of the system’s intended architecture. This can lead to incomplete or
incorrect implementations of the system’s intended functionality and negatively impact the overall quality of the software.

Discrepancy Discrepancies refer to the differences between the implemented code and the intended architecture of a software system. They can manifest as divergence or
absence, and are indicative of architectural drift.

Convergence Convergence represents the ideal state where the implemented code and the intended architecture are in alignment, with no discrepancies or deviations between
them. Achieving convergence implies that the software system has been developed according to its architectural design and adheres to its constraints.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

4

identify absences and divergences. It is important to note that the flows
under conformance and reconstruction tools are automated.

We have implemented our tool for five architecture viewpoints,
which include decomposition, shared data, uses, generalization, and
layered. The subsequent sections of this study provide metamodels for
the utilized architecture viewpoints and viewpoint-based approaches for
architecture reconstruction and architecture drift analysis.

4. Metamodeling of architecture viewpoints

In order to model the architecture viewpoints, we have first defined
the corresponding metamodels for the viewpoints and then mapped
these to domain-specific languages using the Eclipse Ecore model
[14–16]. The metamodels of the selected viewpoints are shown in Fig. 4.
These metamodels are represented as Ecore models in the Eclipse IDE.
Each of these metamodels has been developed after a thorough domain
analysis of the corresponding viewpoints. For this, we have analyzed the
viewpoints as discussed by Clements et al. [2], which provides a
comprehensive approach for documenting software architectures using
a broad set of viewpoints. In contrast to earlier viewpoint approaches,
this approach provides a broader set of viewpoints and allows the
introduction of new viewpoints. We have focused on the module view
points that define the architecture structure based on implementation
units, that is, modules. The other two categories, the component &
connector and the allocation viewpoints, do not focus on the imple
mentation concerns and as such are less feasible for our purposes. As can
be seen from the figure, we have used the following five views:
decomposition view, shared data view, uses view, generalization view
and layered view. Architecture models are defined as instances of these
metamodels. Similarly, architectures extracted from the code (next
section) is also defined as specifications of these models.

4.1. Decomposition view

Due to improvements in software development technology and the

need for more complex requirements, the software industry is building
larger and more complex software systems. One way to handle this
complexity is well-adapted design paradigm called divide and conquer.
The divide and conquer paradigm is basically breaking down complex
problems into much smaller and manageable problems so that original
problem can be solved with ease. One of the first actions taken by
software architects while designing software systems is to derive
decomposition view of the software system. Decomposition view visu
alizes the partition of code across different modules and submodules in a
software system [2]. Decomposing a software system into smaller and
cohesive parts is a great example of dividing and conquering paradigm.
Fig. 4 presents metamodel for decomposition viewpoint in which model
aggregates elements that are in type of module and subsystem. Element
has a list property called subelements which references other elements
for keeping submodules of a module.

4.2. Shared data view

Due to research in fields like big data and cloud engineering, data
base systems and their usages are getting more and more common.
Nowadays, lots of software-intensive systems are integrated with some
kind of persistent data stores which can be relational databases, fil
esystems, messaging queues and nonrelational databases. Since the
presentation of interaction patterns between software systems and
persistence data sources are an important aspect of software system
design. Shared data view presents data sources along with their acces
sors in which accessors may have read or write interactions with these
data sources. Shared data view is useful when data sources have multiple
data accessors both reading and modifying the shared data [2]. Also,
some additional data can be presented along with shared data view
models such as restrictions for connections, access control authoriza
tions, synchronization mechanisms and data properties. Shared data
view model aggregates elements and attachments. Elements for shared
data viewpoint can be repository and data accessor. These elements have
two different attachments which are data write and data read relations.

Fig. 3. Workflow Model for the adopted architecture drift analysis approach.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

5

4.3. Uses view

Generally, software systems are decomposed into little pieces due to
the complexity in software systems which makes them more manageable
and understandable for all involved stakeholders. Most of the time these
decomposed pieces depend on each other for performing. Uses view
presents usage dependencies between these pieces which are called
modules. Usage dependencies occur whenever module’s correctness
depends on another module’s correctness [2]. Uses view is insightful
since the modules presented are the subset of the modules presented in
decomposition view and it presents special type of relation between
these modules. Also documenting uses view helps with incremental
development and deployment [2]. Uses view model aggregates of re
lations and elements. Elements are modules or subsystems and relations
hold two properties which are source and target elements.

4.4. Generalization view

By the nature of domain software system is modeling, it can be
broken into pieces where some part of the system is more specialized
version of another part. These specializations denote not just for dif
ference but also commonality between parts. Generalization view pre
sents special type of relation between modules called "is-a" relation [2].
This view is useful when extension and evolution of modules [2].
Modules in this case are classes or interfaces and generalization view
presents inheritance or implementation relations between these ele
ments. Inheritance relation exists between class and class or interface
and interface elements. Moreover, implementation relation exists be
tween class and interface elements. Generalization view model aggre
gates of modules and relations. Relations can be either implementation
or inheritance and has two properties which are child and parent of that
relation.

Fig. 4. Metamodels of the Selected Viewpoints.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

6

4.5. Layered view

Software architecture evolved from copy and paste architecture to
layered monolith and then to microservices. Both layered monolith and
microservices divide software architecture units into layers of division
where layers interact with each other for their correctness. The layered
view is specialized version of the uses view where layers are cohesive
group of modules that can interact in one-way direction [2]. Layered
view model aggregates layers and relations. Relations can be either
allowed to use below relation or allowed to use relation and hold two
properties which are the source and target layer.

5. Viewpoint oriented software architecture reconstruction tool

We have developed a software architecture reconstruction tool that
can extract architecture models from the code. The extracted architec
ture models represent the selected architecture views of the systems. We
have created a library that can be plugged into projects that are pro
grammed using Java as the programming language. The library depends
on scripting the source code using Java reflection features. We have
utilized an open-source project for Java runtime metadata analysis to
fetch classes from the code under test [17]. Complete implementation
for architecture reconstruction can be found on GitHub [14].

The developed architecture reconstruction method derives archi
tecture view models from the code in four steps: pre-processing,
extraction, analysis and model. We first pre-process the code by
removing external dependencies and annotating code parts for re
positories and its data accessors. Architecture elements are then
extracted and mapped to architectural components. The resulting ar
chitecture is represented as Human-Usable Textual Notation (HUTN),
which conforms to the Meta Object Facility (MOF) from the Object
Management Group (OMG) for storing models in a human understand
able format. Fig. 5 presents the part of the architecture reconstruction

library. As can be seen from the figure, the ArchitectureReconstructor
class has five fields that are responsible for extracting five different
viewpoints. The results of the extractors are view models, which are then
translated to HUTN models in reconstruct method.

