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Abstract 

In the Netherlands, a country-wide, multi-temporal, and publicly available Areal Laser 

Scanning (ALS) dataset exists, the Actueel Hoogtebestand Nederland (AHN). ALS has been 

shown to provide highly suitable data to investigate canopy gap dynamics. However, the 

AHN has currently not been used to study canopy gap dynamics in the Netherlands. Accurate 

assessment of canopy gap dynamics is shown to provide useful insights in a number of 

ecological processes in forests. Understandings in canopy gap dynamics on large 

spatiotemporal scales can considerably be improved with the use of ALS data. In this study, a 

comparison is made between canopy gap dynamics derived from two CHM-based canopy gap 

detection methods. Furthermore, the added value of combining these methods is explored. It 

was found that the combination of methods was highly accurate in detecting canopy gaps 

from AHN data. It was further revealed that the combination of canopy gap detection methods 

provided information about the presence of a tree layer in the detected canopy gap, 

information that could not be derived from the methods separately. This study further aimed 

to determine the influence of forest management on canopy gap dynamics. In the study area, 

the Speulderbos, forest plots were situated with different conditions in terms of management 

type, dominant tree species and age. The influence of forest management was disentangled 

from the influence of tree species and age, and it was thereby found that forest management 

leads to an increased canopy gap density, while it does not lead to an increased canopy gap 

area. This investigation revealed that canopy gaps detected from the AHN can be used to 

adequately study the influence of forest conditions on canopy gap dynamics. 
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1. Introduction 

Forest ecosystems are globally under influence of human-induced stressors. Climate change, 

land use change, the biodiversity crisis and the combination of these processes cause large-scale 

alterations in forest systems (Hasan et al., 2019). Climate change causes forest systems to adapt 

in a complex and non-linear fashion (Bonan, 2008). Land use change has led to increased forest 

fragmentation, to altered biochemical and biophysical cycles, and to reduced forest ecosystem-

service provisioning (da Cruz et al., 2021; Haddad et al., 2015). Human activities in forests, 

such as hunting and logging, are leading to changes in the forest structure and species 

composition (Ripple et al., 2015; Thiollay, 1992). High precision data can be used to monitor 

how forests develop under these different stressors, and therefore it can be used to support forest 

management, and to guide forest ecosystem system conservation (Leiterer et al., 2015; 

Zielewska-Buttner et al., 2016).  

1.1.  Background canopy gaps 

High precision data can e.g. be used to assess the development of canopy gaps in forests over 

time, which can lead to an improved insight in the ecological state of forests (Blackburn et al., 

2014). Canopy gaps can be defined as openings within a continuous and relatively mature 

canopy, in which trees are absent or markedly smaller than their immediate neighbours (St-

Onge et al., 2014). Canopy gaps influence the ecological characteristics and structure of a forest 

(Spies, 1998). Insights in forest processes, such as tree regeneration and disturbance regimes, 

can be increased by investigating canopy gaps (Blackburn et al., 2014). Canopy gaps locally 

adapt the soil and air temperature, soil moisture content, soil nutrient concentration and soil 

light availability, and are thus an important factor to explain tree species composition, species 

heterogeneity, and successional dynamics in forests (Lombard et al., 2019; Muscolo et al., 2014; 

Vepakomma et al., 2008). The degree of impact of a canopy gap on local conditions in a forest 

is dependent on the size, orientation, and shape of the canopy gap (Frolking et al., 2009).  

Canopy gap dynamics can be defined as the continuous process of canopy gap formation 

and closure over time (St-Onge et al., 2014). Canopy gaps can emerge, remain, expand, shrink, 

be displaced and disappear over the course of time (St-Onge et al., 2014). Canopy gap 

emergence is caused by the disappearance of a tree, either due to natural and or human factors 

(Mao et al., 2020). Natural factors include wind storms, fires, insect or pest outbreaks, or 

individual tree mortality (Blackburn et al., 2014). Wind storms, fires, and insect or pest 

outbreaks often result in relatively large canopy gaps, whereas individual tree mortality often 

results in relatively small gaps (Muscolo et al., 2014). Human activities that can lead to the 

emergence of canopy gaps are thinning, rejuvenation cutting, and girdling. Thinning, or 

improvement cutting, is the practice of decreasing the stem density in a forest plot by cutting 

trees, with the aim to stimulate the growth of the remaining trees in the plot (Subedi et al., 

2018). Thinning operations often lead to the formation of small canopy gaps with a high density 

and a regular pattern (Wilkinson et al., 2016). Rejuvenation cutting is the practice of wood 

harvest at the end of a forest management cycle. The area and shape of canopy gaps emerged 

due to rejuvenation cutting is dependent on the forest management system. In a clear cutting 

system, large continuous canopy gaps are formed (Rosenvald & Lohmus, 2008). In other 

management systems, in which live trees remain in the cutting area, such as shelter wood 

systems or selection systems, canopy gaps can either emerge as large interrupted patches, or as 

multiple smaller patches (Beaudet et al., 2004; Weis et al., 2006). Girdling is the removal of a 

strip of bark from a tree with the aim to prevent transportation of photosynthesis products to 

the roots of a tree (Li et al., 2003). After applying girdling, the tree stem is not removed from 

the forest, with the aim minimise the impact of this management activity on the forest ecosystem 
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(Fujii et al., 2021). Girdling leads to a gradual decay of the targeted tree, which eventually leads 

to the emergence of small canopy gaps.  

When a canopy gap emerges, the physical stress on the trees surrounding the gap increases. 

This increased level of stress at the edges can lead to canopy gap expansion (St-Onge et al., 

2014). Canopy gap closure can either be caused by lateral growth or by vertical growth. Lateral 

gap closure is the inward expansion of the crowns of the trees surrounding the canopy gap. 

Vertical gap closure is the growth of tree juveniles in the canopy gap (St-Onge et al., 2014). 

The combination of canopy gap closure and expansion can occasionally lead to canopy gap 

displacement (Vepakomma et al., 2012).  

1.2.  Canopy gap detection methods  

Studying canopy gap dynamics is a complex task. To start, the effort needed to map and 

delineate canopy gaps in field studies is high (Zielewska-Buttner et al., 2016). For this reason, 

field studies of canopy gaps are often carried out on low spatial and temporal scales (Bonnet et 

al., 2015). Field studies of canopy gaps require a high degree of expertise, and occasionally lead 

to subjective results (Leiterer et al., 2015; Mao et al., 2020). Furthermore, the methods used to 

delineate canopy gaps, and the thresholds used to determine what is considered to be a canopy 

gap, are inconsistent between different studies (Hunter et al., 2015).  

Passive remote sensing can be used as an alternative to field studies to detect canopy gaps. 

However, identifying canopy gaps by visually interpreting aerial images is considered to be a 

complicated task (Mao et al., 2020). The use of passive remote sensing techniques in canopy 

gap studies is hampered by their spatial resolution, which complicates the detection of small 

canopy gaps (Lombard et al., 2019). Moreover, the influence of shadows, illumination 

conditions and spectral inseparability obstructs the accuracy of passive remote sensing 

techniques in detecting canopy gaps (Vepakomma et al., 2008).  

LiDAR (Light Detection and Ranging) is an active remote sensing technique that can be 

used to derive three dimensional (3D) data about the forest structure (Leiterer et al., 2015). High 

resolution information of the vertical and horizontal structure of forests can be derived making 

use of LiDAR (Gaulton & Malthus, 2010). Therefore, LiDAR has the potential to spatially 

delineate canopy gaps with high precision (Vehmas et al., 2011). The main principle behind 

LiDAR is the transmittance of light pulses to determine the distance to an object (Akay et al., 

2009). With these pulses, the distance to an object is determined by taking the product of the 

speed of light and the time required for an emitted pulse to travel to an object (Lim et al., 2003). 

LiDAR can amongst others be acquired making use of Terrestrial Later Scanning (TLS) or 

Airborne Laser Scanning (ALS). TLS is more suitable to derive information about the sub 

canopy structure of a forest (Alonso-Rego et al., 2021), while ALS is more suitable to derive 

information about the canopy height (Brede et al., 2017). The advantage of ALS is that it can 

be used to determine the canopy height at a high spatial resolution (Koukoulas & Blackburn, 

2004). Therefore, ALS has opened the way to study canopy gaps at large spatial and temporal 

scales (Bonnet et al., 2015).  

1.3. Canopy gap detection thresholds 

Methods and thresholds to derive canopy gaps from ALS data is not standardized. 

Inconsistencies exists in the definition of canopy gaps, and in the thresholds used to delineate 

canopy gaps from ALS data (White et al., 2018). This inconsistency hampers the comparability 

between different canopy gap studies, as the use of different canopy gap definitions and 

thresholds can lead to significantly different results (Hunter et al., 2015; Koukoulas & 

Blackburn, 2004).  
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Runkle (1981) defined canopy gaps as the ground area under the canopy, extending to the 

bases of canopy trees surrounding the canopy opening. The advantage of this definition is that 

it includes areas directly and indirectly affected by canopy gaps, and therefore this definition is 

often used to study the ecological effects of canopy gaps (de Lima, 2005; Gaulton & Malthus, 

2010). However, using ALS, it is challenging to detect the stems of trees surrounding canopy 

gaps (Gaulton & Malthus, 2010). Therefore, the canopy gap definition of Brokaw (1982) is 

often used in ALS-based canopy gap detection studies. In this definition, canopy gaps are 

defined as holes in the forest, with irregularly shaped, vertical sides. The sides of the gap are 

situated at the innermost place reached by the crown of trees surrounding the gap (Brokaw, 

1982). This definition is considered to be objective and convenient, although it has received 

critique for its lack of realism in determining the effects of canopy gaps (de Lima, 2005). 

The shapes of canopy gaps are typically irregular, which complicates the canopy gap 

delineation process (Seidel et al., 2015). Canopy gaps continuously develop over time, and 

therefore subjective choices must be made to determine what still counts as a canopy gap, and 

what not (Senecal et al., 2018). To determine which gaps in the forest are considered to be 

canopy gaps and which not, most studies make use of predefined thresholds (White et al., 2018). 

Common thresholds used are a minimum and maximum for the canopy gap area, and an 

absolute or relative vegetation height maximum within the canopy gap (St-Onge et al., 2014). 

A minimum canopy gap area could for example be used to exclude gaps from the analysis that 

are unlikely to have emerged due to the loss of an entire tree, or to exclude natural spaces 

between trees (Gaulton & Malthus, 2010; St-Onge et al., 2014). The threshold for the minimum 

canopy gap area ranged from 2 to 50 m2 in earlier published literature (White et al., 2018). The 

threshold for the maximum canopy gap could be used to distinguish the disappearance of one 

or several trees from the disappearance of a large cohort of trees, because the ecological 

consequences of these two events differ (McCarthy, 2001). In literature, the threshold for the 

maximum canopy gap area ranged from 200 to 1000 m2, although it is also common to not use 

this threshold in the canopy gap delineation process (St-Onge et al., 2014). A threshold for the 

maximum vegetation height within canopy gaps is used to determine when a canopy gap is 

considered to be closed. Absolute and relative height thresholds have been used in literature for 

the maximum vegetation height (St-Onge et al., 2014). An absolute height threshold could for 

example be determined based on knowledge about the field conditions (Vepakomma et al., 

2008). Some authors preferred the use of a height threshold relative to the canopy height, as 

canopy gaps are defined as openings in the canopy that has a significantly lower canopy height 

compared to its surroundings (St-Onge et al., 2014). The absolute threshold for the maximum 

vegetation height in a canopy gap ranges in literature from 1 to 20 m. Studies that worked with 

a relative canopy gap vegetation height threshold used either a percentage of the maximum 

canopy height (Gaulton & Malthus, 2010), or using classes of absolute height thresholds 

depending on the height of the trees surrounding the gap (Zielewska-Buttner et al., 2016). 

Canopy gaps can either be derived directly from a pointcloud, or indirectly using a Canopy 

Height Model (CHM) (Gaulton & Malthus, 2010). As it is possible to derive high precision 

canopy height information from ALS data, CHM-based methods have been shown to be 

efficient and accurate methods to detect canopy gaps (Gaulton & Malthus, 2010; Leitold et al., 

2018; Vepakomma et al., 2012). There are two possible strategies to derive canopy gap 

dynamics from a time series of CHMs. Either the canopy gaps are selected in each CHM version 

separately, or the canopy gaps are directly selected from the difference between the CHM 

versions.  

The first strategy, described by Vepakomma et al. (2008), uses as threshold the maximum 

vegetation height in a canopy gap to select areas that are considered to be canopy gaps in each 

CHM version. By comparing the selected canopy gaps of each CHM version, it is possible to 

study canopy gap dynamics over time, as was described by Vepakomma et al. (2012). An R 
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package was developed by Silva et al. (2019) to derive canopy gap dynamics following this 

method, therefore in this study this method will be referred to as the Silva method.  

The second strategy is based on the difference in height between two CHM versions. A 

threshold for the minimum canopy height decrease in a canopy gap is used to select canopy gap 

areas in the difference CHM. This strategy was described by Leitold et al. (2018), and is 

therefore further referred to as the Leitold method. 

