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Abstract
Ecosystem dynamics is often considered driven by a coupling of species’ resource consumption and its population size 
dynamics. Such resource-population dynamics is captured by MacArthur-type models. One biologically relevant feature 
that would also need to be captured by such models is the introduction of new and different species. Speciation introduces a 
stochastic component in the otherwise deterministic MacArthur theory. We describe here how speciation can be implemented 
to yield a model that is consistent with current theory on equilibrium resource-consumer models, but also displays readily 
observable rank diversity metric changes. The model also reproduces a priority effect. Adding speciation to a MacArthur-
style model provides an attractively simple extension to explore the rich dynamics in evolving ecosystems.

Keywords  Environmental stochasticity · Population dynamics · Evolution · Coexistence

Introduction

An ecosystem is a set of species, each of finite population 
size that interact by competing for finite resources that fuel 
their growth. A single ecosystem can involve dynamics that 
occurs over a wide range of length and timescales (Azaele 
et al. 2016); Darwin already eloquently referred to this in 
his “tangled bank” remark. The seemingly universal nature 
of a species’ emergence, adaptation and extinction in such 
ecosystems, has inspired many to describe the phenomenol-
ogy of ecosystem dynamics with simple modeling with only 
a few ingredients that are independent of the specific physi-
cal mechanisms at play (Nowak 2006; Azaele et al. 2016). 
What is then the simplest quantitative description that dis-
plays all the salient dynamical features of evolution? This 
question has a long list of partial answers (Nowak 2006; 
Tikhonov 2016; Posfai et al. 2017), although much work in 
the field concerns equilibria (MacArthur and Wilson 1963; 

MacArthur 1955; Chesson 1990; Hubbell 2001). Here, we 
show that the already successful variants of MacArthur 
models can be amended with a simple stochastic mechanism 
that introduces new species, which allows us to show many 
of the biologically relevant dynamical features of evolution 
even when the starting point for the dynamics is a single pri-
mordial ancestor. In particular, our MacArthur model variant 
can describe the growth dynamics of an ecosystem in terms 
of species richness, its evolution towards a dynamic equilib-
rium size, and even its adaptation to resource influx changes. 
The predictions of the model are consistent with other exist-
ing modeling on, for example, equilibrium dynamics and 
reasonably in line with common observations on, for exam-
ple, resource shock experiments.

The speciating MacArthur model

Evolutionary dynamics modeling including MacArthur type 
models usually starts with describing population dynamics 
as ṅ(t) = n(t)f (n) with n the set of species population sizes 
and the dot denotes a time derivative. The crux is that f (n) 
is not constant but a growth rate determining function that 
depends on ecosystem features such as population sizes and 
coupling constants which specify inter-species competition 
and preying efficiency (Wangersky 1978; Cressman and Tao 
2014). This general approach is tremendously successful 
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even in capturing quantitative experimental observations 
of low-dimension systems (Korolev et al. 2011). However, 
describing the dynamics of larger ecosystems with many 
evolving species is challenging, as high-dimensional systems 
quickly lose their numerical and analytical tractability, even 
without incorporating the additional complexity of the evo-
lution of each species.

We address this complexity by adding evolutionary 
dynamics to multi-species ecosystem models by quantifying 
the growth rate within the context of the ecosystem 
properties. It has become customary in recent years to 
define every species j by a strategy vector sj (Posfai et al. 
2017; Tikhonov and Monasson 2017; Pacciani-Mori 
et al. 2020; Caetano et al. 2021) that couples the growth 
dynamics ṅ(t) = n(t)f (n) to a dynamic resource vector r(t) 
which represents the amount of available resources at time 
t. Here, each component i of sj describes which fraction of 
each resource ri is used by every species j at every time 
step. The time-dependent growth factor is then naturally 
captured by the alignment sj ⋅ r . We can write for each 
element ṅj = njfj(n, sj ⋅ r) while introducing resource time-
dependence via a function ṙ = g(n, s) , where s is the matrix 
with strategies sj as its columns. The concept of a strategy 
vector sj that every species j ∈ {1… k} has in order to 
harvest resources is central in the model. Each component 
of sj represents a strategy for a particular resource, the 
ensemble of which is characterized by a time-dependent 
vector r = {r1, r2,… , rl} where l is the number of resources. 
sj quantifies how much of each resource every individual 
would like to take out of the resource bath. We consider the 
concept of a resource component ri as extremely general: it 
can refer to a specific molecule, a chemical energy influx, or 
even to a certain amount of space available in a habitat. Each 
species has limited energy and time to spend harvesting. 
Thus, species need to optimize their foraging behavior by 
choosing how to be efficient as regards different resource 
consumption (MacArthur and Pianka 1966). To express 
the interdependence of resources, one simple way is to 
fix a norm of the strategy vector to an arbitrary quantity. 
For convenience we choose ‖sj‖2 = 1 , but other norms and 
values can be chosen. This choice does have a biological 
significance (Caetano et al. 2021). For now, we will focus on 
speciation with this fixed choice, but in “Comparison with 
adaptive dynamics: Convergence of strategies” section, we 
will see that this choice has important consequences. Note 
that our definition for the strategy vector is in analogy with 
how individuals with different genetics are represented in 
so-called ‘tangled nature models’ (TaNas) in the genotype 
space (Christensen et al. 2002; Hall et al. 2002; Anderson 
and Jensen 2005). The fundamental difference is that, in 
TaNa and other similar approaches  (Higgs and Derrida 
1992; Gavrilets 1999; Eigen et  al. 1988), the strategy 
vector’s components can assume discrete values, usually 

representing alleles of genes while in our case, the strategy 
vector assumes continuous values. The extension of the 
TaNa definition to phenotype space is straightforward (Laird 
and Jensen 2006).

We assume that the total demand for resources is pro-
portional to sj and the population size of each species nj . 
The time dynamics of every resource component ri is then 
described by the following:

Here, � is a timescale, and �i is the resource replenish-
ment factor of resource i, essentially representing a chemo-
stat (Posfai et al. 2017). In this simplified linearized resource 
dynamics, ri is not strictly positive, which is unphysical. 
When ri < 0 , we set it to zero. We find that the time depend-
ence of the model is very sensitive to the choice of the rate 
of consumption (and growth). However, the approach of a 
dynamic equilibrium while adding species to the ecosystem 
is preserved regardless of the choice of growth rate factor.