Fig. 6 presents the simple usage of the library API. Architecture
reconstructor object needs to be initialized and reconstruct method with
the path of code under test should be executed.

Table 2 reports the pseudocodes for the architecture reconstruction
code of the selected 5 viewpoints. We have defined an algorithm for each
viewpoint and implemented them to reconstruct the corresponding ar
chitecture view model.

Fig. 7 shows, for example, the reconstruction of an architecture
decomposition view from the code. Hereby, a system is illustrated that
consists of three sub-modules X, Y and Z. The module X consists further
of sub-modules X1 and X2, while the module Y consists of sub-modules
Y1, Y2, and Y3. In a similar sense, the reconstructed architecture code
views are easily extracted.

6. Viewpoint oriented architecture drift analysis tool

In the previous section, we have introduced the method to extract the
software architecture models from the code. At this stage, we have both
the reconstructed and original architecture ready for drift analysis. We
used Epsilon Comparison Language (ECL) to compare different archi
tecture models that conform to the same metamodel of the corre
sponding viewpoint. ECL is rule driven domain specific language for
comparing different or same type of models [16]. Complete imple
mentation can be found on github [18]. The following subsections
elaborate on the implementation of the architecture drift analysis. Sec
tion 6.1 describes the implementation of the architecture drift analysis
for each of the five viewpoints. Section 6.2 describes the results of the
execution of the code. Finally, Section 6.3 presents the overall tool
environment.

Fig. 5. Architecture Reconstruction Library Details.

Fig. 6. Architecture Reconstruction API Usage.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

7

6.1. Implementation of architecture drift analysis for each viewpoint

The drift analysis pseudocode for each viewpoint is primarily based
on the elements and structure of the metamodels that we have presented
in Fig. 4. In Table 3 we first report the corresponding derived pseu
docodes for each architecture viewpoint. Each of the pseudocodes
checks whether the required architecture elements from the corre
sponding viewpoints are whether present or absent in both the original

architecture view and the reconstructed architecture view. The pseu
docodes of Table 3 have all been implemented using ECL.

Fig. 8 shows the ECL code for comparing decomposition views as
described in Table 3. A rule is defined to match the modules in the
original and reconstructed decomposition view of an architecture.
Matching is performed between original architecture(l) and recon
structed architecture(r). In alignment with the pseudocode and the
metamodel, the rule compares the two models by checking whether the
name of the modules as well as the subelements equality match.

Fig. 9 presents the ECL code for comparing reconstructed and orig
inal uses views of an architecture, which consists of two comparison rules
for modules and relation elements. Reconstructed and original uses
views of an architecture are compared by checking the equality in the
module’s name and relation’s source and target modules.

Table 2
Pseudocodes for reconstructing view models per architecture viewpoint.

Viewpoint Pseudocode

Decomposition • Find all classes for given path

• For each class

○ Add package name to set

○ Tokenize the package name by "." and add them to

set

• For each package name

○ Find subelements that begins with package name

○ Create a decomposition module object with name

and subelements

Uses • Find all classes for given path

• For each class

○ Create uses module

○ Create uses relation for each declared field type

○ Create uses relation for each method parameter

types

○ Create uses relation for each method return types

Generalization • Find all classes for given path

• For each class

○ Create generalization module

○ Create inheritance relation for each parent

class

○ Create implementation relation for each

implemented interface

Layered • Find all uses relations

• Filter uses relations where no circular dependency

exists

Shared Data • Manually annotate data accessor classes with @Repo

• Manually annotate data accessor methods with @Read

and @Write

• Create repositories for each repository used by

data accessors

• Create data accessors for each class annotated with

@Repo

• Create data read for each method annotated with

@Read

• Create data write for each method annotated with

@Write

Fig. 7. Example HUTN model for the decomposition view.

Table 3
Pseudocode for the architecture drift analysis.

Viewpoint Comparison Pseudocode

Decomposition • For each module

○ Module names must match

○ Modules subelements must match

Uses • For each module

○ Modules name must match

• For each relation

○ Relations source module and target module must

match

Generalization • For each module

○ Modules name must match

• For each implementation and inheritance relation

○ Child and parent module of the relation must match

Layered • For each module

○ Modules name must match

• For each allowed to use below relation

○ Relations source module and target module must

match

Shared Data • For each repository

○ Repository name must match

• For each data accessor

○ Data accessor name must match

• For each data read

○ Data read repository must match

○ Data read accessors must match

○ Data read qualifier must match

• For each data write

○ Data write repository must match

○ Data write accessors must match

○ Data write qualifier must match

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

8

Fig. 10 presents the ECL code for comparing reconstructed and
original generalization views of an architecture. The comparison is per
formed on three elements of generalization viewpoint: module, imple
mentation relation and inheritance relation. Module comparison checks
for the equality between original and reconstructed views for the name
property of modules. Both implementation and inheritance comparison
check the equality of child and parent in corresponding relations.

Fig. 11 presents the ECL code for layered views. Comparisons are like
the comparisons for the uses viewpoint. The only difference is the
naming of the elements, whereas layer maps to the module and allowed
to use below maps to relation rule. Layer comparison checks for the
name equality and allowed to use below comparison checks matching
the source and target layers of these restricted relations.

Fig. 12 presents the ECL code for shared data views. The set of rules as
shown in the figure compares the reconstructed and original shared data
views of an architecture. Two elements repository and data accessors are
compared their name equality. Data read and write rules are compared
by matching their data accessors, repositories and respective properties.

6.2. Results of the architecture drift analysis

The result of the execution of each ECL rule implementations in the
previous sub-section is an array object that holds information about
matches (convergence, absence and divergence) between the compared
two view models. Matches contains information about what are being
compared and if there are discrepancies or not. This object alone does
not add much value, so we needed to extract matched elements
(convergence), elements present in reconstructed view but not in orig
inal view (divergence) and elements present in original view but not
present in reconstructed view (absence). Fig. 13 presents a code piece to
extract this information from the mentioned data array. The first for loop
statement extracts convergence relations between the original and

reconstructed architecture. The second for loop statement extracts both
divergence and absence relations between the original and recon
structed architecture.

Fig. 14 presents a sample output from decomposition ECL code
execution. In this execution we used the sample model from Fig. 7 as an
original decomposition view. We introduced a new module named K
with its subelements K1 and K2 beneath module X and removed module
Z completely from the view. In the figure, we can see that untouched
module of X1, X2, Y, Y1, Y2 and Y3 are matched between the original
and reconstructed view. However, modules X, Z and S did not match the
modules in the reconstructed decomposition view. Moreover, modules
S, X, K, K1 and K2 of reconstructed decomposition view did not match
the ones in the original architecture.