1.4.  Canopy gap detection in the Netherlands 

In the Netherlands, a country-wide ALS dataset exists that is openly available, and that is 

updated every few years. The name of this dataset is Actueel Hoogtebestand Nederland (AHN) 

which can be translated to Dutch Current Elevation Model. The Netherlands was the first 

country to be entirely covered by an ALS dataset (van der Sande et al., 2010). Originally, the 

AHN was primarily acquired to support water safety management (Swart, 2010). However, the 

AHN is shown to be of use in a variety of fields, such as mapping tidal dynamics (Pearson et 

al., 2022), quantifying urban heath islands (Steeneveld et al., 2011), and deriving forestry 

related metrics (Meijer et al., 2015; Nolet & Spliethof, 2020). To the best of our knowledge, 

the AHN has not been used to map canopy gap dynamics to this date, even though ALS datasets 

with comparable characteristics to the AHN have earlier been shown to be highly suitable to 

map canopy gap dynamics (e.g. Vehmas et al., 2011; Vepakomma et al., 2012). Currently, 

canopy gap emergence caused by natural factors is not systematically registered in the 

Netherlands. Wood removal practices that cause canopy gaps to emerge are registered in a 

decentralized way, and only on forest plot level. Currently, there is no country-wide dataset 

available with information of the location were canopy gaps exist, were new canopy gaps have 

formed, or were canopy gaps have disappeared in Dutch forests. This data could, amongst other 

reasons, be used to learn to what extent forest management systems succeeds to mimic natural 

canopy gap dynamics, by making comparisons between canopy gaps in managed and 

unmanaged forests (Senecal et al., 2018). 

1.5. Research aims 

This study had two aims. First, it was aimed to derive canopy gap dynamics from the AHN. 

Two CHM-based methods, the Silva and Leitold method, were combined to compare the 

canopy gap detection results of these methods, and to derive what additional insights there could 

be derived from the combination of these methods. It was hypothesized that different canopy 

gap delineation methods would result in different spatial patterns of identified gaps, and that 

this difference would provide information of the ecological conditions in the canopy gaps. 

 Second, it was aimed to derive the influence of forest management on canopy gap 

dynamics, by comparing the canopy gap dynamics in forest plots with different management 

types. It was hypothesized that in managed forest plots, the canopy gaps would be larger in 

area, higher in density, and more regularly shaped compared to canopy gaps in unmanaged 

forest plots (Muscolo et al., 2014; St-Onge et al., 2014). It was further hypothesized that in 

managed forest plots, no tree layer would remain after a canopy gap emerging event, while this 

would be the case in unmanaged plots, as managed plots often lack different tree layers in the 

forest structure (Johann, 2006). 
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2. Methods 

2.1. Study area 

To investigate the potential of the AHN to study canopy gap dynamics, a 304 ha study area was 

selected in the Speulderbos (52.25ºN, 5.67ºE) (Figure 1). The Speulderbos is subdivided in 

forest plots with different management types, dominant tree species and germination year. It 

was selected as study area, as access to data was provided for this study containing the dominant 

tree species, age, and management type per forest plot. This data provided the possibility to 

disentangle the influence of management, dominant tree species and forest plot age on canopy 

gap dynamics. The forest plots are labelled with codes that consist out of a number and a letter. 

The codes that start with 10 are part of the forest reserve of the Speulderbos. These forest plots 

are strictly unmanaged. Outside the strict unmanaged reserve, there are other old beech and oak 

plots found in the Speulderbos. These plots are labelled with germination year 1835, the first 

documentation year of the Speulderbos. In these forest plots, no wood removal practices as 

thinning or rejuvenation cutting takes place. However, girdling takes place in these forest plots, 

for example to stimulate tree species diversity (J. den Ouden, personal communication, 14 

September, 2022). Therefore, beech and oak forest plots in the study area that are situated 

outside the strict forest reserve with germination year 1835 are considered to be pseudo-

unmanaged in this study. In the remaining forest plots, thinning and rejuvenation cutting 

frequently takes place, and therefore these plots are considered to be managed in this study. 

There is a gradient in forest management intensity between the three management types in the 

Speulderbos, with managed plots as most intensely managed, pseudo-unmanaged in-between, 

and unmanaged as least intensely managed. 

The Speulderbos is part of a larger forested area; the Veluwe. It is situated in the humid 

temperate climatic zone, classified as Cfb in the Köppen-Geigner climatic classification (Beck 

et al., 2018). The average yearly temperature is 10.1 ºC, the average temperature in the coldest 

month is 2.9 ºC, the average temperature in the warmest month is 18.1 ºC, and the average 

yearly precipitation is 868.0 mm. These climatic characteristics were measured over the period 

1990-2020, and were derived from the Deelen weather station of the Royal Dutch 

Meteorological Institute (KNMI), which is the nearest weather station to the Speulderbos. The 

soil is described as a Typic Dystrochrepts on thick heterogenous sandy loam formed by iced-

pushed river sediments (Cisneros Vaca et al., 2018).  
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Figure 1 Location of study area in the Netherlands (1a), management type per forest plot with forest plot 

code (1b), dominant tree species per forest plot (1c),  and age class per forest plot (1d). 

1a 1b 

1c 1d 
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2.2.  Input data 

2.2.1. AHN 

Four versions of the AHN have been released since 1997. In 2023, the acquisition of the fifth 

version has started. In this study, two versions of the AHN, version 3 and 4, were included to 

derive insights about the development of canopy gaps over the time interval between these two 

AHN versions. For the Speulderbos, the date of acquisition was the 28th of January in 2018 for 

AHN3, and the 6th of April in 2020 for AHN4. The average point density was 28.7 points/m2 

for AHN3 and 60.3 points/m2 for AHN4. The AHN is publicly available data, which means that 

it can openly be used. The data has been made available in 5 x 6.25 km tiles. The AHN data 

used in this study was remixed by GeoTiles (www.geotiles.nl). The advantages of GeoTiles 

AHN data are that it can be downloaded in smaller subtiles, 1 x 1.25 km, and that it has a 25 m 

overlap with the neighbouring (sub)tiles. To fully cover the extent of the study area, AHN3 and 

AHN4 was downloaded from seven subtiles, 26HZ2_21, 26HZ2_22, 32FN2_01, 32FN2_02, 

32FN2_03, 32FN2_06, and 32FN2_07. 

2.2.2. State forestry data 

Three datasets provided by the Dutch independent governmental organisation Staatsbosbeheer 

(State Forestry) were used in this study: (1) an Excel sheet with a logbook with all management 

interventions in the Speulderbos since 2018, (2) a shapefile of the delineation and the code of 

forest plots in the Speulderbos, and (3) a shapefile with the delineation of dominant tree species 

and germination year per forest plot. The management intervention data was used as a first 

exploration of the validity of the location of identified new canopy gaps. The two shapefiles 

with forest plot data were used to make statistical comparisons between canopy gap dynamics 

in forest plots with different characteristics.  

2.2.3. Yield tables 

A book with yield tables per tree species in the Netherlands under different growth conditions 

and thinning intensities was used to determine the threshold for maximum vegetation height in 

a canopy gap, and to determine whether canopy gap closure occurred due to lateral or vertical 

growth (Jansen et al., 2018). 

2.2.4. Orthophoto images 

Publicly available high resolution orthophotos from 2018 and 2021 were used to visually assess 

the identified new canopy gaps before and after the gap emergence event. The image of 2018 

had a 25 cm spatial resolution, and the image of 2021 had a 8 cm resolution. The data was 

provided by PDOK, the national geoportal of the Netherlands.  

2.3. Software 

Open-source software was used in the process of this study. Data preprocessing, data analysis 

and data visualising was done using R, Python, and QGIS (QGIS Development Team, 2023; R 

Core Team, 2023; Van Rossum, 2009). Pointcloud processing and analysis was performed 

using the R package lidR (Roussel et al., 2020). Raster and vector based processing was 

performed using the R packages terra and sf (Hijmans et al., 2023; Pebesma, 2018). Data 

structuring, analysis and visualisations were performed using the R packages belonging to the 

tidyverse (Wickham et al., 2019). For reproducibility purposes, the code of this study has been 

developed using the version control system GitLab, within the environment of the Wageningen 

University (git.wur.nl/niek.koelewijn/ahncanopygaps). 
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Figure 2 flow chart of the methods 
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2.4.  Comparison Silva and Leitold method 

The data analysis steps are summarised in a flow chart (Figure 2). 

2.4.1. Pointcloud preprocessing 

Using a Python script, the AHN data was decompressed to increase computation speed of 

further analysis steps. The 25 meter overlap between different AHN subtiles was useful for the 

development of Digital Elevation Models (DEM). However, for each identified new canopy 

gap, pointcloud metrics were derived, and the difference in point density between caused by 

the overlap hampered the acquisition of pointcloud variables. Therefore, AHN subtiles with 

overlap were used for the DEM development, and filtered AHN subtiles, without overlap, were 

used for further analysis steps. The filtered AHN subtiles were normalised for ground height to 

prepare the pointcloud variable acquisition. 

2.4.2. Digital elevation models 

As the Silva and Leitold methods are both CHM-based canopy gap detection methods, Digital 

Elevation Models (DEMs) had to be created from AHN3 and AHN4 to create the CHMs. The 

DEMs were developed with the rasterize_terrain function from the lidR package (Roussel et 

al., 2020). Digital Terrain Models (DTM) and Digital Surface Models (DSM) were created on 

a 1 meter resolution. Different subfunctions to create DTMs and DSMs were compared in terms 

of speed, output realism and smoothness. For the DTMs, it was decided that the k-nearest 

neighbour inverse-difference weighting (knnidw) algorithm, developed by Shepard (1968), 

with default parameters k = 10, and p = 2, was the most suitable for this study. For the DSMs, 

it was decided that the lidR point to raster (p2r) was the most suitable for this study. The p2r 

function takes the height of the highest point found for each pixel of the output DSM (Roussel 

et al., 2020). Two methods were used fill the missing values of the p2r output. First, a 0.2 meter 

subcircle was used. This meant that all points in the input pointcloud are replace with a disk of 

20 cm. This operation is meant to simulate the fact that the laser footprint is not a point, but 

rather a circular area (Roussel et al., 2020). To fill the remaining gaps, the triangular irregulated 

network (tin) algorithm was used, developed by (Franklin, 1973). 

 After the development of the DEMs, the CHM could be created. The CHM of both AHN 

versions were created by subtracting the DSMs from the DTMs. To create a difference CHM 

raster, CHM4 was subtracted from CHM3. 

2.4.3. Threshold selection 

In this study, the Silva method and Leitold method were combined and compared, with the aim 

to increase the derived insights in canopy gap dynamics from a time series of CHMs. As both 

the Silva method and Leitold method were used in this study, four thresholds had to be selected 

for delineating canopy gaps: (1) the maximum vegetation height in a canopy gap, (2) the 

minimum canopy decrease in a canopy gap, (3) the minimum canopy gap area, and optionally 

(4) the maximum canopy gap area. To determine the threshold for the Silva method, the 

maximum vegetation height in a canopy gap, data from the yield tables by Jansen et al. (2018) 

was investigated. For the six most important tree species in the Speulderbos, which are beech 

(Fagus sylvatica L.), oak (Quercus robur L.), Scotch pine (Pinus sylvestris L.), Japanese larch 

(Larix kaempferi Camp.), Douglas fir (Pseudotsuga menziesii Mirb.) and Norway spruce (Picea 

abies L.), and for the average of these species, a linear model was created for the relation 

between tree height and Diameter at Breast Height (DBH). Trees are often defined as woody 

species with DBH largen than 5 cm (see e.g. Ryan & Williams, 2011). For this reason the height 

at which the tree species reached a DBH of 5 cm was sought. This was done by subtracting 5 
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cm from all DBH values, so that the intercept of the linear models showed the height of the 

trees at which they reached a DBH of 5 cm. The values ranged between 4.04 m (Norway spruce) 

and 5.90 m (Japanese larch), and the overall height at a DBH of 5 cm was 4.86 m (see Appendix 

A). For this reason, the threshold for maximum vegetation height in a canopy gap was set at 5 

m. 

 The threshold for the Leitold method, minimum canopy decrease, was mainly based on 

expert knowledge. This method was previously only applied in tropical forest studies, and these 

studies used a threshold of 3 m (Huertas et al., 2022; Leitold et al., 2018). The error margin of 

the AHN is 0.05 m, with a standard deviation of 0.05 m (van der Sande et al., 2010). Canopy 

gap decreases larger than 0.15 m can therefore be assumed to reflect actual canopy gap 

decreases in the field. Because this study focusses on canopy gap emergence as the 

disappearance of trees instead of small branches, the threshold for minimum canopy decrease 

was set at 2 m. 

 The threshold for the minimum area of a canopy gap was mainly based on previous studies. 

White et al. (2018) reviewed the thresholds used in LiDAR-based canopy gap studies, and found 

out that the minimum gap area ranged from 2 to 50 m2, with the majority of studies within the 

range from 5 to 10 m2. It was decided to set the threshold for minimum gap area at 10 m2 in 

this study, because it was assumed that this would be the minimum footprint of a tree in the 

Speulderbos. 

 It was decided to not include a maximum area for the canopy gaps in this study, as analysis 

of the canopy gap detection results showed that this threshold could hamper the quality of the 

canopy gap delineation. When high density thinning interventions were carried out in a forest 

plot, the canopy gaps could form large contiguous clusters, especially if they were situated 

beside an open field, or another forest plot with large scale interventions. These situations can 

accidentally be excluded from the canopy gap analysis due to the implementation of a  threshold 

for maximum gap area, and therefore it was decided to not use this threshold. 

 The threshold to distinguish lateral from vertical canopy gap closure was based on an 

estimation of the maximal tree height growth in the interval between AHN3 and AHN4, based 

on data from the yield tables by Jansen et al. (2018). For the six most important tree species in 

the Speulderbos, and for the average of these species, a linear model was created for the relation 

between tree height and age. The slopes of these linear models showed the annual tree height 

growth. The largest annual height growth was 0.58 m (Douglas fir). The interval between 

AHN3 and AHN4 was 2 years and 2 months. To make a conservative estimate about the 

maximal height growth in this time interval, the annual height growth was multiplied by three. 