If the preferred resource intake of the species is similar to 
the composition of the resource environment r , the growth 
rate should be maximal; in the case where sj and r are not 
aligned, the species should perform poorly. A species goes 
extinct when its population size is below a threshold value. 
We verified that threshold choice is not important for much 
of the dynamics observed. We do note that setting the thresh-
old lower trivially increases the total ecosystem size. It is 
now natural to write for nj that

Writing explicitly that sj ⋅ r ≡
∑

i=1…l sijri makes clear 
that sij is the resource utilization coefficient of species j for 
resource i. � is, again, a time constant; � sets the popula-
tion decay rate. Equations (1) and (2) are simplified versions 
of MacArthur equations (MacArthur 1970; Chesson 1990; 
Haygood 2002). However, we interpret the coupling matrix 
sij much more specifically: it is essential to see how sj here 
serves as the definition of species j (Posfai et al. 2017).

Stochastic speciation

So far, we did not consider any stochasticity: the skeleton 
of the dynamics is deterministic and embeds a selection for 
the fittest species (Vellend 2010). The novel feature in this 
work is that we add speciation dynamics in two ways: (1) 
by adding species and (2) by ensuring the added species 
can be different from existing ones. We choose to make (i) 
mutants appear randomly, adding a new species equation to 
the system in a Monte Carlo way. We shall see that this cap-
tures both evolution and invasion. (ii) The strategy vector of 

(1)
dri

dt
= −�

∑

j=1…k

sijnj + �i.

(2)
dnj

dt
=
(
� sj ⋅ r − �

)
nj.
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the newborn species is stochastically generated (Posfai et al. 
2017; Pacciani-Mori et al. 2020; Drake 1990; Serván et al. 
2018; May 1972). Thus, the community assembly happens 
sequentially at random times with randomly evolved spe-
cies—see Fig. 1. We call our speciating MacArthur approach 
towards ecosystem dynamics “SMA” for brevity.

We can now use sj to specify how a species evolves with 
a simple Monte Carlo evolutionary model: mutants are gen-
erated from existing species from which they differ only in 
terms of the harvesting strategy vector. The initial species in 
the ecosystem is defined by uniformly drawing an ancestral 
strategy vector s1 , with elements in the range (0, 1), and 
normalizing it to one in the Euclidean norm. A new species 
can be spawned for every time step and for every alive spe-
cies, when a random number, drawn from a standard normal 
distribution, is larger than � standard deviations. We can thus 
define a mutant k + 1 by taking any existing species strategy 
sj and by adding a noise vector:

The noise vector is composed of a random vector drawn 
from a normal distribution, � , weighted by a parameter � 
quantifying the amplitude of the mutation. Therefore, the 
noise vector represents a shift in the species’ resource utili-
zation composition as a consequence of mutations. Note that 
by “phenotypically” defining our species solely in terms of 
sj , a natural link to genetic variation within a species is lost.

The stochastic arrival of a new species and the resource 
richness influence the local selection outcome by possi-
bly inducing historical contingency and priority effect in 
the community assembly  (Fukami 2015; Almany 2003; 
Sale 1977). The level of historical dependency on species’ 
arrival hinges on the value of � and the number of differ-
ent resource types. We assume that a small � represents an 

(3)sk+1 =
∣ sj + �� ∣

‖sj + ��‖2
.

infinitesimal evolutionary mutation in a species’ survival 
strategies, originating speciation events in response to the 
dynamic resource landscape. Indeed, � defines the degree 
of strategies’ divergence from parent species to daughter 
species. On the contrary, foreign invasions are modeled by 
considering the arrival of a new species with an entirely 
new set of characteristics, uncorrelated with the ones already 
present in the system. We call such case � → ∞ and will be 
discussed more in detail in “The role of � ” section. As we 
will see, SMA does show a remarkable ability to reproduce 
behaviors that can be interpreted in any eco-evolutionary 
context. We will discuss the interpretation of � in more detail 
in “Interpreting the role of � ” section.

Biological example: Biofilms

Despite the sober mathematical formulation, SMA concep-
tually captures some essential features of ecological systems: 
in several natural ecosystems, ecological successions are 
intertwined with populations’ adaptation to environmental 
conditions. Moreover, both native species’ evolution and 
alien species’ invasion contribute to determining the com-
munity’s fate, together with environmental responses or 
sudden changes. One simple yet effective example is that 
of microbial communities in biofilm formation, where evo-
lutionary and ecological timescales are comparable (Hansen 
et al. 2007; Goyal et al. 2022). In subaerial biofilms, such 
as those that grow in monumental buildings, the substrate 
of stones is firstly colonized by pioneer airborne microbes, 
which then leads to further successive stages with the sub-
sequent invasions of other microorganisms  (Gorbushina 
2007). The different substrate characteristics and environ-
mental conditions define the dynamic resource richness, 
which in SMA is rendered via the types of resources and 
their influx vector (Gaylarde 2020; Ariño et al. 2010; Caneva 

Fig. 1   The phylogenetic tree 
derived from the emergence of 
species in the evolution of one 
realization. Time is expressed 
in terms of integration time 
steps. The species lifetime is 
indicated in color to provide the 
chronology of emerged species 
in the tree. Leaf 1 indicates the 
emergence of the last spawned 
species and so on. The red 
line shows the lineage of the 
species with which the tree 
started; it went extinct around 
t ∼ 4.4 × 104 steps
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et al. 2004). Moreover, microorganisms not only can feed on 
others’ metabolic discards, but are also able to evolve rapidly 
via strains’ mutations, which in our model are captured by 
the signs and mutations in the strategy vectors (Gorbushina 
2007). As a result, several biofilms quickly show resistance 
to chemical anti-degradation treatments, often leading to 
unexpected and new community structures (Simões et al. 
2009; Gorbushina 2007).

It is evident that biofilms are much more complex eco-
systems than the ones described by SMA. In biofilm forma-
tion, both evolutionary speciation and ecological invasion 
act simultaneously, while in the current version of SMA, 
we consider these processes separately for simplicity. SMA 
can of course include both effects simultaneously, yet we 
aim to disentangle the dynamics observed in a simple 
general framework that captures existing natural systems. 
Many other interpretations besides biofilms are possible 
and welcome.

Implementation

We run all ecosystems starting from one species, with 
� = 0.005 , � = 0.01 , � = 0.1 . We assume that all resources 
have an equal influx rate given by �i = 1 . We focus on the 
case of � = 3.8 , and we consider systems where we vary 
l. The value for l can be representative of several different 
community scales. For example, when considering microbial 
communities, 100 or more different resource types are an 
appropriate choice (Fischbach and Clardy 2007; Fischbach 
and Sonnenburg 2011; Tikhonov and Monasson 2017). We 
then varied � within previously defined limits and studied 
the ecosystem’s evolution.