6.3. Eclipse tool

Fig. 15 shows the eclipse workbench for software architecture drift
analysis. The left part shows the package explorer in which we have
partitioned our logic by each viewpoint. Each viewpoint consists of a
metamodel file, executable ant build file, ECL file and two architecture
view models in HUTN format. The section on the top right shows the
editor support from the Eclipse Epsilon from framework. The lower right
section presents the execution result of the ant build file, which prints
out architecture deviations.

7. Case study design

To validate our architecture drift analysis approach, we have adop
ted the case study empirical evaluation protocol discussed by Runeson
and Höst [19]. The protocol consists of the following steps: (1) case
study design, (2) preparation for data collection, (3) execution with data
collection on the studied case, (4) analysis of collected data (5)

Fig. 8. ECL code for comparing decomposition views.

Fig. 9. Uses Viewpoint ECL Code.

Fig. 10. Generalization Viewpoint ECL Code.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

9

reporting. Table 4 reports the case study design steps for the selected
case study.

The case study design approach is in the category of the applied
research type. As such, the primary purpose is to understand the impact
of adopting the architecture drift analysis approach within the real in
dustrial context. One research question has been defined, which relates
to how effective the adopted architecture drift analysis is. The effec
tiveness of the proposed approach is calculated by the number of di
vergences and absences discovered on the implementation of the system
with respect to present divergences and absences. To this end, we have

applied the fault injected real code approach to detect the in
consistencies. We have reconstructed relevant architecture views from
the implementation and applied drift analysis using the described tool.
We have applied exhaustive testing to trigger every flow path in Table 3
for each architecture view in an industrial case study. As shown in
Table 4, our first-degree information sources are software developers,
meetings and interviews. We also analyzed technical reports, technical
documents along with the source code as second-degree information
source. At last, we analyzed official documents provided by the company
to other stakeholders as a third-degree information source. Table 4 also

Fig. 11. Layered Viewpoint ECL Code.

Fig. 12. Shared Data Viewpoint ECL Code.

Fig. 13. Conformance and Deviation Extracting ECL Code.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

10

reports the data collection methods from the information sources. We
have conducted semi-structured interviews and meeting with the soft
ware developers. Then, we independently analyzed technical reports
and official documents. Finally, the results of the previous steps have
been reported.

7.1. Industrial case study: E-commerce

In this section, we outline the industrial case study utilized for
validating our approach. Due to confidentiality constraints, the private
company’s name is withheld. Our approach has been applied within a
real-world industrial context for e-commerce software. There are five
primary e-commerce software categories: business-to-business (B2B),

Fig. 14. Sample Output from Execution.

Fig. 15. Snapshot of the eclipse workbench showing the architecture drift analysis.

Table 4
Case study design.

Case Study Design Activity Case Study

Goal Assessing the effectiveness of the adapted architecture drift analysis approach
Research Questions RQ1: How effective is the adopted architecture drift analysis approach and tool?
Background and source Software Engineers (1st degree)

Meetings and interviews (1st degree)
Technical documents and reports (2nd degree)
Source Code (2nd degree)
Official documents (3rd degree)

Data Collection Direct data collection through semi-structured interviews and meetings
Independent data collection based on document analysis (the papers and technical reports)
Indirect data collection based on source code analysis.

Data Analysis Quantitative Data Analysis using Tables

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

11

business-to-customer (B2C), customer-to-business (C2B), customer-to-
customer (C2C), and public administration. In this case, we focus on a
B2C e-commerce system, which serves approximately eighteen million
customers for monetary transactions, generating massive amounts of
data related to customer transactions across various company ecosys
tems. We present the architecture view models for each viewpoint
introduced earlier, using the original architecture models of the system
for drift analysis, along with the deviated architecture models. The
codebase, from which we derived the architecture models, consists of
around forty thousand lines of code. Each team has a software architect
who has a strong understanding of the problem domain and other sys
tems within the company’s ecosystem. The standard process for initi
ating a project within the company can be summarized in three steps:
First, business analysts gather functional and non-functional re
quirements for the system. Second, the software architect assigned to the
implementation team begins designing the high-level architecture.
Lastly, software developers implement the requirements based on input
from software architects and business analysts. Throughout this process,
developers collaborate closely with the software architect to design the
low-level architecture.

7.1.1. Shared data view
Fig. 16 presents the shared data view for the original architecture. It

has one repository with add, delete, update and query methods on a
single database called DB.

7.1.2. Decomposition view
Fig. 17 presents the decomposition view for the original architecture.

There are nested packages inside each other and a total of twenty-two
packages. As can be seen, form the figure samplecase package is
divided into controller, service, util, repository and infra. Each of these
packages is decomposed into smaller packages, forming the decompo
sition relation between the packages in a hierarchy, which can also be
seen from the figure in detail.

7.1.3. Uses view
The uses view of the system is shown in Fig. 18. Here the arrows

represent a uses relation that defines the dependency on the correct
function of a module to the used module. As can be seen from the figure,
there are 18 modules, and 24 uses relations between these modules. The
most used module is infra.maintenance.log module, and the rest of the
uses relations are distributed similarly between the modules.

7.1.4. Layered view
Fig. 19 shows the layered view of the original architecture. The

controller is the highest layer in the architecture where it is allowed to
use its sub-packages, service and the security packages from infra
structure. Moreover, the security layer has its own layering within
where infra.security.dto package is the lowest layer in this view. We can
also notice that infra.maintenance.log is used by three higher layers in

different ranking which are: controller, service and repository. The service
layer is allowed to use the repository and its sub package helper. This
layer then allowed to use util, infra.maintenance.alert and infra.security.
authorization.

7.1.5. Generalization view
In the system, we have also defined the generalization view to show

the generalization specialization relations among the modules in the
system. Fig. 20 presents a generalization view of the original architec
ture. In the figure, blue squares denote interfaces, black squares denote
classes, dotted arrows denote the implementation relation and solid
arrows denote extension relation. In the figure, three types of general
izations are shown including interface extensions, class extensions and
interface implementations. Class can extend another class and class can
implement an interface. However, interface can only extend another
interface. As can be seen from the figure there are 21 classes, 6 in
terfaces, 9 inheritance relations and 9 implementation relations.
Implementation relations are between classes and interface whereas
extension relations are between the same type of entities (eg: class to
class, interface to interface).