The fasted growing tree species, Douglas fir, can grow 1.73 m in three years (Appendix A). 

Therefore, the threshold to distinguish lateral from vertical canopy gap closure was set at 2 m.  

2.4.4. Canopy gap dynamics mapping 

To map canopy gap dynamics in the study area, four steps were undertaken: (1) the Silva 

method was used to derive gaps in CHM3 and CHM4, (2) the output of these two binary gap 

rasters was combined, (3) the Leitold method was used to derive gaps from the difference CHM, 

and (4) the output of the Leitold method binary gap raster was combined with the combination 

of Silva method gap layers. 

 Canopy gap detection with the Silva method was performed by labelling CHM raster cells 

> 5 m as “no gap” and cells ≤ 5 m as “gap” in both CHM versions. The combination of these 

two binary gap rasters resulted in a canopy gap dynamics raster with four classes: (1) no canopy 

gap detected in both CHM versions (NoG), (2) canopy gap disappeared between CHM3 and 

CHM4 (DG), (3) canopy gap remained between CHM3 and CHM4 (RG), and (4) new canopy 

gap detected in CHM4 (NG). In this classification, raster cells that received the label NoG had 

CHM3 and CHM4 values > 5 m. Raster cells that received the label DG had CHM3 heights ≤ 

5 m and CHM4 heights > 5 m. Raster cells that received the label RG had CHM3 and CHM4 
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heights ≤ 5 m.  Raster cells that received the label NG had CHM3 heights > 5 m and CHM4 

heights ≤ 5 m (Table 1). 

 Canopy gap detection with the Leitold method was performed by labelling difference CHM 

raster cells > -2 m as “no gap” and cells ≤ -2 m as “gap”. The combination of the Silva method 

canopy gap dynamics raster and the Leitold method binary gap raster resulted in a canopy gap 

dynamics raster with seven classes: (1) NoG, (2) DG, (3) RG, (4) new canopy gap detected with 

both methods (NGBM), (5) new canopy gap only detected with Silva method (NGSM), (6) new 

canopy gap only detected with Leitold method (NGLM), and (7) remaining canopy gap 

according to Silva method, but new canopy gap according to Leitold method (RGLM). In this 

classification, raster cells that are labelled with one of the first three classes had the same 

characteristics as these classes in the Silva combined gap raster, with the added characteristic 

that difference CHM values were > -2 m. Raster cells that received the label NGBM had CHM3 

heights > 5 m, CHM4 heights ≤ 5 m and difference CHM values ≤ -2 m. Raster cells that 

received the label NGSM had CHM3 heights > 5 m, CHM4 heights ≤ 5 m and difference CHM 

values > -2 m. Raster cells that received the label NGLM had CHM3 heights > 5 m, CHM4 

heights > 5 m and difference CHM values ≤ -2 m. Raster cells that received the label RGLM 

had CHM3 heights ≤ 5 m, CHM4 heights ≤ 5 m and difference CHM values ≤ -2 m (Figure 3, 

Table 1).  

 The distinction between lateral and vertical gap closure was performed by labelling DG 

raster cells with a difference CHM value > 2 m as LC, and cells ≤ 2 m as VC (Figure 3, Table 

2). 

 

Table 1 Values for CHM3, CHM4 and difference CHM per canopy gap dynamic class 

Class Meaning Value CHM3 
(m) 

Value CHM4 
(m) 

Value difference CHM 
(m) 

NoG No canopy gap detected in both 

CHM versions with both 

methods 

> 5 > 5 > -2 

DG Canopy gap disappeared 

between CHM3 and CHM4 

≤ 5 > 5 > -2 

RG Canopy gap remained between 

CHM3 and CHM4 

≤ 5 ≤ 5 > -2 

NGBM New canopy gap detected with 

both methods 

> 5 ≤ 5 ≤ -2 

NGSM New canopy gap only detected 

with Silva method 

> 5 ≤ 5 > -2 

NGLM New canopy gap only detected 

with Leitold method 

> 5 > 5 ≤ -2 

RGLM Remaining canopy gap 

according to Silva method, but 

new canopy gap according to 

Leitold method 

≤ 5 ≤ 5 ≤ -2 

 

Table 2 Value for difference CHM values per DG class 

DG class Meaning Value difference CHM 
LC Lateral canopy gap closure > 2 

VC Vertical canopy gap closure ≤ 2 

2.4.5. New canopy gap selection 

The raster cells labelled with NGBM, NGSM, NGLM or RGLM were considered to be potential 

new canopy gap raster cells. A binary raster was created by labelling these cells as “new canopy 
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gap” and all other cells as “no new gap detected”. This binary raster was used to derive new 

canopy gaps with a minimum area of 10 m2 from the study area. New canopy gaps were 

required to consist out of minimal 10 contiguous cells in 8 directions. The gaps that fulfilled 

the requirement were thereafter vectorized to polygons. 

2.4.6. Validation 

The identified new canopy gaps were validated using the management intervention logbook of 

State Forestry and with a field visit. The spatial distribution of the in the logbook described 

management interventions was compared to the spatial distribution of identified new canopy 

gaps. This comparison provided a first impression of the accuracy on forest plot level of the 

used canopy gap detection method. To further explore the accuracy, a subset of the identified 

new canopy gaps was taken. This subset was validated in a field visit. The subset was taken by 

intersecting the identified new canopy gaps with ten randomly selected forest plots, five 

managed and five (pseudo-)unmanaged (Appendix B). For each visited identified new canopy 

gap, it was verified whether they were present or absent in the field. 
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  3a 3b 

3c 

3d 3e 3f 

Figure 3 Graphical overview of the seven canopy gap dynamic classes. Figure 3a, 3b and 3c show the canopy 

height changes between CHM3 and CHM4 of the six classes NoG, NGLM, NGBM, NGSM, RGLM and RG. Figure 

3d, 3e and 3f show the difference between the two DG classes LC and VC. 
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2.5.  Determining the influence of forest management 

The identified new canopy gaps were used to derive the influence of forest management on 

canopy gap dynamics. This was carried out in four steps. First, the identified new canopy gaps 

were visually assessed, and classified in a “number of trees” class. Second, a list of variables 

was assigned to each identified canopy gap, and to each forest plot in the study area. Third, 

Random Forest (RF) models were created to determine the most important variables in the 

classification of identified new canopy gaps in a “number of trees” class and management type. 

Fourth, statistical comparisons were made between management types, dominant tree species 

and age classes on canopy gap level and forest plot level. 

2.5.1. “Number of trees” labelling 

For all identified new canopy gaps, it was manually assessed and labelled whether it had formed 

due to the disappearance of a part of a tree, one individual tree, or a group of trees, and thus 

whether it fell in the class “part of tree”, “one tree”, or “group of trees”. This was done by 

comparing the CHM3 and CHM4, and by comparing the orthophoto of 2018 and 2021 in each 

identified canopy gap. The labelling of all identified new canopy gaps provided the opportunity 

to cross validate the “number of trees” RF models with all identified new canopy gaps. 

2.5.2. Deriving attributes 

Pointcloud variables, shape variables, CHM variables, forest plot level variables and fraction 

variables were added to the identified new canopy gaps for further statistical analysis.  

2.5.2.1. Pointcloud variables 

The R package lidR provides a list of standard metrics that can be used to characterize a 

pointcloud. These variables can be derived with the stdmetrics function within the plot_metrics 

function (Roussel et al., 2020). The list consists out of 56 variables, and these variables have 

the potential to provide information about the structure of trees within a pointcloud. For an 

overview with description of the variables, see https://github.com/r-lidar/lidR/wiki/stdmetrics. 

The standard metrics were derived from a clip of the pointcloud within the identified canopy 

gaps for AHN3 and AHN4. 

 To derive insights in the development of the forest structure in the direct vicinity of the 

identified new canopy gaps, 5 and 10 m doughnut buffers around the new canopy gaps were 

created. These doughnut buffers were created by buffering the new canopy gap polygons with 

a 5 m and 10 m distance, and erasing the new canopy gap polygons from the buffer (see scheme 

below). This erasing was done in such a way that the parts of the buffers that overlapped with 

neighbouring new canopy gap polygons were not erased from the buffer. The buffer distances 

of 5 and 10 meter were chosen, as these distances are equivalent to one time and two times the 

minimum height of a tree. The standard metrics were derived from a clip of the pointcloud 

within the doughnut buffers for AHN3 and AHN4, and these variables were added to the 

Identified new canopy gap Buffered new canopy gap Doughnut buffer of new canopy gap 
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identified new canopy gaps. Furthermore, the relative area of the doughnut buffers per 

identified new canopy gap that overlapped with neighbouring new canopy gaps was  determined 

to derive information about the gap density. Moreover, the distance to the nearest neighbour  

was determined per identified new canopy gaps using the function st_nn from the nngeo 

package (Dorman, 2023). 

2.5.2.2. Shape variables 

Of the identified new canopy gaps, shape variables were determined describing the 3D shape 

of a clip of the pointcloud for AHN3 and AHN4, and the 2D shape of the canopy gap polygons. 

The 3D shape variables were derived with the stdshapemetrics function within the plot_metrics 

function from the lidR package (Roussel et al., 2020). The 2D shape variables were the area, 

perimeter, and variables derived from the area and perimeter. The area in m2 was derived by 

using the st_area function from the sf package, the perimeter in m using the st_perimeter 

function from the VLSM package (Knevels et al., 2020; Pebesma, 2018). To see how the 2D 

shape parameters were derived, see Appendix C. 

2.5.2.3. CHM variables 

Variables were added to the identified new canopy gap describing a clip of CHM3 and CHM4 

within the canopy gaps. The mean, minimum, maximum, standard deviation, Gini coefficient, 

and range were calculated of CHM3, CHM4 and the difference CHM, inspired by Silva et al. 

(2019). The Gini coefficient was originally developed as a measurement for income inequality 

(Gini, 1921). However, it has been shown that the coefficient can be used as measurement for 

tree size inequality as well (Valbuena et al., 2017). The higher the Gini coefficient of a forest 

plot, the higher the inequality of tree sizes, which is used as an indicator of disturbance events 

in forests (Silva et al., 2019). 

2.5.2.4. Forest plot variables 

For each forest plot in the study area, variables were derived describing the canopy gap 

dynamics in the plot, inspired by Blackburn and Milton (1996) (Appendix C). Furthermore, the 

same CHM variables that were determined for the new canopy gap polygons were determined 

on forest plot level as well. 

2.5.2.5. Fraction variables 

On canopy gap level, the fraction of each of the four new canopy gap classes, NGBM, NGSM, 

NGLM and RGLM, was determined, to investigate the difference in forest structure per gap 

class. On forest plot level, the fraction of each of the seven canopy gap dynamics classes, NoG, 

DG, RG, NGBM, NGSM, NGLM,  and RGLM, was determined. Besides, The fraction LC and 

VC of the fraction DG was determined per forest plot. 

 

2.5.3. Random forest models 

The dataset of identified canopy gaps and their attributes was used to train Random Forest (RF) 

models. The RF algorithm was described by Breiman (2001). Five RF models were developed: 

(1) “number of trees” model with all variables included, (2) “number of trees” model with only 

the three most important variables included, (3) management type model with all variables 

included, (4) management type model with only the four most important variables included, 

and (5) management type model without forest plot variables included. The RF models were 

created with the intention to derive insights in the variables that differed most between the 

different classes. The algorithm is suitable for this purpose, as this algorithm is able to 

determine the importance per variable in the distinction between classes, which reveals which 
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variables are most important in the classification, and which are possibly redundant. To create 

train and test data, the identified canopy gaps were split in a 70/30 ratio. The RF models trained 

on new canopy gap data with only the four most important variables were developed to observe 

the accuracy of the classification with less input data. The RF model without forest plot 

variables was developed to observe the management type classification accuracy with only the 

variables that were directly or indirectly derived from the AHN. The RF models were created 

using the train function from the caret package (Kuhn, 2008). The confusion matrix of the RF 

models were developed following the methods of Du et al. (2021).   

2.5.4. Statistical comparisons 

As can be observed in figure 1, the representation of forest plot dominant tree species and age 

classes is not equally distributed over the different management types. Therefore, to determine 

the influence of forest management on canopy gap dynamics, the influence of forest 

management had to be disentangled from the influence of dominant tree species and age. 

Variables that were derived directly from the new canopy gaps, or from the doughnut buffers 

that belonged to these canopy gaps, were statistically compared on canopy gap level. The forest 

plot variables were compared on forest plot level instead of new canopy gap level, as the 

comparison of forest plot variables on new canopy gap level would result in an 

overrepresentation of forest plots in which new canopy gaps have formed, and an 

underrepresentation of forest plots in which no new canopy gaps have formed. On new canopy 

gap level, fourteen variables were compared, namely the area, perimeter, distance to nearest 

neighbour, overlap of 5 and 10 m doughnut buffer with neighbouring new canopy gaps, mean 

of CHM3, mean of CHM4, mean of difference CHM, fraction NGBM, and fraction NGLM. 

Besides, the four most important variables in the management type RF model without forest 

plot variables were compared. On forest plot level, the variables fraction in gap, gap density, 

dispersion index, canopy edge, mean of CHM3, mean of CHM4, mean of difference CHM, 

Gini coefficient of CHM4, fraction NoG, fraction DG, fraction RG, fraction NGBM, fraction 

NGLM, and fraction VC of fraction DG were compared. These variable lists of new canopy 

gap level and forest plot level were selected, as there were reasons to expected differences in 

these variables between different management types. Furthermore, the comparison of these 

variables indirectly provides information of other variables. For example, the comparison of 

new canopy gap area and perimeter would provide information in all shape variables derived 

from the area and perimeter. 

