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Abstract

In the Netherlands, a country-wide, multi-temporal, and publicly available Areal Laser
Scanning (ALS) dataset exists, the Actueel Hoogtebestand Nederland (AHN). ALS has been
shown to provide highly suitable data to investigate canopy gap dynamics. However, the
AHN has currently not been used to study canopy gap dynamics in the Netherlands. Accurate
assessment of canopy gap dynamics is shown to provide useful insights in a number of
ecological processes in forests. Understandings in canopy gap dynamics on large
spatiotemporal scales can considerably be improved with the use of ALS data. In this study, a
comparison is made between canopy gap dynamics derived from two CHM-based canopy gap
detection methods. Furthermore, the added value of combining these methods is explored. It
was found that the combination of methods was highly accurate in detecting canopy gaps
from AHN data. It was further revealed that the combination of canopy gap detection methods
provided information about the presence of a tree layer in the detected canopy gap,
information that could not be derived from the methods separately. This study further aimed
to determine the influence of forest management on canopy gap dynamics. In the study area,
the Speulderbos, forest plots were situated with different conditions in terms of management
type, dominant tree species and age. The influence of forest management was disentangled
from the influence of tree species and age, and it was thereby found that forest management
leads to an increased canopy gap density, while it does not lead to an increased canopy gap
area. This investigation revealed that canopy gaps detected from the AHN can be used to
adequately study the influence of forest conditions on canopy gap dynamics.
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1. Introduction

Forest ecosystems are globally under influence of human-induced stressors. Climate change,
land use change, the biodiversity crisis and the combination of these processes cause large-scale
alterations in forest systems (Hasan et al., 2019). Climate change causes forest systems to adapt
in a complex and non-linear fashion (Bonan, 2008). Land use change has led to increased forest
fragmentation, to altered biochemical and biophysical cycles, and to reduced forest ecosystem-
service provisioning (da Cruz et al., 2021; Haddad et al., 2015). Human activities in forests,
such as hunting and logging, are leading to changes in the forest structure and species
composition (Ripple et al., 2015; Thiollay, 1992). High precision data can be used to monitor
how forests develop under these different stressors, and therefore it can be used to support forest
management, and to guide forest ecosystem system conservation (Leiterer et al., 2015;
Zielewska-Buttner et al., 2016).

1.1. Background canopy gaps

High precision data can e.g. be used to assess the development of canopy gaps in forests over
time, which can lead to an improved insight in the ecological state of forests (Blackburn et al.,
2014). Canopy gaps can be defined as openings within a continuous and relatively mature
canopy, in which trees are absent or markedly smaller than their immediate neighbours (St-
Onge et al., 2014). Canopy gaps influence the ecological characteristics and structure of a forest
(Spies, 1998). Insights in forest processes, such as tree regeneration and disturbance regimes,
can be increased by investigating canopy gaps (Blackburn et al., 2014). Canopy gaps locally
adapt the soil and air temperature, soil moisture content, soil nutrient concentration and soil
light availability, and are thus an important factor to explain tree species composition, species
heterogeneity, and successional dynamics in forests (Lombard et al., 2019; Muscolo et al., 2014;
Vepakomma et al., 2008). The degree of impact of a canopy gap on local conditions in a forest
is dependent on the size, orientation, and shape of the canopy gap (Frolking et al., 2009).
Canopy gap dynamics can be defined as the continuous process of canopy gap formation
and closure over time (St-Onge et al., 2014). Canopy gaps can emerge, remain, expand, shrink,
be displaced and disappear over the course of time (St-Onge et al., 2014). Canopy gap
emergence is caused by the disappearance of a tree, either due to natural and or human factors
(Mao et al., 2020). Natural factors include wind storms, fires, insect or pest outbreaks, or
individual tree mortality (Blackburn et al., 2014). Wind storms, fires, and insect or pest
outbreaks often result in relatively large canopy gaps, whereas individual tree mortality often
results in relatively small gaps (Muscolo et al., 2014). Human activities that can lead to the
emergence of canopy gaps are thinning, rejuvenation cutting, and girdling. Thinning, or
improvement cutting, is the practice of decreasing the stem density in a forest plot by cutting
trees, with the aim to stimulate the growth of the remaining trees in the plot (Subedi et al.,
2018). Thinning operations often lead to the formation of small canopy gaps with a high density
and a regular pattern (Wilkinson et al., 2016). Rejuvenation cutting is the practice of wood
harvest at the end of a forest management cycle. The area and shape of canopy gaps emerged
due to rejuvenation cutting is dependent on the forest management system. In a clear cutting
system, large continuous canopy gaps are formed (Rosenvald & Lohmus, 2008). In other
management systems, in which live trees remain in the cutting area, such as shelter wood
systems or selection systems, canopy gaps can either emerge as large interrupted patches, or as
multiple smaller patches (Beaudet et al., 2004; Weis et al., 2006). Girdling is the removal of a
strip of bark from a tree with the aim to prevent transportation of photosynthesis products to
the roots of a tree (Li et al., 2003). After applying girdling, the tree stem is not removed from
the forest, with the aim minimise the impact of this management activity on the forest ecosystem
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(Fujii etal., 2021). Girdling leads to a gradual decay of the targeted tree, which eventually leads
to the emergence of small canopy gaps.

When a canopy gap emerges, the physical stress on the trees surrounding the gap increases.
This increased level of stress at the edges can lead to canopy gap expansion (St-Onge et al.,
2014). Canopy gap closure can either be caused by lateral growth or by vertical growth. Lateral
gap closure is the inward expansion of the crowns of the trees surrounding the canopy gap.
Vertical gap closure is the growth of tree juveniles in the canopy gap (St-Onge et al., 2014).
The combination of canopy gap closure and expansion can occasionally lead to canopy gap
displacement (Vepakomma et al., 2012).

1.2. Canopy gap detection methods

Studying canopy gap dynamics is a complex task. To start, the effort needed to map and
delineate canopy gaps in field studies is high (Zielewska-Buttner et al., 2016). For this reason,
field studies of canopy gaps are often carried out on low spatial and temporal scales (Bonnet et
al., 2015). Field studies of canopy gaps require a high degree of expertise, and occasionally lead
to subjective results (Leiterer et al., 2015; Mao et al., 2020). Furthermore, the methods used to
delineate canopy gaps, and the thresholds used to determine what is considered to be a canopy
gap, are inconsistent between different studies (Hunter et al., 2015).

Passive remote sensing can be used as an alternative to field studies to detect canopy gaps.
However, identifying canopy gaps by visually interpreting aerial images is considered to be a
complicated task (Mao et al., 2020). The use of passive remote sensing techniques in canopy
gap studies is hampered by their spatial resolution, which complicates the detection of small
canopy gaps (Lombard et al., 2019). Moreover, the influence of shadows, illumination
conditions and spectral inseparability obstructs the accuracy of passive remote sensing
techniques in detecting canopy gaps (Vepakomma et al., 2008).

LiDAR (Light Detection and Ranging) is an active remote sensing technique that can be
used to derive three dimensional (3D) data about the forest structure (Leiterer et al., 2015). High
resolution information of the vertical and horizontal structure of forests can be derived making
use of LIDAR (Gaulton & Malthus, 2010). Therefore, LIDAR has the potential to spatially
delineate canopy gaps with high precision (Vehmas et al., 2011). The main principle behind
LiDAR is the transmittance of light pulses to determine the distance to an object (Akay et al.,
2009). With these pulses, the distance to an object is determined by taking the product of the
speed of light and the time required for an emitted pulse to travel to an object (Lim et al., 2003).
LiDAR can amongst others be acquired making use of Terrestrial Later Scanning (TLS) or
Airborne Laser Scanning (ALS). TLS is more suitable to derive information about the sub
canopy structure of a forest (Alonso-Rego et al., 2021), while ALS is more suitable to derive
information about the canopy height (Brede et al., 2017). The advantage of ALS is that it can
be used to determine the canopy height at a high spatial resolution (Koukoulas & Blackburn,
2004). Therefore, ALS has opened the way to study canopy gaps at large spatial and temporal
scales (Bonnet et al., 2015).

1.3. Canopy gap detection thresholds

Methods and thresholds to derive canopy gaps from ALS data is not standardized.
Inconsistencies exists in the definition of canopy gaps, and in the thresholds used to delineate
canopy gaps from ALS data (White et al., 2018). This inconsistency hampers the comparability
between different canopy gap studies, as the use of different canopy gap definitions and
thresholds can lead to significantly different results (Hunter et al., 2015; Koukoulas &
Blackburn, 2004).
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Runkle (1981) defined canopy gaps as the ground area under the canopy, extending to the
bases of canopy trees surrounding the canopy opening. The advantage of this definition is that
it includes areas directly and indirectly affected by canopy gaps, and therefore this definition is
often used to study the ecological effects of canopy gaps (de Lima, 2005; Gaulton & Malthus,
2010). However, using ALS, it is challenging to detect the stems of trees surrounding canopy
gaps (Gaulton & Malthus, 2010). Therefore, the canopy gap definition of Brokaw (1982) is
often used in ALS-based canopy gap detection studies. In this definition, canopy gaps are
defined as holes in the forest, with irregularly shaped, vertical sides. The sides of the gap are
situated at the innermost place reached by the crown of trees surrounding the gap (Brokaw,
1982). This definition is considered to be objective and convenient, although it has received
critique for its lack of realism in determining the effects of canopy gaps (de Lima, 2005).

The shapes of canopy gaps are typically irregular, which complicates the canopy gap
delineation process (Seidel et al., 2015). Canopy gaps continuously develop over time, and
therefore subjective choices must be made to determine what still counts as a canopy gap, and
what not (Senecal et al., 2018). To determine which gaps in the forest are considered to be
canopy gaps and which not, most studies make use of predefined thresholds (White et al., 2018).
Common thresholds used are a minimum and maximum for the canopy gap area, and an
absolute or relative vegetation height maximum within the canopy gap (St-Onge et al., 2014).
A minimum canopy gap area could for example be used to exclude gaps from the analysis that
are unlikely to have emerged due to the loss of an entire tree, or to exclude natural spaces
between trees (Gaulton & Malthus, 2010; St-Onge et al., 2014). The threshold for the minimum
canopy gap area ranged from 2 to 50 m2 in earlier published literature (White et al., 2018). The
threshold for the maximum canopy gap could be used to distinguish the disappearance of one
or several trees from the disappearance of a large cohort of trees, because the ecological
consequences of these two events differ (McCarthy, 2001). In literature, the threshold for the
maximum canopy gap area ranged from 200 to 1000 m2, although it is also common to not use
this threshold in the canopy gap delineation process (St-Onge et al., 2014). A threshold for the
maximum vegetation height within canopy gaps is used to determine when a canopy gap is
considered to be closed. Absolute and relative height thresholds have been used in literature for
the maximum vegetation height (St-Onge et al., 2014). An absolute height threshold could for
example be determined based on knowledge about the field conditions (Vepakomma et al.,
2008). Some authors preferred the use of a height threshold relative to the canopy height, as
canopy gaps are defined as openings in the canopy that has a significantly lower canopy height
compared to its surroundings (St-Onge et al., 2014). The absolute threshold for the maximum
vegetation height in a canopy gap ranges in literature from 1 to 20 m. Studies that worked with
a relative canopy gap vegetation height threshold used either a percentage of the maximum
canopy height (Gaulton & Malthus, 2010), or using classes of absolute height thresholds
depending on the height of the trees surrounding the gap (Zielewska-Buttner et al., 2016).

Canopy gaps can either be derived directly from a pointcloud, or indirectly using a Canopy
Height Model (CHM) (Gaulton & Malthus, 2010). As it is possible to derive high precision
canopy height information from ALS data, CHM-based methods have been shown to be
efficient and accurate methods to detect canopy gaps (Gaulton & Malthus, 2010; Leitold et al.,
2018; Vepakomma et al., 2012). There are two possible strategies to derive canopy gap
dynamics from a time series of CHMs. Either the canopy gaps are selected in each CHM version
separately, or the canopy gaps are directly selected from the difference between the CHM
versions.

The first strategy, described by Vepakomma et al. (2008), uses as threshold the maximum
vegetation height in a canopy gap to select areas that are considered to be canopy gaps in each
CHM version. By comparing the selected canopy gaps of each CHM version, it is possible to
study canopy gap dynamics over time, as was described by Vepakomma et al. (2012). An R
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package was developed by Silva et al. (2019) to derive canopy gap dynamics following this
method, therefore in this study this method will be referred to as the Silva method.

The second strategy is based on the difference in height between two CHM versions. A
threshold for the minimum canopy height decrease in a canopy gap is used to select canopy gap
areas in the difference CHM. This strategy was described by Leitold et al. (2018), and is
therefore further referred to as the Leitold method.

1.4. Canopy gap detection in the Netherlands

In the Netherlands, a country-wide ALS dataset exists that is openly available, and that is
updated every few years. The name of this dataset is Actueel Hoogtebestand Nederland (AHN)
which can be translated to Dutch Current Elevation Model. The Netherlands was the first
country to be entirely covered by an ALS dataset (van der Sande et al., 2010). Originally, the
AHN was primarily acquired to support water safety management (Swart, 2010). However, the
AHN is shown to be of use in a variety of fields, such as mapping tidal dynamics (Pearson et
al., 2022), quantifying urban heath islands (Steeneveld et al., 2011), and deriving forestry
related metrics (Meijer et al., 2015; Nolet & Spliethof, 2020). To the best of our knowledge,
the AHN has not been used to map canopy gap dynamics to this date, even though ALS datasets
with comparable characteristics to the AHN have earlier been shown to be highly suitable to
map canopy gap dynamics (e.g. Vehmas et al., 2011; Vepakomma et al., 2012). Currently,
canopy gap emergence caused by natural factors is not systematically registered in the
Netherlands. Wood removal practices that cause canopy gaps to emerge are registered in a
decentralized way, and only on forest plot level. Currently, there is no country-wide dataset
available with information of the location were canopy gaps exist, were new canopy gaps have
formed, or were canopy gaps have disappeared in Dutch forests. This data could, amongst other
reasons, be used to learn to what extent forest management systems succeeds to mimic natural
canopy gap dynamics, by making comparisons between canopy gaps in managed and
unmanaged forests (Senecal et al., 2018).

1.5.Research aims

This study had two aims. First, it was aimed to derive canopy gap dynamics from the AHN.
Two CHM-based methods, the Silva and Leitold method, were combined to compare the
canopy gap detection results of these methods, and to derive what additional insights there could
be derived from the combination of these methods. It was hypothesized that different canopy
gap delineation methods would result in different spatial patterns of identified gaps, and that
this difference would provide information of the ecological conditions in the canopy gaps.

Second, it was aimed to derive the influence of forest management on canopy gap
dynamics, by comparing the canopy gap dynamics in forest plots with different management
types. It was hypothesized that in managed forest plots, the canopy gaps would be larger in
area, higher in density, and more regularly shaped compared to canopy gaps in unmanaged
forest plots (Muscolo et al., 2014; St-Onge et al., 2014). It was further hypothesized that in
managed forest plots, no tree layer would remain after a canopy gap emerging event, while this
would be the case in unmanaged plots, as managed plots often lack different tree layers in the
forest structure (Johann, 2006).
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2. Methods

2.1.Study area

To investigate the potential of the AHN to study canopy gap dynamics, a 304 ha study area was
selected in the Speulderbos (52.25°N, 5.67°E) (Figure 1). The Speulderbos is subdivided in
forest plots with different management types, dominant tree species and germination year. It
was selected as study area, as access to data was provided for this study containing the dominant
tree species, age, and management type per forest plot. This data provided the possibility to
disentangle the influence of management, dominant tree species and forest plot age on canopy
gap dynamics. The forest plots are labelled with codes that consist out of a number and a letter.
The codes that start with 10 are part of the forest reserve of the Speulderbos. These forest plots
are strictly unmanaged. Outside the strict unmanaged reserve, there are other old beech and oak
plots found in the Speulderbos. These plots are labelled with germination year 1835, the first
documentation year of the Speulderbos. In these forest plots, no wood removal practices as
thinning or rejuvenation cutting takes place. However, girdling takes place in these forest plots,
for example to stimulate tree species diversity (J. den Ouden, personal communication, 14
September, 2022). Therefore, beech and oak forest plots in the study area that are situated
outside the strict forest reserve with germination year 1835 are considered to be pseudo-
unmanaged in this study. In the remaining forest plots, thinning and rejuvenation cutting
frequently takes place, and therefore these plots are considered to be managed in this study.
There is a gradient in forest management intensity between the three management types in the
Speulderbos, with managed plots as most intensely managed, pseudo-unmanaged in-between,
and unmanaged as least intensely managed.

The Speulderbos is part of a larger forested area; the Veluwe. It is situated in the humid
temperate climatic zone, classified as Cfb in the Koppen-Geigner climatic classification (Beck
et al., 2018). The average yearly temperature is 10.1 °C, the average temperature in the coldest
month is 2.9 °C, the average temperature in the warmest month is 18.1 °C, and the average
yearly precipitation is 868.0 mm. These climatic characteristics were measured over the period
1990-2020, and were derived from the Deelen weather station of the Royal Dutch
Meteorological Institute (KNMI), which is the nearest weather station to the Speulderbos. The
soil is described as a Typic Dystrochrepts on thick heterogenous sandy loam formed by iced-
pushed river sediments (Cisneros Vaca et al., 2018).
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Figure 1 Location of study area in the Netherlands (1a), management type per forest plot with forest plot
code (1b), dominant tree species per forest plot (1c), and age class per forest plot (1d).
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2.2. Input data

2.2.1. AHN

Four versions of the AHN have been released since 1997. In 2023, the acquisition of the fifth
version has started. In this study, two versions of the AHN, version 3 and 4, were included to
derive insights about the development of canopy gaps over the time interval between these two
AHN versions. For the Speulderbos, the date of acquisition was the 28" of January in 2018 for
AHN3, and the 6™ of April in 2020 for AHN4. The average point density was 28.7 points/m?
for AHN3 and 60.3 points/m?for AHN4. The AHN is publicly available data, which means that
it can openly be used. The data has been made available in 5 x 6.25 km tiles. The AHN data
used in this study was remixed by GeoTiles (www.geotiles.nl). The advantages of GeoTiles
AHN data are that it can be downloaded in smaller subtiles, 1 x 1.25 km, and that it has a 25 m
overlap with the neighbouring (sub)tiles. To fully cover the extent of the study area, AHN3 and
AHN4 was downloaded from seven subtiles, 26HZ2 21, 26HZ2 22, 32FN2_01, 32FN2_02,
32FN2_03, 32FN2_06, and 32FN2_07.

2.2.2. State forestry data

Three datasets provided by the Dutch independent governmental organisation Staatsbosbeheer
(State Forestry) were used in this study: (1) an Excel sheet with a logbook with all management
interventions in the Speulderbos since 2018, (2) a shapefile of the delineation and the code of
forest plots in the Speulderbos, and (3) a shapefile with the delineation of dominant tree species
and germination year per forest plot. The management intervention data was used as a first
exploration of the validity of the location of identified new canopy gaps. The two shapefiles
with forest plot data were used to make statistical comparisons between canopy gap dynamics
in forest plots with different characteristics.

2.2.3. Yield tables

A book with yield tables per tree species in the Netherlands under different growth conditions
and thinning intensities was used to determine the threshold for maximum vegetation height in
a canopy gap, and to determine whether canopy gap closure occurred due to lateral or vertical
growth (Jansen et al., 2018).