Based on the architecture documentation that consists of view de
scriptions, the system has been implemented. For the development and
maintenance of the system, many developers and testers have been
assigned who is responsible for the continuous maintenance and evo
lution of the system. For managing such a large system, it is important
that the corresponding code is consistent with the architecture. Testing
is carried out for different quality concerns. One important concern is
also the alignment with the architectural design decisions.

7.2. How effective is the adopted VOSACAM approach?

In this section, we explain our exhaustive fault-based testing on our
case to validate our adapted approach. Software testing is considered to
be fault-based testing when the objective is to demonstrate an absence of
predefined faults [20–22]. Therefore, we created a mutant copy of our
case per architecture viewpoint according to criteria defined in Table 3.
A mutant copy of a program is a program under test seeded with
structural changes or bugs [23,24]. In our approach, we are executing
ECL scripts on the reconstructed architecture (mutant copy) and original
architecture of the case to detect and kill all mutants. Killing mutant is
detecting the injected bug on our reconstructed architecture which im
plies that our approach is effective at finding real-life defects. In our Fig. 16. Shared data view of adopted project infrastructure.

Fig. 17. Decomposition view of adopted project infrastructure.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

12

experiments, we introduced absence and divergence of relations which
corresponds to the removal and altering of a relation. Each viewpoint
includes its own absence and divergence relations depending on the
structure of the architecture viewpoint. Different strategies for mutation
testing can be identified based on either first-order or high-order mu
tants. Jia and Harman introduced higher-order mutation testing in
which mutation operators are applied more than once in their study
[25]. For our testing purposes, this is inapplicable since our operators
are conflicting with each other meaning that a relation cannot be
removed and altered consecutively. Therefore, we applied first-order
mutation testing.

Firstly, we generated the reconstructed architecture from the code
using our novel software architecture reconstruction method presented
in Section 5. These architecture view models are regarded as the original
architecture of the system. Afterwards, we made changes to the system
implementation in order to reconstruct the implemented architecture
(mutant architecture) of the case study. Subsequently, we use our ar
chitecture drift analysis described in Section 6. The rest of this section
provides mutants we created and the result of our approach per each
viewpoint.

7.2.1. Shared data viewpoint
We have modified the implemented code as follows and run our

architecture reconstruction method to extract the drifted software ar
chitecture model for shared data viewpoint:

a) Add a new database called DB2
b) Add a new repository called repository2
c) Add both insert and search methods to repository2
d) Change add method type to data read
e) Change query method type to data write

Fig. 21 presents the execution result for shared data viewpoint drift
analysis. We can see that the original architecture has two unmatched
items, which are query and add methods, whose types were changed in
the reconstructed architecture. Also, we can see six unmatched items
from the reconstructed architecture. Four of them are newly added items
and the remaining two of them were changed from the original
architecture.

7.2.2. Decomposition viewpoint
We have modified the implemented code as follows and run our

architecture reconstruction method to extract the drifted software ar
chitecture model for the decomposition viewpoint:

a) Add a new service package under maintenance
b) Remove the dto package from the authentication package

We expect to detect unmatched dto and authentication packages
from the original architecture. Furthermore, we also expect to detect
newly added service packages and diverged maintenance packages at
the reconstructed architecture. Fig. 22 presents the output of

Fig. 18. Uses view of the adopted project infrastructure.

Fig. 19. Layered view of adopted project infrastructure.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

13

Fig. 20. Generalization view of adopted project.

Fig. 21. Shared data architecture drift analysis result.

Fig. 22. Decomposition viewpoint drift analysis result.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

14

architecture drift analysis between the original and the reconstructed
architecture. We can see that removing dto package from under the
authentication package caused nesting packages to diverge with respect
to the original architecture. On the reconstructed architecture side, we
can see a similar effect as dto package is not present, it causes nesting
packages to diverge from the original architecture. Also, new service
package is added under maintenance which triggered divergence both in
original and reconstructed architectures. Maintenance in the original
architecture was not matched with the reconstructed architecture.
Whereas maintenance and service packages in the reconstructed archi
tecture were not matched to the original architecture.

7.2.3. Generalization viewpoint
We have modified the implemented code as follows and run our

architecture reconstruction method to extract the drifted software ar
chitecture model for a generalization viewpoint:

a) Change type Authentication from class to interface
b) Add a new class EnvironmentConfiguration
c) Extend the EnvironmentConfiguration from Configuration class
d) Add a new interface ComplexLogger
e) Extend the ComplexLogger from Logger
f) Add a new class ConcreteLogger
g) Implement the Logger at ConcreteLogger
h) Remove the Entity interface

Fig. 23 shows the execution result of the drift analysis. Architecture
Drift analysis shows that there are three divergences from the original
architecture due to the removal of the Entity interface and changing type
Authentication from class to interface. Also, there are seven new ele
ments that are existing in the reconstructed architecture that does not
exist in the original architecture. First, divergence relates to changing
the type of Authentication in which the relationship between Locatio
nAuthentication changes from inheritance to implementation. The sec
ond and third divergences are due to the introduction of ConcreteLogger
and its implementation relation with Logger. Fourth and sixth di
vergences are due to introduction ComplexLogger and its inheritance
relation with Logger. The fifth and seven divergences are due to the
introduction of EnvironmentConfiguration and its inheritance relation
with Configuration.

7.2.4. Uses viewpoint
We have modified the implemented code as follows and run our

architecture reconstruction method to extract the drifted software ar
chitecture model for uses viewpoint:

a) Add a new uses relation from infra.maintenance.monitor module to
util module

b) Remove the relation between repository and infra.repository
modules

Fig. 24 shows the execution result of architecture drift analysis for
the uses viewpoint. As can be seen from the figure, architecture drift

analysis detected one divergence (newly added relation) and one
absence (removed relation) between architecture models.

7.2.5. Layered viewpoint
We have modified the implemented code as follows and run our

architecture reconstruction method to extract the drifted software ar
chitecture model for layered viewpoint:

a) Remove the uses relation between infra.configuration and infra.
maintenance.log modules

b) Add a new uses relation from repository module to controller module
c) Add a new uses relation from util module to service.helper module
d) Add a new uses relation from controller module to infra.security.

authorization.dto

Fig. 25 presents the results of the architecture drift analysis execu
tion result. We can see that due to the first three changes reconstructed
architecture has seven absent allowed to use relation. Moreover, the last
change caused divergence in the reconstructed architecture from the
original architecture. We can see that the biggest impact was done by the
second change in which we introduced a cyclic relation in layered
relation. This change caused all layered relations between controller,
service and repository to be violated.