 To study the influence of forest management, the new canopy gaps and forest plots were 

split up in the classes managed, unmanaged and pseudo-unmanaged. To study the influence of 

dominant tree species, the new canopy gaps and forest plots were split up in the six most tree 

species of the Speulderbos. The influence of forest management was as well investigated for 

the tree species beech separately. This comparison helped to disentangle the influence of forest 

management and dominant tree species on canopy gap dynamics. Beech was the only tree 

species for which there were observations in forest plots with all three management types 

(Appendix I). To study the influence of forest plot age, the new canopy gaps and forest plots 

were split up in five age classes; 0-40 years, 40-80 years, 80-120 years, 120-160 years, and 160-

200 years.  

 Between the different classes, the medians of the variables were compared with the non-

parametric Kruskal-Wallis test (Kruskal & Wallis, 1952). The Kruskal-Wallis test was selected, 

as the variables were not normally distributed. When the Kruskal-Wallis test was rejected, 

which means that there were observed significant differences between groups, the Dunn’s test 

was used to make pairwise comparisons between classes (Dunn, 1964). The Bonferroni method 

was used to derive adjusted p-values (Bonferroni, 1936). The functions dunnTest from the FSA 

package and ggbetweenstats from the ggstatplots package were used for the statistical 

comparisons (Ogle D.H. et al., 2023; Patil, 2021).  
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3. Results 

3.1.  Comparison Silva and Leitold method 

The combination of the Silva and Leitold methods resulted in a total number of 2473 identified 

new canopy gaps in the study area, with a total area of 150,463 m2. The new canopy gap area 

identified with only the Silva method was 79,876 m2 in the study area, or 53.09% of the total 

new canopy gap area identified with both methods. The new canopy gap area identified with 

only the Leitold method was 150,184 m2, or 99.81% of the identified new canopy gap area with 

both methods. The use of the Leitold method resulted in the spatial distribution of two canopy 

gap dynamic classes, namely the distribution of new canopy gaps and of no new canopy gaps. 

The use of the Silva method resulted in the spatial distribution of two additional canopy gap 

dynamic classes, namely the distribution of disappearing and remaining canopy gaps (Table 3, 

Figure 4). 

 

Table 3 The seven classes of canopy gap dynamics identified with either the Silva method, the 

Leitold method, or the combination of these two methods. 

Class Meaning Fraction of study 
area 

Average fraction 
of new canopy 
gap area 

Identified with 
method 

NoG No canopy gap 

detected in both CHM 

versions with both 

methods 

0.8585 - Both 

DG Canopy gap 

disappeared between 

CHM3 and CHM4 

0.0160 - Silva 

RG Canopy gap remained 

between CHM3 and 

CHM4 

0.0737 - Silva 

NGBM New canopy gap 

detected with both 

methods 

0.0281 0.432 Both 

NGSM New canopy gap only 

detected with Silva 

method 

0.0003 0.003 Silva 

NGLM New canopy gap only 

detected with Leitold 

method 

0.0227 0.543 Leitold 

RGLM Remaining canopy 

gap according to Silva 

method, but new gap 

according to Leitold 

method 

0.0008 0.021 Both 
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4a 4b 4c 

4d 

Figure 4 Result of the combination of the Silva and Leitold method to detect canopy gap dynamics. Figure 

4a, 4b and 4c show the data on which the canopy gap detection was based. Figure 4a and 4b show the 

CHM of respectively AHN3 and AHN4. Figure 4c shows the difference CHM. Figure 4d shows the spatial 

distribution of the seven identified canopy gap dynamic classes in the study area. The percentage of study 

area that felled within each canopy gap dynamic class can be found in the legend of figure 4d. 



 

 

25 

3.1.1. Validation 

First, the spatial distribution of forest plots with registered management interventions was 

compared to the spatial distribution of identified new canopy gaps (figure 5). The result of this 

comparison generally revealed that large new canopy gaps, and clusters with high densities of 

new canopy gaps, are often situated in forest plots with registered management interventions. 

However, there were identified large new canopy gaps, and clusters with high densities of new 

canopy gaps, that were not situated in forest plots with registered management interventions. 

This was the case in forest plots 9F and H, 11Q and K, 14D and P, 15R, 17E2-E6, 18E2, G4, 

and H, 19H2, J, K and M, and 25E. Besides, there were forest plots in which a management 

intervention was registered, but fewer new canopy gaps were identified than expected based on 

the registered intervention. This was the case in forest plots 11A2, H and P2, and 15P2. 

 Second, a selection of the identified new canopy gaps was validated during a field visit. 

The selected 5 managed forest plots were 9D, 11F2, 17A3 and E3, and 25E2. A total of 140 

new canopy gaps were identified in these selected managed forest plots. The selected 5 pseudo-

unmanaged and unmanaged forest plots were 10J, 11B, 15N and X, and 17M (Appendix B). A 

total of 61 new canopy gaps were identified in these selected pseudo-unmanaged and 

unmanaged forest plots. For all 201 identified new canopy gaps that were visited, the presence 

in the field was confirmed. There were no identified new canopy gaps that were absent in the 

field. However, there were new canopy gaps observed in the field in forest plot 10J and 15X 

that were not identified with either the Silva or the Leitold method. 

  

Figure 5. Spatial distribution of identified new canopy gaps, and of forest plots in which management 

interventions were registered since 2018.  
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3.2.  Determining the influence of forest management 

3.2.1. “Number of trees” classification 

The result of the “number of trees” labelling of the identified canopy gaps can be found in figure 

6. The new canopy gaps with the label “part of tree” was relatively evenly distributed over the 

different management types, while the labels “one tree” and “group of trees” were 

overrepresented in managed plots (Table 4). 

 

Table 4 The number of new canopy gaps per “number of tree” class and per management type 

Class Part of tree One tree Group of trees Total 
Managed 236  1201  701 2138  

Pseudo-unmanaged 170  60  7  237  

Unmanaged 81  16  1  98  

Total 487  1277  709  2473 

3.2.2. RF models 

Five RF models were developed: (1) “number of trees” model with all variables included, (2) 

“number of trees” model with only the three most important variables included, (3) management 

type model with all variables included, (4) management type model with only the four most 

important variables included, and (5) management type model without forest plot variables 

included. To create train and test data, the identified canopy gaps were split in a 70/30 ratio. Of 

the total 2473 new canopy gaps, 1732 were used as train data, and 741 as test data. The variable 

importance per variable per model can be found in Appendix D.  

3.2.2.1.  “Number of trees” model, all variables 

The result of the “number of trees” classification with all variables can be found in table 5. The 

RF model had a Kappa coefficient of 0.757, and the total accuracy on test data was 0.846. The 

fifteen most important variables in the classification can be found in figure 7. Out of the fifteen 

most important variables, ten variables were shape variables. Out of the ten shape variables, 

four were pointcloud shape variables, describing the shape of AHN3 or AHN4 within the new 

canopy gaps, while six shape variables described the 2D shape of the new canopy gaps. Three 

variables were forest plot variables, describing the forest plots in which the new canopy gaps 

were situated. The remaining two variables were pointcloud variables, describing AHN3 within 

the new canopy gaps (Figure 7). The canopy gap shape area and perimeter differed significantly 

between the three “number of trees” classes. Therefore, variables derived from the area and 

shape had a high importance in this RF model (Appendix J). 

 

Table 5 Confusion matrix RF model “number of trees” with all variables 

Class Part of tree One tree Group of trees User accuracy 

Part of tree 269 61 11 0.789 

One tree 41 804 49 0.900 

Group of trees 10 82 405 0.815 

Producer accuracy 0.840 0.849 0.871 Total accuracy: 

0.853 
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3.2.2.2. “Number of trees” model, most important variables 

Figure 7 The fifteen most important variables, and their importance, in the “number of 

trees” RF model with all variables. 

Figure 6. Spatial distribution of new canopy gaps per “number of trees” class in the study area. The 

basemap is the 8 cm resolution areal orthophoto of the study area from the year 2021 provided by PDOK. 
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The result of the “number of trees” classification with only the three most important variables 

can be found in table 6. The three variables included in the model were the planarity of the 

AHN3 shape within the new canopy gaps, the canopy gap forest plot fraction NGLM, and the 

canopy gap forest plot gap density. Three instead of four variables were included in this model, 

as multicollinearity existed between the two most important variables. The correlation between 

the planarity and the linearity of the AHN3 shape within the new canopy gaps was 0.96, and 

therefore the linearity was left out of this model. The RF model had a Kappa coefficient of 

0.576, and the total accuracy on test data was 0.791. For the statistical comparison of these three 

variables between the “number of trees” classes, see Appendix D2. 

 

Table 6 Confusion matrix RF model “number of trees” with only the most important variables 

Class Part of tree One tree Group of trees User accuracy 

Part of tree 209 94 38 0.613 

One tree 98 712 84 0.796 

Group of trees 26 98 373 0.751 

Producer accuracy 0.628 0.788 0.754 Total accuracy: 

0.747 

3.2.2.3. Management type model, all variables 

The result of the management type model with all variables included can be found in table 7. 

The RF model had a Kappa coefficient of 0.946, and the total accuracy on test data was 0.986. 

The fifteen most important variables in the classification can be found in figure 8. Out of the 

fifteen most important variables, twelve were forest plot variables, describing the forest plots 

in which the new canopy gaps were situated. The other three variables were doughnut buffer 

pointcloud variables, describing AHN3 or AHN4 in a 5 or 10 m doughnut buffer around the 

new canopy gaps. 

 

Table 7 Confusion matrix RF model management type with all variables 

Class Managed Pseudo-unmanaged Unmanaged User accuracy 

Managed 1499 1 1 0.999 

Pseudo-unmanaged 10 149 0 0.937 

Unmanaged 4 1 67 0.931 

Producer accuracy 0.991 0.987 0.985 Total accuracy: 

0.990 
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3.2.2.4. Management type model, most important variables 

The result of the management type model with only the four most important variables can be 

found in table 8. The four variables included in the model were the forest plot Gini coefficient 

of CHM4 within the new canopy gaps, the forest plot fraction NoG, the forest plot fraction 

NGLM, and the forest plot gap density. The RF model had a Kappa coefficient of 0.986, and 

the total accuracy on test data was 0.997. The accuracy of the management type RF model with 

only the 4 most important variables had a higher total accuracy than the model with all variables 

included. For the statistical comparison of these four variables between the management types, 

see Appendix D4. 

 

Table 8 Confusion matrix RF model management type with only the most important variables 

Class Managed Pseudo-unmanaged Unmanaged User accuracy 

Managed 1500 0 1 0.999 

Pseudo-unmanaged 2 157 0 0.987 

Unmanaged 1 1 70 0.972 

Producer accuracy 0.998 0.994 0.986 Total accuracy: 

0.998 

3.2.2.5. Management type model, no forest plot variables 

The influence of forest plot variables in the management type RF model was high. To 

investigate whether it still would be possible to distinguish the three management classes 

without forest plot variables, an RF model was developed without forest plot variables. Only 

the variables directly derived from the new canopy gaps and their doughnut buffers were 

Figure 8 The fifteen most important variables, and their importance, in 

the management type RF model with all variables. 
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included in this model. The result of this management type model without forest plot variables 

can be found in table 9. The RF model had a Kappa coefficient of 0.587, and the total accuracy 

on test data was 0.913. The producer and user accuracies of the classes pseudo-unmanaged and 

unmanaged were low in this model. The fifteen most important variables in the classification 

can be found in figure 9. All of these fifteen variables were doughnut buffer pointcloud 

variables, of which eleven described AHN4, and four AHN3. 

  

Table 9 Confusion matrix RF model management type with forest plot variables excluded 

Class Managed Pseudo-unmanaged Unmanaged User accuracy 

Managed 1468 28 5 0.978 

Pseudo-unmanaged 58 93 8 0.585 

Unmanaged 25 36 11 0.153 

Producer accuracy 0.946 0.592 0.458 Total accuracy: 

0.908 

 

3.2.3.  Statistical analysis influence different forest characteristics 

The identified new canopy gaps were used to make statistical comparisons of different forest 

plot characteristics to disentangle the influence of different forest plot characteristics on canopy 

gap dynamics. Comparisons have been made on canopy gap and forest plot level between (1) 

management types, (2) dominant tree species, (3) management types for beech only, and (4) 

age classes. For each of these, comparisons of fourteen variables on canopy gap and forest plot 

level were made (Appendix E-H). The number of canopy gaps and forest plots for combinations 

of management type, dominant tree species, and age class, can be found in Appendix I. 

Of the fourteen variables that were compared on canopy gap level, four were the most 

important variables in the management type RF model without forest plot variables. These were 

Figure 9 The fifteen most important variables, and their 

importance, in the management type RF model without forest plot 

variables. 
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the 10 m doughnut buffer percentage of intensity returned below the 90th height percentile in 

AHN4 (10m dbuffer ipcum90 AHN4), 5 m doughnut buffer percentage of intensity returned by 

points classified as 'ground' in AHN4 (5m dbuffer ipground AHN4), 10 m doughnut buffer 

skewness of intensity distribution in AHN4 (10m dbuffer iskew AHN4), and 10 m doughnut 

buffer 25th percentile of height distribution in AHN3 (10m dbuffer zq25 AHN4). These four 

doughnut buffer pointcloud variables were selected after investigation of the variable 

importance of the variables in the management type RF model without forest plot variables 

(Figure 9). The four most important variables were selected, but only if the statistic of the 

variable was unique in the selection. This was done to prevent that different variations of the 

percentage of intensity returned below the xth height percentile (ipcumx) would be compared. 