Solver

To integrate the species dynamics in Eq. (2), we employ 
a fourth-order Runge–Kutta (RK4) method with stochastic 
elements that can only generate one new species per existing 
one at every time step. We checked that the RK4 accuracy 
used in all our calculations does not affect the results. We 
verified that our custom implementation provides similar 
performance to the standard MATLAB ode45 solver for 
the deterministic l = 1 , k = 1 case, with � = 0.05 , � = 0.01 , 
�i = 1 , � = 0.2 . In the stochastic setting, we loop in every 
time step over the extant species, compute for each spe-
cies the RK4 step, and add a new species when a number 
drawn from a standard normal distribution is, in absolute 
value, larger than � . After the loop over the species, we 
perform an Euler forward step for the resource dynamics 
Eq. (1) where we use the updated values for the species. 
Then, we set all negative values for ri to zero to ensure the 

positivity of the resources. A representative code is provided 
on Zenodo (Bellavere et al. 2022).

Example ecosystem: l = 5 , k = 1

The SMA model can show a wide range of different dynam-
ics, depending on the (initial) number of species k, total 
number of resources l, and other parameters. The phenom-
enology of speciation embedded in the SMA can however 
already be observed for starting evolution with the most 
stringent starting condition of one species, that is, k = 1 . 
Note that capturing the emergence of an ecosystem with 
interacting species from a single primordial reproducing 
entity is one explicit aim of the current modeling approach. 
Evolving an ecosystem from a single species is, for exam-
ple, not possible in the classical MacArthur, Lotka-Volterra 
(LV), or replicator equation contexts.

In this example, we choose an l = 5 resource space and 
set ri(0) = 10 for all i as the initial resource amount avail-
able. Due to the presence of multiple species, the vector r(t) 
will be time-dependent and may not always be aligned with 
a particular species vector sj . We use � = 0.005 , � = 0.01 , 
�i = 1 , � = 0.1 , � = 3.7 and � = 1 and evolve the system for 
up to 105 time steps of size h = 0.1 . Note that the value of � 
is intrinsically linked to the choice of h because h also sets 
the frequency at which new species are generated; we come 
back to this point in “Transient scaling with � ” section. We 
consider a species extinct if its size is smaller than 0.1nstart , 
where nstart is the initial size of the population; this threshold 
effectively captures the role of fluctuations in small popula-
tions (Reichenbach et al. 2006; Parker and Kamenev 2009; 
Huang et al. 2015). The specific value for the extinction 
threshold does not affect the essence of the evolutionary 
dynamics of r and n . For repeated independent ecosystem 
calculations, we generate a new s1 for every iteration.

Figure 2 shows the typical ecosystem evolution initiated 
from one species k = 1 starting at size n1 = 10 . Due to the 
stochastic nature of species emergence and extinction, every 
realization of ecosystem dynamics is different. However, 
several important qualitative features reproduce and are 
visible in this and any example: (i) The initial species size 
oscillates in time until a viable new species has emerged; in 
sync, the resource dynamics is also oscillatory for the small-
est component of s as all the other resources get quenched 
to zero (Huang et al. 2017). Note that this excludes the case 
when an si is strictly zero, which is possible but rare. This 
is such that the resulting behavior dynamically balances the 
resource usage with the resource influx. (ii) The emergence 
of new species affects the timescale of periodic oscillations; 
also, new species can make older species go extinct. (iii) 
Later in the evolution, the population fluctuations shift in 
frequency and decay in amplitude, and multiple resources 
are utilized. The interpretation of these three trends is clear: 
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the randomly selected initial species favors the survival of 
one resource, for which si is the smallest. After this tran-
sient, the dynamics follow the l = 1 , k = 1 system which is 
pseudo-LV in character and allows for periodic orbits of 
fixed frequency. In this phase, the possibility of the random 
emergence of new species is consequential: the emergence 
of new species that are �� different from their parents will 
suppress the dominant role of the first species and limit 
its overuse of other resources, thus making the remaining 
resources emerge again as they are always continuously 
replenished at rate �i . We will make these statements more 
quantitative in the next sections.

Main phenomenology

The first significant result from SMA is the naturally bounded 
ecosystem it produces in both size and structure while we 
neither fix the (maximum) number of hosted species in 
the community nor the maximum population size of the 
individual species; only the influx of resources � is bounded. 
In modeling, this is traditionally captured with logistic growth 
models and/or to restrict oneself to probing the dynamics of 
an ecosystem with a fixed number of species (MacArthur 
1970; Chesson 1990; Haygood 2002; Grover et al. 1997; 
Posfai et  al. 2017; Tikhonov and Monasson 2017; Grilli 
et al. 2017). SMA embeds size limitations naturally, as we 
observe that for enough simulation time, the number of species 
grows towards a long-term stationary value—see below. This 
maximum number of coexisting species is solely determined 
by the distribution of strategies and resource availability. The 
bounded growth feature allows us to explore the long-term 
species abundance distribution (SAD) (Hubbell 2001; McGill 
et al. 2007), with the knowledge that a system will maintain, 

on average, a constant number of competitors and, as we will 
see, a finite global size. Note that during equilibrium size, the 
model allows for and will randomly let species emerge and go 
extinct; the ceiling represents a dynamic equilibrium. Note that 
in much of the dynamics explored, � mostly sets the speciation 
rate for the system evolution and is thus a timescale.

Growth towards equilibrium dynamics

Rather than considering each species or resource type 
separately, we gain insight into the system evolution as a 
whole by considering the total number of individuals (N) 
and the total amount of resources (R). Interest in the total 
abundance dynamics for similar trophic species is seldom 
suggested and, to our knowledge, rarely explored (Posfai 
et  al. 2017). Yet, empirical evidence shows that the 
aggregate biomass could provide valid information on 
the stability and composition of a community (Tilman 
et  al. 1997; Doak et  al. 1998). Thus, studying the 
evolution of total abundances allows us to explore the 
system behavior in greater depth from a new perspective 
and, simultaneously, reduces the variables involved. 
Resultant equilibrium dynamics for ecosystem averages 
for different l are shown in Fig. 3a. The inset shows how 
the equilibrium is reached for a particular example setting 
of l = 2 . We find a family of fixed points for the (R, N) 
dynamics that are all on a line defined by

This total abundance dynamics can be understood by sim-
ply considering separately the sum of the resources R and the 

(4)
R

N
=

l∑
i �i

��

�
.