2.2.4. Orthophoto images

Publicly available high resolution orthophotos from 2018 and 2021 were used to visually assess
the identified new canopy gaps before and after the gap emergence event. The image of 2018
had a 25 cm spatial resolution, and the image of 2021 had a 8 cm resolution. The data was
provided by PDOK, the national geoportal of the Netherlands.

2.3.Software

Open-source software was used in the process of this study. Data preprocessing, data analysis
and data visualising was done using R, Python, and QGIS (QGIS Development Team, 2023; R
Core Team, 2023; Van Rossum, 2009). Pointcloud processing and analysis was performed
using the R package lidR (Roussel et al., 2020). Raster and vector based processing was
performed using the R packages terra and sf (Hijmans et al., 2023; Pebesma, 2018). Data
structuring, analysis and visualisations were performed using the R packages belonging to the
tidyverse (Wickham et al., 2019). For reproducibility purposes, the code of this study has been
developed using the version control system GitLab, within the environment of the Wageningen
University (git.wur.nl/niek.koelewijn/ahncanopygaps).
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2.4. Comparison Silva and Leitold method

The data analysis steps are summarised in a flow chart (Figure 2).
2.4.1. Pointcloud preprocessing

Using a Python script, the AHN data was decompressed to increase computation speed of
further analysis steps. The 25 meter overlap between different AHN subtiles was useful for the
development of Digital Elevation Models (DEM). However, for each identified new canopy
gap, pointcloud metrics were derived, and the difference in point density between caused by
the overlap hampered the acquisition of pointcloud variables. Therefore, AHN subtiles with
overlap were used for the DEM development, and filtered AHN subtiles, without overlap, were
used for further analysis steps. The filtered AHN subtiles were normalised for ground height to
prepare the pointcloud variable acquisition.

2.4.2. Digital elevation models

As the Silva and Leitold methods are both CHM-based canopy gap detection methods, Digital
Elevation Models (DEMs) had to be created from AHN3 and AHN4 to create the CHMs. The
DEMs were developed with the rasterize_terrain function from the lidR package (Roussel et
al., 2020). Digital Terrain Models (DTM) and Digital Surface Models (DSM) were created on
a 1 meter resolution. Different subfunctions to create DTMs and DSMs were compared in terms
of speed, output realism and smoothness. For the DTMs, it was decided that the k-nearest
neighbour inverse-difference weighting (knnidw) algorithm, developed by Shepard (1968),
with default parameters k = 10, and p = 2, was the most suitable for this study. For the DSMs,
it was decided that the lidR point to raster (p2r) was the most suitable for this study. The p2r
function takes the height of the highest point found for each pixel of the output DSM (Roussel
etal., 2020). Two methods were used fill the missing values of the p2r output. First, a 0.2 meter
subcircle was used. This meant that all points in the input pointcloud are replace with a disk of
20 cm. This operation is meant to simulate the fact that the laser footprint is not a point, but
rather a circular area (Roussel et al., 2020). To fill the remaining gaps, the triangular irregulated
network (tin) algorithm was used, developed by (Franklin, 1973).

After the development of the DEMs, the CHM could be created. The CHM of both AHN
versions were created by subtracting the DSMs from the DTMs. To create a difference CHM
raster, CHM4 was subtracted from CHM3.

2.4.3. Threshold selection

In this study, the Silva method and Leitold method were combined and compared, with the aim
to increase the derived insights in canopy gap dynamics from a time series of CHMs. As both
the Silva method and Leitold method were used in this study, four thresholds had to be selected
for delineating canopy gaps: (1) the maximum vegetation height in a canopy gap, (2) the
minimum canopy decrease in a canopy gap, (3) the minimum canopy gap area, and optionally
(4) the maximum canopy gap area. To determine the threshold for the Silva method, the
maximum vegetation height in a canopy gap, data from the yield tables by Jansen et al. (2018)
was investigated. For the six most important tree species in the Speulderbos, which are beech
(Fagus sylvatica L.), oak (Quercus robur L.), Scotch pine (Pinus sylvestris L.), Japanese larch
(Larix kaempferi Camp.), Douglas fir (Pseudotsuga menziesii Mirb.) and Norway spruce (Picea
abies L.), and for the average of these species, a linear model was created for the relation
between tree height and Diameter at Breast Height (DBH). Trees are often defined as woody
species with DBH largen than 5 cm (see e.g. Ryan & Williams, 2011). For this reason the height
at which the tree species reached a DBH of 5 cm was sought. This was done by subtracting 5
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cm from all DBH values, so that the intercept of the linear models showed the height of the
trees at which they reached a DBH of 5 cm. The values ranged between 4.04 m (Norway spruce)
and 5.90 m (Japanese larch), and the overall height at a DBH of 5 cm was 4.86 m (see Appendix
A). For this reason, the threshold for maximum vegetation height in a canopy gap was set at 5
m.

The threshold for the Leitold method, minimum canopy decrease, was mainly based on
expert knowledge. This method was previously only applied in tropical forest studies, and these
studies used a threshold of 3 m (Huertas et al., 2022; Leitold et al., 2018). The error margin of
the AHN is 0.05 m, with a standard deviation of 0.05 m (van der Sande et al., 2010). Canopy
gap decreases larger than 0.15 m can therefore be assumed to reflect actual canopy gap
decreases in the field. Because this study focusses on canopy gap emergence as the
disappearance of trees instead of small branches, the threshold for minimum canopy decrease
was set at 2 m.

The threshold for the minimum area of a canopy gap was mainly based on previous studies.
White et al. (2018) reviewed the thresholds used in LiDAR-based canopy gap studies, and found
out that the minimum gap area ranged from 2 to 50 m2, with the majority of studies within the
range from 5 to 10 m2. It was decided to set the threshold for minimum gap area at 10 m2 in
this study, because it was assumed that this would be the minimum footprint of a tree in the
Speulderbos.

It was decided to not include a maximum area for the canopy gaps in this study, as analysis
of the canopy gap detection results showed that this threshold could hamper the quality of the
canopy gap delineation. When high density thinning interventions were carried out in a forest
plot, the canopy gaps could form large contiguous clusters, especially if they were situated
beside an open field, or another forest plot with large scale interventions. These situations can
accidentally be excluded from the canopy gap analysis due to the implementation of a threshold
for maximum gap area, and therefore it was decided to not use this threshold.

The threshold to distinguish lateral from vertical canopy gap closure was based on an
estimation of the maximal tree height growth in the interval between AHN3 and AHN4, based
on data from the yield tables by Jansen et al. (2018). For the six most important tree species in
the Speulderbos, and for the average of these species, a linear model was created for the relation
between tree height and age. The slopes of these linear models showed the annual tree height
growth. The largest annual height growth was 0.58 m (Douglas fir). The interval between
AHN3 and AHN4 was 2 years and 2 months. To make a conservative estimate about the
maximal height growth in this time interval, the annual height growth was multiplied by three.
The fasted growing tree species, Douglas fir, can grow 1.73 m in three years (Appendix A).
Therefore, the threshold to distinguish lateral from vertical canopy gap closure was set at 2 m.

2.4.4. Canopy gap dynamics mapping

To map canopy gap dynamics in the study area, four steps were undertaken: (1) the Silva
method was used to derive gaps in CHM3 and CHM4, (2) the output of these two binary gap
rasters was combined, (3) the Leitold method was used to derive gaps from the difference CHM,
and (4) the output of the Leitold method binary gap raster was combined with the combination
of Silva method gap layers.

Canopy gap detection with the Silva method was performed by labelling CHM raster cells
>5m as “no gap” and cells <5 m as “gap” in both CHM versions. The combination of these
two binary gap rasters resulted in a canopy gap dynamics raster with four classes: (1) no canopy
gap detected in both CHM versions (NoG), (2) canopy gap disappeared between CHM3 and
CHM4 (DG), (3) canopy gap remained between CHM3 and CHM4 (RG), and (4) new canopy
gap detected in CHM4 (NG). In this classification, raster cells that received the label NoG had
CHM3 and CHM4 values > 5 m. Raster cells that received the label DG had CHM3 heights <
5 m and CHM4 heights > 5 m. Raster cells that received the label RG had CHM3 and CHM4
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heights <5 m. Raster cells that received the label NG had CHM3 heights > 5 m and CHM4
heights <5 m (Table 1).

Canopy gap detection with the Leitold method was performed by labelling difference CHM
raster cells > -2 m as “no gap” and cells < -2 m as “gap”. The combination of the Silva method
canopy gap dynamics raster and the Leitold method binary gap raster resulted in a canopy gap
dynamics raster with seven classes: (1) NoG, (2) DG, (3) RG, (4) new canopy gap detected with
both methods (NGBM), (5) new canopy gap only detected with Silva method (NGSM), (6) new
canopy gap only detected with Leitold method (NGLM), and (7) remaining canopy gap
according to Silva method, but new canopy gap according to Leitold method (RGLM). In this
classification, raster cells that are labelled with one of the first three classes had the same
characteristics as these classes in the Silva combined gap raster, with the added characteristic
that difference CHM values were > -2 m. Raster cells that received the label NGBM had CHM3
heights > 5 m, CHM4 heights < 5 m and difference CHM values < -2 m. Raster cells that
received the label NGSM had CHM3 heights > 5 m, CHM4 heights <5 m and difference CHM
values > -2 m. Raster cells that received the label NGLM had CHM3 heights > 5 m, CHM4
heights > 5 m and difference CHM values < -2 m. Raster cells that received the label RGLM
had CHM3 heights <5 m, CHM4 heights <5 m and difference CHM values <-2 m (Figure 3,
Table 1).

The distinction between lateral and vertical gap closure was performed by labelling DG
raster cells with a difference CHM value > 2 m as LC, and cells <2 m as VC (Figure 3, Table
2).

Table 1 Values for CHM3, CHM4 and difference CHM per canopy gap dynamic class

Class Meaning Value CHM3  Value CHM4  Value difference CHM
(m) (m) (m)

NoG No canopy gap detected in both >5 >5 > -2
CHM versions with both
methods

DG Canopy gap disappeared <5 >5 > -2
between CHM3 and CHM4

RG Canopy gap remained between <5 <5 > -2
CHM3 and CHM4

NGBM New canopy gap detected with  >5 <5 <-2
both methods

NGSM New canopy gap only detected >5 <5 > -2
with Silva method

NGLM New canopy gap only detected >5 >5 <-2
with Leitold method

RGLM Remaining canopy gap <5 <5 =-2
according to Silva method, but
new canopy gap according to
Leitold method

Table 2 Value for difference CHM values per DG class

DG class Meaning Value difference CHM
LC Lateral canopy gap closure > 2
Ve \ Vertical canopy gap closure <2

2.4.5. New canopy gap selection

The raster cells labelled with NGBM, NGSM, NGLM or RGLM were considered to be potential
new canopy gap raster cells. A binary raster was created by labelling these cells as “new canopy
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gap” and all other cells as “no new gap detected”. This binary raster was used to derive new
canopy gaps with a minimum area of 10 m2 from the study area. New canopy gaps were
required to consist out of minimal 10 contiguous cells in 8 directions. The gaps that fulfilled
the requirement were thereafter vectorized to polygons.

2.4.6. Validation

The identified new canopy gaps were validated using the management intervention logbook of
State Forestry and with a field visit. The spatial distribution of the in the logbook described
management interventions was compared to the spatial distribution of identified new canopy
gaps. This comparison provided a first impression of the accuracy on forest plot level of the
used canopy gap detection method. To further explore the accuracy, a subset of the identified
new canopy gaps was taken. This subset was validated in a field visit. The subset was taken by
intersecting the identified new canopy gaps with ten randomly selected forest plots, five
managed and five (pseudo-)unmanaged (Appendix B). For each visited identified new canopy
gap, it was verified whether they were present or absent in the field.
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Figure 3 Graphical overview of the seven canopy gap dynamic classes. Figure 3a, 3b and 3c show the canopy
height changes between CHM3 and CHM4 of the six classes NoG, NGLM, NGBM, NGSM, RGLM and RG. Figure
3d, 3e and 3f show the difference between the two DG classes LC and VC.
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2.5. Determining the influence of forest management

The identified new canopy gaps were used to derive the influence of forest management on
canopy gap dynamics. This was carried out in four steps. First, the identified new canopy gaps
were visually assessed, and classified in a “number of trees” class. Second, a list of variables
was assigned to each identified canopy gap, and to each forest plot in the study area. Third,
Random Forest (RF) models were created to determine the most important variables in the
classification of identified new canopy gaps in a “number of trees” class and management type.
Fourth, statistical comparisons were made between management types, dominant tree species
and age classes on canopy gap level and forest plot level.

2.5.1. “Number of trees” labelling

For all identified new canopy gaps, it was manually assessed and labelled whether it had formed
due to the disappearance of a part of a tree, one individual tree, or a group of trees, and thus
whether it fell in the class “part of tree”, “one tree”, or “group of trees”. This was done by
comparing the CHM3 and CHM4, and by comparing the orthophoto of 2018 and 2021 in each
identified canopy gap. The labelling of all identified new canopy gaps provided the opportunity

to cross validate the “number of trees” RF models with all identified new canopy gaps.

2.5.2. Deriving attributes

Pointcloud variables, shape variables, CHM variables, forest plot level variables and fraction
variables were added to the identified new canopy gaps for further statistical analysis.

25.2.1. Pointcloud variables

The R package lidR provides a list of standard metrics that can be used to characterize a
pointcloud. These variables can be derived with the stdmetrics function within the plot_metrics
function (Roussel et al., 2020). The list consists out of 56 variables, and these variables have
the potential to provide information about the structure of trees within a pointcloud. For an
overview with description of the variables, see https://github.com/r-lidar/lidR/wiki/stdmetrics.
The standard metrics were derived from a clip of the pointcloud within the identified canopy
gaps for AHN3 and AHN4.

To derive insights in the development of the forest structure in the direct vicinity of the
identified new canopy gaps, 5 and 10 m doughnut buffers around the new canopy gaps were
created. These doughnut buffers were created by buffering the new canopy gap polygons with
a5 mand 10 m distance, and erasing the new canopy gap polygons from the buffer (see scheme
below). This erasing was done in such a way that the parts of the buffers that overlapped with
neighbouring new canopy gap polygons were not erased from the buffer. The buffer distances
of 5 and 10 meter were chosen, as these distances are equivalent to one time and two times the
minimum height of a tree. The standard metrics were derived from a clip of the pointcloud
within the doughnut buffers for AHN3 and AHN4, and these variables were added to the

‘ -

Identified new canopy gap Buffered new canopy gap Doughnut buffer of new canopy gap
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identified new canopy gaps. Furthermore, the relative area of the doughnut buffers per
identified new canopy gap that overlapped with neighbouring new canopy gaps was determined
to derive information about the gap density. Moreover, the distance to the nearest neighbour
was determined per identified new canopy gaps using the function st_nn from the nngeo
package (Dorman, 2023).

2.5.2.2. Shape variables

Of the identified new canopy gaps, shape variables were determined describing the 3D shape
of a clip of the pointcloud for AHN3 and AHN4, and the 2D shape of the canopy gap polygons.
The 3D shape variables were derived with the stdshapemetrics function within the plot_metrics
function from the lidR package (Roussel et al., 2020). The 2D shape variables were the area,
perimeter, and variables derived from the area and perimeter. The area in m2 was derived by
using the st_area function from the sf package, the perimeter in m using the st _perimeter
function from the VLSM package (Knevels et al., 2020; Pebesma, 2018). To see how the 2D
shape parameters were derived, see Appendix C.

25.2.3. CHM variables

Variables were added to the identified new canopy gap describing a clip of CHM3 and CHM4
within the canopy gaps. The mean, minimum, maximum, standard deviation, Gini coefficient,
and range were calculated of CHM3, CHM4 and the difference CHM, inspired by Silva et al.
(2019). The Gini coefficient was originally developed as a measurement for income inequality
(Gini, 1921). However, it has been shown that the coefficient can be used as measurement for
tree size inequality as well (Valbuena et al., 2017). The higher the Gini coefficient of a forest
plot, the higher the inequality of tree sizes, which is used as an indicator of disturbance events
in forests (Silva et al., 2019).

2.5.2.4. Forest plot variables

For each forest plot in the study area, variables were derived describing the canopy gap
dynamics in the plot, inspired by Blackburn and Milton (1996) (Appendix C). Furthermore, the
same CHM variables that were determined for the new canopy gap polygons were determined
on forest plot level as well.

25.25. Fraction variables

On canopy gap level, the fraction of each of the four new canopy gap classes, NGBM, NGSM,
NGLM and RGLM, was determined, to investigate the difference in forest structure per gap
class. On forest plot level, the fraction of each of the seven canopy gap dynamics classes, NoG,
DG, RG, NGBM, NGSM, NGLM, and RGLM, was determined. Besides, The fraction LC and
VC of the fraction DG was determined per forest plot.

2.5.3. Random forest models

The dataset of identified canopy gaps and their attributes was used to train Random Forest (RF)
models. The RF algorithm was described by Breiman (2001). Five RF models were developed:
(1) “number of trees” model with all variables included, (2) “number of trees” model with only
the three most important variables included, (3) management type model with all variables
included, (4) management type model with only the four most important variables included,
and (5) management type model without forest plot variables included. The RF models were
created with the intention to derive insights in the variables that differed most between the
different classes. The algorithm is suitable for this purpose, as this algorithm is able to
determine the importance per variable in the distinction between classes, which reveals which
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variables are most important in the classification, and which are possibly redundant. To create
train and test data, the identified canopy gaps were split in a 70/30 ratio. The RF models trained
on new canopy gap data with only the four most important variables were developed to observe
the accuracy of the classification with less input data. The RF model without forest plot
variables was developed to observe the management type classification accuracy with only the
variables that were directly or indirectly derived from the AHN. The RF models were created
using the train function from the caret package (Kuhn, 2008). The confusion matrix of the RF
models were developed following the methods of Du et al. (2021).

2.5.4. Statistical comparisons

As can be observed in figure 1, the representation of forest plot dominant tree species and age
classes is not equally distributed over the different management types. Therefore, to determine
the influence of forest management on canopy gap dynamics, the influence of forest
management had to be disentangled from the influence of dominant tree species and age.
Variables that were derived directly from the new canopy gaps, or from the doughnut buffers
that belonged to these canopy gaps, were statistically compared on canopy gap level. The forest
plot variables were compared on forest plot level instead of new canopy gap level, as the
comparison of forest plot variables on new canopy gap level would result in an
overrepresentation of forest plots in which new canopy gaps have formed, and an
underrepresentation of forest plots in which no new canopy gaps have formed. On new canopy
gap level, fourteen variables were compared, namely the area, perimeter, distance to nearest
neighbour, overlap of 5 and 10 m doughnut buffer with neighbouring new canopy gaps, mean
of CHM3, mean of CHM4, mean of difference CHM, fraction NGBM, and fraction NGLM.
Besides, the four most important variables in the management type RF model without forest
plot variables were compared. On forest plot level, the variables fraction in gap, gap density,
dispersion index, canopy edge, mean of CHM3, mean of CHM4, mean of difference CHM,
Gini coefficient of CHM4, fraction NoG, fraction DG, fraction RG, fraction NGBM, fraction
NGLM, and fraction VC of fraction DG were compared. These variable lists of new canopy
gap level and forest plot level were selected, as there were reasons to expected differences in
these variables between different management types. Furthermore, the comparison of these
variables indirectly provides information of other variables. For example, the comparison of
new canopy gap area and perimeter would provide information in all shape variables derived
from the area and perimeter.