3.2.4. Management type 

The number and area of new canopy gaps and forest plots per management type can be found 

in table 10. The fraction of area in new canopy gap for managed forest plots was higher 

compared to pseudo-unmanaged and unmanaged forest plots. This fraction for pseudo-

unmanaged plots was higher compared to unmanaged plots (Table 10).  

 

Table 10 Number and area of new canopy gaps and forest plots per management type 

Management type Number of new 
canopy gaps 

Number of 
forest plots 

Area of new 
canopy gaps 
(m2) 

Area of 
forest plots 
in study 
area (m2) 

Fraction area in 
new canopy gap 

Managed 2138 174 134544 2085964 0.064 

Pseudo-unmanaged 237 19 11043 559562 0.020 

Unmanaged 98 9 4876 365465 0.013 

Total 2473 202 150463 3010991 0.050 

3.2.4.1. New canopy gap level 

The distance to the nearest neighbour of new canopy gaps in managed forest plots was 

significantly lower compared to pseudo-unmanaged plots, and this distance was also 

significantly lower in  pseudo-unmanaged plots compared to unmanaged plots (Figure 10). This 

pattern was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring new 

canopy gaps (Appendix E1). The mean difference CHM within the new canopy gaps was 

significantly higher in unmanaged plots compared to managed and pseudo-unmanaged plots 

(Figure 10). The fraction NGBM of new canopy gaps was significantly higher in unmanaged 

plots compared to managed and pseudo-unmanaged plots (Figure 10). The opposite pattern was 

observed for the fraction NGLM (Appendix E1). The 10m dbuffer ipcum90 AHN4 was 

significantly lower in managed plots compared to pseudo-unmanaged and unmanaged plots 

(Figure 10). The same pattern is observed for the three other important variables in the 

management type RF model without forest plot variables (Appendix E1). There is no significant 

difference observed in new canopy gap area or perimeter between the management types 

(Appendix E1).  

3.2.4.2. Forest plot level 

The gap density was not significantly lower in unmanaged forest plots compared to managed 

and pseudo-unmanaged plots, but the median gap density value was lower (Figure 11). The 

same pattern is observed for the fraction in gap (Appendix E2). The forest plot mean CHM4 

was significantly lower in managed plots compared to pseudo-unmanaged and unmanaged 

plots (Figure 11). The same pattern was observed for the mean CHM3 (Appendix E2). The 
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Gini coefficient of CHM4 was significantly higher in managed plots compared to pseudo-

unmanaged and unmanaged plots (Figure 11). The fraction NoG was significantly lower in 

managed plots compared to pseudo-unmanaged and unmanaged plots (Figure 11). 
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Figure 10 Statistical comparisons of management types on canopy gap level for the variables distance to 

the nearest neighbour (10a), mean difference CHM (10b), fraction NGBM (10c), and 10 m doughnut 

buffer percentage of intensity returned below the 90th height percentile AHN4 (10d). For additional 

variable comparisons of management types on canopy gap level, see Appendix E1. 

10a 10b 

10c 10d 
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Figure 11 Statistical comparisons of management types on forest plot level for the variables new gap 

density (11a), mean CHM4 (11b), Gini coefficient CHM4 (11c), and fraction NoG (11d). For additional 

variable comparisons of management types on forest plot level, see Appendix E2. 

11a 11b 

11c 11d 
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3.2.5. Dominant tree species 

The number of new canopy gaps and forest plots per dominant tree species and management 

type can be found in table 11. The fraction of area in new canopy gap for deciduous tree species, 

beech and oak, was lower compared to coniferous species, Scotch pine, Japanese larch, Douglas 

fir and Norway spruce. Beech was the only tree species that was represented in all three 

management types with multiple forest plots. Oak was represented in the pseudo-unmanaged 

area with one forest plot, all other oak forest plots were situated in the managed area. Scotch 

pine, Douglas fir and Japanese larch were represented in the unmanaged area with one forest 

plot, all other forest plots of these species were situated in the managed area. Norway spruce 

was only represented in the managed area (Appendix I1 & I2). 

 

Table 11 Number and area of new canopy gaps and forest plots per tree species 

Tree species Number of new 
canopy gaps 

Number of 
forest plots 

Area of new 
canopy gaps 
(m2) 

Area of 
forest plots 
in study area 
(m2) 

Fraction of area in 
new canopy gap 

Beech 595 59 27590 1290718 0.021 

Oak 41 8 1518 99129 0.015 

Scotch pine 412 19 22112 295250 0.075 

Japanese larch 280 35 42492 392712 0.108 

Douglas fir 776 52 36092 604129 0.060 

Norway spruce 87 7 5173 99640 0.052 

Total 2191 180 134977 2781578 0.049 

3.2.5.1. New canopy gap level 

The distance to the nearest neighbour of new canopy gaps in forest plots with deciduous 

dominant tree species was higher compared to coniferous tree species (Figure 12). This pattern 

was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring new canopy 

gaps (Appendix F1). The mean difference CHM within the new canopy gaps was significantly 

higher in Douglas fir and Japanese larch forest plots compared to forest plots with other tree 

species (Figure 12). There were no significant differences in fraction NGBM of new canopy 

gaps between the different tree species, except between Scotch pine and Japanese larch forest 

plots (Figure 12). The 10m dbuffer ipcum90 AHN4 was significantly higher in forest plots with 

deciduous dominant tree species compared to coniferous tree species (Figure 12). The same 

pattern was observed for the three other important variables in the management type RF model 

without forest plot variables (Appendix F1). The area of new canopy gaps in Scotch pine and 

Japanese larch forest plots was significantly larger compared to forest plots with other tree 

species (Appendix F1). 

3.2.5.2. Forest plot level 

There were no significant differences in gap density between forest plots with different 

dominant tree species. However, beech forest plots had lower median gap density values 

compared to forest plots with other tree species (Figure 13). The forest plot mean CHM3 and 

CHM4 was significantly higher in Douglas fir and beech plots compared to other tree species, 

while the forest plot mean difference CHM did not differ significantly between the different 

tree species (Figure 13, Appendix F2). The Gini coefficient of CHM4 was significantly lower 

in beech forest plots compared to Scotch pine, Japanese larch and Douglas fir forest plots 

(Figure 13). The fraction NoG was significantly higher in forest plots with deciduous dominant 

tree species compared to coniferous tree species (Figure 13). 
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Figure 12 Statistical comparisons of dominant tree species on canopy gap level for the variables distance 

to the nearest neighbour (12a), mean difference CHM (12b), fraction NGBM (12c), and 10 m doughnut 

buffer percentage of intensity returned below the 90th height percentile AHN4 (12d). For additional 

variable comparisons of dominant tree species on canopy gap level, see Appendix F1. 

12a 12b 

12c 12d 
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Figure 13 Statistical comparisons of dominant tree species on forest plot level for the variables new gap 

density (13a), mean CHM4 (13b), Gini coefficient CHM4 (13c), and fraction NoG (13d). For additional 

variable comparisons of dominant tree species on forest plot level, see Appendix F2. 

13a 13b 

13c 13d 



 

 

38 

3.2.6. Beech management type 

To disentangle the influence of management type and dominant tree species on canopy gap 

dynamics, the three management types were compared in beech forest plots only. The number 

of new canopy gaps and forest plots per beech management type can be found in table 12. The 

fraction of area in new canopy gap for managed beech forest plots was higher than for the 

pseudo-unmanaged and unmanaged forest plots. This fraction for pseudo-unmanaged beech 

plots was higher compared to unmanaged beech plots (Table 12). 

 

Table 12 Number and area of new canopy gaps and forest plots per management type for beech  

Management type Number of new 
canopy gaps 

Number of 
forest plots 

Area of new 
canopy gaps 
(m2) 

Area of 
forest plots 
in study 
area (m2) 

Fraction area in 
new canopy gap 

Managed 284 36 12369 485915 0.025 

Pseudo-unmanaged 230 18 10868 543101 0.020 

Unmanaged 81 5 4353 261702 0.017 

Total 595 59 27590 1290718 0.021 

3.2.6.1. New canopy gap level 

The distance to the nearest neighbour of new canopy gaps in managed beech forest plots was 

significantly lower compared to pseudo-unmanaged and unmanaged beech plots (Figure 14). 

This pattern was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring 

new canopy gaps (Appendix G1). The mean difference CHM within the new canopy gaps was 

significantly higher in unmanaged beech plots compared to pseudo-unmanaged beech plots, 

and also significantly higher for pseudo-unmanaged compared to managed beech plots (Figure 

14). The fraction NGBM of new canopy gaps was significantly higher in unmanaged beech 

plots compared to managed and pseudo-unmanaged beech plots (Figure 14). The opposite 

pattern was observed for the fraction NGLM (Appendix G1). There was observed a significant 

difference in 10m dbuffer ipcum90 in AHN4 of new canopy gaps between managed and 

pseudo-unmanaged beech plots, but not between managed and unmanaged beech plots (Figure 

14). The 5m dbuffer ipground in AHN4 and the 10m dbuffer iskew in AHN4 was still 

significantly different between managed beech plots compared to pseudo-unmanaged and 

unmanaged beech plots, but the p-values were clearly lower when compared to the p-values of 

these statistical comparisons with all tree species included. No significant differences were 

found in the comparison of 10m dbuffer zq25 in AHN3 between beech management types 

(Appendix G1). There was no significant difference observed in new canopy gap area or 

perimeter between the beech management types (Appendix G1).  

3.2.6.2. Forest plot level 

The gap density of unmanaged beech forest plots was not significantly lower compared to 

managed and pseudo-unmanaged plots, but the median value is lower compared to pseudo-

unmanaged plots (Figure 15). The forest plot mean CHM4 was significantly lower in 

managed beech plots compared to pseudo-unmanaged and unmanaged beech plots (Figure 

15). The same pattern was observed for the mean CHM3 and CHM4 (Appendix G2). The 

Gini coefficient of CHM4 was significantly higher in managed plots compared to pseudo-

unmanaged and unmanaged plots (Figure 15). There was no significant difference observed in 

forest plot fraction NoG between the beech management types, but the median value of 

managed beech plots was lower compared to pseudo-unmanaged and unmanaged plots 

(Figure 15). 
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Figure 14 Statistical comparisons of management types for beech on canopy gap level for the variables 

distance to the nearest neighbour (14a), mean difference CHM (14b), fraction NGBM (14c), and 10 m 

doughnut buffer percentage of intensity returned below the 90th height percentile AHN4 (14d). For 

additional variable comparisons of management types for beech on canopy gap level, see Appendix G1. 

14a 14b 

14c 14d 
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Figure 15 Statistical comparisons of management types of beech on forest plot level for the variables new 

gap density (15a), mean CHM4 (15b), Gini coefficient CHM4 (15c), and fraction NoG (15d). For 

additional variable comparisons of management types of beech on forest plot level, see Appendix G2. 

15a 15b 

15c 15d 
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3.2.7. Forest plot age 

The number of new canopy gaps and forest plots per age class can be found in table 13. 

Managed forest plots were overrepresented in the lower age classes. The pseudo-unmanaged 

plots were represented in the 160-200 age class, as the registered germination date of these 

forest plots was 1835. The unmanaged plot were relatively evenly representation over the age 

classes, with a slight overrepresentation in the 160-200 age class. The tree species that were 

overrepresented in managed plots were also overrepresented in the lower age classes. Beech 

had a relatively even representation over the age classes compared to the other tree species, but 

it was slightly overrepresented in the 160-200 age class (Appendix I3 - I6). 

 

Table 13 Number and area of new canopy gaps and forest plots per age class 

Age class 
(y) 

Number of new 
canopy gaps 

Number of 
forest plots 

Area of new 
canopy gaps 
(m2) 

Area in 
study area 
(m2) 

Fraction of area in 
new canopy gap 

0-40 229 28 13957 248191 0.056 

40-80 1525 101 92222 1319269 0.070 

80-120 355 41 27622 538063 0.051 

120-160 47 9 1309 90709 0.014 

160-200 317 23 15353 814760 0.019 

Total 2473 202 150463 3010992 0.050 

 

3.2.7.1. New canopy gap level 

The distance to the nearest neighbour of new canopy gaps in forest plots with the age classes 

120-160 and 160-200 was significantly higher compared to the younger age classes (Figure 16). 

This pattern was also observed for the 5 and 10 m doughnut buffer overlap with neighbouring 

new canopy gaps (Appendix H1). There were observed significant differences in the mean 

difference CHM within the new canopy gaps between the different age classes, but no relation 

between forest plot age and mean CHM difference could be observed (Figure 16). The same 

could be said about the relation between forest plot age and mean CHM3 and CHM4 (Appendix 

H1). The only significant difference in fraction NGBM of new canopy gaps was between the 

age class 0-40 and 40-80, all other age classes did not differ significantly. Nonetheless, the 

median value of fraction NGBM was the highest for the age class 160-200 (Figure 16). The 

10m ipcum90 in AHN4 was significantly higher in forest plots with age classes 120-160 and 

160-200 compared to the other age classes (Figure 16). The same pattern was observed for the 

three other important variables in the management type RF model without forest plot variables 

(Appendix H1). No relation between age class and new canopy gap area or perimeter was 

observed (Appendix H1). 

3.2.7.2. Forest plot level 

There were no significant differences observed gap density between forest plots with different 

age classes. Nevertheless, the forest plots with older age classes had lower median gap density 

values compared to younger age classes (Figure 17). The forest plot mean CHM3 and CHM4 

was observed to significantly increase with forest plot age, while the mean difference CHM 

was observed to significantly decrease with forest plot age (Figure 17, Appendix H2). The Gini 

coefficient of CHM4 was observed to be significantly lower in the oldest two age classes 

compared to the other age classes (Figure 17). The fraction NoG was observed to be 

significantly higher in the oldest two age classes compared to the other age classes (Figure 17). 
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The fraction VC of the fraction DG decreased significantly with increasing age class (Appendix 

H2). 