Fig. 2   a nj(t) for the first (blue) 
and all subsequently emerged 
species; color indicates the 
spawning time, the dot the 
emergence of a new species. 
For visual simplicity, we dis-
played 22 over the 220 species 
spawned during the community 
evolution. b ri(t) for the five 
resources available in the evolv-
ing ecosystem. At later times, 
multiple resources emerge after 
initial depletion
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sum of the species N. In this way, the dynamically evolving 
dimension of the system reduces to a two-dimensional problem

Here, we emphasize that the number of living species, k, 
is a function of time: the equilibrium is dynamic in nature. 
The stationary solution (R∗,N∗) of this system should solve 
the equations

but note again that the elements that make up R∗ and N∗ 
do not have to be stationary. Inspired by Fig. 2, we now 
assume ri is approximately constant in i, meaning that the 
mean abundance per resource does not vary too much per 
resource, we can pull ri =

R∗

l
 out of the sum, resulting indeed 

in the fraction

It turns out that this equation predicts the slope of the 
line in the (R, N) phase space on which all the attractors of 

(5)

dR

dt
=

l∑

i

�i − �

l∑

i

k(t)∑

j

sijnj,

dN

dt
= �

l∑

i

k(t)∑

j

risijnj − �

k(t)∑

j

nj.

(6)

l∑
i

k(t)∑
j

sijnj =
∑l

i
�i

�
,

l∑
i

k(t)∑
j

risijnj =
�

�
N∗,

(7)
R∗

N∗
=

�l�

�
∑

i �i
.

the total abundance dynamics lie, as is shown in Fig. 3a. 
Note however that the pictures shown are for a constant � , 
and numerical results seem to indicate that the assumption 
ri ≈

R∗

l
 becomes less valid when �i ≠ �j . Using the results 

from Posfai et al. (2017), we can understand why this line 
has such predictive power. In the deterministic version of our 
model, i.e., without speciation, any number of species can 
coexist. That is, as long as the geometric conditions intro-
duced in Posfai et al. (2017) on the strategy vectors sj and 
the replenishment � are met. When these conditions are met, 
the system converges to a fixed point where all ri attain the 
same value. Hence, what we observe is that every time a new 
species is introduced (or an old one removed), the dynam-
ics converges to a new fixed point that is indistinguishable 
from the old one in the R-N dynamics. We conclude that the 
stochasticity in our system always results in an ecosystem 
where the necessary geometric conditions for the coexist-
ence of many species are met. To be precise, in Posfai et al. 
(2017) results were obtained for a nonlinear version of our 
model, such as Eq. (8), with normalization in L1 instead of 
the Euclidean norm. This norm changes some of the details; 
see “Comparison with adaptive dynamics: Convergence of 
strategies” section. Also, the nonlinear version of the model 
changes the slope of Eq. (7) somewhat, while making it valid 
under more general types of �.

Transient scaling with �

A second feature in SMA is that the speciation threshold, � , 
induces a timescale � for the evolution. At every time step, 

Fig. 3   (R, N) phase space of the last 104 out of 105 time steps for 150 
realizations (indicated by lines of different colors) with � = 3.8 , 
� → ∞ and different values of l (arrows). For l = 100 the simulations 
ended after 8 × 104 time steps due to memory load issues, and the fig-
ure displays the last 104 time steps of the runs. The fixed points lie on 

a line with slope l∑
�i

��

�
 (black dashed line). b Evolution of a single 

realization in (R, N) space with l = 2 with initial conditions R = 20 
and N = 10 . The system gradually displays asymptotic limit cycles. 
Different colors indicate different ecosystem realizations
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each species has a probability pm to mutate. This probability 
is given by the tail ( ≥ � ) of the standard normal distribution, 
i.e., pm = erfc(�∕

√
2) . Therefore, in absence of extinction, 

we expect the average number of species ⟨Sa⟩ to grow as 
∼ exp(erfc(�∕

√
2)t) . However, it should be noted that � is 

intrinsically entangled with the choice of the time step h: 
indeed, � defines the probability of an alive species generat-
ing a new species in the h time unit. In our simulations, we 
always kept h constant at the value 0.1 which ensures the 
stability of the solver. Because of this choice, we must take 
⟨Sa⟩ ∼ exp(erfc(�∕

√
2)t∕h).

For � to set such a timescale, the average behavior of a 
dynamic observable obtained for different values of � , when 
plotted as a function of � = exp(erfc(�∕

√
2)t∕h) , should col-

lapse into the same master curve. We explored this possibil-
ity by considering as observable the time-dependent average 
of living species ⟨Sa⟩ over 150 realizations, keeping � and l 
fixed but setting � = 3.8, 3.9 and 4.

We rescaled the time axis of each curve associated with 
a different value of � to � . For small l and high values of 
� , we observe that � does induce a timescale for the over-
all evolution: indeed, the ⟨Sa⟩ curves associated with the 
different � tend to collapse towards a single curve—see 
Fig. 4a, b in which we display results for l = 2 and l = 100 

respectively and � → ∞ . It follows that for low � the evolu-
tion is faster, while high values of � slow the community’s 
formation.

It is also clear from the figures that � is a valid timescale 
for small communities. When the number of species grows, 
extinction becomes important, and the curves for ⟨Sa⟩ devi-
ate weakly from the timescale � . Quantitatively, when the 
average number of extinctions ⟨Se⟩ > 1 , we find that the res-
caling becomes less accurate. Curiously, the rescaling works 
very well for all ⟨Se⟩.

Adaptation

The resource alignment interpretation of SMA clearly gives 
it many physically meaningful links to real-world ecosystem 
dynamics. Empirically, a promising constraint is to provide a 
time-varying resource influx by introducing �i(t) , sometimes 
also called a “pulse” experiment (Tilman 1987; Hiltunen 
et al. 2015). We demonstrate in what follows that SMA 
shows adaptation under such conditions. Additionally, we 
explore how the magnitude of changes in subsequent gen-
erations as characterized by � affects adaptation dynamics.