To study the influence of forest management, the new canopy gaps and forest plots were
split up in the classes managed, unmanaged and pseudo-unmanaged. To study the influence of
dominant tree species, the new canopy gaps and forest plots were split up in the six most tree
species of the Speulderbos. The influence of forest management was as well investigated for
the tree species beech separately. This comparison helped to disentangle the influence of forest
management and dominant tree species on canopy gap dynamics. Beech was the only tree
species for which there were observations in forest plots with all three management types
(Appendix 1). To study the influence of forest plot age, the new canopy gaps and forest plots
were split up in five age classes; 0-40 years, 40-80 years, 80-120 years, 120-160 years, and 160-
200 years.

Between the different classes, the medians of the variables were compared with the non-
parametric Kruskal-Wallis test (Kruskal & Wallis, 1952). The Kruskal-Wallis test was selected,
as the variables were not normally distributed. When the Kruskal-Wallis test was rejected,
which means that there were observed significant differences between groups, the Dunn’s test
was used to make pairwise comparisons between classes (Dunn, 1964). The Bonferroni method
was used to derive adjusted p-values (Bonferroni, 1936). The functions dunnTest from the FSA
package and ggbetweenstats from the ggstatplots package were used for the statistical
comparisons (Ogle D.H. et al., 2023; Patil, 2021).
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3. Results

3.1. Comparison Silva and Leitold method

The combination of the Silva and Leitold methods resulted in a total number of 2473 identified
new canopy gaps in the study area, with a total area of 150,463 m2. The new canopy gap area
identified with only the Silva method was 79,876 m2 in the study area, or 53.09% of the total
new canopy gap area identified with both methods. The new canopy gap area identified with
only the Leitold method was 150,184 m2, or 99.81% of the identified new canopy gap area with
both methods. The use of the Leitold method resulted in the spatial distribution of two canopy
gap dynamic classes, namely the distribution of new canopy gaps and of no new canopy gaps.
The use of the Silva method resulted in the spatial distribution of two additional canopy gap
dynamic classes, namely the distribution of disappearing and remaining canopy gaps (Table 3,
Figure 4).

Table 3 The seven classes of canopy gap dynamics identified with either the Silva method, the
Leitold method, or the combination of these two methods.

Class Meaning Fraction of study Average fraction Identified with
area of new canopy method
gap area
NoG No canopy gap 0.8585 - Both

detected in both CHM

versions with both

methods

DG Canopy gap 0.0160 - Silva
disappeared between

CHM3 and CHM4

RG Canopy gap remained  0.0737 - Silva
between CHM3 and

CHM4

NGBM | New canopy gap 0.0281 0.432 Both
detected with both

methods

NGSM | New canopy gap only  0.0003 0.003 Silva
detected with Silva

method

NGLM | New canopy gap only  0.0227 0.543 Leitold
detected with Leitold

method

RGLM | Remaining canopy 0.0008 0.021 Both
gap according to Silva

method, but new gap

according to Leitold

method




24

|| DG (1.60%)
7] NoG (85.85%)
RG (7.37%)
I NGSM (0.03%)
I NGLM (2.27)

0 025 05 075 1 125 15 175 2km 7] RGLM (0.08%)
e — — P — I NGBM (2.81%)

Figure 4 Result of the combination of the Silva and Leitold method to detect canopy gap dynamics. Figure
4a, 4b and 4c show the data on which the canopy gap detection was based. Figure 4a and 4b show the
CHM of respectively AHN3 and AHN4. Figure 4c shows the difference CHM. Figure 4d shows the spatial
distribution of the seven identified canopy gap dynamic classes in the study area. The percentage of study
area that felled within each canopy gap dynamic class can be found in the legend of figure 4d.
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3.1.1. Validation

First, the spatial distribution of forest plots with registered management interventions was
compared to the spatial distribution of identified new canopy gaps (figure 5). The result of this
comparison generally revealed that large new canopy gaps, and clusters with high densities of
new canopy gaps, are often situated in forest plots with registered management interventions.
However, there were identified large new canopy gaps, and clusters with high densities of new
canopy gaps, that were not situated in forest plots with registered management interventions.
This was the case in forest plots 9F and H, 11Q and K, 14D and P, 15R, 17E2-E6, 18E2, G4,
and H, 19H2, J, K and M, and 25E. Besides, there were forest plots in which a management
intervention was registered, but fewer new canopy gaps were identified than expected based on
the registered intervention. This was the case in forest plots 11A2, H and P2, and 15P2.

Second, a selection of the identified new canopy gaps was validated during a field visit.
The selected 5 managed forest plots were 9D, 11F2, 17A3 and E3, and 25E2. A total of 140
new canopy gaps were identified in these selected managed forest plots. The selected 5 pseudo-
unmanaged and unmanaged forest plots were 10J, 11B, 15N and X, and 17M (Appendix B). A
total of 61 new canopy gaps were identified in these selected pseudo-unmanaged and
unmanaged forest plots. For all 201 identified new canopy gaps that were visited, the presence
in the field was confirmed. There were no identified new canopy gaps that were absent in the
field. However, there were new canopy gaps observed in the field in forest plot 10J and 15X
that were not identified with either the Silva or the Leitold method.

D study area

E New canopy gap polygons
[ Registered interventions 0 0.25 05 0.75 1 1.25 15 1.75 2 km

[ No registered interventions

Figure 5. Spatial distribution of identified new canopy gaps, and of forest plots in which management
interventions were registered since 2018.
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3.2. Determining the influence of forest management
3.2.1. “Number of trees” classification

The result of the “number of trees” labelling of the identified canopy gaps can be found in figure
6. The new canopy gaps with the label “part of tree” was relatively evenly distributed over the
different management types, while the labels “one tree” and “group of trees” were
overrepresented in managed plots (Table 4).

Table 4 The number of new canopy gaps per “number of tree” class and per management type

Class Part of tree One tree Group of trees  Total
Managed ' 236 1201 701 2138
Pseudo-unmanaged | 170 60 7 237
Unmanaged 81 16 1 98
Total 487 1277 709 2473

3.2.2. RF models

Five RF models were developed: (1) “number of trees” model with all variables included, (2)
“number of trees” model with only the three most important variables included, (3) management
type model with all variables included, (4) management type model with only the four most
important variables included, and (5) management type model without forest plot variables
included. To create train and test data, the identified canopy gaps were split in a 70/30 ratio. Of
the total 2473 new canopy gaps, 1732 were used as train data, and 741 as test data. The variable
importance per variable per model can be found in Appendix D.

3.2.2.1. “Number of trees” model, all variables

The result of the “number of trees” classification with all variables can be found in table 5. The
RF model had a Kappa coefficient of 0.757, and the total accuracy on test data was 0.846. The
fifteen most important variables in the classification can be found in figure 7. Out of the fifteen
most important variables, ten variables were shape variables. Out of the ten shape variables,
four were pointcloud shape variables, describing the shape of AHN3 or AHN4 within the new
canopy gaps, while six shape variables described the 2D shape of the new canopy gaps. Three
variables were forest plot variables, describing the forest plots in which the new canopy gaps
were situated. The remaining two variables were pointcloud variables, describing AHN3 within
the new canopy gaps (Figure 7). The canopy gap shape area and perimeter differed significantly
between the three “number of trees” classes. Therefore, variables derived from the area and
shape had a high importance in this RF model (Appendix J).

Table 5 Confusion matrix RF model “number of trees” with all variables

Class Part of tree One tree Group of trees  User accuracy

Part of tree 269 61 11 0.789

One tree 41 804 49 0.900

Group of trees 10 82 405 0.815

Producer accuracy | 0.840 0.849 0.871 Total accuracy:
0.853
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Figure 6. Spatial distribution of new canopy gaps per “number of trees” class in the study area. The
basemap is the 8 cm resolution areal orthophoto of the study area from the year 2021 provided by PDOK.
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Figure 7 The fifteen most important variables, and their importance, in the “number of
trees” RF model with all variables.

3.2.2.2. “Number of trees” model, most important variables



28

The result of the “number of trees” classification with only the three most important variables
can be found in table 6. The three variables included in the model were the planarity of the
AHN3 shape within the new canopy gaps, the canopy gap forest plot fraction NGLM, and the
canopy gap forest plot gap density. Three instead of four variables were included in this model,
as multicollinearity existed between the two most important variables. The correlation between
the planarity and the linearity of the AHN3 shape within the new canopy gaps was 0.96, and
therefore the linearity was left out of this model. The RF model had a Kappa coefficient of
0.576, and the total accuracy on test data was 0.791. For the statistical comparison of these three
variables between the “number of trees” classes, see Appendix D2.

Table 6 Confusion matrix RF model “number of trees” with only the most important variables

Class Part of tree One tree Group of trees  User accuracy
Part of tree 209 94 38 0.613
One tree 98 712 84 0.796
Group of trees 26 98 373 0.751
Producer accuracy | 0.628 0.788 0.754 Total accuracy:
0.747
3.2.2.3. Management type model, all variables

The result of the management type model with all variables included can be found in table 7.
The RF model had a Kappa coefficient of 0.946, and the total accuracy on test data was 0.986.
The fifteen most important variables in the classification can be found in figure 8. Out of the
fifteen most important variables, twelve were forest plot variables, describing the forest plots
in which the new canopy gaps were situated. The other three variables were doughnut buffer
pointcloud variables, describing AHN3 or AHN4 in a 5 or 10 m doughnut buffer around the
new canopy gaps.

Table 7 Confusion matrix RF model management type with all variables

Class Managed  Pseudo-unmanaged Unmanaged User accuracy

Managed 1499 1 1 0.999

Pseudo-unmanaged | 10 149 0 0.937

Unmanaged 4 1 67 0.931

Producer accuracy 0.991 0.987 0.985 Total accuracy:
0.990
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Figure 8 The fifteen most important variables, and their importance, in
the management type RF model with all variables.

3.2.2.4. Management type model, most important variables

The result of the management type model with only the four most important variables can be
found in table 8. The four variables included in the model were the forest plot Gini coefficient
of CHM4 within the new canopy gaps, the forest plot fraction NoG, the forest plot fraction
NGLM, and the forest plot gap density. The RF model had a Kappa coefficient of 0.986, and
the total accuracy on test data was 0.997. The accuracy of the management type RF model with
only the 4 most important variables had a higher total accuracy than the model with all variables
included. For the statistical comparison of these four variables between the management types,
see Appendix D4.

Table 8 Confusion matrix RF model management type with only the most important variables

Class Managed  Pseudo-unmanaged = Unmanaged  User accuracy
Managed 1500 0 1 0.999
Pseudo-unmanaged | 2 157 0 0.987
Unmanaged 1 1 70 0.972
Producer accuracy | 0.998 0.994 0.986 Total accuracy:
0.998
3.2.2.5. Management type model, no forest plot variables

The influence of forest plot variables in the management type RF model was high. To
investigate whether it still would be possible to distinguish the three management classes
without forest plot variables, an RF model was developed without forest plot variables. Only
the variables directly derived from the new canopy gaps and their doughnut buffers were
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included in this model. The result of this management type model without forest plot variables
can be found in table 9. The RF model had a Kappa coefficient of 0.587, and the total accuracy
on test data was 0.913. The producer and user accuracies of the classes pseudo-unmanaged and
unmanaged were low in this model. The fifteen most important variables in the classification
can be found in figure 9. All of these fifteen variables were doughnut buffer pointcloud
variables, of which eleven described AHN4, and four AHNS3.

Table 9 Confusion matrix RF model management type with forest plot variables excluded

Class Managed  Pseudo-unmanaged Unmanaged User accuracy

Managed 1468 28 3) 0.978

Pseudo-unmanaged | 58 93 8 0.585

Unmanaged 25 36 11 0.153

Producer accuracy | 0.946 0.592 0.458 Total accuracy:
0.908

RF model management type without forest plot, variable importance
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Figure 9 The fifteen most important variables, and their
importance, in the management type RF model without forest plot

3.2.3. Statistical analysis influence different forest characteristics

The identified new canopy gaps were used to make statistical comparisons of different forest
plot characteristics to disentangle the influence of different forest plot characteristics on canopy
gap dynamics. Comparisons have been made on canopy gap and forest plot level between (1)
management types, (2) dominant tree species, (3) management types for beech only, and (4)
age classes. For each of these, comparisons of fourteen variables on canopy gap and forest plot
level were made (Appendix E-H). The number of canopy gaps and forest plots for combinations
of management type, dominant tree species, and age class, can be found in Appendix I.

Of the fourteen variables that were compared on canopy gap level, four were the most
important variables in the management type RF model without forest plot variables. These were
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the 10 m doughnut buffer percentage of intensity returned below the 90th height percentile in
AHN4 (10m dbuffer ipcum90 AHN4), 5 m doughnut buffer percentage of intensity returned by
points classified as 'ground' in AHN4 (5m dbuffer ipground AHN4), 10 m doughnut buffer
skewness of intensity distribution in AHN4 (10m dbuffer iskew AHN4), and 10 m doughnut
buffer 25th percentile of height distribution in AHN3 (10m dbuffer zg25 AHN4). These four
doughnut buffer pointcloud variables were selected after investigation of the variable
importance of the variables in the management type RF model without forest plot variables
(Figure 9). The four most important variables were selected, but only if the statistic of the
variable was unique in the selection. This was done to prevent that different variations of the
percentage of intensity returned below the xth height percentile (ipcumx) would be compared.

3.2.4. Management type
The number and area of new canopy gaps and forest plots per management type can be found
in table 10. The fraction of area in new canopy gap for managed forest plots was higher

compared to pseudo-unmanaged and unmanaged forest plots. This fraction for pseudo-
unmanaged plots was higher compared to unmanaged plots (Table 10).

Table 10 Number and area of new canopy gaps and forest plots per management type

Management type Number of new Number of  Area ofnew  Area of Fraction area in
canopy gaps forest plots  canopy gaps  forest plots  new canopy gap
(m2) in study
area (m2)
Managed 12138 174 134544 2085964 0.064
Pseudo-unmanaged | 237 19 11043 559562 0.020
Unmanaged 198 9 4876 365465 0.013
Total | 2473 202 150463 3010991 0.050
3.24.1. New canopy gap level

The distance to the nearest neighbour of new canopy gaps in managed forest plots was
significantly lower compared to pseudo-unmanaged plots, and this distance was also
significantly lower in pseudo-unmanaged plots compared to unmanaged plots (Figure 10). This
pattern was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring new
canopy gaps (Appendix E1). The mean difference CHM within the new canopy gaps was
significantly higher in unmanaged plots compared to managed and pseudo-unmanaged plots
(Figure 10). The fraction NGBM of new canopy gaps was significantly higher in unmanaged
plots compared to managed and pseudo-unmanaged plots (Figure 10). The opposite pattern was
observed for the fraction NGLM (Appendix E1). The 10m dbuffer ipcum90 AHN4 was
significantly lower in managed plots compared to pseudo-unmanaged and unmanaged plots
(Figure 10). The same pattern is observed for the three other important variables in the
management type RF model without forest plot variables (Appendix E1). There is no significant
difference observed in new canopy gap area or perimeter between the management types
(Appendix E1).

3.2.4.2. Forest plot level

The gap density was not significantly lower in unmanaged forest plots compared to managed
and pseudo-unmanaged plots, but the median gap density value was lower (Figure 11). The
same pattern is observed for the fraction in gap (Appendix E2). The forest plot mean CHM4
was significantly lower in managed plots compared to pseudo-unmanaged and unmanaged
plots (Figure 11). The same pattern was observed for the mean CHM3 (Appendix E2). The
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Gini coefficient of CHM4 was significantly higher in managed plots compared to pseudo-
unmanaged and unmanaged plots (Figure 11). The fraction NoG was significantly lower in
managed plots compared to pseudo-unmanaged and unmanaged plots (Figure 11).
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Figure 10 Statistical comparisons of management types on canopy gap level for the variables distance to
the nearest neighbour (10a), mean difference CHM (10b), fraction NGBM (10c), and 10 m doughnut
buffer percentage of intensity returned below the 90" height percentile AHN4 (10d). For additional
variable comparisons of management types on canopy gap level, see Appendix E1.
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Figure 11 Statistical comparisons of management types on forest plot level for the variables new gap
density (11a), mean CHM4 (11b), Gini coefficient CHM4 (11c), and fraction NoG (11d). For additional
variable comparisons of management types on forest plot level, see Appendix E2.
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3.2.5. Dominant tree species

The number of new canopy gaps and forest plots per dominant tree species and management
type can be found in table 11. The fraction of area in new canopy gap for deciduous tree species,
beech and oak, was lower compared to coniferous species, Scotch pine, Japanese larch, Douglas
fir and Norway spruce. Beech was the only tree species that was represented in all three
management types with multiple forest plots. Oak was represented in the pseudo-unmanaged
area with one forest plot, all other oak forest plots were situated in the managed area. Scotch
pine, Douglas fir and Japanese larch were represented in the unmanaged area with one forest
plot, all other forest plots of these species were situated in the managed area. Norway spruce
was only represented in the managed area (Appendix 11 & 12).

Table 11 Number and area of new canopy gaps and forest plots per tree species

Tree species Number of new Number of Areaofnew Area of Fraction of area in
canopy gaps forest plots canopy gaps forest plots  new canopy gap
(m2) in study area
(m2)
Beech 595 59 27590 1290718 0.021
Oak 41 8 1518 99129 0.015
Scotch pine 412 19 22112 295250 0.075
Japanese larch | 280 35 42492 392712 0.108
Douglas fir 776 52 36092 604129 0.060
Norway spruce | 87 7 5173 99640 0.052
Total 2191 180 134977 2781578 0.049
3.25.1. New canopy gap level

The distance to the nearest neighbour of new canopy gaps in forest plots with deciduous
dominant tree species was higher compared to coniferous tree species (Figure 12). This pattern
was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring new canopy
gaps (Appendix F1). The mean difference CHM within the new canopy gaps was significantly
higher in Douglas fir and Japanese larch forest plots compared to forest plots with other tree
species (Figure 12). There were no significant differences in fraction NGBM of new canopy
gaps between the different tree species, except between Scotch pine and Japanese larch forest
plots (Figure 12). The 10m dbuffer ipcum90 AHN4 was significantly higher in forest plots with
deciduous dominant tree species compared to coniferous tree species (Figure 12). The same
pattern was observed for the three other important variables in the management type RF model
without forest plot variables (Appendix F1). The area of new canopy gaps in Scotch pine and
Japanese larch forest plots was significantly larger compared to forest plots with other tree
species (Appendix F1).