Table 5 reports the execution result of our approach with respect to
each viewpoint. The table consists of three sections which are diver
gence, absence and conformance relations. The first section gives an
execution result for divergence relations for each architecture view
point. In a divergence relation, the reconstructed architecture has ele
ments that are not present in the original architecture. The first column
for this section shows the number of divergence relations after the fault
injection process and the second column shows the number of diver
gence relations discovered by our tool. Moreover, the second section
gives an execution result for absence relations for each architecture
viewpoint. In an absence relation, the reconstructed architecture is
missing architectural elements that are present in the original archi
tecture. The first column for this section shows the number of absence
relations after the fault injection process and the second column shows
the number of faults discovered by our tool. Finally, the last section
shows the conformance relations per architecture viewpoint. In a
conformance relation, both the reconstructed and the original archi
tectures share same architectural elements. The first column for this
section shows the number of conformance relations after the fault in
jection process and the second column shows the number of confor
mance relations found. As can be inferred from the table, our approach
has full coverage of both divergence and absence detection in archi
tecture drift analysis.

8. Discussion

The contribution of this paper lies in the proposal and implementa
tion of a viewpoint-oriented software architecture drift analysis method
that specifically addresses the need for multiple architectural viewpoints
when analyzing and maintaining complex software systems. The

Fig. 23. Generalization viewpoint architecture drift analysis result.

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

15

motivation for incorporating multiple viewpoints stems from the fact
that they provide a better representation of the system from various
stakeholders’ perspectives, thereby facilitating the understanding,
maintainability, and complexity management of the overall system.
While an integral architectural model provides a unified view of the
software architecture, it may not sufficiently capture the unique con
cerns and perspectives of different stakeholders. The use of multiple
viewpoints allows for a more comprehensive analysis of the architecture
by explicitly addressing the specific concerns of each stakeholder. This
enables a more targeted and efficient architecture drift analysis, as it
allows the identification and resolution of discrepancies in the areas that
matter most to each stakeholder. Other proposals may indeed use
different architectural models as needed; however, our approach em
phasizes the importance of adopting a viewpoint-oriented method that
explicitly caters to the diverse concerns of stakeholders, which may not
be adequately addressed in other approaches. The introduction of soft
ware architecture reconstruction and analysis tools is crucial for our
viewpoint-oriented approach. While there are existing tools for reverse
engineering code into architectural models or drift analysis, they may
not be designed to support multiple architectural viewpoints or tailored
to the specific concerns of various stakeholders. Our approach and its
corresponding tooling are specifically developed to handle the unique
requirements of a viewpoint-oriented architecture drift analysis.

Our architecture drift analysis approach has been evaluated with
respect to effectiveness. We have conducted an industrial case study to
assess the effectiveness of our approach using a case study protocol
defined by Runeson and Höst [26]. While the system used in the case
study is an actual industrial system, the use of mutants was chosen as a
means to simulate possible deviations and evaluate the effectiveness of
the architecture drift analysis approach in a controlled setting. This

allowed us to systematically evaluate the performance of the proposed
approach in detecting these inconsistencies. Although the analysis was
not performed during the actual development of the system; however,
the case study still provides valuable insights into the effectiveness of the
architecture drift analysis approach when applied to a real-world sys
tem. The industrial context is reflected in the system’s complexity and
scale, as well as the involvement of software developers, meetings, in
terviews, and analysis of technical reports and documents related to the
system. Based on this evaluation, we can state that the approach was
effective in detecting deviations between the original and final archi
tecture of the software system which are absence and divergence re
lations. It executes successfully on an industrial software system and
presents plausible results. We used a syntactic approach as many
conformance analysis approaches did. The approach could be further
extended with semantic-based approaches (e.g. using ontologies). We
consider this as a our future work.

Similar to any case study research, our study also has some validity
threats. Internal validity refers to the casual relation between treatment
and outcome. While assessing the effectiveness of the suggested
approach, we have applied formal fault-based testing and reported the
results in an isolated environment that no external variable can affect.
One can argue that injected violations are not real-world system faults
but faults our approach aimed to detect do not change in real-world
systems. Nevertheless, our experiments are executed on real industrial
case. External validity refers to concern of generalizing the results of a
scientific study. In our case study, we have applied our suggested
approach on B2C e-commerce system. However, architecture deviation
problem is not related to specific domain but characteristic problem
which might occur when software is developed. Also, our approach is
executed under one case study but what really matters in our context is

Fig. 24. Uses viewpoint architecture drift analysis execution result.

Fig. 25. Layered viewpoint architecture drift analysis execution result.

Table 5
Execution result of our approach.

Viewpoint Divergences Absences Conformances

of Divergences
Present

of Divergences
Found

of Absences
Present

of Absences
Found

of Conformances
Present

of Conformances
Found

Generalization
Viewpoint

7 7 3 3 70 70

Decomposition
Viewpoint

6 6 6 6 16 16

Layered Viewpoint 1 1 7 7 28 28
Uses Viewpoint 1 1 1 1 59 59
Shared Data Viewpoint 6 6 2 2 4 4

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

16

not the number of case studies but the size and complexity of the sys
tems. In our approach, we have adopted five different viewpoints,
defined the metamodels and domain-specific languages for these,
implemented the viewpoint-oriented software architecture reconstruc
tion method and implemented viewpoint-oriented software architecture
drift analysis. The approach is generic enough and could be generalized
for different viewpoints and different software system in any domain. As
stated before, the system that is being developed can be a complex
system, and hence, we could state that we have adopted a sufficiently
representative system to support the external validity. Obviously, in
practice, even larger systems could be identified, but the properties of
architecture code consistency will be similar. In our future research, we
will focus on further applications of the approach.

The topic of this paper, focusing on detecting and analyzing archi
tectural drift, has implications for the enforcement and compliance of
architectural standards and guidelines in the context of software
development. Architectural standards are crucial for maintaining soft
ware quality, ensuring consistency across different systems, and facili
tating communication among stakeholders. By providing a rigorous
method to automatically identify discrepancies between the designed
and implemented architectures, our approach contributes to the
adherence and enforcement of established architectural standards in the
software development process. Furthermore, our adoption of widely-
accepted architecture view modeling notations and methodologies re
inforces our commitment to integrating our approach with current in
dustry practices and de facto standards. Thus, we believe that our
research findings are not only interesting but also directly relevant to the
application of standards in the development of computer systems,
making our work well-suited for the journal’s scope and audience

9. Related work

This study builds on our earlier study [27] which focuses on archi
tecture conformance analysis using a model-based testing approach for
checking the consistency between architectural models and the code.
The main objective of this earlier work was to automatically derive test
cases from architectural views to check the architectural constraints in
the code, assuming the architecture is correct and the code needs to align
with it. In contrast, this study presents a viewpoint-oriented software
architecture drift analysis method that specifically targets divergence
relations, emphasizing the importance of architectural viewpoints in
addressing the discrepancies between the architecture description and
the code. This approach provides an integrated, stakeholder-focused
analysis to ensure that architecture drift analysis is effective and rele
vant for all parties involved. In summary, while the earlier paper focuses
on architecture conformance analysis using a model-based testing
approach, the new paper presents a viewpoint-oriented software archi
tecture drift analysis method that specifically targets divergence re
lations and emphasizes the importance of architectural viewpoints. This
new approach offers a more comprehensive and stakeholder-focused
analysis, with practical applicability and relevance in real-world
scenarios.