Fig. 4   a Time-scaling of the average number of living species, ⟨Sa⟩ , 
over 150 realizations of systems with l = 2 and � → ∞ . Curves 
associated to � = 3.8 , � = 3.9 and � = 4 are displayed in orange, 
blue, and black, respectively. The curves are rescaled according to 
� = exp(erfc(�∕

√
2)t∕h) . The red arrow indicates � ≈ 4 , for which 

the three curves diverge. b Same as (a) for a system with l = 100 . 
The blue arrow indicates � ≈ 12 for which the three curves diverge. 

c Time-scaling of the average extinction, ⟨Se⟩ , for the same system 
as displayed in (a). The colors are consistent with (a). The red arrow 
indicates the value of � for which ⟨Se⟩ = 1 . For all three different 
curves ⟨Se⟩ = 1 for � ≈ 4 , value for which the curves diverge in (a). d 
Same as (c) for the system described in (b). The blue arrow, indicat-
ing the value of � for which ⟨Se⟩ = 1 , is consistent with (b) for all 
three curves ( � ≈ 12)
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Rank abundance

To demonstrate the effects of a “pulse,” we focus on the results 
obtained for a system characterized solely by invasion events, 
and l = 100 . We chose to make the resource shock occur at 
tc = 8 × 104 steps, and we doubled the length of the simulation 
to provide enough time for the system to respond to the pertur-
bation. For t < tc , the influx rates are �i = 1 for all i; when t ≥ tc , 
the new 

∑
i �i is three times that before the perturbation. We 

chose to distribute 75% of the new � among only 25% of the 
resources. This abrupt change in resource influx induces adap-
tation dynamics by the ecosystem. Solving SMA with time-
dependent resource influx over several realizations at previously 
defined �, �, � and � , we observe that ecosystems are able to 
recover from such a resource shock: when the perturbation 
occurs, there is an initial stage, after which R(t) and N(t) gradu-
ally restore their limit cycles (not shown). However, for the 
linear model used here, the position of the attractor in the (R, N) 
phase space changes according to the new resource influx rates. 
The center of the oscillations does not lie on the line with slope 
l∑
i �i

��

�
 anymore. On the contrary, given the unevenness of the 

new resource influx vector, the correct slope seems now pro-
portional to the average influxes of the resource types that are 
not fully depleted, which in general are the ones associated with 
the highest resource influx.

We quantify the pulse response by probing species occur-
rence. Interestingly, the number of coexisting species is 
strongly affected by the resource shock. In the absence of 
perturbations, the number of living species hosted in the 
system spontaneously grows until it reaches an average max-
imum value in time—see Fig. 5a. When the perturbation 

occurs, the increase in available resources initially encour-
ages the system to welcome new species, resulting in a sharp 
peak in the number of coexisting species. Subsequently, 
the living species curve decays with a characteristic time-
scale until it reaches a substantially lower new stationary 
value—see Fig. 5a. The new rank abundance distribution 
corresponds to having fewer species that are all large in 
population size.

Remarkably, the shock also influences the SAD—
see Fig. 5b. Before the resource shock occurs, the rank-
abundance plot, also known as Whittaker plot (Magurran 
2013), displays a curve that gradually collapses towards 
lognormal-like behavior in the tail. Such behavior resembles 
that observed in empirical data (Sugihara 1980; Longino 
et al. 2002; Baldridge et al. 2016; Magurran 2013; May 
1975), although a few methodological aspects that give 
rise to such distribution are still debated (Magurran 2013; 
May 1975). After the perturbation, the curve still preserves 
its characteristic shape. However, its slope gets steeper in 
time, and the curve reaches a new asymptotic behavior 
characterized by less species evenness. Curiously, for systems 
with l = 2 , the rank-abundance trend shows a strongly uneven 
species distribution that is often associated with harsh 
environments or early stages of successions (Magurran 2013; 
McGill et al. 2007) (not shown). Further generalizations of 
SMA are discussed in “Generalizations of SMA” section.

The role of �

The noise amplitude � has two biologically different limit-
ing cases. For � → 0 , the community’s evolution proceeds 
via infinitesimal steps, with all the new species occupying 
the same niche. On the contrary, we can imagine a scenario 
in which a foreign species invades the community from 
an external pool. In this case, we assume that the foreign 
species evolved from a different ancestral species. Thus, 
we define its strategy by drawing a new ancestral one and 
adding a noise vector with the maximum noise amplitude 
� = 1 . This approach preserves the biological interpretation 
of the ancestral strategy and the mutations, originating from 
two different distributions: uniform and standard normal. 
For simplicity, we will refer to this scenario with the term 
� → ∞ , although mathematically we do not explore the limit 
of � → ∞.

The case of � → 0

As discussed, by decreasing � , the realizations start to 
depend on their initial conditions. When � is infinitesimal, 
ecosystem dynamics are mainly determined by the ancestor 
features. However, such development of a neutral commu-
nity at a species level (MacArthur and Wilson 1967) is made 
dynamic by a priority effect. Simply put, a small � is likely 

Fig. 5   a The number of living species, Sa , for a single realization of a 
system with l = 100 , � = 3.8 and � → ∞ . (i) From t ≈ 4.5 × 104 steps 
on, the curve reaches a plateau; (ii) the resource shock perturbs the 
system at tc = 8 × 104 steps; and (iii) after the shock, a second pla-
teau is reached. b Rank-abundance plot for the realization in (a). The 
curves show the trend at every 1000 time steps from t = 8 × 104 to 
t = 9.1 × 104 . From t = 9.1 × 104 to the end of the simulation, cor-
responding to when the Sa reach the second plateau in (a), the rank-
abundance curves are displayed every 14,000 time steps. The color 
scheme follows the colors on the left. The solid red line is the curve 
when the shock occurs. The arrows indicate the time immediately 
after the perturbation
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to lead to a successful species only if its ancestor was also 
successful. For small values of l, each realization still defines 
limit cycles around a fixed point. By increasing l, the dynam-
ics becomes aperiodic. When l is small, as expected, the 
family of fixed points lies along the line defined by the ratio 
l∑
�i

��

�
 . Also for l = 100 , the dynamics, even though aperi-

odic, is still contained in a region of the phase space close 
to the line—see Fig. 6.

We conclude that tuning � allows us to apply SMA to both 
evolutionary and invasion-type dynamics. The so embedded 
co-occurrence of both selection and priority effect mirrors 
empirical evidence and theoretical hypotheses suggesting 
that stochasticity and determinism in community assembly 
work hand in hand (Chase and Myers 2011; Dumbrell et al. 
2010; Luan et al. 2020; Cavender-Bares et al. 2009; Zhou 
and Ning 2017; Losos et al. 1998).