3.25.2. Forest plot level

There were no significant differences in gap density between forest plots with different
dominant tree species. However, beech forest plots had lower median gap density values
compared to forest plots with other tree species (Figure 13). The forest plot mean CHM3 and
CHM4 was significantly higher in Douglas fir and beech plots compared to other tree species,
while the forest plot mean difference CHM did not differ significantly between the different
tree species (Figure 13, Appendix F2). The Gini coefficient of CHM4 was significantly lower
in beech forest plots compared to Scotch pine, Japanese larch and Douglas fir forest plots
(Figure 13). The fraction NoG was significantly higher in forest plots with deciduous dominant
tree species compared to coniferous tree species (Figure 13).
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Figure 12 Statistical comparisons of dominant tree species on canopy gap level for the variables distance
to the nearest neighbour (12a), mean difference CHM (12b), fraction NGBM (12c), and 10 m doughnut
buffer percentage of intensity returned below the 90" height percentile AHN4 (12d). For additional
variable comparisons of dominant tree species on canopy gap level, see Appendix F1.
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Figure 13 Statistical comparisons of dominant tree species on forest plot level for the variables new gap
density (13a), mean CHM4 (13b), Gini coefficient CHM4 (13c), and fraction NoG (13d). For additional
variable comparisons of dominant tree species on forest plot level, see Appendix F2.
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3.2.6. Beech management type

To disentangle the influence of management type and dominant tree species on canopy gap
dynamics, the three management types were compared in beech forest plots only. The number
of new canopy gaps and forest plots per beech management type can be found in table 12. The
fraction of area in new canopy gap for managed beech forest plots was higher than for the
pseudo-unmanaged and unmanaged forest plots. This fraction for pseudo-unmanaged beech
plots was higher compared to unmanaged beech plots (Table 12).

Table 12 Number and area of new canopy gaps and forest plots per management type for beech

Management type Number of new Number of  Area ofnew  Area of Fraction area in
canopy gaps forest plots  canopy gaps  forest plots  new canopy gap
(m2) in study
area (m2)
Managed 284 36 12369 485915 0.025
Pseudo-unmanaged | 230 18 10868 543101 0.020
Unmanaged 81 5 4353 261702 0.017
Total | 595 59 27590 1290718 0.021
3.2.6.1. New canopy gap level

The distance to the nearest neighbour of new canopy gaps in managed beech forest plots was
significantly lower compared to pseudo-unmanaged and unmanaged beech plots (Figure 14).
This pattern was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring
new canopy gaps (Appendix G1). The mean difference CHM within the new canopy gaps was
significantly higher in unmanaged beech plots compared to pseudo-unmanaged beech plots,
and also significantly higher for pseudo-unmanaged compared to managed beech plots (Figure
14). The fraction NGBM of new canopy gaps was significantly higher in unmanaged beech
plots compared to managed and pseudo-unmanaged beech plots (Figure 14). The opposite
pattern was observed for the fraction NGLM (Appendix G1). There was observed a significant
difference in 10m dbuffer ipcum90 in AHN4 of new canopy gaps between managed and
pseudo-unmanaged beech plots, but not between managed and unmanaged beech plots (Figure
14). The 5m dbuffer ipground in AHN4 and the 10m dbuffer iskew in AHN4 was still
significantly different between managed beech plots compared to pseudo-unmanaged and
unmanaged beech plots, but the p-values were clearly lower when compared to the p-values of
these statistical comparisons with all tree species included. No significant differences were
found in the comparison of 10m dbuffer zg25 in AHN3 between beech management types
(Appendix G1). There was no significant difference observed in new canopy gap area or
perimeter between the beech management types (Appendix G1).

3.2.6.2. Forest plot level

The gap density of unmanaged beech forest plots was not significantly lower compared to
managed and pseudo-unmanaged plots, but the median value is lower compared to pseudo-
unmanaged plots (Figure 15). The forest plot mean CHM4 was significantly lower in
managed beech plots compared to pseudo-unmanaged and unmanaged beech plots (Figure
15). The same pattern was observed for the mean CHM3 and CHM4 (Appendix G2). The
Gini coefficient of CHM4 was significantly higher in managed plots compared to pseudo-
unmanaged and unmanaged plots (Figure 15). There was no significant difference observed in
forest plot fraction NoG between the beech management types, but the median value of
managed beech plots was lower compared to pseudo-unmanaged and unmanaged plots
(Figure 15).
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Figure 14 Statistical comparisons of management types for beech on canopy gap level for the variables
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additional variable comparisons of management types for beech on canopy gap level, see Appendix G1.
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Figure 15 Statistical comparisons of management types of beech on forest plot level for the variables new
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additional variable comparisons of management types of beech on forest plot level, see Appendix G2.
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3.2.7. Forest plot age

The number of new canopy gaps and forest plots per age class can be found in table 13.
Managed forest plots were overrepresented in the lower age classes. The pseudo-unmanaged
plots were represented in the 160-200 age class, as the registered germination date of these
forest plots was 1835. The unmanaged plot were relatively evenly representation over the age
classes, with a slight overrepresentation in the 160-200 age class. The tree species that were
overrepresented in managed plots were also overrepresented in the lower age classes. Beech
had a relatively even representation over the age classes compared to the other tree species, but
it was slightly overrepresented in the 160-200 age class (Appendix I3 - 16).

Table 13 Number and area of new canopy gaps and forest plots per age class

Age class Number of new  Number of Areaofnew  Areain Fraction of area in
) canopy gaps forest plots  canopy gaps  study area  new canopy gap
(m2) (m2)

0-40 229 28 13957 248191 0.056

40-80 1525 101 92222 1319269 0.070

80-120 355 41 27622 538063 0.051

120-160 47 9 1309 90709 0.014

160-200 317 23 15353 814760 0.019

Total 2473 202 150463 3010992 0.050

3.2.7.1. New canopy gap level

The distance to the nearest neighbour of new canopy gaps in forest plots with the age classes
120-160 and 160-200 was significantly higher compared to the younger age classes (Figure 16).
This pattern was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring
new canopy gaps (Appendix H1). There were observed significant differences in the mean
difference CHM within the new canopy gaps between the different age classes, but no relation
between forest plot age and mean CHM difference could be observed (Figure 16). The same
could be said about the relation between forest plot age and mean CHM3 and CHM4 (Appendix
H1). The only significant difference in fraction NGBM of new canopy gaps was between the
age class 0-40 and 40-80, all other age classes did not differ significantly. Nonetheless, the
median value of fraction NGBM was the highest for the age class 160-200 (Figure 16). The
10m ipcum90 in AHN4 was significantly higher in forest plots with age classes 120-160 and
160-200 compared to the other age classes (Figure 16). The same pattern was observed for the
three other important variables in the management type RF model without forest plot variables
(Appendix H1). No relation between age class and new canopy gap area or perimeter was
observed (Appendix H1).

3.2.7.2. Forest plot level

There were no significant differences observed gap density between forest plots with different
age classes. Nevertheless, the forest plots with older age classes had lower median gap density
values compared to younger age classes (Figure 17). The forest plot mean CHM3 and CHM4
was observed to significantly increase with forest plot age, while the mean difference CHM
was observed to significantly decrease with forest plot age (Figure 17, Appendix H2). The Gini
coefficient of CHM4 was observed to be significantly lower in the oldest two age classes
compared to the other age classes (Figure 17). The fraction NoG was observed to be
significantly higher in the oldest two age classes compared to the other age classes (Figure 17).
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The fraction VC of the fraction DG decreased significantly with increasing age class (Appendix

H2).
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Figure 16 Statistical comparisons of age classes on canopy gap level for the variables distance to the
nearest neighbour (16a), mean difference CHM (16b), fraction NGBM (16c) , and 10 m doughnut buffer
percentage of intensity returned below the 90" height percentile AHN4 (16d). For additional variable
comparisons of age classes on canopy gap level, see Appendix H1.
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Figure 17 Statistical comparisons of age classes on forest plot level for the variables new gap density
(17a), mean CHM4 (17Db), Gini coefficient CHM4 (17c) , and fraction NoG (17d). For additional variable
comparisons of age classes on forest plot level, see Appendix H2.
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4. Discussion

4.1. Comparison Silva and Leitold method

At the start of the study, it was hypothesized that different canopy gap delineation methods
would result in different spatial patterns of identified gaps, and that this difference would
provide information of the ecological conditions in the canopy gaps. The Silva and the Leitold
method are both conceptually simple methods to derive canopy gaps from a timeseries of two
CHM versions. Both methods use a single threshold to binary split either one CHM version,
Silva, or a difference CHM, Leitold, in areas in which new gaps have formed, or not (Leitold
etal., 2018; Vepakomma et al., 2012). The Silva method uses a threshold, minimum vegetation
height, to binary split each CHM version in gap areas and no gap areas. Thereafter, the binary
gap output of both CHM versions is overlayed to derive areas in which new canopy gaps have
formed. These areas have to be larger than the threshold for minimum new canopy gap area.
The Leitold method requires one step less as the Silva method, and is therefore twice as fast to
derive new canopy gaps. It uses a threshold, minimum canopy decrease, to directly identify new
canopy gaps from the difference between the two CHM versions, the area of which must be
again larger than the threshold for minimum new canopy gap area. As both methods are CHM-
based, the computational time to derive canopy gaps is low compared to pointcloud-based
methods (Gaulton & Malthus, 2010). This characteristic of the methods makes it suitable for
upscaling to larger study areas. Moreover, ALS data, such as the AHN, can be used to determine
canopy height with hight accuracy (Brede et al., 2017). Furthermore, because the Silva and
Leitold methods are conceptually simple, the outcomes of the methods can easily be interpreted.
However, the ecological effects of canopy gap emergence, such as tree species regeneration, is
hard to investigate with these canopy gap detection methods based on the Brokaw definition
(de Lima, 2005).

The use of the Silva and Leitold method in the study area revealed that the total area of
new canopy gaps identified with the Leitold method is larger compared to the Silva method
(Table 3, Figure 4). Nonetheless, the Silva method was able to identify areas with remaining
canopy gaps and areas were canopy gaps have disappeared over time, whereas the Leitold
method was unable to detect these canopy gap dynamic classes. The combination of the two
methods revealed information about the fraction of the new canopy gap areas that were
identified with both methods, with only the Leitold method, and with only the Silva method.
These fractions provide information of the ecological impact of canopy gap formation, that
cannot be derived from the Silva and Leitold method separately. The fraction of a new canopy
gap that is detected with both methods is assumed to have no intact forest layer after the canopy
gap emergence event, as the CHM4 is higher than 5 meter, whereas the fraction of a new canopy
gap that is only detected with the Leitold method is assumed to still have an intact forest layer
after the canopy gap emergence, as CHM4 is higher than 5 meter. New canopy gaps influence
the light availability on the soil, and therefore they influence the micro climatic conditions,
nutrient and water availability in the new gap (Lombard et al., 2019). Hence, it can be assumed
that the fraction of the new canopy gaps that is only detected with the Leitold method has a
lower impact on the forest ecosystem than the fraction of the new canopy gaps that is detected
with both methods. This reveals that the combination of the Silva and Leitold method can
provide ecologically relevant information about canopy gap dynamics, namely the presence of
a tree layer in a canopy gap after the canopy gap emergence.

The first step of validating the identified new canopy gaps, derived from the combination
of the Silva and Leitold methods, was the comparison with registered management
interventions. This comparison revealed that large new canopy gaps, and clusters with high
densities of new canopy gaps, are often situated in forest plots with registered management
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interventions (Figure 6). This outcome was the first indication of the accuracy of the
combination of the Silva and Leitold methods to detect canopy gaps. However, there were some
discrepancies between the location of registered management interventions and of the detected
large new canopy gaps, and clusters with high densities of new canopy gaps. This could best be
explained by inaccuracies in management intervention registration, as the error margin of the
AHN is on a centimetre scale. It is therefore unlikely that large new canopy gaps, and clusters
with high densities of new canopy gaps, are incorrectly identified. It is more likely that there
were inaccuracies in management intervention registration. To start, the map with the forest
plot delineation did not always correspond with the field situation. The borders of the forests
did not always correspond with the borders of plots of trees species with the same age class.
Moreover, there were situations in which management interventions were registered in a forest
plot with no identified new canopy gaps, neighbouring a forest plot were large numbers of
canopy gaps were detected, even though in that forest plot no management interventions were
registered. It is likely that the forest plot codes were mixed up during management intervention
registration in this specific situation.

The second step of validating the identified new canopy gaps was a field visit of a selection
of the new canopy gaps. During the field visit, the presence of all of the selected identified new
canopy gaps was confirmed, which confirms the accuracy of the used canopy gap detection
method. However, there were canopy gaps observed in the field that were not identified as new
canopy gaps, or as remaining gaps. This can better be explained by the time interval between
the acquisition of AHN4 and the field visit than by inaccuracies in the used canopy gap
detection method. The field visit was conducted three years after the acquisition of AHN4. It is
highly plausible that new gaps have formed in the visited forest plots in the time interval
between the acquisition of AHN4 and the field visit.

4.2. Influence forest management on canopy gap dynamics

At the start of the study, it was hypothesized that in managed forest plots, the canopy gaps
would be larger in area, higher in density, and more regularly shaped compared to canopy gaps
in unmanaged forest plots (Muscolo et al., 2014; St-Onge et al., 2014). The influence of forest
management on canopy gap dynamics was first exploratively investigated by labelling the
identified new canopy gaps with a “number of trees” class. The variables of the new canopy
gaps per “number of trees” class were statistically analysed, and the presence per “number of
trees” class in each management type was analysed. Thereafter, the identified new canopy gaps
in different management types were statistically compared. RF models were used to determine
which variables were most important to distinguish new canopy gaps in different management
types. The most important variables were then compared on canopy gap and forest plot level to
disentangle the influence of forest management, dominant tree species and age on canopy gap
dynamics. Overall, it could be said that the investigation of forest management on canopy gap
dynamics revealed that it is possible to derive the influence of different forest conditions on
canopy gap dynamics by using the AHN.

4.2.1. “Number of trees” class comparison

The classes “one tree” and “group of trees” are overrepresented in managed plots, while the
class “part of tree” is relatively evenly distributed over the three management type. The class
“group of trees” was rare in pseudo-unmanaged and unmanaged plots (Table 4). These
proportions of new canopy gaps in different “number of trees” classes per management type
indicates the higher new canopy gap size and density in managed plots compared to pseudo-
unmanaged and unmanaged plots. Furthermore, it indicates that pseudo-unmanaged plots have
a slightly higher new canopy gap size and density compared to unmanaged plots, as the
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proportional occurrence of the class “group of trees” was higher in pseudo-unmanaged plots
compared to unmanaged plots.

The “number of trees” RF model with all variables included had a total accuracy of 0.853
(Table 5). The fifteen most important variables in this model were pointcloud shape variables,
forest plot variables, pointcloud variables and , 2D canopy gap shape variables (Figure 7). The
planarity of the shape of AHN3 in the new canopy gaps was the most important variable in the
“number of trees” classification. Planarity of AHNS3 is the alignment of points whining a pane,
before the emergence of the new canopy gap (Dobler et al., 2014). The “one tree” class has the
lowest planarity. The “one tree” class is overrepresented in managed plots (Table 4), and in
these managed plots, there is an overrepresentation of coniferous tree species. Coniferous tree
species have a cone-shaped crown, and this can explain the low planarity of AHN3 in the “one
tree class” (Liang et al., 2007). Deciduous trees are overrepresented in pseudo-unmanaged and
unmanaged plots, and because the “part of tree” class had a higher proportional presence in
these plots compared to the “one tree” class, the more planar shape of a deciduous tree can be
an explanation for the higher planarity of the “part of tree” class compared to the “one tree”
class. Continuous areas with multiple trees have a high planarity, and this can explain the
“group of trees” class has the highest planarity (Dobler et al., 2014).

The next most important variables in the “number of trees” RF model were forest plot
variables, namely the fraction NGCM, gap density, and fraction in gap. For these three
variables, the classes “one tree” and “group of trees” have higher values compared to the “part
of tree” class. This can be explained by the overrepresentation of the classes “one tree” and
“group of trees” in managed plots, and relatively high presence of the “part of tree” class in
pseudo-unmanaged and unmanaged plots, as the gap density and fraction in gap is higher in
managed plots compared to pseudo-unmanaged and unmanaged plots (Table 10, Figure 11).

Two pointcloud variables are the next most important variables. The percentage of intensity
returned below the 70" and 90™ height percentile is higher in the “part of tree” class compared
to the classes “one tree” and “group of trees”. This can be explained by the relatively high
presence of the “part of tree” class in forest plots with deciduous tree species, and the relatively
high presence of the classes “one tree” and “group of trees” in forest plots with coniferous
species. This difference in intensity returned per percentile hight between the “number of trees”
classes can be explained by the fact that the AHN is acquired during the leaf-off season. In this
this season, the crown penetration of laser beams is higher in deciduous tree species compared
to coniferous tree species (Liang et al., 2007). Deciduous tree species can therefore be
distinguished from coniferous tree species with high precision during the leaf-off season
(Reitberger et al., 2008).

The final most important variables in the “number of trees” classification are 2D shape
variables derived from the area and perimeter of the new canopy gaps. The area and perimeter
of the “group of trees” class are significantly larger compared to the other classes. This can be
explained by the higher number of trees that have disappeared, and therefore new canopy gap
area, in the “group of trees” class compared to the others. The area of the “one tree” class is
significantly larger compared to the “part of tree” class, but the perimeter of “one tree” class 1s
significantly smaller compared to the “part of tree” class. This suggests that the new canopy
gaps in the “part of tree” class are more irregular compared to the ones in the “one tree” class.
New canopy gaps that have emerged due to natural events are generally more irregularly shaped
compared to gaps that have emerged due to management (St-Onge et al., 2014). As the “part of
tree” class is proportionally more represented in pseudo-unmanaged and unmanaged plots, this
can be an explanation why the new canopy gaps of the class “part of tree” are more irregularly
shaped compared to the ones in the “one tee” class (Table 4).

The accuracy of the “number of trees” RF model with only the three most important
variables included is 0.747, which is 0.109 lower compared to the model with all variables
included (Table 6). In the selection of three most important variables, 2D shape variables are
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not included. This makes it harder for the model to distinguish the “part of tree” class from the
“one tree” class, and thus leads to a relatively low users accuracy of the “part of tree” class
compared to the RF model with all variables included.

A drawback of the “number of trees” classes investigation was that the labelling of the new
canopy gaps in the different “number of trees” classes was not validated in the field. The results
of this analysis should therefore be viewed with precaution. Furthermore, in forest plots with
deciduous species, it was hard to visually recognize individual tree species compared to forest
plots with coniferous species, as deciduous tree species do not have the same recognizable cone
shape as coniferous species (Liang et al., 2007). Accordingly, it was harder to determine
whether in which “number of trees” class a new canopy gap fell in deciduous forest plots
compared to coniferous plots.

4.2.2. Disentangling the influence of different forest plot characteristics

To derive the influence of forest management on canopy gap dynamics, the difference in
dominant tree species and age class per management type had to be taken into account. The
conditions in forest plots in different management types in the study area different considerably
(Figure 1). Therefore, the influence of the difference in conditions between management classes
first had to be separated from the influence of management to learn the influence of
management on canopy gap dynamics.

The management type RF model with all variables included had a total accuracy of 0.990
(Table 7). Even though the accuracy of this model on test data was high, 0.986, the model was
highly overfitted to the study area, which means that this model would perform considerably
worse on test data outside the study area. However, interesting insights can be still derived from
this management type RF model, as it shows which variables are most important in the
classification of identified new canopy gaps in different management types. Of the fifteen most
important variables in this model, thirteen were forest plot variables, and two were doughnut
buffer pointcloud variables (Figure 8).