Our earlier study [28] focuses on addressing the architectural drift
problem by introducing a notation based on design structure matrices.
The main contribution of the earlier work is the introduction of design
structure reflexion matrices (DSRMs) as a complementary and succinct
representation of the architecture and code, supporting qualitative and
quantitative analysis and refactoring. The focus, the problem statement
and the adopted approach is thus different.

Several studies have been proposed for architecture drift analysis or
also called architecture conformance analysis. Architecture confor
mance analysis can both be driven in the code level or architecture level.
Code-level architecture conformance analysis is where software archi
tecture models are transformed into code-level tests which are then
executed against code under test. Architecture level conformance anal
ysis is where software architecture models are reconstructed and

executed against architecture under test. In our previous work [11] we
have conducted a domain-driven analysis of architecture reconstruction
methods in order to create a feature model and generic business process
model from 17 studies that we have selected. We have developed a novel
reconstruction method based on the outcome of the synthesis of the
identified primary studies. In [27], we have adopted a model-based
testing approach for deriving test cases to be used for architecture
conformance analysis. However, as stated before, in that study we
focused on generating test cases that can be used to check the compli
ance with the architecture and thus the absence relations. In this study
however we focus on the deviations in the code that are not represented
in the architecture, thus divergence relations.

Architecture reconstruction has been addressed in several studies. In
[29] also a software architecture reconstruction method based on ar
chitecture viewpoints is presented. The method uses natural language
processing and string parsing to reconstruct UML architecture models. In
[14] an approach is presented that uses source files names in clustering
algorithms for reconstructing architecture models from the result of the
applied algorithm. In [30] a method is presented similar to [29] which is
based on architecture viewpoints using clustering algorithms and
generating customer architecture models that are conforming to meta
model defined in the study.

Various studies propose different approaches for architecture
conformance analysis. In [14], the authors propose a tool called
SCHOLIA that extracts runtime object graph (ROG) to derive ownership
object graph (OOG), which represents the static hierarchical relations
within software systems from the code. This study utilizes annotated
code and executes conformance analysis between the generated model
and existing model automatically. The tool has been evaluated using a
case study. In study [19], the authors propose a conformance analysis
tool called jRMTool utilizing reflexion modeling. The corresponding tool
is evaluated for an internally used application in an organization.
Reflexion model (RM) is created from the code and pre-defined archi
tecture model. RM model is then analyzed for detecting divergence and
absence relations for conformance analysis. Study [11], focuses on the
architecture constraint analysis to detect whether original architecture
and resulting architecture conforms to each other or there are deviations
in this relation. Authors propose tool called dclcheck that executes
architectural constraints defined by software architect against the code
to detect any violation. Detected violations means that there is an
erosion in the software architecture which leads to nonconformance
between original architecture and the code. Study [31] proposes a tool
called ArchRuby to detect architectural violations in the code similar to
study [11]. Architectural rules are defined and executed against source
code to detect architectural erosions which leads to nonconformance
between original architecture and the resulting code. RM model is
created from the rule executions and analyzed for detecting divergence
and absences relations. Study [21] presents a tool called LISA to check
software systems against the reference architecture defined. At first tool
reconstructs architecture models from the code in LISA model format
and then apply conformance analysis. Study [32] proposes yet another
tool called ConQAT in which graph-based model is reconstructed from
code and then if same mappings are checked for existence between
original architecture and reconstructed architecture model. Study [33]
proposes a tool extends static analysis platform Magellan. Firstly, tool
reconstructs software architecture from the code by static analysis of
files. Then predefined constraints are executed on the reconstructed
architecture to detect deviations in the architecture. Study [34] presents
a tool called SAVE, which reconstructs architecture models from code in
Data model format. Then reconstructed architecture and original system
architecture are checked for absence and divergence relations. Study
[25] proposes ExplorViz tool, which is a web-based architecture model
visualization tool. Authors argue that manual conformance analysis can
be performed using tool by checking architecture model and then
analyzing code. Study [35] proposes a tool called SARTE, which takes
input of software architecture specifications as form of finite state

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

17

process model (FSP), test criteria. Tool generates test cases that are
mapping architectural constraints to source code level. Study [36] pre
sents a tool called CHARMY which transforms original architecture of
software systems into code level tests. Tests are executed against the
source code manually to detect the violations against the original
architecture.

Table 6 reports the summary of the related work for architecture
conformance analysis. The first row represents the method that we have
proposed in the article, while the others represent the related ap
proaches. We have focused on seven different features to characterize
these studies. The first column shows whether the indicated approach
uses architecture reconstruction or not. It appears that not all studies
depend on architecture reconstruction; these methods map architectural
specifications to code level testing. Conformance analysis is both done at
the architecture level and code level. The table also reports that most of
the studies checked absence and divergence relations together and only
four studies checked for only one relation. We can also derive from the
table that there is also no unified architecture model type for carrying
out architectural conformance analysis. The most used architecture
model types are RM and HUTN models. None of the studies explicitly
focus the notion of viewpoints, but we still derived and interpreted
which architecture viewpoint conformance analysis that have been used
in the conformance analysis. We can see that uses, decomposition and
layered viewpoints are the mostly used viewpoints. Furthermore, we can
see most of the studies are using automated tools but there are some
tools that are not fully automated and use manual checking. The studies
that were checked do not evaluate the approach using a formal case
study research protocol. Given this result, we can conclude that our
approach is both complementary to the existing approaches and novel in
the sense that it provides an integrated viewpoint oriented approach
that is validated within an industrial context.

To sum up, our approach offers several key differences and main
contributions when compared to the related work presented:

• Focus on divergence relations: While our previous study [27] and
other approaches primarily concentrate on the absence relations, our
current approach specifically addresses the deviations in the code
that are not represented in the architecture, thus targeting diver
gence relations.