The case of � → ∞

For systems invaded by foreign species, the dynamics of 
several different realizations of one system exhibit the same 
attractor and qualitative behavior—see Fig. 3. From said 
figure, it is clear that at long timescales, the dynamics set-
tles on quasiperiodic orbits around points on the line of fixed 
points defined by Eq. (4), and higher values of l result in 
higher values of R and N. Varying the parameters � , � , � , 
and � gives similar results, only changing the slope of the 
line. Moreover, for high � , in the range [0.5, 1], the results 
are similar to those obtained for � → ∞ . In this limit of � , 
especially the large l limit is interesting, because at small l, 
the ecosystem quickly selects the best adjusted strategies, 
all the others going extinct. For large l, species’ strategies 

are constantly evolving towards an existing optimum that 
is however statistically unlikely to achieve, leading to slow 
dynamics. The effect of introducing new species is now also 
determined by their time of arrival, which now defines their 
competitiveness, inducing a priority effect (Fukami 2015; 
Almany 2003; Sale 1977) that we will see is the dominant 
driver of dynamics in the case � → ∞.

Priority effect for � → ∞

In the simulations, we see that species that spawn at the end 
of the simulation have a lower chance of surviving than at 
the start of the simulation. This can be interpreted as a prior-
ity effect. In order to quantify this, we count in a given time 
interval the number of species that went extinct immedi-
ately, i.e., decayed exponentially from the initial population 
to the extinction threshold. Dividing this number by the total 
number of spawned species in the same interval gives us an 
immediate extinction probability Pext. When the number of 
spawned species is large enough, we can divide the list of 
species up into bins and calculate Pext for each bin separately 
which indicates how Pext changes over time. Figure 7 shows 
a clear trend for an example ecosystem which indicates that 
there indeed is a priority effect.

Interpreting the role of �

Noise, priority effects, and historical contingency

We observed that the SMA dynamics solely depends on the 
number of different resources if the community assembly 
emerges from adding essentially random species. This sce-
nario comes about in the limit of large � , thus with more 
significant differentiation between parent and child species, 
resulting eventually in always the same type of community 
structure and species’ distribution. The late-time community 
that emerges in this limit is commonly referred to as the 

Fig. 6   a (R, N) heatmap of the last 2 × 104 out of 105 time steps for 
150 realizations with � = 3.8 , � → 0 , specifically � = 0.005 , and 
l = 2 , colored according to the logarithm of the number of counts. 
Each realization displays limit cycles around a different fixed point. 
In red, the line with slope l∑

�i

��

�
 . The red dot on the red line but close 

to the origin identifies the late time dynamics for l = 2 and � → ∞ as 
shown in Fig.  3 in the main text. b Same as (a) but with l = 100 . 
Most of the aperiodic trajectories are in the proximity of the line

Fig. 7   Extinction probability for a single realization with � = 3.8 , 
� → ∞ , and l = 50 . After 6 × 104 time steps, 984 species spawned 
which we divided in 12 bins of size 82
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climax community and indicates the final ecological suc-
cession of the community formation (Morin 2009; Weiher 
and Keddy 1995). The species, specifically the strategies 
selected to survive in the climax community, are considered 
resistant to the invasion of new strategies’ variants, which 
might be considered a type of “priority effect.”

On the other limit, we observe that the community assem-
bly is affected by the history of the species’ arrival for low 
values of � . The community is thus historically contingent 
(Morin 2009; Belyea and Lancaster 1999; Schröder et al. 
2005), an observation that is coherent with the literature. 
The smaller values of � result in more minor divergences 
between parent and child species. The community is locally 
neutral because the species belong to similar trophic lev-
els and have comparable survival probabilities. Thus, the 
community assembly is likely susceptible to the species’ 
arrival history and the pioneer species’ features (Fukami 
et al. 2007).

Resource‑noise interactions

What is the influence of evolutionary noise when there is 
not much room to be different in resource space? What is the 
role of noise when there are many resources? Clearly, l and 
� span a phase space of dynamics that we briefly explore for 
the biologically relevant dynamics it can describe.

For most realizations of systems with � → 0 and l = 2 , the 
number of living species Sa per realization displays a sigmoidal 
behavior in time—see Fig. 8a. This results from the resource-
consumer feedback: the total number of consumers increases 
by consuming resources before reducing again due to exces-
sive competition and resource lack. However, in this scenario, 
the species are almost equivalent in their competitiveness, and 
they can only go extinct if they arrive in the community at an 
unfavorable time. It seems reasonable to assume that when 
l = 2 , only a limited pool of strategies can survive in what we 
can call a “harsh” environment. Consequently, the majority of 

invading species do not present the necessary conditions and 
quickly go extinct. Successful invasions become rare events, 
and the growth of Sa stalls, reaching an equilibrium.

Similarly, systems with � → ∞ and l = 100 also show a 
long-term stationary value for Sa—see Fig. 8b. Here, the strong 
species selection provides additional resource-consumer feed-
back by choosing the most convenient strategies, leading the 
less fit species to extinction. Regardless of the interpretation, 
it is notable that again we observe that long-term stability is 
achieved under very different settings. Note also the much 
larger number of species that manage to coexist in the limit 
� → ∞ and l = 100 than when l is small.

On the contrary, for the case with � → 0 , l = 100 , the 
system does not present any long-term stationary value for 
the number of living species within the available computa-
tion time (data not shown). In this limit, the species take a 
long time to adjust their size according to the availability of 
the many resource types.

In the limit of � → ∞ and l = 2 , many realizations of the 
system hint at the existence of a long-time plateau value of 
Sa . Also here, it is reasonable to assume that when l = 2 , 
a limited pool of strategies can survive in such a harsh 
environment, but apparently invasion in harsh environ-
ments is notably different in its dynamics than evolutionary 
speciation.

Generalizations of SMA

SMA allows for many further generalizations (MacArthur 
1970; Chesson 1990; Haygood 2002). In Eq. (1) we have 
only considered that species consume resources; however, 
they may also provide resources—see “Negative strate-
gies” section. Oxygenic photosynthesis (Knoll and Nowak 
2017) is one example; on a different scale, gut microbes also 
provide natural resources for each other (Faust and Raes 
2012; Vet et al. 2018). Besides, predator dynamics can be 

Fig. 8   a The number of living 
species, Sa , for 5 realizations 
uniformly drawn from a 150 
pool of a system with l = 2 , 
� = 3.8 , and � → 0 . b Same 
as a for a system with l = 100 , 
� = 3.8 , and � → ∞ . The 
simulation length of the system 
in (b) is 8 × 104 steps due to 
memory load issues. For both 
the system in (a) and (b), the Sa 
curves reach a long time plateau 
whose values are different for 
each realization
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introduced by adding another predator coupling matrix 
term 

∑
i mijni , which can have both positive and negative 

elements, when species j is a predator or prey respectively. 
Growth rates can be made an explicit function of ri , preserv-
ing much of the dynamics presented here but adding more 
biologically relevant constraints. Several other choices can 
be modified, such as making the speciation rate or � a func-
tion of n . Making ri < 0 for some i can account for stressors. 
We discuss some of these aspects in this section.