The forest plot variable that was most important in the management type RF model was
the Gini coefficient of the AHN4. The Gini coefficient of CHM4 is significantly higher in
managed plots compared to pseudo-unmanaged and managed plots (Figure 11). This can be
interpreted as a higher tree size inequality in managed plots compared to pseudo-unmanaged
and managed plots, which indicates larger disturbance events (Silva et al., 2019). This finding
corresponds with the expectation that forest management leads to a higher density of new
canopy gaps and larger new canopy gap area (Muscolo et al., 2014). Other findings, such as the
difference in median value of gap density and fraction NoG between the different management
types are as well in line with this expectation. The observation that forest management led to
an increased gap density is also an explanation why the distance to the nearest neighbour was
lower in managed plots compared to pseudo-unmanaged and unmanaged plots (Figure 10 &
14). It is unlikely that the difference between these forest plot variables are caused by other
factors than forest management, such as dominant tree species or age class. The influence of
dominant tree species was tested by comparing the different management types for beech plots
only, and this comparison revealed that the fraction in gap was highest in managed plots, in-
between in pseudo-unmanaged plots, and lowest in unmanaged plots (Table 12). Moreover, the
Gini coefficient was highest in managed plots, in-between in pseudo-unmanaged plots, and
lowest in unmanaged plots. The fraction NoG was lowest in managed plots, in-between in
pseudo-unmanaged plots, and highest in unmanaged plots (Figure 15). The influence of forest
plot age on forest plot variables was tested by comparing different age classes. This comparison
revealed that the fraction in gap and the Gini coefficient decreased with forest plot age.
Furthermore, the fraction NoG increased with forest plot age (Table 13, Figure 17). These
findings contrasts with the expectation that the area and density of new canopy gaps increases
with age (Spies, 1998). However, in the study area, older age classes are overrepresented by
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pseudo-unmanaged and unmanaged plots, while the younger age classes are overrepresented
by managed plots. Therefore, the difference in forest plot variables can best be explained by
management type, instead of dominant tree species or age.

Of the in fifteen most important variables in the management type RF model with all
variables included, two were doughnut buffer pointcloud variables (Figure 8). These variables
both related to the percentage intensity returned at the x™ height percentile. The fifteen most
important variables in the management type RF model without forest plot variables included
were all doughnut buffer pointcloud variables. This suggested that the characteristics of the
pointcloud directly neighbouring the new canopy gaps provided important information for the
classification in different management types. However, it was found that not forest
management, but dominant tree species caused this difference in doughnut buffer pointcloud
variables between different management types. Deciduous species are overrepresented in the
pseudo-unmanaged and unmanaged class, and coniferous species are overrepresented in the
managed class, and the crown penetration differs considerably between these two tree types
(Reitberger et al., 2008). The comparison of management types for only beech revealed that
there were no significant differences in doughnut buffer pointcloud variables between different
management classes (Figure 14). The observation that not the difference in management type,
but the difference in dominant tree species caused the difference in doughnut buffer pointcloud
variables can be an explanation why the user accuracy for pseudo-unmanaged and unmanaged
plots is so low in the management type RF model without forest plot variables (Table 9). The
question remains why the fifteen most important variables in the management type RF model
without forest plot variables were doughnut buffer pointcloud variables, instead of pointcloud
variables directly derived from the new canopy gaps. This might be explained by the difference
in area between the two clips of the pointcloud, as the area of the two doughnut buffers was on
average larger compared to the new canopy gaps.

When investigating the variable importance of the most important variables in the
management type RF model, it can be observed that the importance of forest plot variables is
considerably higher compared to doughnut buffer pointcloud variables (Figure 8). The variable
importance decreased rapidly with decreasing variable importance rank. This finding suggests
that the difference in forest plot variables between management types is actually caused by
forest management, while the difference in doughnut buffer pointcloud metrics is caused by
another factor, specifically dominant tree species. This, and the fact that the total accuracy of
the management type RF model with only the four most important variables was higher
compared to the model with all variables included, suggested that the pointcloud variables were
noise in the classification of new canopy gap in different management types (Table 7 & 8).

A significant difference was observed in the mean difference CHM within the new canopy
gaps between different management types (Figure 10). The mean difference CHM was higher
in unmanaged plots compared to managed plots. However, it is expected that this difference
was not caused by the difference in management type, but the difference in age between the
forest plots in managed and unmanaged plots. With increasing age, the mean CHM3 and CHM4
increases on forest plot level (Figure 17). This makes sense, as trees grow over time. The older
age classes are overrepresented in unmanaged plots, while the younger age classes are
overrepresented in managed plots. It is therefore expected that when a canopy gap emerges in
an unmanaged plot, the height difference in bigger compared to a new canopy gap in a managed
plot.

The fraction NGBM of new canopy gaps was significantly higher in unmanaged forest
plots compared to managed plots (Figure 10 & 14). Managed forests are generally described as
monotone, even-aged stands with no different tree layers, while unmanaged forests are
described as structured forests with multiple tree layers (Johann, 2006). It is therefore surprising
that the fraction NGBM is lower in managed compared to unmanaged plots, as the fraction
NGBM indicates the proportion of new canopy gaps in which no tree layer remains after the
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canopy gap emergence event (CHM4 <5 m). A possible explanation for this result is the light
availability under beech forests. Beech forests are considered to be dominant, climax species
that can cover 99% of a forest under natural conditions (Feldmann et al., 2018). The light
availability is low in beech forests, and therefore mature beech forests are associated with a low
plant species diversity (Ottaviani et al., 2019). Many generalist species are not able to
regenerate under a closed beech canopy. Even the highly shade tolerant saplings of beech need
small gaps in the beech canopy to successfully regenerate (Naaf & Wulf, 2007). Consequently,
in unmanaged, mature beech forests, it is unlikely that there are multiple tree layers in the forest
structure. Another explanation for the difference in fraction NGBM between managed and
unmanaged plots could be the influence of herbivory. The herbivory pressure is relatively high
in the Speulderbos, and herbivory negatively influences beech regeneration, which prevents the
formation of new tree layers under the mature beech canopy in unmanaged plots (Naaf & Wulf,
2007). However, the significant difference in fraction NGBM between pseudo-unmanaged and
managed plots cannot be explained by this reasoning, as these management types are both
overrepresented by beech. A possible explanation for the lower fraction NGBM in pseudo-
unmanaged plots compared to unmanaged plots could be the girdling management practice in
pseudo-unmanaged plots. Girdling leads to the slow decay of trees, and during this process, the
light availability on the ground can increase due to the decay of the crown of the girdled tree.
With this increased availability of light, a new tree layer could form under the girdled trees.

The fraction in gap is higher in pseudo-unmanaged plots compared to unmanaged plots
(Table 10 & 12). This distance to nearest neighbour is significantly higher in unmanaged forest
plots compared to pseudo-unmanaged plots (Figure 10 & 14). Even though the difference is not
statistically significant, the gap density and Gini coefficient median values are higher in pseudo-
unmanaged plots compared to unmanaged plots (Figure 11 & 15). These three observations can
best explained by the girdling practice in pseudo-unmanaged plots, as the tree species
composition and age class of pseudo-unmanaged and unmanaged forest plots are similar.

The area and perimeter of new canopy gaps did not significantly differ between different
management types, even though it was expected that in managed plots, the area of new canopy
gaps would be higher compared to unmanaged gaps (Muscolo et al., 2014). Moreover, it was
observed that the relative presence of the “number of trees” class “group of trees” was
considerably larger in managed plots compared to pseudo-unmanaged and unmanaged plots
(Table 4). There are several factors that could possibly explain this absence of difference in
area and perimeter between new canopy gaps in different management types. One explanation
could be thinning operations in managed plots. Thinning operations often lead to the emergence
of small new canopy gaps with high density (Wilkinson et al., 2016). The number of new
canopy gaps in managed plots with the class “one tree” is almost twice as high as with the class
“group of trees” (Table 4). Besides, the beech forests of pseudo-unmanaged and unmanaged
plots are mature, so in case one tree disappears, a relatively large new gap is formed.
Furthermore, it was observed in managed plots that small cohorts of young trees were removed
in a thinning operation, leaving behind a relatively small new canopy gap, but receiving the
label “group of trees”. Additionally, observations of large clear-cuts and extensive thinning
operations that led to large consecutive new canopy gaps were rare in the study area.

4.3. Recommendations

This study showed that CHM-based canopy gap detection methods, both the Silva method, the
Leitold method, and a combination of these methods are suitable to study canopy gap dynamics
derived from AHN data. The preferred method, or combination of methods, to study canopy
gap dynamics derived from AHN data depends on the aim of the study. The Silva method
reveals new canopy gaps in which no tree layer is intact after the canopy gap emergence.
Besides, the Silva method is able to determine areas in the forest were canopy gaps have
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remained over time, and were canopy gaps have disappeared. The Leitold method reveals all
areas in the forest plot where the canopy was considerably lowered. The combination of these
two method reveals the fractions of new canopy gap in which an intact tree layer is absent or
present after the canopy gap emergence event. It is recommended that when analysing canopy
gap dynamics derived from AHN data, especially on a larger spatial scale, to work with CHM-
based canopy gap detection methods. The reasons for this is that ALS data is highly suitable to
determine canopy height, and the computation time is considerably faster compared to
pointcloud based methods. Moreover, CHM-based methods are conceptually simple and
therefore easily interpretable (Brede et al., 2017; Gaulton & Malthus, 2010). In this study, the
AHN pointclouds were processed to create DEMs and thereby CHMs. Further studies on
canopy gap dynamics derived from the AHN can consider to directly download the derived
DEMs from the AHN, depending on the research aim. Pointcloud variables are highly useful to
discriminate different tree species, but do not provide insights in the differences between
different management types.

The results of this study are influenced by the selected canopy gap thresholds. The
threshold selection procedure is partly a subjective process, that is highly influenced by the aim
of the research (Senecal et al., 2018). In further canopy gap dynamics studies with the AHN,
the thresholds most be critically reviewed, and it must always be considered to what extent the
set of thresholds fits to the aim of the study.

It is recommended that the AHN will be implemented in a monitoring scheme of canopy
gap dynamic of Dutch forests. There are already four versions of the AHN, and a new version
is currently under development. It can therefore be expected that the AHN will be regularly
renewed, also in the future, which makes it possible to continuously monitor Dutch forests
canopy gap dynamics with the AHN. The results of the validation of the identified new canopy
gaps in this study revealed that the AHN is a reliable source to detect canopy gaps. The AHN
is an open data source, and can therefore be implemented in forest monitoring projects without
the need of large financial investments. This study revealed that the canopy gaps derived from
the AHN can be used to make in-depth statistical comparisons between different types of forest
plots. The AHN can therefore be used to study the influence of different factors on canopy gap
dynamics, with the availability of additional datasets. In this study, data on forest plot level was
used, but in further studies, data about e.g. land use type, soil type, hydrological conditions,
nutrient availability or climatic conditions could be used to determine the its influence on
canopy gap dynamics.

For forest terrain owners, the AHN could be used to transparently communicate the
quantity of removed trees to the public. In the Netherlands, wood removal can be considered to
be a politically-charged issue. In the current situation, in which terrain owners often do not have
precise information on were new canopy gaps have emerged, there is little information available
to the public about wood removal in the forest. The AHN makes it possible for terrain owners
to fully transparently communicate about wood removal practices in their forests, and that can
lead an increase in trust from the public (Auger, 2014).

5. Conclusion

In this study, it was aimed to uncover the potential of the AHN to study canopy gap dynamics
by comparing two CHM-based canopy gap detection methods, the Silva and Leitold method,
and to investigate the influence of forest management on canopy gap dynamics. It was found
that the Leitold method identified a larger area of new canopy gaps compared to the Silva
method, and that the Silva method was able to detect more canopy gap dynamics classes
compared to the Leitold method. The combination of these methods was shown to identify new
canopy gaps with high accuracy, and led to additional ecological understanding about the
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identified canopy gaps by providing information about the presence of a forest layer in canopy
gap after the canopy gap emergence event. The analysis of the influence of forest management
on the identified new canopy gaps showed that forest management decreased the distance to
the nearest neighbour, and increased the forest plot gap density. The other differences in new
canopy gap characteristics between different management types were explained by other factors
than management, namely the difference in dominant tree species and age of the forest plots in
different management types in the study area. This study revealed that it is possible to derive
the influence of different forest conditions on canopy gap dynamics by using the AHN.
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Disclaimer

It would have been more appropriate to refer to the canopy gap detection method from two
separate CHM versions as the Vepakomma method, instead of the Silva method, as
Vepakomma et al. (2012) developed the method, while Silva et al. (2019) developed an

implementation of the method in R.
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Appendices

Appendix A: Relationship between tree height and diameter (Al), relationship
between tree height and age (A2), and information per tree species (A3).

Al A2

Relation tree height and diameter Relation tree height and age

species
o= all
e BE
- DG
- JL

height (m)

-o= NS
OA
SP

0 5 10 15 0 10 20 30
diameter (cm) age (y)

A3
Tree Beech Oak Scotch  Japanes Douglas Norway Overall
species pine elarch  fir spruce
Tree height | 5.15 4.45 4.43 5.90 4.77 4.04 4.86
at DBH of 5
cm (m)
Tree height | 0.37 0.31 0.32 0.46 0.58 0.41 0.39
growth per
year (m)
Tree height | 1.12 0.92 0.97 1.39 1.73 1.24 1.17
growth per
3 years (m)

The maximum vegetation height threshold was based on the tree height at a DBH of 5 cm. This height
was determined by taking the intercept of the linear relationship between tree height and DBH. The
DBH was first subtracted by 5 so that the intercept would be equal to the tree height at a DBH of 5
cm. The difference between lateral and vertical canopy gap closure was based on the maximal tree
growth in three years. The yearly height growth was determined by taking the slope of the linear
relationship between tree height and age.
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Appendix B: Map of forest plots and new canopy gaps visited for validation in the
study area.

[ study area

[_] Forest plots managed
Il Forest plots unmanaged
I New gaps managed
[ New gaps unmanaged

The location of ten randomly selected forest plots, five managed and five (pseudo-)unmanaged, and the
location of identified new canopy gaps that intersect with these forest plots are shown in this map. The
basemap is a 8 cm resolution areal orthophoto of the study area from the year 2021 provided by PDOK.
Due to colour differences between different tree species, contours of different forest plots in the study

area can be observed in this orthophoto. For the location of the study area in the Netherlands, see
Figure 1.
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Appendix C: Function sheet of attributes added to the new canopy gap and their
sources. Function 1-11 were used to determine the 2D shape characteristics of the
gaps. Function 12 — 15 were used to determine canopy gap characteristics of the forest

plots

Number Function

Source

1

10

11

12

13

14

15

erimeter
Gap Shape Complexity Index (GSCI) = _ e
2* +areax*m
, , perimeter?
Circularity = ——
area
perimeter?
Roundness = ——
41 * area
41 * area
Shape Index (SI) = ————
perimeter

2 * Inperimeter

Fractional Dimension (FD) = @ an

area
Areal Form Factor (AFF) = —————
perimeter

. ) perimeter
Interior to Edge Ratio (IER) = ———
area

area

Solidity =
ouaity area convex hull

perimeter convex hull
perimeter

Convexity =

area

Equivalent Circular Diameter (ECD) = 2 *

3
area

4
Euivalent Spherical Volume (ESV) = 3 * T % -

area new gaps in plot
Percentage In Gap (PIG) = 2 gaps I pro? |

area plot
] number new gaps in plot
Gap Density (GD) = * 100
area plot

Dispersion Index(DI)

nearest neighbour distance new gaps in plot
— 2 +CD * U g gap p

10
erimeter new gaps in plot
Canopy Edge (CE) = 2P Ll i * 100

Y. area new gaps in plot

Bonnet et al. (2015); Patton
(1975)

Bonhomme et al. (2014)

http://www.empix.com/
NE%20HELP/functions/
glossary/
morphometric_param.htm
Demetriou et al. (2013)

Demetriou et al. (2013)
Demetriou et al. (2013)
Blackburn and Milton (1996)

Bonhomme et al. (2014)

Bonhomme et al. (2014)

http://www.empix.com/
NE%20HELP/functions/
glossary/
morphometric_param.htm
http://www.empix.com/
NE%20HELP/functions/
glossary/
morphometric_param.htm
Blackburn and Milton (1996)

Blackburn and Milton (1996)

Blackburn and Milton (1996)

Blackburn and Milton (1996)
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Appendix D: variable importance of the 5 RF models. For model 2 and 4, the
difference between the classes per important variable is shown.

D1: “number of trees” model with all variables included

variable importance
shape_AHN3_planarity 127.948198
shape_AHN3_linearity 98.3953374
ForestPlot_fraqg NGLM 77.9449865
ForestPlot GD 51.5250249
shape_AHN3_eigen_medium 40.5939026
ForestPlot_PIG 36.3068979
ipcumzq90_AHN3 25.0343279
ipcumzq70_AHN3 20.234873

shape_IER 16.9803963
shape_FD 14.3488342
shape_AFF 12.6700546
shape_roundness 11.3660621
shape_GSCI 10.692241

shape_circularity 8.72628288
shape_SI 8.71340607
n_AHN3 7.73742527
Buffer5m_ipcumzq70_AHN4 7.03703061
shape_solidity 6.57620625
shape_convexity 6.3862045

itot AHN3 6.31906003
zq45_AHN3 5.85037072
Buffer10m_area_AHN3 5.28643964
pzaboveZ _AHN3 5.27180717
shape_ESV 4.84058941
Buffer5m_area_ AHN3 4.67250968
area_AHN3 4.50790004
zq40_AHN3 4.41349829
shape_ECD 4.23391063
shape_area 4.05181388
shape_AHN3_eigen_smallest 3.93134472
Buffer10m_zpcum9 AHN3 3.91654528
Buffer5m_area_AHN4 3.91220745
itot_ AHN4 3.73880487
Buffer5m_itot AHN4 3.45457418
ForestPlot_ mean_CHM4 3.43209419
Buffer10m_area_ AHN4 3.3465539

gini_ CHM3 3.21498333
zq20_AHN3 3.03271761
pground_AHN3 3.02346436
zq50_ AHN3 2.93040263
Buffer10m_ipcumzq30_AHN4 2.92089571
buffer10m_overlap_relative 2.91901108
zpcum1_AHN3 2.85658736
zpcum8_ AHN3 2.82068396
ForestPlot_gini CHM3 2.66333272



Bufferbm_n_AHN3
p2th_AHN3
shape_AHN3_sphericity
ForestPlot_gini CHM4
ForestPlot_fraq_NoG
area_AHN4
Buffer5m_zpcum9_AHN3
Buffer10m_ipcumzq90_AHN4
ipground_AHN3
Buffer10m_ipcumzq70_AHN4
ForestPlot mean_CHM3
Buffer10m_ipcumzql0_AHN4
zpcum7_AHN3
shape_AHN3_curvature
zskew_ AHN3

shape_AHN4 _eigen_smallest
Buffer10m_imean_AHN3
Bufferb5m_ipcumzq90_AHN3
Buffer5m_p4th_AHN4
Buffer10m_ipcumzq90_AHN3
Buffer10m_n_AHN3
shape_AHN3_anisotropy
pzabovezmean_AHN3

zq15 AHN3

zq35_AHN3
Buffer5m_zpcum9_AHN4
Buffer5m_p3th_AHN4
zpcum6_AHN3
ipcumzq30_AHN4
zq25_AHN3
Buffer5m_p5th_AHN4
shape_perimeter
shape_AHN3_horizontality
ForestPlot_fraq_ DG
Bufferbm_n_AHN4
Buffer10m_p5th_AHN4
ipcumzql10_AHN4

sd_CHM3
Buffer10m_zpcum9_AHN4
iskew AHN3

zpcum9_AHN3
Buffer5m_imean_AHN4
p5th_AHN4
Buffer10m_p4th_AHN4
ForestPlot max_CHM3
ipcumzq50_AHN3
Buffer10m_p5th_AHN3
imax_ AHN4
ForestPlot_fraqg_ NGBM
Buffer5m_p1th_ AHN4
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2.60212854
2.52085907
2.50899028
2.48375264
2.48021766
2.47871828
2.4566476