• Viewpoint-oriented method: Unlike other studies, our approach
explicitly focuses on the notion of architectural viewpoints. This
enables a more comprehensive and stakeholder-focused analysis,
ensuring that the architecture drift analysis is relevant and effective
for all parties involved.

• Integrated and validated within an industrial context: Our method is
both complementary to existing approaches and novel, as it offers an
integrated viewpoint-oriented approach that has been validated
within an industrial context. This demonstrates the practical appli
cability and relevance of our approach to real-world software
systems.

• Automated analysis: Most of the studies in the related work use
either manual or semi-automated checking, while our approach
emphasizes automated analysis for efficiency and scalability,
particularly for large and complex software projects.

• Formal case study research protocol: Our approach is one of the few
that has been evaluated using a formal case study research protocol,
which strengthens the reliability and validity of our findings.

10. Conclusion

Software systems are seldom static, frequently requiring adaptations
to address bugs or accommodate new requirements. The architectural
drift problem, prevalent in many software projects, signifies the
discrepancy between the architectural description and the resulting
implementation [14]. Addressing the architectural drift problem to
ensure alignment between the code and the architecture is crucial for
guiding and managing software projects. In this article, we introduce a
comprehensive, model-driven architecture conformance analysis
approach to assess the consistency between architectural views and their

Table 6
Overview of existing architecture conformance analysis and architecture reconstruction method.

Tool / Conformance
Analysis Feature

Architecture
Reconstruction
Applied

Conformance Analysis
Execution Level

Checked
Relations

Architecture View Architecture
Model Type

Execution Case Study
Protocol
Applied

VOSACAM Yes Architecture Level Divergence
Absence

Decomposition Shared
Data Uses
Generalization Layered

HUTN Automated Yes

MDABT No Code Level Divergence Decomposition
Shared Data Uses
Generalization Layered

HUTN Automated Yes

SCHOLIA Yes Architecture Level Divergence
Absence

Generalization Uses OOG Semi-
automated

No

jRMTool Yes Architecture Level Divergence
Absence

Uses RM Semi-
automated

No

dclcheck No Code Level Divergence
Absence

Uses
Layered Generalization

NA Automated No

ArchRuby No Code Level Divergence
Absence

Uses RM Automated No

LISA Yes Architecture Level Divergence
Absence

Decomposition Layered
Uses Generalization

LISA Automated Yes

ConQAT Yes Architecture Level Absence Decomposition
Uses
Layered

Graph Automated No

Magellan Ext Yes Architecture Level Divergence
Absence

Decomposition
Uses

LogEn Automated No

SAVE Yes Architecture Level Divergence
Absence

Decomposition
Uses

Data Semi-
Automated

No

ExplorViz No NA Divergence
Absence

NA NA Manual No

SARTE No Code Level Absence Uses
Decomposition

FSP Semi-
Automated

No

CHARMY No Code Level Absence Uses
Decomposition

Charmy Specs Manual No

B. Uzun and B. Tekinerdogan

Computer Standards & Interfaces 87 (2024) 103774

18

corresponding reconstructed views derived from the code. We have
employed five distinct viewpoints, each with their respective meta
models and domain-specific languages. For every viewpoint, we have
implemented a software architecture reconstruction method, a
viewpoint-oriented software architecture conformance analysis, and a
supporting toolset. We have applied our approach and tools to a case
study involving a commercial company. In conclusion, our method
serves as a complementary addition to existing approaches, offering a
novel, integrated, and viewpoint-oriented solution that has been vali
dated in an industrial context. Both the approach and the toolset are now
in use by the company featured in the case study. In our future work, we
aim to apply our approach and tools to various other case studies.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] L. Bass, I. Weber, L. Zhu, DevOps: A software Architect’s Perspective, Addison-
Wesley Professional, 2015.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord,
J. Stafford, Documenting Software Architectures: Views and Beyond. Second
Edition, Addison-Wesley, Reading, MA, 2011.

[3] B. Tekinerdogan, Software Architecture, in: T. Gonzalez, J.L. Díaz Herrera (Eds.),
Computer Science Handbook, Second Edition, Volume I: Computer Science and
Software Engineering, Taylor and Francis, 2014.

[4] M. Abi-Antoun, J. Aldrich, Static extraction and conformance analysis of
hierarchical runtime architectural structure using annotations, in: Proc. of the 24th
ACM SIGPLAN conference on Object-oriented programming systems languages and
applications, 2009.

[5] A. Bucchiarone, D. Di Ruscio, I. Malavolta, P. Pelliccione, M. Tivoli, Towards a
model-driven infrastructure for runtime integration, validation and execution of
formal tools, Sci. Comput. Program. 144 (2017) 57–84.

[6] J. Garcia, I. Ivkovic, N. Medvidovic, A comparative analysis of software
architecture recovery techniques, in: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2013.

[7] S. Lee, J.C. Carver, An empirical study of architectural decay in open-source
software, Inf. Softw. Technol. 84 (2017) 85–101.

[8] J. Perez, B. Rumpe, A comparison of static architecture compliance checking
approaches, Softw. Syst. Model. 17 (4) (2018) 1105–1132.

[9] M. Plösch, R. Weinreich, C. Körner, A method for continuous code quality
management using static analysis, J. Syst. Softw. 133 (2017) 275–294.

[10] E. Demirli, B. Tekinerdogan, Software Language Engineering of Architectural
Viewpoints, in: Proc. of the 5th European Conf. on Software Architecture (ECSA
2011), 2011, pp. 336–343.

[11] R. Terra, M.T. Valente, A dependency constraint language to manage object-
oriented software architectures, Softw.: Pract. Exper. 39 (12) (2009) 1073–1094.

[12] B. Uzun, B. Tekinerdogan, Domain-driven Analysis of Architecture Reconstruction
methods. Model Management and Analytics for Large Scale Systems, Academic
Press, 2020, pp. 67–84.

[13] G.C. Murphy, D. Notkin, K.J. Sullivan, Software reflexion models: bridging the gap
between design and implementation, IEEE Trans. Softw. Eng. 27 (4) (2001)
364–380, 2001.

[14] Architecture Reconstructor, https://github.com/burakuzn/ArchitectureReconst
ructor, last accessed on May 2023.

[15] B. Tekinerdogan, E. Demirli, Evaluation Framework for Software Architecture
Viewpoint Languages, in: Proc. of Ninth International ACM Sigsoft Conference on
the Quality of Software Architectures Conference (QoSA 2013), Vancouver,
Canada, 2013, pp. 89–98. June 17-21.