 

  

Figure 16 Statistical comparisons of age classes on canopy gap level for the variables distance to the 

nearest neighbour (16a), mean difference CHM (16b), fraction NGBM (16c) , and 10 m doughnut buffer 

percentage of intensity returned below the 90th height percentile AHN4 (16d). For additional variable 

comparisons of age classes on canopy gap level, see Appendix H1. 

16a 16b 

16c 16d 
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Figure 17 Statistical comparisons of age classes on forest plot level for the variables new gap density 

(17a), mean CHM4 (17b), Gini coefficient CHM4 (17c) , and fraction NoG (17d). For additional variable 

comparisons of age classes on forest plot level, see Appendix H2. 

17a 17b 

17c 17d 
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4. Discussion 

4.1.  Comparison Silva and Leitold method 

At the start of the study, it was hypothesized that different canopy gap delineation methods 

would result in different spatial patterns of identified gaps, and that this difference would 

provide information of the ecological conditions in the canopy gaps. The Silva and the Leitold 

method are both conceptually simple methods to derive canopy gaps from a timeseries of two 

CHM versions. Both methods use a single threshold to binary split either one CHM version, 

Silva, or a difference CHM, Leitold, in areas in which new gaps have formed, or not (Leitold 

et al., 2018; Vepakomma et al., 2012). The Silva method uses a threshold, minimum vegetation 

height, to binary split each CHM version in gap areas and no gap areas. Thereafter, the binary 

gap output of both CHM versions is overlayed to derive areas in which new canopy gaps have 

formed. These areas have to be larger than the threshold for minimum new canopy gap area. 

The Leitold method requires one step less as the Silva method, and is therefore twice as fast to 

derive new canopy gaps. It uses a threshold, minimum canopy decrease, to directly identify new 

canopy gaps from the difference between the two CHM versions, the area of which must be 

again larger than the threshold for minimum new canopy gap area. As both methods are CHM-

based, the computational time to derive canopy gaps is low compared to pointcloud-based 

methods (Gaulton & Malthus, 2010). This characteristic of the methods makes it suitable for 

upscaling to larger study areas. Moreover, ALS data, such as the AHN, can be used to determine 

canopy height with hight accuracy (Brede et al., 2017). Furthermore, because the Silva and 

Leitold methods are conceptually simple, the outcomes of the methods can easily be interpreted. 

However, the ecological effects of canopy gap emergence, such as tree species regeneration, is 

hard to investigate with these canopy gap detection methods based on the Brokaw definition 

(de Lima, 2005).  

 The use of the Silva and Leitold method in the study area revealed that the total area of 

new canopy gaps identified with the Leitold method is larger compared to the Silva method 

(Table 3, Figure 4). Nonetheless, the Silva method was able to identify areas with remaining 

canopy gaps and areas were canopy gaps have disappeared over time, whereas the Leitold 

method was unable to detect these canopy gap dynamic classes. The combination of the two 

methods revealed information about the fraction of the new canopy gap areas that were 

identified with both methods, with only the Leitold method, and with only the Silva method. 

These fractions provide information of the ecological impact of canopy gap formation, that 

cannot be derived from the Silva and Leitold method separately. The fraction of a new canopy 

gap that is detected with both methods is assumed to have no intact forest layer after the canopy 

gap emergence event, as the CHM4 is higher than 5 meter, whereas the fraction of a new canopy 

gap that is only detected with the Leitold method is assumed to still have an intact forest layer 

after the canopy gap emergence, as CHM4 is higher than 5 meter. New canopy gaps influence 

the light availability on the soil, and therefore they influence the micro climatic conditions, 

nutrient and water availability in the new gap (Lombard et al., 2019). Hence, it can be assumed 

that the fraction of the new canopy gaps that is only detected with the Leitold method has a 

lower impact on the forest ecosystem than the fraction of the new canopy gaps that is detected 

with both methods. This reveals that the combination of the Silva and Leitold method can 

provide ecologically relevant information about canopy gap dynamics, namely the presence of 

a tree layer in a canopy gap after the canopy gap emergence. 

 The first step of validating the identified new canopy gaps, derived from the combination 

of the Silva and Leitold methods, was the comparison with registered management 

interventions. This comparison revealed that large new canopy gaps, and clusters with high 

densities of new canopy gaps, are often situated in forest plots with registered management 
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interventions (Figure 6). This outcome was the first indication of the accuracy of the 

combination of the Silva and Leitold methods to detect canopy gaps. However, there were some 

discrepancies between the location of registered management interventions and of the detected 

large new canopy gaps, and clusters with high densities of new canopy gaps. This could best be 

explained by inaccuracies in management intervention registration, as the error margin of the 

AHN is on a centimetre scale. It is therefore unlikely that large new canopy gaps, and clusters 

with high densities of new canopy gaps, are incorrectly identified. It is more likely that there 

were inaccuracies in management intervention registration. To start, the map with the forest 

plot delineation did not always correspond with the field situation. The borders of the forests 

did not always correspond with the borders of plots of trees species with the same age class. 

Moreover, there were situations in which management interventions were registered in a forest 

plot with no identified new canopy gaps, neighbouring a forest plot were large numbers of 

canopy gaps were detected, even though in that forest plot no management interventions were 

registered. It is likely that the forest plot codes were mixed up during management intervention 

registration in this specific situation. 

 The second step of validating the identified new canopy gaps was a field visit of a selection 

of the new canopy gaps. During the field visit, the presence of all of the selected identified new 

canopy gaps was confirmed, which confirms the accuracy of the used canopy gap detection 

method. However, there were canopy gaps observed in the field that were not identified as new 

canopy gaps, or as remaining gaps. This can better be explained by the time interval between 

the acquisition of AHN4 and the field visit than by inaccuracies in the used canopy gap 

detection method. The field visit was conducted three years after the acquisition of AHN4. It is 

highly plausible that new gaps have formed in the visited forest plots in the time interval 

between the acquisition of AHN4 and the field visit.  

4.2.  Influence forest management on canopy gap dynamics 

At the start of the study, it was hypothesized that in managed forest plots, the canopy gaps 

would be larger in area, higher in density, and more regularly shaped compared to canopy gaps 

in unmanaged forest plots (Muscolo et al., 2014; St-Onge et al., 2014). The influence of forest 

management on canopy gap dynamics was first exploratively investigated by labelling the 

identified new canopy gaps with a “number of trees” class. The variables of the new canopy 

gaps per “number of trees” class were statistically analysed, and the presence per “number of 

trees” class in each management type was analysed. Thereafter, the identified new canopy gaps 

in different management types were statistically compared. RF models were used to determine 

which variables were most important to distinguish new canopy gaps in different management 

types. The most important variables were then compared on canopy gap and forest plot level to 

disentangle the influence of forest management, dominant tree species and age on canopy gap 

dynamics. Overall, it could be said that the investigation of forest management on canopy gap 

dynamics revealed that it is possible to derive the influence of different forest conditions on 

canopy gap dynamics by using the AHN. 

4.2.1.  “Number of trees” class comparison 

The classes “one tree” and “group of trees” are overrepresented in managed plots, while the 

class “part of tree” is relatively evenly distributed over the three management type. The class 

“group of trees” was rare in pseudo-unmanaged and unmanaged plots (Table 4). These 

proportions of new canopy gaps in different “number of trees” classes per management type 

indicates the higher new canopy gap size and density in managed plots compared to pseudo-

unmanaged and unmanaged plots. Furthermore, it indicates that pseudo-unmanaged plots have 

a slightly higher new canopy gap size and density compared to unmanaged plots, as the 
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proportional occurrence of the class “group of trees” was higher in pseudo-unmanaged plots 

compared to unmanaged plots. 

 The “number of trees” RF model with all variables included had a total accuracy of 0.853 

(Table 5). The fifteen most important variables in this model were pointcloud shape variables, 

forest plot variables, pointcloud variables and , 2D canopy gap shape variables (Figure 7). The 

planarity of the shape of AHN3 in the new canopy gaps was the most important variable in the 

“number of trees” classification. Planarity of AHN3 is the alignment of points whining a pane, 

before the emergence of the new canopy gap (Dobler et al., 2014). The “one tree” class has the 

lowest planarity. The “one tree” class is overrepresented in managed plots (Table 4), and in 

these managed plots, there is an overrepresentation of coniferous tree species. Coniferous tree 

species have a cone-shaped crown, and this can explain the low planarity of AHN3 in the “one 

tree class” (Liang et al., 2007). Deciduous trees are overrepresented in pseudo-unmanaged and 

unmanaged plots, and because the “part of tree” class had a higher proportional presence in 

these plots compared to the “one tree” class, the more planar shape of a deciduous tree can be 

an explanation for the higher planarity of the “part of tree” class compared to the “one tree” 

class. Continuous areas with multiple trees have a high planarity, and this can explain the 

“group of trees” class has the highest planarity (Dobler et al., 2014).  

 The next most important variables in the “number of trees” RF model were forest plot 

variables, namely the fraction NGCM, gap density, and fraction in gap. For these three 

variables, the classes “one tree” and “group of trees” have higher values compared to the “part 

of tree” class. This can be explained by the overrepresentation of the classes “one tree” and 

“group of trees” in managed plots, and relatively high presence of the “part of tree” class in 

pseudo-unmanaged and unmanaged plots, as the gap density and fraction in gap is higher in 

managed plots compared to pseudo-unmanaged and unmanaged plots (Table 10, Figure 11).  

 Two pointcloud variables are the next most important variables. The percentage of intensity 

returned below the 70th and 90th height percentile is higher in the “part of tree” class compared 

to the classes “one tree” and “group of trees”. This can be explained by the relatively high 

presence of  the “part of tree” class in forest plots with deciduous tree species, and the relatively 

high presence of the classes “one tree” and “group of trees” in forest plots with coniferous 

species. This difference in intensity returned per percentile hight between the “number of trees” 

classes can be explained by the fact that the AHN is acquired during the leaf-off season. In this 

this season, the crown penetration of laser beams is higher in deciduous tree species compared 

to coniferous tree species (Liang et al., 2007). Deciduous tree species can therefore be 

distinguished from coniferous tree species with high precision during the leaf-off season 

(Reitberger et al., 2008).  

 The final most important variables in the “number of trees” classification are 2D shape 

variables derived from the area and perimeter of the new canopy gaps. The area and perimeter 

of the “group of trees” class are significantly larger compared to the other classes. This can be 

explained by the higher number of trees that have disappeared, and therefore new canopy gap 

area, in the “group of trees” class compared to the others. The area of the “one tree” class is 

significantly larger compared to the “part of tree” class, but the perimeter of “one tree” class is 

significantly smaller compared to the “part of tree” class. This suggests that the new canopy 

gaps in the “part of tree” class are more irregular compared to the ones in the “one tree” class. 

New canopy gaps that have emerged due to natural events are generally more irregularly shaped 

compared to gaps that have emerged due to management (St-Onge et al., 2014). As the “part of 

tree” class is proportionally more represented in pseudo-unmanaged and unmanaged plots, this 

can be an explanation why the new canopy gaps of the class “part of tree” are more irregularly 

shaped compared to the ones in the “one tee” class (Table 4).  

 The accuracy of the “number of trees” RF model with only the three most important 

variables included is 0.747, which is 0.109 lower compared to the model with all variables 

included (Table 6). In the selection of three most important variables, 2D shape variables are 
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not included. This makes it harder for the model to distinguish the “part of tree” class from the 

“one tree” class, and thus leads to a relatively low users accuracy of the “part of tree” class 

compared to the RF model with all variables included. 

 A drawback of the “number of trees” classes investigation was that the labelling of the new 

canopy gaps in the different “number of trees” classes was not validated in the field. The results 

of this analysis should therefore be viewed with precaution. Furthermore, in forest plots with 

deciduous species, it was hard to visually recognize individual tree species compared to forest 

plots with coniferous species, as deciduous tree species do not have the same recognizable cone 

shape as coniferous species (Liang et al., 2007). Accordingly, it was harder to determine 

whether in which “number of trees” class a new canopy gap fell in deciduous forest plots 

compared to coniferous plots.  

4.2.2. Disentangling the influence of different forest plot characteristics 

To derive the influence of forest management on canopy gap dynamics, the difference in 

dominant tree species and age class per management type had to be taken into account. The 

conditions in forest plots in different management types in the study area different considerably 

(Figure 1). Therefore, the influence of the difference in conditions between management classes 

first had to be separated from the influence of management to learn the influence of 

management on canopy gap dynamics.  

 The management type RF model with all variables included had a total accuracy of 0.990 

(Table 7). Even though the accuracy of this model on test data was high, 0.986, the model was 

highly overfitted to the study area, which means that this model would perform considerably 

worse on test data outside the study area. However, interesting insights can be still derived from 

this management type RF model, as it shows which variables are most important in the 

classification of identified new canopy gaps in different management types. Of the fifteen most 

important variables in this model, thirteen were forest plot variables, and two were doughnut 

buffer pointcloud variables (Figure  8). 