Negative strategies

Enabling the components of the strategies sj to also have 
negative values is a natural choice or ecological dynami-
cal modeling, as it allows for species to contribute to the 
resources of other species. We find that allowing for the sign 
change of sj results in a significantly different transient. For 
example, when one samples sj from the full normal distribu-
tion, we observe that for infinitesimal mutations, � → 0 , and 
small numbers of resources, l, no negative strategy appears 
or survives. For high l and � values, on the contrary, a por-
tion of negative strategies survives. As a result, the total 
abundance dynamics presents aperiodic behavior, as the 
negative strategies work as an additional resource influx 
rate, with an intrinsic stochastic nature given by the random 
arrival of species with such features—see Fig. 9.

Consumption and growth rates as Monod functions

Until now, we assumed that the resource consumption rate 
� was constant, but it can be reasonable to assume that � is a 
function of the resource availability, so � = �(ri) . The con-
sumption rate then depends on the species’ opportunity to 

find and consume resources. It turns out that also for SMA, 
this consumption rate function is an important factor that 
determines certain characteristics of the dynamics.

To explore the role of the consumption rate function, one 
relevant choice for �(ri) is the Monod function (Monod 
1949): �max

ri

K+ri
 , where K ( K > 0 ) defines the half-saturation 

constant, that is, the resource availability that is present in 
the system when the consumption rate reaches half-speed, 
� = �max∕2 . The Monod function usually describes bacterial 
communities’ growth dependency on substrate concentration 
outside the lag phase (Liu 2020). However, we employ it 
here to express the intuitive concept that the consumption 
rate will vary depending on the substrate concentration, 
assuming �(0) = 0 , and saturating over a certain level of 
resource availability �max . More generally, K could be differ-
ent for each resource; for simplicity, we set it equal for all 
the resource types.

Similar to many other resource-consumer models, we 
further assume that resource uptake by the species is, up to 
a constant, equal to the depletion of the resources (Posfai 
et al. 2017; Pacciani-Mori et al. 2020). Consequently, �(ri) 
in Eq. (2) of the main text also becomes a Monod function, 
differing from �(ri) only on the proportionality constant 
�max : �(ri) = �max

ri

K+ri
.

Summarizing, it follows that the equation for the system 
dynamics now becomes 

Concretely, we explore the scenario in which � → ∞ and 
varied l and K. The choice of K affects both the resource 
depletion and the species growth timescales. The dynamics 
in (R, N) space does not display limit-cycles as observed for 
the linearized resource dynamics defined by the systems 
described in Eqs. (1) and (2) (see Fig. 2). However, in the 
Monod-version of SMA, the attractors still lie along a verti-
cal line, now defined by N∗ =

�max

∑
i �i

��max

 , obtained by the total 
abundances dynamics stationary solution. This can be 
observed in Fig. 10a for l = 2 and Fig. 11a for l = 100.

The long-term stationary state reached is also reproduced 
by the Monod version of SMA. In Figs. 10b and 11b for both 
cases l = 2, 100 , we see that independently of K, all the sys-
tems reach a long-time stationary value. In fact, the Sa associ-
ated with l = 2 and � → ∞ reach a plateau. This might result 
from the fact that when a Monod function describes both con-
sumption and growth rates, the systems with low � are still 
computable, while in the linearized version of the model, a low 
� value leads to a too large number of species for the system to 

(8a)
dri

dt
= −�(ri)

∑

j=1…k

sijnj + �i,

(8b)
dnj

dt
=
(
sj ⋅ �(r) − �

)
nj.

Fig. 9   (R, N) heatmap of the last 2 × 104 time steps for 150 realiza-
tions of a system with l = 100 , � → ∞ and � = 3.8 . Both positive or 
negative components can define the species strategy vectors, so that 
sij ∈ ℝ . The colormap displays the logarithm of the number of 
counts. The dynamics are aperiodic but still constrained in a region in 
the proximity of the line of slope l∑

�i

��

�
 (solid red line). The red dot 

indicates the position of the fixed point for a system with only sij > 0
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remain computationally tractable (but would presumably oth-
erwise reach equilibrium). We see that a long-time plateau is 
reached for many parameter choices and functional implemen-
tations of SMA, strongly suggesting that this feature is a robust 
property of the SMA model proposed. Of course, the obtained 
plateau values do depend on the choice of model details.

Comparison with adaptive dynamics: Convergence 
of strategies

The simplifying time-dependent dynamics provided by the use 
of Monod functions provides us with an opportunity to com-
pare SMA dynamics to adaptive dynamics (Brännström et al. 
2013). As observed in Fig. 11a, the (R, N) dynamics seems to 
minimize the sum of the resources R. Will adaptive dynamics 
do the same? We systematically investigate this question by 
considering the following extreme case: we assume that there 

is an equilibrium where all species have an identical strategy 
vector s∗ with nonzero components. First, we introduce for 
convenience the notation g(r) = r

K+r
 . From Eq. (8a), we then 

deduce that in equilibrium we have the equality

while from Eq. (8b), we conclude that in equilibrium we 
must have

Hence, we can express g(r∗
i
) in terms of s∗

i
 , but Eq. (10) 

gives us just one condition for l components. Therefore, 
we add that we want to minimize 

∑
i g(r

∗
i
) given that we 

had also assumed an interdependence of resources via the 
arbitrary choice of ‖s∗‖2 = 1 . To highlight the role of the 

(9)�maxg(r
∗
i
)s∗

i
N∗ = �i,

(10)
∑

i

s
∗
i
�maxg(r

∗
i
) = �.