[16] Epsilon Comparison Language, https://www.eclipse.org/epsilon/doc/ecl/, last
accessed on May 2023.

[17] Java runtime metadata analysis, https://github.com/ronmamo/reflections, last
accessed on May 2020.

[18] Architecture Model Differentiator, https://github.com/burakuzn/Architecture
ModelDifferentiator, last accessed on May 2023.

[19] J. Rosik, A. Le Gear, J. Buckley, M. Ali Babar, An industrial case study of
architecture conformance, in: Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement, 2008, pp. 80–89.

[20] L.J. Morell, A theory of fault-based testing, IEEE Trans. Softw. Eng. 16 (8) (1990)
844–857.

[21] R. Weinreich, G. Buchgeher, Automatic reference architecture conformance
checking for soa-based software systems, in: 2014 IEEE/IFIP Conference on
Software Architecture, IEEE, 2014, pp. 95–104.

[22] D.C. Marinescu, A.R. Leitner, B.E. Petzke, Architecture conformance testing using
model checking and data mining, Softw. Qual. J. 25 (1) (2017) 313–341.

[23] D.M. Rafi, K. Moses, K. Petersen, M.V. Mäntylä, Benefits and limitations of
automated software testing: systematic literature review and practitioner survey,
in: Proceedings of the 7th InternationalWorkshop on Automation of Software Test
(AST); Zurich, Switzerland, 2012.

[24] Y. Jia, M. Harman, Higher order mutation testing, Inf Softw Technol 51 (10)
(2009) 1379–1393.

[25] F. Fittkau, P. Stelzer, W. Hasselbring, Live visualization of large software
landscapes for ensuring architecture conformance, in: Proceedings of the 2014
European Conference on Software Architecture Workshops, 2014, pp. 1–4.

[26] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. J. 14 (2) (Dec. 2008) 131–164.

[27] B. Uzun, B. Tekinerdogan, Architecture conformance analysis using model-based
testing: a case study approach, Software: Pract. Exper. 49 (3) (2019) 423–448.

[28] B. Tekinerdogan, Architectural drift analysis using architecture reflexion viewpoint
and design structure reflexion matrices. Software Quality Assurance, Morgan
Kaufmann, Boston, 2016, pp. 221–236.

[29] A. van Deursen, et al., Symphony: view-driven software architecture
reconstruction, in: Proceedings. Fourth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), IEEE, 2004.

[30] G. El Boussaidi, et al., Reconstructing architectural views from legacy systems, in:
2012 19th Working Conference on Reverse Engineering, IEEE, 2012.

[31] S. Miranda, E. Rodrigues, M. Valente, R. Terra, Architecture conformance checking
in dynamically typed languages, J. Obj. Technol. 15 (3) (2016) 1. -1.

[32] F. Deissenboeck, L. Heinemann, B. Hummel, E. Juergens, Flexible architecture
conformance assessment with ConQAT, in: 2010 ACM/IEEE 32nd International
Conference on Software Engineering 2, IEEE, 2010, pp. 247–250.

[33] M. Eichberg, S. Kloppenburg, K. Klose, M. Mezini, Defining and continuous
checking of structural program dependencies, in: Proceedings of the 30th
international conference on Software engineering, 2008, pp. 391–400.

[34] J. Knodel, D. Popescu, A comparison of static architecture compliance checking
approaches, in: 2007 Working IEEE/IFIP conference on software architecture
(WICSA’07), IEEE, 2007, p. 12. -12.

[35] H. Muccini, M. Dias, D.J. Richardson, Systematic testing of software architectures
in the C2 style, in: International Conference on Fundamental Approaches to
Software Engineering, Springer, Berlin, Heidelberg, 2004, pp. 295–309.

[36] A. Bucchiarone, H. Muccini, P. Pelliccione, P. Pierini, Model-Checking plus Testing:
from Software Architecture Analysis to Code Testing, in: International Conference
on Formal Techniques for Networked and Distributed Systems, Springer, Berlin,
Heidelberg, 2004, pp. 351–365.

B. Uzun and B. Tekinerdogan

http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0004
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0004
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0008
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0008
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0008
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0030
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0030
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0030
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0003
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0003
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0003
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0003
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0007
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0007
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0007
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0015
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0015
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0015
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0018
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0018
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0024
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0024
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0025
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0025
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0010
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0010
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0010
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0032
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0032
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0033
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0033
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0033
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0023
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0023
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0023
https://github.com/burakuzn/ArchitectureReconstructor
https://github.com/burakuzn/ArchitectureReconstructor
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0031
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0031
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0031
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0031
https://www.eclipse.org/epsilon/doc/ecl/
https://github.com/ronmamo/reflections
https://github.com/burakuzn/ArchitectureModelDifferentiator
https://github.com/burakuzn/ArchitectureModelDifferentiator
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0027
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0027
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0027
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0022
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0022
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0035
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0035
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0035
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0019
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0019
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0026
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0026
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0026
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0026
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0016
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0016
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0014
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0014
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0014
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0028
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0028
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0034
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0034
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0029
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0029
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0029
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0009
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0009
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0009
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0005
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0005
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0020
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0020
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0011
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0011
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0011
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0012
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0012
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0012
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0017
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0017
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0017
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0021
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0021
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0021
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0006
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0006
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0006
http://refhub.elsevier.com/S0920-5489(23)00055-7/sbref0006

	Detecting deviations in the code using architecture view-based drift analysis
	1 Introduction
	2 Background
	2.1 Software architecture modeling
	2.2 Software architecture reconstruction
	2.3 Software architecture drift analysis

	3 Viewpoint oriented software architecture drift analysis
	4 Metamodeling of architecture viewpoints
	4.1 Decomposition view
	4.2 Shared data view
	4.3 Uses view
	4.4 Generalization view
	4.5 Layered view

	5 Viewpoint oriented software architecture reconstruction tool
	6 Viewpoint oriented architecture drift analysis tool
	6.1 Implementation of architecture drift analysis for each viewpoint
	6.2 Results of the architecture drift analysis
	6.3 Eclipse tool

	7 Case study design
	7.1 Industrial case study: E-commerce
	7.1.1 Shared data view
	7.1.2 Decomposition view
	7.1.3 Uses view
	7.1.4 Layered view
	7.1.5 Generalization view

	7.2 How effective is the adopted VOSACAM approach?
	7.2.1 Shared data viewpoint
	7.2.2 Decomposition viewpoint
	7.2.3 Generalization viewpoint
	7.2.4 Uses viewpoint
	7.2.5 Layered viewpoint

	8 Discussion
	9 Related work
	10 Conclusion
	Declaration of Competing Interest
	Data availability
	References