2.43257094
2.39785353
2.36238456
2.36087724
2.35718198
2.34667201
2.34291652
2.33821482
2.32598327
2.30908989
2.28096124
2.27335009
2.25431884
2.20643416
2.18508661
2.17966568
2.17942794
2.15678782
2.12507823
2.09304326
2.06046171
2.03812982
2.03095982
2.01399802
1.99668512
1.9901801

1.97923698
1.94377163
1.92623003
1.92092183
1.89254521
1.87595549
1.87193167
1.86731481
1.85807522
1.84465799
1.84185362
1.81389678
1.7950297

1.78159564
1.77395396
1.75235737
1.75077535



Buffer5m_imean_AHN3
shape_AHN4_eigen_medium
Buffer5m_ipcumzq90_AHN4
ipcumzql0_AHN3
ForestPlot max CHM4
Buffer5m_p2th_AHN3
ForestPlot_fraq_ VC
mean_CHM(div
Buffer5m_zpcum7_AHN4
Buffer10m_itot AHN3
Buffer10m_ipcumzq50_AHN4
Buffer5m_itot AHN3
zq55_AHN3
Buffer10m_zpcum8 AHN4
Buffer10m_zpcum8 AHN3
max_CHMdiv
ForestPlot_range_CHM3
Buffer10m_p3th_AHN4

isd AHN3

n_AHN4
Buffer5m_zpcum8_AHN3
zq75_AHN3

min_CHM4

zq65_AHN3

shape_AHN4 _anisotropy
ForestPlot_range_CHM4
shape_AHN4 linearity
ForestPlot DI
ForestPlot CE

ikurt AHN4

shape_AHN4 sphericity
shape_AHN4 _curvature
Buffer10m_zq95_AHN3
Buffer10m_zsd_AHN3
Buffer5m_zsd_AHN3
ForestPlot max CHMdiv
Buffer10m_itot AHN4
ForestPlot_ sd_CHM4
Buffer5m_ipcumzq70_AHN3
min_CHM3

dist_nn

ikurt AHN3
Buffer5m_ipcumzql0_AHN4
shape_AHN4 planarity
Buffer5m_ipcumzq50_AHN3
Buffer10m_p2th_AHN3
imax AHN3

isd_ AHN4
Buffer5m_ikurt_ AHN4
Buffer10m_n_AHN4

66

1.74662439
1.72884107
1.72142041
1.70680402
1.69589384
1.69549791
1.69515379
1.68749069
1.66460073
1.64081887
1.62320427
1.61141122
1.60920381
1.5935395
1.58610794
1.5855236
1.57344468
1.55759085
1.55453053
1.55138316
1.55101128
1.5288247
1.50299323
1.48757924
1.48696417
1.47543652
1.47372079
1.46572158
1.45130619
1.44260855
1.43725761
1.42405572
1.42209684
1.41923532
1.38222795
1.38093118
1.37306062
1.36364182
1.35957848
1.35086621
1.34541783
1.34097812
1.33715171
1.326976
1.32120925
1.31201441
1.29908301
1.28980522
1.2876984
1.26554315



ipcumzq90_AHN4
zpcumZ2_AHN3
ipcumzq50_AHN4
Buffer10m_imax_AHN4
range_CHM3

imean_AHN4
Buffer5m_ipcumzq30_AHN4
ipcumzq30_AHN3
ForestPlot_ min_CHMdiv
Buffer10m_isd_AHN3
p3th_AHN3

zq60_AHN3
zpcum9_AHN4
Buffer10m_zmax AHN3
Buffer5m_isd_AHN3

gini CHM4
Buffer10m_iskew_AHN4
ForestPlot_fraq_RG
p4th_AHN4

zq70_AHN3

plth_AHN4
Buffer10m_zq5_AHN4
Buffer5m_imax_AHN4
shape_AHN4_horizontality
ForestPlot_sd_CHMdiv
zq30_AHN3
Buffer5m_iskew_AHN4
zq10_AHN3
Buffer10m_zpcum7_AHN4
Buffer5m_zpcum6_AHN4
Buffer10m_ipcumzq10_AHN3
Buffer10m_zkurt AHN3
imean_AHN3
Buffer10m_zmax_AHN4
ForestPlot_range_CHMdiv
Buffer5m_iskew_AHN3
p2th_AHN4
Buffer10m_zpcum7_AHN3
Buffer10m_p1th_ AHN4
ipcumzq70_AHN4
Buffer10m_imean_AHN4
Buffer10m_isd_AHN4
Buffer10m_zkurt_ AHN4
shape_AHN3_eigen_largest
Buffer5m_zpcum1_AHN4
Buffer5m_p3th_AHN3
Buffer5m_isd_AHN4
Buffer5m_ipcumzq30_AHN3
Buffer5m_zskew_AHN4
zpcum3_AHN3
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1.26364899
1.26322896
1.25244235
1.2508898

1.2327257

1.23072552
1.22359198
1.22180428
1.21320245
1.21099952
1.20717653
1.20472558
1.20089878
1.20013643
1.18613402
1.18275299
1.18124619
1.16684223
1.16222592
1.1539547

1.14209484
1.13659843
1.13547047
1.13282878
1.12967636
1.12159594
1.12128873
1.11603369
1.10926798
1.10276673
1.10199334
1.09612631
1.0939305

1.09369326
1.08229892
1.07568753
1.0756579

1.06696949
1.05714956
1.05609485
1.04358534
1.04258785
1.0388525

1.03703002
1.02473451
1.02236741
1.01650969
1.01354264
1.01333626
1.00587353



mean_CHM4
zpcum5_AHN3
Buffer5m_zpcum8_AHN4
zq80_AHN3
Buffer5m_imax_AHN3
Buffer5m_zpcum1_AHN3
Buffer5m_zq5_AHN4
Buffer5m_zpcum2_AHN4
zsd_AHN3

iskew AHN4
Buffer10m_zq85_AHN3
Buffer5m_ipcumzq50_AHN4
fraqg_ NGBM

zq90_AHN3

plth_AHN3
Buffer10m_p2th_AHN4
Buffer5m_zpcum7_AHN3

Buffer5m_pzabovezmean_AHN3

zq5_ AHN4

p3th_AHN4

zq10_ AHN4
ForestPlot_gini CHMdiv
buffer5m_overlap_relative
p5th_AHN3
Buffer10m_zpcum6_AHN4
ForestPlot mean_CHMdiv
Buffer5m_ipcumzql0_AHN3
gini CHMdiv

frag_ NGLM

zmean_AHN3
Buffer5m_zpcum4 AHN4
zql5 AHN4
Buffer10m_ipcumzq30_AHN3
zkurt AHN3

zq5_AHN3

zpcum4_AHN3
Buffer5m_zpcum5_AHN4
Buffer5m_zkurt AHN4
ipground_AHN4
zq85_AHN3
Buffer10m_imax_AHN3
Buffer10m_p4th_AHN3
Buffer10m_p1th_AHN3
Buffer5m_zpcumé6_AHN3
Buffer10m_zpcum4_AHN3
Buffer5m_zkurt AHN3
Buffer5m_zmax_AHN3
Buffer10m_ikurt_ AHN4
Buffer5m_zq20_AHN3
ForestPlot sd CHM3
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1.00309574
1.00308048
0.97643345
0.97181266
0.96870352
0.95161365
0.94607547
0.94420648
0.94306775
0.9421904
0.94100351
0.94054832
0.9387121
0.93732285
0.93380946
0.93152068
0.93113963
0.92776364
0.92514609
0.92413703
0.92180201
0.91582612
0.90462387
0.89486006
0.88589476
0.87775405
0.87356047
0.87216838
0.86829543
0.85881785
0.85034799
0.84692001
0.84282691
0.83848154
0.83670941
0.82785395
0.8253135
0.81785514
0.81340488
0.81241653
0.810855
0.80822247
0.806413
0.80098713
0.80082524
0.79551489
0.79349774
0.78797621
0.786856
0.78087838



Buffer5m_pzaboveZ_ AHN4
Buffer10m_zq90_AHN3
mean_CHM3
Buffer10m_zq80_AHN3
Buffer10m_ikurt_ AHN3
Buffer5m_ipground_AHN4
ForestPlot_fraq_ NGSM
Buffer5m_zpcum5_AHN3
Buffer10m_pzabovezmean_AHN3
Buffer5m_zq35_AHN4
zq80_AHN4
Buffer10m_zpcum4 AHN4
pzabovezmean_AHN4
Buffer5m_ikurt AHN3
Buffer5m_p2th_AHN4
Buffer10m_ipcumzq50_AHN3
Buffer10m_zpcum2_AHN4
sd_CHMdiv
Buffer5m_p5th_AHN3
range_CHMdiv
zq60_AHN4

zq50 AHN4
Bufferb5m_ipground_AHN3
zpcum7_AHN4
Buffer10m_zpcum1_AHN3
zq70_AHN4
ForestPlot_ min_CHM3
zq25_AHN4
Buffer10m_zpcum5_AHN4
Buffer10m_ipcumzq70_AHN3
Buffer5m_zq10_AHN4
Buffer10m_zpcum1_AHN4
Buffer5m_pground_AHN3
zpcum8_AHN4
Buffer5m_zq10_AHN3
Buffer10m_zskew_AHN4
Buffer5m_pzabovezmean_AHN4
Buffer10m_zpcum5_AHN3
zq20_AHN4

p4th_AHN3
Buffer5m_zskew_AHN3
Buffer10m_p3th_AHN3
Buffer10m_zq10_AHN3
Buffer5m_zmax_AHN4
zpcum4_AHN4
Buffer5m_zq5_ AHN3
Buffer10m_zq75_AHN3
Buffer5m_zq25_AHN3
min_CHMdiv

shape_AHN4 eigen_largest
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0.77861807
0.77678813
0.77530626
0.76905192
0.76785408
0.76695945
0.76397651
0.74950249
0.74759078
0.74669704
0.74633814
0.73987582
0.73835266
0.73820213
0.73446934
0.73434331
0.72636325
0.72633578
0.72607609
0.72538516
0.72408007
0.71573106
0.71554355
0.71371851
0.70742705
0.70738724
0.70347997
0.69638524
0.6958159

0.69276903
0.6870136

0.68028937
0.67485884
0.67374505
0.66726369
0.66319923
0.65259902
0.65217348
0.64993574
0.64421926
0.64374434
0.63908399
0.63856998
0.63602455
0.62255146
0.61950353
0.61898985
0.61378709
0.61113966
0.60276591



Buffer10m_iskew_AHN3
Buffer10m_zpcum6_AHN3
Buffer5m_zq95_AHN3
Buffer5m_zq30_AHN4
Buffer5m_zpcum3_AHN4
zq35_AHN4
Buffer10m_zq20_AHN3
zq40_AHN4
Buffer5m_zq20_AHN4
Buffer5m_zpcum4_AHN3
ForestPlot_fraq_ RGCM
sd_CHM4

zkurt AHN4
Buffer5m_p4th_AHN3
zq75_AHN4

zq90_ AHN4

zq95_AHN4

zq45_AHN4

max_CHM3
Buffer5m_p1th_AHN3
Buffer10m_ipground_ AHN3
Buffer5m_zq50_AHN4
Buffer5m_pground_AHN4
Buffer10m_zpcum2_AHN3
Buffer10m_zq40_AHN3
Buffer10m_zq95_AHN4
Buffer10m_zmean_AHN4
Buffer10m_zq5_AHN3
Buffer10m_pzabovezmean_AHN4
zq85_AHN4
Buffer10m_zq30_AHN3
Buffer10m_zql10_AHN4
Buffer5m_zq90_AHN3
zmax AHN4
Buffer10m_pground_AHN3
zpcum5_AHN4
Buffer10m_zpcum3_AHN3
zsd AHN4

Buffer10m_zql5 AHN4
Buffer5m_zpcum3_AHN3
zpcum1_AHN4
Buffer5m_zpcum2_AHN3
max_CHM4

zmean_AHN4
Buffer10m_zq25_AHN3
Buffer10m_ipground_AHN4
zq65_AHN4
Buffer10m_zq60_AHN3
Buffer10m_zpcum3_AHN4
Buffer10m_zskew_AHN3
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0.60204281
0.60031288
0.59893201
0.59538475
0.59292019
0.58655584
0.58446724
0.58280442
0.57689316
0.57444174
0.5709781

0.56528033
0.56288483
0.55989473
0.55984114
0.55455922
0.55447891
0.5522119

0.55202064
0.54932934
0.54929219
0.54812923
0.54260779
0.54216112
0.53958501
0.53561738
0.53485837
0.53137845
0.53063232
0.52925777
0.52906716
0.5249089

0.52461842
0.51933095
0.51885487
0.51829765
0.51727121
0.50946097
0.50555165
0.50480131
0.50224373
0.50092287
0.49601972
0.48839234
0.48766088
0.48495566
0.48247812
0.47928847
0.47774579
0.47670481



Buffer10m_zq60_AHN4
pground_AHN4
ForestPlot min_CHM4
Buffer10m_zq35_AHN3
Buffer5m_zq75_AHN4
Buffer5m_pzaboveZ_AHN3
Buffer5m_zq40_AHN4
Buffer10m_zsd_AHN4
zq95_AHN3
Buffer5m_zq95_AHN4
Buffer5m_zmean_AHN4
Buffer10m_zql5 AHN3
range_CHM4
Buffer10m_zq20_AHN4
Buffer10m_zq65_AHN3
zpcum6_AHN4

zskew_ AHN4
zq30_AHN4
Buffer10m_pzaboveZ_AHN3
zpcumZ2_AHN4
zq55_AHN4
Buffer5m_zql5_AHN3
Buffer10m_zq45_AHN4
Buffer10m_zq45_AHN3
Buffer5m_zq50_AHN3
zmax AHN3

pzaboveZ AHN4
Buffer5m_zq30_AHN3
Buffer10m_zq70_AHN3
Buffer10m_pground_AHN4
Buffer5m_zq65_AHN4
Buffer5m_zq85_AHN3
Buffer5m_zsd_AHN4
Buffer5m_zq60_AHN4
Buffer10m_zq40_AHN4
Buffer5m_zq45_AHN3
Buffer5m_zq35_AHN3
Buffer5m_zq80_AHN3
Buffer5m_zq55_AHN3
Buffer5m_zq25_AHN4
Buffer5m_zq80_AHN4
Buffer10m_zq90_AHN4
zpcum3_AHN4
Buffer10m_zq35_AHN4
Buffer10m_zq50_AHN4
Buffer5m_zq55_AHN4
Buffer5m_zq70_AHN4
Buffer5m_zmean_AHN3
Buffer5m_zq90_AHN4
Buffer10m_zq30_AHN4
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0.47025284
0.46874146
0.46666226
0.46599435
0.46060212
0.46037825
0.45631752
0.45573726
0.45119844
0.44827275
0.43894659
0.43532649
0.43521902
0.43220925
0.43117204
0.42989286
0.42668643
0.42065244
0.41919552
0.41833615
0.41613521
0.41609845
0.41384856
0.41209971
0.41061621
0.41007936
0.40994574
0.40283812
0.38943782
0.38631089
0.38623269
0.38327931
0.38214981
0.38207058
0.37167624
0.37163237
0.36516017
0.36215561
0.35212878
0.35065729
0.34727629
0.34720515
0.34690035
0.34589447
0.34551372
0.33468703
0.33128757
0.32870517
0.32360288
0.31382198
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Buffer5m_zq45_AHN4 0.30689962
Buffer10m_zq65_AHN4 0.30658182
Buffer10m_zq55_AHN3 0.30625429
Buffer10m_zq70_AHN4 0.30477834
Buffer10m_zq85_AHN4 0.29438566
Buffer5m_zq15_AHN4 0.29229573
Buffer10m_zmean_AHN3 0.29116139
Buffer10m_zq50_AHN3 0.28603149
Buffer10m_zq55_AHN4 0.2851455

Buffer5m_zq65_AHN3 0.27585743
Buffer5m_zq40_AHN3 0.26210126
Buffer10m_zq25_AHN4 0.24417661
Bufferbm_zq85_AHN4 0.23747181
Buffer10m_pzaboveZ2_ AHN4 0.22936846
Buffer10m_zq80_AHN4 0.22083158
Bufferbm_zq60_AHN3 0.21378557
Buffer5m_zq70_AHN3 0.20903902
Buffer10m_zq75_AHN4 0.20456607
Buffer5m_zq75_AHN3 0.18563211
fraq_RGCM 0.17962385
frag_NGSM 0.16860162

D2: “number of trees” model with only the most important variables included

variable importance
shape_AHN3_planarity 556.540363
ForestPlot_fraqg NGLM 239.952029
ForestPlot_GD | 225.632386

Canopy gap forest plot fraction NGLM
Leruskarwanis(2) = 540.90, p = 3.51e-118, 82, = 0.22, Clgsy, [0.19, 1.00], ngps = 2,473

Canopy gap shape planarity AHN3
Fusiarwanis(2) = 997.01, p = 3.18e-217, 85, = 0.40, Closy, [0.38, 1.00], nops = 2,473

PBonterroni-agj. = 3.20e-30 PBonferroni-adj. = 6.54e-76
1

r r
PBonfenoni-ag, = 3.13e-48 PBonferroni-agj, = 2.78e-114

PBonferroni-ag, = 1.04e-217 PBonferron -ag, = 1.05e-13

09-

planarity

o
@
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02-
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Canopy gap forest plot gap density

2
XKruskal-Wallis

PBonferroni

(2) = 608.40, p = 7.70e-133, &

=0.25, Clggy, [0.22, 1.00], ngps = 2,473

PBonferroni-adj. = 4.12e-120

T
26, = 3.28e-100

0.004 -

gap density

Tlmedian = 2.18e-03

0.002 -

0.000 -

group of trees
(n = 709)

.
one tree
(n=1277)

'number of trees' class

D3: management type model with all variables included

Tmedian = 2.47€-03

part of tree
(n = 487)

jueoayiubis :umoys sieg ‘uung :}sa) asimiied

variable importance
ForestPlot_gini CHM4 152.787068
ForestPlot_fraq_NoG 41.0123291
ForestPlot_fraqg NGLM 28.8188507
ForestPlot GD 19.2906064
ForestPlot_fraq_VC 13.2442281
ForestPlot mean_CHMdiv 12.970866

ForestPlot_fraqg NGBM 12.4378948
ForestPlot mean_ CHM3 11.4290351
ForestPlot_gini CHMdiv 7.28968015
ForestPlot mean_ CHM4 7.10472603
Buffer10m_ipcumzq30_AHN4 6.0811985