 The forest plot variable that was most important in the management type RF model was 

the Gini coefficient of the AHN4. The Gini coefficient of CHM4 is significantly higher in 

managed plots compared to pseudo-unmanaged and managed plots (Figure 11). This can be 

interpreted as a higher tree size inequality in managed plots compared to pseudo-unmanaged 

and managed plots, which indicates larger disturbance events (Silva et al., 2019). This finding 

corresponds with the expectation that forest management leads to a higher density of new 

canopy gaps and larger new canopy gap area (Muscolo et al., 2014). Other findings, such as the 

difference in median value of gap density and fraction NoG between the different management 

types are as well in line with this expectation. The observation that forest management led to 

an increased gap density is also an explanation why the distance to the nearest neighbour was 

lower in managed plots compared to pseudo-unmanaged and unmanaged plots (Figure 10 & 

14). It is unlikely that the difference between these forest plot variables are caused by other 

factors than forest management, such as dominant tree species or age class. The influence of 

dominant tree species was tested by comparing the different management types for beech plots 

only, and this comparison revealed that the fraction in gap was highest in managed plots, in-

between in pseudo-unmanaged plots, and lowest in unmanaged plots (Table 12). Moreover, the 

Gini coefficient was highest in managed plots, in-between in pseudo-unmanaged plots, and 

lowest in unmanaged plots. The fraction NoG was lowest in managed plots, in-between in 

pseudo-unmanaged plots, and highest in unmanaged plots (Figure 15). The influence of forest 

plot age on forest plot variables was tested by comparing different age classes. This comparison 

revealed that the fraction in gap and the Gini coefficient decreased with forest plot age. 

Furthermore, the fraction NoG increased with forest plot age (Table 13, Figure 17). These 

findings contrasts with the expectation that the area and density of new canopy gaps increases 

with age (Spies, 1998). However, in the study area, older age classes are overrepresented by 
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pseudo-unmanaged and unmanaged plots, while the younger age classes are overrepresented 

by managed plots. Therefore, the difference in forest plot variables can best be explained by 

management type, instead of dominant tree species or age.  

 Of the in fifteen most important variables in the management type RF model with all 

variables included, two were doughnut buffer pointcloud variables (Figure 8). These variables 

both related to the percentage intensity returned at the xth height percentile. The fifteen most 

important variables in the management type RF model without forest plot variables included 

were all doughnut buffer pointcloud variables. This suggested that the characteristics of the 

pointcloud directly neighbouring the new canopy gaps provided important information for the 

classification in different management types. However, it was found that not forest 

management, but dominant tree species caused this difference in doughnut buffer pointcloud 

variables between different management types. Deciduous species are overrepresented in the 

pseudo-unmanaged and unmanaged class, and coniferous species are overrepresented in the 

managed class, and the crown penetration differs considerably between these two tree types 

(Reitberger et al., 2008). The comparison of management types for only beech revealed that 

there were no significant differences in doughnut buffer pointcloud variables between different 

management classes (Figure 14). The observation that not the difference in management type, 

but the difference in dominant tree species caused the difference in doughnut buffer pointcloud 

variables can be an explanation why the user accuracy for pseudo-unmanaged and unmanaged 

plots is so low in the management type RF model without forest plot variables (Table 9). The 

question remains why the fifteen most important variables in the management type RF model 

without forest plot variables were doughnut buffer pointcloud variables, instead of pointcloud 

variables directly derived from the new canopy gaps. This might be explained by the difference 

in area between the two clips of the pointcloud, as the area of the two doughnut buffers was on 

average larger compared to the new canopy gaps.  

 When investigating the variable importance of the most important variables in the 

management type RF model, it can be observed that the importance of forest plot variables is 

considerably higher compared to doughnut buffer pointcloud variables (Figure 8). The variable 

importance decreased rapidly with decreasing variable importance rank. This finding suggests 

that the difference in forest plot variables between management types is actually caused by 

forest management, while the difference in doughnut buffer pointcloud metrics is caused by 

another factor, specifically dominant tree species. This, and the fact that the total accuracy of 

the management type RF model with only the four most important variables was higher 

compared to the model with all variables included, suggested that the pointcloud variables were 

noise in the classification of new canopy gap in different management types (Table 7 & 8). 

 A significant difference was observed in the mean difference CHM within the new canopy 

gaps between different management types (Figure 10). The mean difference CHM was higher 

in unmanaged plots compared to managed plots. However, it is expected that this difference 

was not caused by the difference in management type, but the difference in age between the 

forest plots in managed and unmanaged plots. With increasing age, the mean CHM3 and CHM4 

increases on forest plot level (Figure 17). This makes sense, as trees grow over time. The older 

age classes are overrepresented in unmanaged plots, while the younger age classes are 

overrepresented in managed plots. It is therefore expected that when a canopy gap emerges in 

an unmanaged plot, the height difference in bigger compared to a new canopy gap in a managed 

plot. 

 The fraction NGBM of new canopy gaps was significantly higher in unmanaged forest 

plots compared to managed plots (Figure 10 & 14). Managed forests are generally described as 

monotone, even-aged stands with no different tree layers, while unmanaged forests are 

described as structured forests with multiple tree layers (Johann, 2006). It is therefore surprising 

that the fraction NGBM is lower in managed compared to unmanaged plots, as the fraction 

NGBM indicates the proportion of new canopy gaps in which no tree layer remains after the 
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canopy gap emergence event (CHM4 ≤ 5 m). A possible explanation for this result is the light 

availability under beech forests. Beech forests are considered to be dominant, climax species 

that can cover 99% of a forest under natural conditions (Feldmann et al., 2018). The light 

availability is low in beech forests, and therefore mature beech forests are associated with a low 

plant species diversity (Ottaviani et al., 2019). Many generalist species are not able to 

regenerate under a closed beech canopy. Even the highly shade tolerant saplings of beech need 

small gaps in the beech canopy to successfully regenerate (Naaf & Wulf, 2007). Consequently, 

in unmanaged, mature beech forests, it is unlikely that there are multiple tree layers in the forest 

structure. Another explanation for the difference in fraction NGBM between managed and 

unmanaged plots could be the influence of herbivory. The herbivory pressure is relatively high 

in the Speulderbos, and herbivory negatively influences beech regeneration, which prevents the 

formation of new tree layers under the mature beech canopy in unmanaged plots (Naaf & Wulf, 

2007). However, the significant difference in fraction NGBM between pseudo-unmanaged and 

managed plots cannot be explained by this reasoning, as these management types are both 

overrepresented by beech. A possible explanation for the lower fraction NGBM in pseudo-

unmanaged plots compared to unmanaged plots could be the girdling management practice in 

pseudo-unmanaged plots. Girdling leads to the slow decay of trees, and during this process, the 

light availability on the ground can increase due to the decay of the crown of the girdled tree. 

With this increased availability of light, a new tree layer could form under the girdled trees.  

 The fraction in gap is higher in pseudo-unmanaged plots compared to unmanaged plots 

(Table 10 & 12). This distance to nearest neighbour is significantly higher in unmanaged forest 

plots compared to pseudo-unmanaged plots (Figure 10 & 14). Even though the difference is not 

statistically significant, the gap density and Gini coefficient median values are higher in pseudo-

unmanaged plots compared to unmanaged plots (Figure 11 & 15). These three observations can 

best explained by the girdling practice in pseudo-unmanaged plots, as the tree species 

composition and age class of pseudo-unmanaged and unmanaged forest plots are similar. 

 The area and perimeter of new canopy gaps did not significantly differ between different 

management types, even though it was expected that in managed plots, the area of new canopy 

gaps would be higher compared to unmanaged gaps (Muscolo et al., 2014). Moreover, it was 

observed that the relative presence of the “number of trees” class “group of trees” was 

considerably larger in managed plots compared to pseudo-unmanaged and unmanaged plots 

(Table 4). There are several factors that could possibly explain this absence of difference in 

area and perimeter between new canopy gaps in different management types. One explanation 

could be thinning operations in managed plots. Thinning operations often lead to the emergence 

of small new canopy gaps with high density (Wilkinson et al., 2016). The number of new 

canopy gaps in managed plots with the class “one tree” is almost twice as high as with the class 

“group of trees” (Table 4). Besides, the beech forests of pseudo-unmanaged and unmanaged 

plots are mature, so in case one tree disappears, a relatively large new gap is formed. 

Furthermore, it was observed in managed plots that small cohorts of young trees were removed 

in a thinning operation, leaving behind a relatively small new canopy gap, but receiving the 

label “group of trees”. Additionally, observations of large clear-cuts and extensive thinning 

operations that led to large consecutive new canopy gaps were rare in the study area.  

4.3.  Recommendations 

This study showed that CHM-based canopy gap detection methods, both the Silva method, the 

Leitold method, and a combination of these methods are suitable to study canopy gap dynamics 

derived from AHN data. The preferred method, or combination of methods, to study canopy 

gap dynamics derived from AHN data depends on the aim of the study. The Silva method 

reveals new canopy gaps in which no tree layer is intact after the canopy gap emergence. 

Besides, the Silva method is able to determine areas in the forest were canopy gaps have 
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remained over time, and were canopy gaps have disappeared. The Leitold method reveals all 

areas in the forest plot where the canopy was considerably lowered. The combination of these 

two method reveals the fractions of new canopy gap in which an intact tree layer is absent or 

present after the canopy gap emergence event. It is recommended that when analysing canopy 

gap dynamics derived from AHN data, especially on a larger spatial scale, to work with CHM-

based canopy gap detection methods. The reasons for this is that ALS data is highly suitable to 

determine canopy height, and the computation time is considerably faster compared to 

pointcloud based methods. Moreover, CHM-based methods are conceptually simple and 

therefore easily interpretable (Brede et al., 2017; Gaulton & Malthus, 2010). In this study, the 

AHN pointclouds were processed to create DEMs and thereby CHMs. Further studies on 

canopy gap dynamics derived from the AHN can consider to directly download the derived 

DEMs from the AHN, depending on the research aim. Pointcloud variables are highly useful to 

discriminate different tree species, but do not provide insights in the differences between 

different management types.  

 The results of this study are influenced by the selected canopy gap thresholds. The 

threshold selection procedure is partly a subjective process, that is highly influenced by the aim 

of the research (Senecal et al., 2018). In further canopy gap dynamics studies with the AHN, 

the thresholds most be critically reviewed, and it must always be considered to what extent the 

set of thresholds fits to the aim of the study. 

 It is recommended that the AHN will be implemented in a monitoring scheme of canopy 

gap dynamic of Dutch forests. There are already four versions of the AHN, and a new version 

is currently under development. It can therefore be expected that the AHN will be regularly 

renewed, also in the future, which makes it possible to continuously monitor Dutch forests 

canopy gap dynamics with the AHN. The results of the validation of the identified new canopy 

gaps in this study revealed that the AHN is a reliable source to detect canopy gaps. The AHN 

is an open data source, and can therefore be implemented in forest monitoring projects without 

the need of large financial investments. This study revealed that the canopy gaps derived from 

the AHN can be used to make in-depth statistical comparisons between different types of forest 

plots. The AHN can therefore be used to study the influence of different factors on canopy gap 

dynamics, with the availability of additional datasets. In this study, data on forest plot level was 

used, but in further studies, data about e.g. land use type, soil type, hydrological conditions, 

nutrient availability or climatic conditions could be used to determine the its influence on 

canopy gap dynamics. 

 For forest terrain owners, the AHN could be used to transparently communicate the 

quantity of removed trees to the public. In the Netherlands, wood removal can be considered to 

be a politically-charged issue. In the current situation, in which terrain owners often do not have 

precise information on were new canopy gaps have emerged, there is little information available 

to the public about wood removal in the forest. The AHN makes it possible for terrain owners 

to fully transparently communicate about wood removal practices in their forests, and that can 

lead an increase in trust from the public (Auger, 2014).   

5. Conclusion 

In this study, it was aimed to uncover the potential of the AHN to study canopy gap dynamics 

by comparing two CHM-based canopy gap detection methods, the Silva and Leitold method, 

and to investigate the influence of forest management on canopy gap dynamics. It was found 

that the Leitold method identified a larger area of new canopy gaps compared to the Silva 

method, and that the Silva method was able to detect more canopy gap dynamics classes 

compared to the Leitold method. The combination of these methods was shown to identify new 

canopy gaps with high accuracy, and led to additional ecological understanding about the 
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identified canopy gaps by providing information about the presence of a forest layer in canopy 

gap after the canopy gap emergence event. The analysis of the influence of forest management 

on the identified new canopy gaps showed that forest management decreased the distance to 

the nearest neighbour, and increased the forest plot gap density. The other differences in new 

canopy gap characteristics between different management types were explained by other factors 

than management, namely the difference in dominant tree species and age of the forest plots in 

different management types in the study area. This study revealed that it is possible to derive 

the influence of different forest conditions on canopy gap dynamics by using the AHN. 
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Disclaimer 

It would have been more appropriate to refer to the canopy gap detection method from two 

separate CHM versions as the Vepakomma method, instead of the Silva method, as 

Vepakomma et al. (2012) developed the method, while Silva et al. (2019) developed an 

implementation of the method in R.  
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Appendices  

Appendix A: Relationship between tree height and diameter (A1), relationship 

between tree height and age (A2), and information per tree species (A3). 

 

A1       A2 

 

A3 

Tree 
species 

Beech Oak Scotch 
pine 

Japanes
e larch 

Douglas 
fir 

Norway 
spruce 

Overall 

Tree height 
at DBH of 5 

cm (m) 

5.15     4.45   4.43     5.90     4.77     4.04      4.86  

Tree height 
growth per 

year (m) 

0.37 0.31 0.32 0.46 0.58 0.41 0.39 

Tree height 
growth per 
3 years (m) 

1.12 0.92 0.97 1.39 1.73 1.24 1.17 

 

The maximum vegetation height threshold was based on the tree height at a DBH of 5 cm. This height 

was determined by taking the intercept of the linear relationship between tree height and DBH. The 

DBH was first subtracted by 5 so that the intercept would be equal to the tree height at a DBH of 5 

cm. The difference between lateral and vertical canopy gap closure was based on the maximal tree 

growth in  three years. The yearly height growth was determined by taking the slope of the linear 

relationship between tree height and age. 
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Appendix B: Map of forest plots and new canopy gaps visited for validation in the 

study area. 