Fig. 10   a (R, N) phase space of 
the last 2 × 104 time steps for 20 
realizations (different colors) of 
a system with � = 3.6 , � → ∞ , 
l = 2 and different values of 
K(arrows). Both consumption 
and species growth rates are 
described by a Monod function. 
Here, similarly to Posfai et al. 
(2017), �max and �max were set 
both to 1. The attractors lie on a 
vertical line N =

�max

∑
i �i

��max

 . b 
Examples of living species 
curve, one for each system with 
different K, as described in (a)

Fig. 11   (R, N) phase space 
of the entire evolution of 
exemplifying realizations 
(different colors), one for each 
system with � = 3.8 , � → ∞ , 
l = 100 and different values of 
K (arrows). Both consumption 
and species growth rates are 
described by a Monod function. 
Here, �max = 0.5 and �max = 1 . 
We notice a fast evolution 
towards the attractor. b Exam-
ples of living species curve, one 
for each system with differ-
ent K, as described in (a). All 
the systems reach a long-time 
stationary value
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normalization, we will do the derivation for a general p−
value. Hence, we look for a vector �∗ that solves

strategy vector using simulations.1 In Fig. 12, we show a 
simulation of the SMA for l = 3 and � = 0.02 for a long 
integration time. In Fig. 12a, we see that R is initially indeed 
minimized, before it slowly increases to the value predicted 
by the ESS. When we make a ternary plot of the strate-
gies at the end of the simulation, we observe that they are 
all centered around the ESS, not the resource-minimizing 
strategy. Therefore, in the language of adaptive dynamics, 
the resource-minimizing strategy could be a dynamically 
unstable ESS.

The choice of the norm ‖s∗‖2 = 1 does have conse-
quences, which we can clarify quantitatively. For the strategy 
vector in Eq. (16), we can find the total amount of resources 
in equilibrium R∗ by summing over the individual r∗

i
 and get

Note that when we choose p = 1 , all r∗
i
 will become inde-

pendent of � , explaining the results from Posfai et al. (2017). 
Furthermore, when p < 1 , we see that all r∗

i
 become smaller 

when we choose specialization as the preferred strategy (oppo-
site to assuming that all components of s∗ are nonzero). This 
highlights that also in SMA, the choice of normalization, 
which models how a species distributes its finite amount of 
energy, influences the selection of different types of strategies.

Limitations

After studying several extensions, we must look at the limi-
tations of our approach. We noted that the deterministic 

(17)R∗ =
�

i

g−1

�
�

�max

�
�i∑
i �i

�1−1∕p
�
.

a b

Fig. 12   a The blue line shows the evolution of the total resource 
abundance from t = 104 onward. The green line represents the sta-
tionary value connected to the resource minimizing state, Eq. (15), 
and the red line represents the ESS from Eq. (16).  b This figure 
shows the strategies from SMA (blue dots) together with the mini-

mizing strategy (green) and the ESS (red). The strategies clearly 
center around the ESS. Here, �max = 0.5 , �max = 1 , � = 0.02 , � = 4 , 
and � = (1.5, 0.5, 5) . � is deliberately chosen very uneven to highlight 
the differences between the two strategies

1  To make the comparison with Caetano et al. (2021) better, we did 
not use a fixed starting value for a new species, but rather 10% of its 
ancestor (which is then reduced by 10%).

Using Lagrange multipliers, we find that a solution exists 
when there is a � such that the following holds for all i:

Using Eq. (9), we find

As � must be independent of i, we must take

The constant c can now be used to normalize s∗ , so the 
unique solution for s∗ is then

On the other hand, in Caetano et al. (2021), the same 
equations for equilibrium of Eq. (8a) are solved as

using adaptive dynamics (Brännström et al. 2013), i.e., this 
solution is an Evolutionarily Stable State (ESS). We can 
compare this strategy vector with our resource-minimizing 

(11)Max −
�

i

g(r∗
i
), subject to ‖s∗‖p

p
= 1.

(12)−�s∗
i

�

i

g(r∗
i
) = ��s∗

i
‖s∗‖p

p
.

(13)
�i∑
i �i

�

�max

1

(s∗
i
)2

= �p(s∗
i
)p−1.

(14)s∗
i
= c

�
�i∑
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� 1

1+p

.

(15)s∗
i
=
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�
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i
�
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version of our model can have an arbitrarily large number 
of coexisting species in absence of an extinction thresh-
old (Posfai et al. 2017). Unfortunately, this is not a generic 
property of the model. Indeed, when we perturb the con-
straint that all species have their strategy normalized to the 
same value, i.e., by letting the value of the normalization 
depend on the species, we observe that the complex com-
munities collapse back towards a number of species that 
is in line with the competitive exclusion principle. It is 
however very well possible that in, for example, plankton 
communities, many species have similar functional traits 
(Borics et al. 2021; Graco-Roza et al. 2021). Therefore, 
our model might not be the full description of a complex 
ecosystem, but it can give us insight into the dynamics in a 
single “cluster” of similar traits.

We would like to further add that speciation is a complex 
process, not been fully uncovered (Matute and Cooper 2021; 
Gavrilets 2014). Because our aim is model simplicity, we do 
not consider, e.g., a specific mode of reproduction or repro-
ductive isolation (Higgs and Derrida 1991; Manzo and Peliti 
1994; Yamaguchi and Iwasa 2013; Gavrilets 2004). Our defi-
nition of speciation is more similar to a neutral speciation 
rate, as it is represented by the probability that an offspring 
originates a new species (Gavrilets 2014). Our approach is 
clearly not relatable to neutral models, e.g., Azaele et al. 
(2016), Volkov et al. (2003), Chave (2004), Kopp (2010). 
Nonetheless, for infinitesimal � , a certain degree of invari-
ance for strategies’ identities, and thus for species shuffling, 
remains valid.

Conclusions

We showed that adding speciation in a MacArthur model 
adds a host of dynamical features reminiscent of commonly 
observed evolutionary biology. Even when one starts the 
dynamics with a single species, by introducing new species 
of slightly different types into an existing ecosystem, we 
observe equilibration to a maximum number of species on 
a timescale that is a simple function of the spawning rate. 
We observe that the system self-maximizes the number of 
coexisting species, reaching a long-term stationary value. 
The stationary behavior represents a dynamic equilibrium 
as an attractor in (R, N) space. Parameters that set the sto-
chastic strength allow the model to explore both invasive 
and evolutionary dynamics; the size of the resource pool 
affects the dynamical ability to converge to a niche commu-
nity (Fisher and Mehta 2014). Community aggregate behav-
ior is also stable under perturbations: the system adjusts its 
features after a resource influx shock; rank abundance plots 
are in line with commonly observed features. Much phe-
nomenology is robust when different choices are made for 
resource consumption rates and other model features, and 

some analytical features of the model are consistent with 
literature results. The perspective embedded in SMA and the 
range of biologically relevant phenomena it produces offer a 
flexible interpretation of the term “species” that gives a sim-
ple computational tool for a more quantitative understanding 
of evolution and ecology. One significant open question for 
this framework is whether the completely random speciation 
introduced here can also result in the emergence of “clus-
ters” of similar species vectors (Maynard et al. 2018). Such 
clustering of species that consume resources in a comple-
mentary way would be a computationally tractable represen-
tation of a true “tangled bank.”
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