ForestPlot_ sd_CHM4 4.72298554
ForestPlot_fraqg NGSM 4.3393727

Buffer5m_ipcumzq70_AHN4 3.77832042
Buffer10m_ipcumzq70_AHN3 3.77429692
Buffer10m_zq50_AHN4 3.04711779
ForestPlot PIG 2.89526537
ForestPlot_gini CHM3 2.80262763
Buffer10m_zmean_AHN4 2.72996115
Buffer10m_zpcum1_AHN3 2.66822777
Buffer10m_zkurt AHN3 2.49311953
ForestPlot_range_CHMdiv 2.19920225
ForestPlot max CHMdiv 2.12591713
ForestPlot_ min_CHMdiv 2.04619712



ForestPlot min. CHM3
ForestPlot max CHM3
Buffer5m_ipcumzq90_AHN3
Buffer10m_zpcum3_AHN4
ForestPlot_range_CHM4
Buffer10m_ipcumzq70_AHN4
ForestPlot min_CHM4
ForestPlot max CHM4
ForestPlot_range_CHM3
ForestPlot sd_CHMdiv
Buffer10m_ipcumzq90_AHN4
Buffer10m_zpcum1_AHN4
Buffer10m_ipcumzq90_AHN3
ForestPlot_fraq_RG
Buffer10m_ipcumzq50_AHN3
ForestPlot_fraq_DG
Buffer5m_ipcumzq70_AHN3
BufferSm_zpcum8_AHN3
ipcumzq50_AHN3
Buffer10m_zq45_AHN4
Buffer10m_p3th_AHN3
Buffer5m_zpcum9_AHN4
Buffer10m_zpcum9_AHN3
ForestPlot_fraqg_ RGCM
Buffer5m_zkurt AHN3
Buffer10m_ipcumzq50_AHN4
Buffer5m_pzabovezmean_AHN4
Buffer10m_zpcum9_AHN4
ForestPlot sd CHM3
ipcumzq70_AHN3
Buffer10m_pground AHN3
p2th_AHN3
Buffer10m_ipcumzql0_AHN4
Buffer5m_p3th_AHN3
imean_AHN3
Buffer10m_imax_AHN3
Buffer10m_p2th_AHN4

gini_ CHM4

shape_AHN4 planarity
Buffer5m_zpcum9_AHN3
shape_AHN4 eigen_medium
Buffer5m_zpcum2_AHN4
Buffer5m_ipcumzq50_AHN4
Buffer10m_isd_AHN3
ipcumzq90_AHN3
Buffer10m_zpcum3_AHN3
pzabovezmean_AHN3
ipcumzq90_AHN4
Buffer5m_zq45_AHN4
Buffer10m_zpcum2_AHN3
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1.91993739
1.88596445
1.85970309
1.83594842
1.68442119
1.63789337
1.58748598
1.4875399

1.48508054
1.43461776
1.27333711
1.25891973
1.24570201
1.16551264
1.15878451
1.01718996
1.00564038
0.9208675

0.89006136
0.88213307
0.87390598
0.87251651
0.77768254
0.75772763
0.75761698
0.75628635
0.73910683
0.71932648
0.69546648
0.67421668
0.64477239
0.5140113

0.50293877
0.43765663
0.42842577
0.41980813
0.41134192
0.40718749
0.30348034
0.29160027
0.28919737
0.28486227
0.2806899

0.27901486
0.27682906
0.26634898
0.26573182
0.2632257

0.25404966
0.25161366



Buffer5m_imax_AHN4
Buffer5m_zq30_AHN3
Buffer10m_zkurt_ AHN4
dist_nn
Buffer5m_p1th_AHN3
Buffer5m_ipcumzq90_AHN4
Buffer10m_n_AHN3
Buffer10m_imax_AHN4
ipground_AHN3
Buffer5m_ipcumzq10_AHN4
Buffer10m_zskew_AHN4
Buffer10m_itot AHN3
ipcumzql0_AHN4
Buffer10m_zq25_AHN3
p2th_AHN4
Buffer10m_p3th_AHN4

isd AHN3
Bufferbm_zpcum1_AHN3
Buffer5m_ipcumzq50_AHN3
pzaboveZ AHN3

Buffer10m_pzabovezmean_AHN4

Buffer10m_p4th_AHN4
Buffer10m_zq55_AHN4
Buffer5m_zpcum3_AHN4
Buffer10m_p1th_AHN4
Buffer10m_p1th AHN3
Buffer10m_zmax AHN3
Buffer5m_zpcum5_AHN4
Buffer5m_ipcumzq30_AHN4
Buffer10m_ipcumzql10_AHN3
Buffer5m_p3th_ AHN4
sd_CHM3
Buffer5m_imax_AHN3
Buffer10m_n_AHN4
Buffer5m_p4th_AHN4
Buffer10m_zsd_AHN3
zq60_AHN4
Buffer5m_imean_AHN4
Bufferbm_n_AHN3
Buffer10m_zq5_AHN4
Buffer5m_isd_AHN4
plth_AHN4
Buffer10m_zpcum7_AHN3
Buffer5m_p2th_AHN3
Buffer10m_isd_AHN4
gini CHM3

shape_AHN4 linearity
Buffer10m_zql10_AHN4
zmax AHN4
Buffer5m_imean_AHN3
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0.25019533
0.24986247
0.24596231
0.23768351
0.22959026
0.22416675
0.20974149
0.19428831
0.19207246
0.18347242
0.18239564
0.17510876
0.17449835
0.1654139

0.16236202
0.1578656

0.15761111
0.15728321
0.15581033
0.14855486
0.14733101
0.14606978
0.14092842
0.13478713
0.13373749
0.13336271
0.12884369
0.12811519
0.12754118
0.12425962
0.1182395

0.1177501

0.11657124
0.11400616
0.11338091
0.10759444
0.10417568
0.10288273
0.10164893
0.09894308
0.09800963
0.09457641
0.0941914

0.09326959
0.09317415
0.09284786
0.09127044
0.0910562

0.09083698
0.08856818



p3th_AHN4
zskew_AHN4
Buffer5m_zq80_AHN3
Buffer5m_ikurt AHN3
Buffer5m_zmax_AHN3
zsd_AHN3
Buffer5m_zq70_AHN3
Buffer5m_zq75_AHN3
Buffer10m_p5th_AHN4
Buffer10m_zq95_AHN4
fraqg_NGBM
ipcumzq30_AHN3

Buffer10m_pzabovezmean_AHN3

Buffer5m_zq5_AHN3
Buffer10m_zql5 AHN4
Buffer10m_zpcum6_AHN4
zq15 AHN3
Buffer10m_zq95_AHN3
shape_ECD
Buffer10m_zq90_AHN3
Buffer10m_zmax AHN4
Buffer5m_zq90_AHN4
Buffer10m_zq50_AHN3
Buffer10m_iskew_AHN4
iskew AHN3

ikurt AHN4

imax AHN4
Buffer5m_zpcum8 AHN4
Buffer5m_zsd_AHN3
shape_IER

zq95_AHN4
Buffer10m_p2th_AHN3
zsd_ AHN4
Buffer5m_p5th_AHN4
Buffer10m_zpcum8 AHN3
shape_AHN4 _anisotropy
Buffer5m_area_ AHN4
shape_AHN3_horizontality
Buffer10m_itot AHN4
Buffer10m_zpcum7_AHN4
p3th_AHN3
shape_AHN3_eigen_smallest
Buffer10m_zpcum4 AHN4
zq65_AHN3
Buffer5m_ipcumzql0_AHN3
Buffer5m_itot AHN4
Buffer10m_zq85_AHN3
Buffer10m_zq85_AHN4
Buffer10m_zq75_AHN3
itot AHN3
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0.08721756
0.08677786
0.08529279
0.08450426
0.08417154
0.08231293
0.08099194
0.08093124
0.08085398
0.08051986
0.08001246
0.07875656
0.07823897
0.07789409
0.07773953
0.07755622
0.07701139
0.07609408
0.07557834
0.07550676
0.07525666
0.07455344
0.07305927
0.07268213
0.07234058
0.07165046
0.07134073
0.07129287
0.07100317
0.06912369
0.06832716
0.06743773
0.06707778
0.06690748
0.06582222
0.06555042
0.06533824
0.06531875
0.06528374
0.06483358
0.06407013
0.06396419
0.06359307
0.0635917

0.06351485
0.06323898
0.06320998
0.06279192
0.06258246
0.06198711



Buffer10m_zpcum5_AHN3
Buffer10m_p4th_AHN3
zq5_ AHN3

plth_ AHN3

zq70_AHN3
Buffer10m_zq5_AHN3
zmean_AHN4
shape_AHN3_curvature
zkurt AHN3
Buffer10m_imean_AHN3
Buffer10m_ipcumzq30_AHN3
zq65_AHN4
Buffer10m_iskew_ AHN3
Buffer5m_zq40_AHN4
Buffer5m_ikurt AHN4
isd_ AHN4
Buffer10m_ipground_AHN3
zpcum6_AHN3
Buffer10m_p5th_AHN3
iskew AHN4

zq80_AHN3

zq50 AHN4
Buffer5m_zpcum6_AHN3
n_AHN4

pground_AHN3
Buffer5m_zq10_AHN4
Buffer5m_itot AHN3
Buffer10m_zq30_AHN3
shape_ESV

shape_AHN4 _sphericity
shape_perimeter
imean_AHN4
Buffer5m_zpcumZ2_AHN3
Buffer10m_area_ AHN4
shape_FD
Bufferbm_zq20_AHN4
zq90_AHN3
Buffer5m_zq90_AHN3
shape_solidity

shape_SI
Buffer10m_ikurt AHN3
shape_AHN3_linearity
shape_AHN3_anisotropy
zpcum8_AHN4
p4th_AHN3
Buffer5m_zskew_AHN3
zq15_AHN4

shape_AFF
zpcum6_AHN4
zpcum3_AHN3
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0.06188015
0.06143377
0.0610873

0.06089708
0.06020284
0.05968118
0.05956752
0.05897133
0.05857733
0.05843788
0.05823824
0.05797143
0.05680996
0.0567919

0.05645103
0.05630635
0.05580988
0.05554944
0.0548435

0.05469915
0.05404737
0.05392338
0.05378279
0.05280556
0.0524514

0.0519974

0.05179204
0.05076709
0.0505477

0.05011666
0.04984747
0.04980348
0.04919888
0.04842358
0.04817487
0.04762069
0.04723725
0.04696785
0.04555145
0.04554762
0.04534478
0.04528581
0.04525585
0.04515368
0.04513548
0.04500611
0.04480938
0.04471661
0.04464649
0.04464169



zpcum7_AHN3
shape_AHN4 _eigen_smallest
Buffer10m_zpcum6_AHN3
Buffer10m_zq90_AHN4
Buffer10m_zql5_AHN3
Buffer5m_zq35_AHN3
zpcum9_AHN4
Buffer10m_zpcum8 AHN4
zkurt AHN4

zq95_AHN3

zq75_AHN3

min_CHMdiv
shape_AHN3_eigen_medium
Buffer5m_zpcum7_AHN4
Buffer5m_zpcum6_AHN4
max_CHM3

zq5_ AHN4
Buffer10m_zq60_AHN3
zq10_AHN4
Buffer5m_area_ AHN3
Buffer10m_zq65_AHN3
zpcum5_AHN4
pzabovezmean_AHN4
zpcum9_AHN3
Buffer5m_zq95_AHN3
Buffer5m_zmean_AHN3
zq25_AHN4
Buffer5m_zq65_AHN4
zq50_AHN3

p4th_AHN4

min_CHM4
Buffer5m_isd_AHN3
Buffer5m_zskew_AHN4
shape_circularity
sd_CHM4

zq70_AHN4
Buffer5m_zq5_AHN4
shape_AHN4 _curvature
sd_CHMdiv
Buffer5m_zq85_AHN3
zq40_AHN3
Buffer5m_zq60_AHN3
shape_area
range_CHMdiv
zq55_AHN4
Buffer5m_zq80_AHN4
ipcumzq30_AHN4
Buffer10m_ikurt_ AHN4
area_ AHN4
Buffer10m_zmean_AHN3
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0.04431875
0.04428437
0.04423312
0.04399841
0.04358795
0.04350739
0.04344636
0.0433536

0.0429364

0.04237167
0.04197143
0.04193578
0.04189507
0.04170726
0.04166855
0.04156364
0.04138517
0.04093333
0.0409069

0.04061094
0.04055975
0.04036667
0.04033862
0.04032285
0.04012248
0.0399342

0.03991886
0.03954762
0.03936173
0.03924615
0.03879798
0.03869484
0.0386594

0.03850014
0.03829403
0.03823266
0.03801515
0.03800168
0.03780847
0.03768333
0.0376601

0.03761866
0.03747603
0.03739169
0.03716667
0.0370697

0.03705117
0.03679258
0.03677427
0.03673333



zq75_AHN4
Buffer5m_iskew_AHN3
Buffer5m_zq55_AHN4
zq45_AHN3

n_AHN3

range_CHM3
Buffer5m_zq75_AHN4
Buffer10m_zpcum4_AHN3
zq35_AHN3
Buffer5m_zmax_AHN4
zq30_AHN3
Buffer5m_ipcumzq30_AHN3
imax AHN3
Buffer10m_zq10_AHN3
Buffer10m_zq35_AHN3
Buffer10m_zq70_AHN4
zpcumZ_AHN3
Buffer10m_area_AHN3
shape_AHN3_sphericity
zpcum7_AHN4
Buffer10m_zq55_AHN3
Buffer5m_ipground_AHN4
shape_GSCI
Bufferbm_n_AHN4
Buffer5m_zpcum7_AHN3
mean_CHM4
Buffer5m_zq85_AHN4
Buffer10m_zq45_ AHN3
Buffer5m_zql5_AHN4
frag_ NGM

max_CHMdiv

zskew AHN3
Buffer5m_zsd_AHN4
ipcumzql10_AHN3
Buffer10m_zq80_AHN4
Buffer10m_imean_AHN4
Buffer5m_zpcum4 AHN3
Buffer10m_zskew_ AHN3
zq60_AHN3
zpcum1_AHN4
zpcum4_AHN3
Buffer10m_pground AHN4
zq35_AHN4
ipground_AHN4
Buffer5m_zq65_AHN3
Buffer5m_zpcum5_AHN3
shape_AHN4 eigen_largest
Buffer5m_pzaboveZ_ AHN3
zq20_AHN4
Buffer10m_zq40_AHN3
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0.03658095
0.03630051
0.03629841
0.03629741
0.03613746
0.03582963
0.03578626
0.03512632
0.03511111
0.03503088
0.03500566
0.03485519
0.03424267
0.03422787
0.03412381
0.03405
0.03403493
0.03402472
0.03355162
0.0333539
0.03303333
0.03300317
0.03271429
0.03268494
0.03217663
0.03199664
0.03170909
0.03156667
0.03128889
0.03123142
0.03119936
0.03095559
0.03073333
0.03069402
0.03068571
0.0306381
0.03051429
0.03047879
0.03040719
0.03034762
0.03004574
0.03002417
0.03
0.02983827
0.029825
0.02977535
0.02974762
0.0296804
0.02934722
0.02836365



Buffer5m_zq30_AHN4
zpcum3_AHN4
Buffer5m_zq95_AHN4
zq30_AHN4

zq25_AHN3
Bufferbm_p1th_ AHN4
Buffer10m_zpcumZ2_AHN4
shape_roundness
zpcumZ_AHN4

gini_ CHMdiv
pground_AHN4
Buffer10m_zq80_AHN3
ikurt AHN3

area_AHN3
Buffer10m_zsd_AHN4
Buffer10m_zq30_AHN4
buffer5m_overlap_relative
zpcum1_AHN3
zq10_AHN3

zq80_AHN4
Bufferbm_zq40_AHN3
zq20_AHN3
Buffer10m_ipground_AHN4
Buffer10m_zq60_AHN4
Buffer5m_zkurt_ AHN4
p5th_AHN3
buffer10m_overlap_relative
zq85_AHN3

zq55_AHN3
Buffer5m_zpcum1_AHN4
Buffer5m_pzabovezmean_AHN3
Buffer5m_zq45_AHN3
Buffer5m_zq70_AHN4
Buffer5m_iskew_AHN4
Buffer5m_pground_AHN3
Buffer10m_zq25_AHN4
Buffer5m_zmean_AHN4
Buffer5m_zq50_AHN4
zmean_AHN3
ipcumzq50_AHN4
Buffer5m_p2th_AHN4
Buffer5m_zq25_AHN3
p5th_AHN4
ipcumzq70_AHN4
zq85_AHN4
Buffer10m_zq35_AHN4
Buffer10m_zq20_AHN3
Buffer5m_zq50_AHN3
Buffer10m_pzaboveZ2 AHN4
mean_CHM3
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0.02835382
0.02834685
0.02782222
0.02663333
0.02656531
0.02632418
0.02622095
0.02588571
0.02545364
0.02514514
0.02486667
0.02471515
0.02448889
0.02441468
0.02422381
0.02403195
0.02384329
0.02376528
0.02361686
0.0235812
0.02352381
0.02324762
0.02309229
0.02273333
0.02247888
0.02195204
0.02175556
0.02162487
0.02128976
0.02119464
0.02103985
0.02060784
0.02049595
0.02028253
0.02026032
0.02022222
0.01965359
0.01915238
0.01889524
0.01866667
0.01838702
0.01795122
0.0178
0.0177619
0.01763361
0.01763333
0.01739394
0.01725439
0.0172193
0.0172



Buffer5m_zpcum3_AHN3
shape_convexity
Buffer5m_zq55_AHN3
Buffer5m_zq60_AHN4
zq40_AHN4
Buffer5m_zq10_AHN3
Buffer10m_zq40_AHN4
Buffer10m_zq65_AHN4
Buffer5m_zq35_AHN4
zq45_AHN4
Buffer5m_p4th_AHN3
pzaboveZ AHN4
BufferSm_zpcum4_AHN4
Buffer5m_pground_AHN4
Buffer5m_p5th_AHN3
Buffer10m_zq20_AHN4
Buffer10m_zpcum5_AHN4
zmax AHN3
shape_AHN4_horizontality
Buffer5m_zq20_AHN3
Buffer10m_zq70_AHN3
Buffer5m_zq25_AHN4
Bufferb5m_ipground_AHN3
Buffer5m_pzaboveZ_AHN4
itot AHN4
shape_AHN3_eigen_largest
zq90_AHN4
zpcum8_AHN3

max_CHM4
Buffer10m_pzaboveZ_ AHN3
zpcum4_AHN4
mean_CHMdiv
Buffer5m_zql5_AHN3
range_ CHM4
shape_AHN3_planarity
zpcum5_AHN3

min_CHM3
Buffer10m_zq75_AHN4
frag_ NGSM

fraq_ RGCM
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0.01702165
0.01695905
0.01672018
0.0162403
0.01593651
0.01585311
0.01573333
0.01537839
0.01533333
0.015
0.01466667
0.01466667
0.0146087
0.01436667
0.01353187
0.01322564
0.01312281
0.01286667
0.0123355
0.01233333
0.01222222
0.01186667
0.01116667
0.0102619
0.01013333
0.00968301
0.0087619
0.00866667
0.00866667
0.00833333
0.008
0.00709524
0.00666667
0.00589189
0.00566667
0.00266667
0.00266667
0

0

0



Gini coefficient
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D4: management type model with only the most important variables included

variable importance
ForestPlot_gini CHM4 134.17408
ForestPlot_fraq_NoG 114.41287
ForestPlot_fraqg_ NGLM 104.11153
ForestPlot GD 61.21909

Canopy gap forest plot Gini coefficient CHM4 Canopy gap forest plot fraction NoG
sz(rusml-wal\is(z) =750.48, p = 1.08e-163, ;:\Srdma\ =0.30, Clgse, [0.29. 1.00], ngps = 2,473 X,ztmskal_Wams(Z) =720.43, p = 3.64e-157, ’E\:mma‘ =0.29, Clgs, [0.28, 1.00], ngps = 2,473
Psonferoni-ag) = 2.70e-59 PBonferroni-adj = 1.198-59
Ponferroni-ag, = 5.08e-117 Peganferroni-aq. = 7-56e-110
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X:mskal-w.alhs(z) =624.39, p = 2.60e-136, ?‘E,dinm = 0.25, Clgse, [0.24, 1.00], nops = 2,473 Pgonferroni-ag;. = 8.19e-57
0.25- Peonferroni-agj, = 1.53e-57 PBonferoni-ad, = 1.89e-95
PEonterroni-ag;, = 5.86e-80
0.20-
0.004-
o
o
%
0.15- g %‘
=l
c £ 3
g o |&
B S o L
£ o finegian = 2.226-03
=] 2 -
010 g oo
2
(=)
2
=
g
a
0.05-
it
A e - 474004 .
=
TS,
_4 L y 0.000-
0.00- managed pseudo_unmanaged unmanaged
(n=2,138) (n=237) (n=98)
mam;\ged pseudo. u;\managed unmaﬁaged management class
(n=2,138) (n=237) (n=98)

management class

JuedyuBIS 1UMOYS SIBE ‘UUNQ 1S8] BSIMIEY

jJuesyuBIS (UMOUS Sieg ‘uung 150) ssimIed



D5: management type model without forest plot variables included
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variable importance
Buffer10m_ipcumzq90_AHN4 4.92773978
Buffer10m_ipcumzql10_AHN4 4.2689557

Buffer5m_ipground_AHN4 4.04184966
Buffer10m_ipcumzq50_AHN4 3.8021842

Buffer5m_ipcumzq90_AHN4 3.46991955
Buffer10m_ipground_AHN3 3.46466745
Buffer5m_ipcumzq70_AHN4 3.41793246
Buffer10m_iskew_AHN4 3.41207591
Buffer10m_zq25_AHN3 3.33464116
Buffer5m_ipcumzq50_AHN4 3.28199769
Buffer5m_zq20_AHN3 3.21765873
Buffer10m_ipcumzq30_AHN4 3.13957376
ipground_AHN3 3.10499946
Buffer10m_ipcumzq50_AHN3 3.09252474
Buffer5m_ipcumzq50_AHN3 2.95358877
Buffer10m_ipcumzq90_AHN3 2.95042646
Buffer10m_zq35_AHN4 2.90819993
Bufferb5m_ipcumzq30_AHN4 2.83703158
Buffer10m_ipcumzq70_AHN3 2.79484849
Buffer5m_ipcumzq90_AHN3 2.78388214
Buffer10m_ipcumzq70_AHN4 2.74601264
Buffer10m_zpcum7_AHN3 2.74372165
Buffer10m_zq20_AHN3 2.67245384
ipcumzq50_AHN3 2.6502374

Buffer10m_zpcum8_AHN4 2.63292524
Buffer5m_p3th_AHN3 2.59392825
Buffer10m_zq40_AHN4 2.58299837
Buffer5m_ipcumzq10_AHN4 2.53477598
Buffer10m_zpcum8 AHN3 2.44892117
Buffer5m_zpcum9_AHN3 2.40654057
ipcumzq70_AHN3 2.36185851
Buffer10m_pzaboveZ2_ AHN4 2.33913094
Buffer10m_zkurt AHN4 2.33182307
Buffer10m_zpcumé6_AHN3 2.32964101
zq20_AHN3 2.31748692
Buffer5m_zq35_AHN4 2.28388546
pground_AHN3 2.25275549
Buffer10m_ipcumzq30_AHN3 2.23265068
Buffer10m_zq30_AHN4 2.23249184
Buffer10m_zsd_AHN4 2.18022317
Buffer10m_p1th_AHN3 2.17918184
Buffer10m_zpcum9 AHN3 2.14104088
Buffer5m_ipground_AHN3 2.04496897
Buffer5m_zql5_AHN3 2.03268885
Buffer10m_p4th_AHN3 1.9982754

Buffer5m_zpcum7_AHN3 1.99718081
Buffer5m_pground_AHN4 1.97272506
Buffer5m_zq45_AHN4 1.97105806




Buffer5m_ipcumzq30_AHN3
Buffer5m_pzabove2_ AHN4
Buffer10m_zq75_AHN3
Buffer5m_isd_AHN3
Buffer10m_zq90_AHN3
Buffer5m_ipcumzql0_AHN3
Buffer5m_zpcum9_AHN4
Buffer5m_zq30_AHN4
Buffer10m_zpcum7_AHN4
Buffer10m_zq45_AHN4
Buffer10m_zq80_AHN3
zq15_AHN3
BufferSm_zpcum1_AHN4
Buffer10m_zq60_AHN4
Buffer5m_zq40_AHN4
Buffer5m_pground_AHN3
Buffer5m_ipcumzq70_AHN3
Buffer10m_zq90_AHN4
Buffer10m_zql5 AHN3
Buffer5m_zq70_AHN3
Buffer5m_zpcum8_AHN3
Buffer5m_zq25_AHN4
Buffer10m_zq75_AHN4
Buffer10m_iskew AHN3
buffer10m_overlap_relative
Buffer10m_ipground AHN4
Buffer5m_zq85_AHN3
Buffer10m_zpcum1_AHN4
Buffer10m_zq65_AHN4
Buffer10m_zq55_AHN3
Buffer10m_zq70_AHN4
Buffer5m_zq65_AHN3
Buffer10m_zmean_AHN3
Buffer10m_zsd_AHN3
ipcumzql10_AHN3
Buffer10m_p3th_AHN3
Buffer10m_zpcum9_AHN4
Buffer10m_zql5_AHN4
Buffer10m_isd_AHN3
Buffer10m_ipcumzql10_AHN3
Buffer5m_zsd_ AHN4
Buffer5m_zsd_AHN3
ipcumzq30_AHN3
Buffer10m_zq20_AHN4
Buffer5m_pzaboveZ2_AHN3
Buffer10m_zq60_AHN3
Buffer10m_zq70_AHN3
Buffer10m_p4th_AHN4
Buffer10m_zpcum3_AHN4
Buffer5m_zq20_AHN4
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1.96402758
1.9424562
1.92360551
1.90021777
1.90015717
1.8999643
1.89662476
1.86772301
1.85839674
1.82984061
1.82143603
1.81927304
1.80305404
1.75767601
1.75102732
1.74956284
1.74667649
1.74038904
1.73905602
1.73165382
1.7281357
1.7213616
1.69317881
1.68783167
1.68441297
1.68411174
1.67660227
1.6711432
1.66173033
1.64901604
1.64499421
1.64044566
1.62398964
1.62281567
1.62121429
1.61694614
1.61487555
1.6057637
1.60137236
1.59115032
1.59081246
1.58087604
1.57291268
1.55549879
1.53190307
1.51864749
1.5160187
1.51456601
1.51407
1.50347572



isd AHN3
Buffer10m_pground_AHN4
Buffer5m_zpcum6_AHN3
Buffer10m_zq85_AHN3
Buffer10m_ikurt_ AHN4
zq30_AHN3
Buffer10m_zkurt AHN3
Buffer5m_zmean_AHN3
Buffer10m_zq50_AHN3
zq25_AHN3
Buffer10m_pground_AHN3
zmax AHN4
Buffer10m_p2th_AHN4
Buffer5m_zq30_AHN3
Buffer5m_p4th_AHN4
Buffer10m_zq85_AHN4
Buffer10m_zql10_AHN3
Buffer10m_zq80_AHN4
Buffer5m_zq75_AHN4
Buffer10m_p3th_AHN4
Bufferbm_zq50_AHN4
Buffer5m_isd_AHN4
Bufferbm_zq25_AHN3
Buffer5m_p1th_ AHN3
Buffer10m_p1th_AHN4
Buffer5m_zkurt AHN4
zq10_AHN4
Buffer10m_zskew_AHN4
Buffer10m_zq25_ AHN4
Buffer5m_zq90_AHN3
Buffer10m_zq65_AHN3
Buffer5m_zq55_AHN3
Buffer10m_zql10_AHN4
pzaboveZ AHN3
Buffer10m_zq95_AHN3
Buffer10m_zq30_AHN3
zq40_AHN3
Buffer10m_zpcum6_AHN4
Buffer10m_zpcum4 AHN4
Buffer5m_zmax_AHN4
Buffer5m_zskew_AHN4
Buffer5m_zq90_AHN4
ipcumzq90_AHN4
Buffer10m_zq45_AHN3
Buffer10m_imean_AHN4
zsd AHN3
Buffer10m_pzabovezmean_AHN4
max_CHM4

zq35_AHN3
Buffer10m_zq95_AHN4
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1.49477553
1.48115184
1.4749647

1.46919328
1.46776722
1.43782107
1.43147146
1.42868118
1.42802225
1.42608451
1.42499436
1.41339358
1.41147813
1.40845503
1.39826673
1.38956086
1.38747012
1.38640647
1.37615256
1.37565323
1.36651486
1.36580033
1.3612136

1.35596757
1.32897114
1.32407784
1.31373862
1.30555334
1.30394864
1.30296208
1.29108748
1.29038885
1.28844938
1.28642897
1.28369773
1.27461367
1.27157699
1.26366985
1.25883059
1.25761463
1.25058778
1.24462601
1.21603934
1.21541442
1.20890423
1.20364069
1.19912414
1.19555443
1.19437437
1.19308734



Buffer10m_ikurt_ AHN3
dist_nn
Buffer10m_pzaboveZ_AHN3
Buffer5m_zq60_AHN3
Buffer5m_zq95_AHN4
Buffer5m_zpcum8_AHN4
zq50_AHN3

zq65_AHN3
Buffer10m_zpcum5_AHN3
ipground_AHN4
Buffer5m_p3th_AHN4
Buffer10m_zpcum5_AHN4
Buffer10m_zq40_AHN3
Buffer5m_p1th_ AHN4
Buffer5m_zq75_AHN3
Buffer10m_zq5_AHN4
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Appendix E: Statistical comparisons to determine influence of management type for
selection of variables on canopy gap level (E1) and on forest plot level (E2).
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area (m2)

distance (m)

overlap (%)

Appendix F: Statistical comparisons to determine influence of dominant tree species
for selection of variables on canopy gap level (F1) and on forest plot level (F2).
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height (m)
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Appendix G: Statistical comparisons to determine influence of management type for
beech for selection of variables on canopy gap level (G1) and on forest plot level (G2).
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P manal®) = 3.44,p = 018,82 = 5.800-03, Clogs, [8.91€-04, 1,00, e, = 595

JueoyuBls UMOUS SIBg “UuNg 58] asImARd

2000~
750~
1500 - -
H 4
£ £
£ £
2 g
o _ e
& H E g
£ ® = s00- H
g 1000~ H R 2
= g E b
H 3 g
. s
500~ 280~
o- = e - 2150
' " . 0=
managed pseudo_unmanaged unmanaged | ! 1
(n =284) (n = 230) (n=81) managed pseudo_unmanaged unmanaged
management class (n=284) {n =230) (h=81)
management class
Beech py gap di: to ighbour Beech canopy gap buffer 5m overlap
7 wanel2) = 71,10, p = 3.63e-16,8% | = 0,12, Closy, [0.08, 1.00], 7,5, = 595 Frusarwansl2) = 52.93, p = 3.22-12,82 | | 20,09, Class [0.05, 1.00], e, = 595
100- Ponterroni-ad; = 5.44e-12 Paaferrani-ad;, = 0.05.
Proveroni-oq = 1.126-10 Postensei-oq, = 9.26e-10
Pionterroni-ag, = 1.55e-07
75~ 02-
E] x
: :
8 8
E E
a &
@ 2 = 3
2 50 g g 2
& @ = @
k] 2 ] 2
3 H ° H
H H
[ 01- 8 [
& &
E r H
y £ g £
ES i 3 E
25- i
§
fineen = 10.00 4
managed pseudo_unmanaged unmanaged managed pseudo_unmanaged unmanaged
(n = 284) =230 (n=81) (n=284) (n = 230) {n=81)
management class management class
Beech canopy gap buffer 10m overlap Beech canopy gap mean height CHM3
Kerusawans(2) = 91.52, p = 1.34€-20, 82 . = 0.15, Clgsy, [0.11, 1.00], nops = 595 Roruseorasl2) = 102.37, p = 5.900-23, 82 = 0.17, Clygy, [0.13, 1.00], ngpq = 595
Paorforron-ag) = 2.27e-12 o
Peonterroni-aq; = 3.98e-16 Peonterroni-ad, = 3.21€-16
03- —_— " )
Ponterroni-ad, = 1.528-15
30~
|
&
02- g of,
% 2 _ . { firadan = 23.35
g E e
a @ -
3 H 5 2-
% @
3 g 2 L
3 Tneaan = 17.72
3 o
d El
i ol 5
¥ S g
10-
0.0-
managed pseudo_unmanaged unmanaged managed pseudo_unmanaged unmanaged
(n = 284) (n=230) (n=81) (n=284) n=230) (n=81)

management class management class



height (m)

fraction

percentage (%)

Beech canopy gap mean height CHM4
Lerusarwaiss(2) = 7.99.p = 0.02, 82 . = 0.01, Clags; [4.09€-03, 1.00], nops = 595

Poccteroni-ag = 0.01

20-
10- 4
@ —{{ fresan - 8.84
<
L
~
L
0-
man'agee pseuaa__uﬁmanagea unma;mged
(n=284) (n=230) (n=81)
management class
Beech canopy gap fraction NGBM
Lrusrawans(2) = 9.18,p =0.01,82 = 0.02, Clasy, [5.24€-03, 1.00], nops = 595
L3 Peoterrons-agj. = 0.02
Petercni-ag, = 9.47e-03
09-
06~
03~ -
N
0.0- ———— —————
managed pseudo_unmanaged unmanaged
(n=284) (n=230) (n=81)
management class
Beech canopy gap doughnut buffer 10m percentage of intensity returned
below the 90th height percentile AHN4
Fikrusarnana(2) = 9.05. p = 0.01, & 5, = 0.02, Close, [5.69-03, 1.00], nops = 595
0o.0- Pocnteroni-as, = 9.218-03
975
95.0
925
90.0-
875
man:aged pseudo_u i naged unma‘naged
(n =284) = 230 (n=81)

management class

JuBoYIUBIS “UMOUS SIeG ‘UUNQ 159 BSUIEY

JuBOYIUBIS “UMOUS S1eQ ‘UUNG 1189 SUIEY

ueoyubys (umous sieg ‘uung [158) esMIE]

102

fraction

percentage (%)

height difference (m)

Beech canopy gap mean height difference
L ussarwans(2) = 47.45,p = 4.96e-11,82 . = 0.08, Closy, [0.05, 1.00], noys = 595

Prickeiriioq = 1.726-04
—_—

Paonieroni-ag, = 6.45¢-11

Porfercn-, = 7-93e-04

10~
-20- P
mznlaged pseunoiu;\managed unma;\aged
(n=284) (n=230) (n=81)
management class
Beech canopy gap fraction NGLM
Leruskarwans(2) = 5.61,p = 0.06, 82 = 9.45€-03, Closy, [9.33e-04, 1.00], nops = 595
1.00- [~
o
” >
.
075~
o
0.50-
Timedian = 044
0.25-
0.00-
managed pseudo_unmanaged unmanaged
(n=284) (n=230) (n=81)
management class
Beech canopy gap doughnut buffer 5m percentage of intensity returned
by points classified as ‘ground’ AHN4
L ussarwanis(2) = 57.18, p = 3.82e-13, 82 . = 0.10, Clgss, [0.06, 1.00), ngps = 595
Psortaron-ag; = 9.06-06
100- Poonterroni-aq. = 3.326-12
80~
L
- @—{ e - 717
60~
40~
20~ i 1
pseudo_unmanaged unmanaged
(n=230) (n=81)

management class

JuBOYIUBIS “UMOyS S1eq ‘UUNG 1159 SUIEY JuBOYIUBIS “UMOYS S1eg ‘NG 1159 BSUIEY

JueouBIS :uNouS SIeg ‘uung 591 SUNIEd



skewness

Beech canopy gap doughnut buffer 10m skewness of intensity

distribution AHN4
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Beech canopy gap doughnut buffer 10m 25th percentile of height
distribution AHN3
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height (m)
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Beech forest plot mean CHM3
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height (m)
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Appendix H: Statistical comparisons to determine influence of forest plot age for
selection of variables on canopy gap level (H1) and on forest plot level (H2).
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Appendix I: Number of canopy gaps and forest plots per tree species per management
type (11 & 12), per tree species and age class (13 & 14), and per management type and
age class (15 & 16)

I1: Canopy gaps per tree species per management type

Tree species Managed Pseudo-unmanaged Unmanaged Total
Beech 284 230 81 595
Oak 34 7 0 41
Scotch pine 407 0 5 412
Japanese larch | 278 0 2 280
Douglas fir 774 0 2 776
Norway spruce | 87 0 0 87
12: Forest plots per tree species per management type
Tree species Managed Pseudo-unmanaged Unmanaged Total
Beech 36 18 5 59
Oak 7 1 0 8
Scotch pine 18 0 1 19
Japanese larch | 34 0 1 35
Douglas fir 51 0 1 52
Norway spruce | 7 0 0 7
13: Canopy gaps per tree species per age class
Tree species 0-40 40-80 80-120 120-160 160-200 Total
) ) 0) 0) )
Beech 49 70 130 36 310 595
Oak 0 16 18 0 7 41
Scotch pine 4 352 49 7 0 412
Japanese larch 61 184 35 0 0 280
Douglas fir 31 637 108 0 0 776
Norway spruce 18 69 0 0 0 87
Total 163 1328 340 43 317 2191
14: Forest plots per tree species per age class
Tree species 0-40 40-80 80-120  120-160 160-200 Total
0) ) ) 0) 0)
Beech 8 8 18 3 22 59
Oak 0 5 2 0 1 8
Scotch pine 1 12 2 4 0 19
Japanese larch 6 20 9 0 0 35
Douglas fir 2 41 9 0 0 52
Norway spruce 1 6 0 0 0 7
Total 18 92 40 7 23 180
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15: Canopy gaps per management type per age class

Management type 0-40 40-80 80-120 120-160 160-200 Total
) ) ) ) )

Managed | 229 1515 347 47 0 2138

Pseudo-unmanaged | O 0 0 0 237 237

Unmanaged 0 10 8 0 80 98

Total | 229 1525 355 47 317 2473

16: Forest plots per management type per age class

Management type 0-40 40-80 80-120 120-160 160-200 Total
) 0) 0) ) )

Managed 28 99 38 9 0 174

Pseudo-unmanaged \ 0 0 0 0 19 19

Unmanaged \ 0 2 3 0 4 9

Total | 28 101 41 9 23 202
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Appendix J: Statistical comparisons of the fifteen most important new canopy gap
variables in the “number of trees” classification.
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