  

The location of ten randomly selected forest plots, five managed and five (pseudo-)unmanaged, and the 

location of identified new canopy gaps that intersect with these forest plots are shown in this map. The 

basemap is a 8 cm resolution areal orthophoto of the study area from the year 2021 provided by PDOK. 

Due to colour differences between different tree species, contours of different forest plots in the study 

area can be observed in this orthophoto. For the location of the study area in the Netherlands, see 

Figure 1. 
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Appendix C: Function sheet of attributes added to the new canopy gap and their 

sources. Function 1-11 were used to determine the 2D shape characteristics of the 

gaps. Function 12 – 15 were used to determine canopy gap characteristics of the forest 

plots 

Number Function Source 

1 
𝐺𝑎𝑝 𝑆ℎ𝑎𝑝𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐺𝑆𝐶𝐼) =  

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

2 ∗ √𝑎𝑟𝑒𝑎 ∗ 𝜋 
 

Bonnet et al. (2015); Patton 

(1975) 

2 
𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

𝑎𝑟𝑒𝑎
 

Bonhomme et al. (2014) 

3 
𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =  

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

4𝜋 ∗ 𝑎𝑟𝑒𝑎
 

http://www.empix.com/ 

NE%20HELP/functions/ 

glossary/ 

morphometric_param.htm 

4 
𝑆ℎ𝑎𝑝𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑆𝐼) =  

4𝜋 ∗ 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 

Demetriou et al. (2013) 

5 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝐹𝐷) =  

2 ∗  ln 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

ln 𝑎𝑟𝑒𝑎
 

Demetriou et al. (2013) 

6 𝐴𝑟𝑒𝑎𝑙 𝐹𝑜𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐴𝐹𝐹) =  
𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 Demetriou et al. (2013) 

7 
𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑡𝑜 𝐸𝑑𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 (𝐼𝐸𝑅) =  

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝑎𝑟𝑒𝑎
 

Blackburn and Milton (1996) 

8 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =  
𝑎𝑟𝑒𝑎

𝑎𝑟𝑒𝑎 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙
 Bonhomme et al. (2014) 

9 
𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =  

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

Bonhomme et al. (2014) 

10 
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝐸𝐶𝐷) = 2 ∗ √

𝑎𝑟𝑒𝑎

𝜋
 

http://www.empix.com/ 

NE%20HELP/functions/ 

glossary/ 

morphometric_param.htm 

11 
𝐸𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 (𝐸𝑆𝑉) =  

4

3
 ∗  𝜋 ∗  √

𝑎𝑟𝑒𝑎

𝜋

3

 
http://www.empix.com/ 

NE%20HELP/functions/ 

glossary/ 

morphometric_param.htm 

12 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐼𝑛 𝐺𝑎𝑝 (𝑃𝐼𝐺) =  

∑ 𝑎𝑟𝑒𝑎 𝑛𝑒𝑤 𝑔𝑎𝑝𝑠 𝑖𝑛 𝑝𝑙𝑜𝑡

𝑎𝑟𝑒𝑎 𝑝𝑙𝑜𝑡
∗ 100 

Blackburn and Milton (1996) 

13 
𝐺𝑎𝑝 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐺𝐷) =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑛𝑒𝑤 𝑔𝑎𝑝𝑠 𝑖𝑛 𝑝𝑙𝑜𝑡

𝑎𝑟𝑒𝑎 𝑝𝑙𝑜𝑡
∗ 100 

Blackburn and Milton (1996) 

14 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥(𝐷𝐼)

= 2 ∗ √𝐺𝐷 ∗ 
𝜇 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑒𝑤 𝑔𝑎𝑝𝑠 𝑖𝑛 𝑝𝑙𝑜𝑡 

10
 

Blackburn and Milton (1996) 

15 
𝐶𝑎𝑛𝑜𝑝𝑦 𝐸𝑑𝑔𝑒 (𝐶𝐸) =  

∑ 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑛𝑒𝑤 𝑔𝑎𝑝𝑠 𝑖𝑛 𝑝𝑙𝑜𝑡

∑ 𝑎𝑟𝑒𝑎 𝑛𝑒𝑤 𝑔𝑎𝑝𝑠 𝑖𝑛 𝑝𝑙𝑜𝑡
∗ 100 

Blackburn and Milton (1996) 
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Appendix D: variable importance of the 5 RF models. For model 2 and 4, the 

difference between the classes per important variable is shown. 

D1: “number of trees” model with all variables included 

variable importance 
shape_AHN3_planarity 127.948198 
shape_AHN3_linearity 98.3953374 
ForestPlot_fraq_NGLM 77.9449865 
ForestPlot_GD 51.5250249 
shape_AHN3_eigen_medium 40.5939026 
ForestPlot_PIG 36.3068979 
ipcumzq90_AHN3 25.0343279 
ipcumzq70_AHN3 20.234873 
shape_IER 16.9803963 
shape_FD 14.3488342 
shape_AFF 12.6700546 
shape_roundness 11.3660621 
shape_GSCI 10.692241 
shape_circularity 8.72628288 
shape_SI 8.71340607 
n_AHN3 7.73742527 
Buffer5m_ipcumzq70_AHN4 7.03703061 
shape_solidity 6.57620625 
shape_convexity 6.3862045 
itot_AHN3 6.31906003 
zq45_AHN3 5.85037072 
Buffer10m_area_AHN3 5.28643964 
pzabove2_AHN3 5.27180717 
shape_ESV 4.84058941 
Buffer5m_area_AHN3 4.67250968 
area_AHN3 4.50790004 
zq40_AHN3 4.41349829 
shape_ECD 4.23391063 
shape_area 4.05181388 
shape_AHN3_eigen_smallest 3.93134472 
Buffer10m_zpcum9_AHN3 3.91654528 
Buffer5m_area_AHN4 3.91220745 
itot_AHN4 3.73880487 
Buffer5m_itot_AHN4 3.45457418 
ForestPlot_mean_CHM4 3.43209419 
Buffer10m_area_AHN4 3.3465539 
gini_CHM3 3.21498333 
zq20_AHN3 3.03271761 
pground_AHN3 3.02346436 
zq50_AHN3 2.93040263 
Buffer10m_ipcumzq30_AHN4 2.92089571 
buffer10m_overlap_relative 2.91901108 
zpcum1_AHN3 2.85658736 
zpcum8_AHN3 2.82068396 
ForestPlot_gini_CHM3 2.66333272 
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Buffer5m_n_AHN3 2.60212854 
p2th_AHN3 2.52085907 
shape_AHN3_sphericity 2.50899028 
ForestPlot_gini_CHM4 2.48375264 
ForestPlot_fraq_NoG 2.48021766 
area_AHN4 2.47871828 
Buffer5m_zpcum9_AHN3 2.4566476 
Buffer10m_ipcumzq90_AHN4 2.43257094 
ipground_AHN3 2.39785353 
Buffer10m_ipcumzq70_AHN4 2.36238456 
ForestPlot_mean_CHM3 2.36087724 
Buffer10m_ipcumzq10_AHN4 2.35718198 
zpcum7_AHN3 2.34667201 
shape_AHN3_curvature 2.34291652 
zskew_AHN3 2.33821482 
shape_AHN4_eigen_smallest 2.32598327 
Buffer10m_imean_AHN3 2.30908989 
Buffer5m_ipcumzq90_AHN3 2.28096124 
Buffer5m_p4th_AHN4 2.27335009 
Buffer10m_ipcumzq90_AHN3 2.25431884 
Buffer10m_n_AHN3 2.20643416 
shape_AHN3_anisotropy 2.18508661 
pzabovezmean_AHN3 2.17966568 
zq15_AHN3 2.17942794 
zq35_AHN3 2.15678782 
Buffer5m_zpcum9_AHN4 2.12507823 
Buffer5m_p3th_AHN4 2.09304326 
zpcum6_AHN3 2.06046171 
ipcumzq30_AHN4 2.03812982 
zq25_AHN3 2.03095982 
Buffer5m_p5th_AHN4 2.01399802 
shape_perimeter 1.99668512 
shape_AHN3_horizontality 1.9901801 
ForestPlot_fraq_DG 1.97923698 
Buffer5m_n_AHN4 1.94377163 
Buffer10m_p5th_AHN4 1.92623003 
ipcumzq10_AHN4 1.92092183 
sd_CHM3 1.89254521 
Buffer10m_zpcum9_AHN4 1.87595549 
iskew_AHN3 1.87193167 
zpcum9_AHN3 1.86731481 
Buffer5m_imean_AHN4 1.85807522 
p5th_AHN4 1.84465799 
Buffer10m_p4th_AHN4 1.84185362 
ForestPlot_max_CHM3 1.81389678 
ipcumzq50_AHN3 1.7950297 
Buffer10m_p5th_AHN3 1.78159564 
imax_AHN4 1.77395396 
ForestPlot_fraq_NGBM 1.75235737 
Buffer5m_p1th_AHN4 1.75077535 
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Buffer5m_imean_AHN3 1.74662439 
shape_AHN4_eigen_medium 1.72884107 
Buffer5m_ipcumzq90_AHN4 1.72142041 
ipcumzq10_AHN3 1.70680402 
ForestPlot_max_CHM4 1.69589384 
Buffer5m_p2th_AHN3 1.69549791 
ForestPlot_fraq_VC 1.69515379 
mean_CHMdiv 1.68749069 
Buffer5m_zpcum7_AHN4 1.66460073 
Buffer10m_itot_AHN3 1.64081887 
Buffer10m_ipcumzq50_AHN4 1.62320427 
Buffer5m_itot_AHN3 1.61141122 
zq55_AHN3 1.60920381 
Buffer10m_zpcum8_AHN4 1.5935395 
Buffer10m_zpcum8_AHN3 1.58610794 
max_CHMdiv 1.5855236 
ForestPlot_range_CHM3 1.57344468 
Buffer10m_p3th_AHN4 1.55759085 
isd_AHN3 1.55453053 
n_AHN4 1.55138316 
Buffer5m_zpcum8_AHN3 1.55101128 
zq75_AHN3 1.5288247 
min_CHM4 1.50299323 
zq65_AHN3 1.48757924 
shape_AHN4_anisotropy 1.48696417 
ForestPlot_range_CHM4 1.47543652 
shape_AHN4_linearity 1.47372079 
ForestPlot_DI 1.46572158 
ForestPlot_CE 1.45130619 
ikurt_AHN4 1.44260855 
shape_AHN4_sphericity 1.43725761 
shape_AHN4_curvature 1.42405572 
Buffer10m_zq95_AHN3 1.42209684 
Buffer10m_zsd_AHN3 1.41923532 
Buffer5m_zsd_AHN3 1.38222795 
ForestPlot_max_CHMdiv 1.38093118 
Buffer10m_itot_AHN4 1.37306062 
ForestPlot_sd_CHM4 1.36364182 
Buffer5m_ipcumzq70_AHN3 1.35957848 
min_CHM3 1.35086621 
dist_nn 1.34541783 
ikurt_AHN3 1.34097812 
Buffer5m_ipcumzq10_AHN4 1.33715171 
shape_AHN4_planarity 1.326976 
Buffer5m_ipcumzq50_AHN3 1.32120925 
Buffer10m_p2th_AHN3 1.31201441 
imax_AHN3 1.29908301 
isd_AHN4 1.28980522 
Buffer5m_ikurt_AHN4 1.2876984 
Buffer10m_n_AHN4 1.26554315 
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ipcumzq90_AHN4 1.26364899 
zpcum2_AHN3 1.26322896 
ipcumzq50_AHN4 1.25244235 
Buffer10m_imax_AHN4 1.2508898 
range_CHM3 1.2327257 
imean_AHN4 1.23072552 
Buffer5m_ipcumzq30_AHN4 1.22359198 
ipcumzq30_AHN3 1.22180428 
ForestPlot_min_CHMdiv 1.21320245 
Buffer10m_isd_AHN3 1.21099952 
p3th_AHN3 1.20717653 
zq60_AHN3 1.20472558 
zpcum9_AHN4 1.20089878 
Buffer10m_zmax_AHN3 1.20013643 
Buffer5m_isd_AHN3 1.18613402 
gini_CHM4 1.18275299 
Buffer10m_iskew_AHN4 1.18124619 
ForestPlot_fraq_RG 1.16684223 
p4th_AHN4 1.16222592 
zq70_AHN3 1.1539547 
p1th_AHN4 1.14209484 
Buffer10m_zq5_AHN4 1.13659843 
Buffer5m_imax_AHN4 1.13547047 
shape_AHN4_horizontality 1.13282878 
ForestPlot_sd_CHMdiv 1.12967636 
zq30_AHN3 1.12159594 
Buffer5m_iskew_AHN4 1.12128873 
zq10_AHN3 1.11603369 
Buffer10m_zpcum7_AHN4 1.10926798 
Buffer5m_zpcum6_AHN4 1.10276673 
Buffer10m_ipcumzq10_AHN3 1.10199334 
Buffer10m_zkurt_AHN3 1.09612631 
imean_AHN3 1.0939305 
Buffer10m_zmax_AHN4 1.09369326 
ForestPlot_range_CHMdiv 1.08229892 
Buffer5m_iskew_AHN3 1.07568753 
p2th_AHN4 1.0756579 
Buffer10m_zpcum7_AHN3 1.06696949 
Buffer10m_p1th_AHN4 1.05714956 
ipcumzq70_AHN4 1.05609485 
Buffer10m_imean_AHN4 1.04358534 
Buffer10m_isd_AHN4 1.04258785 
Buffer10m_zkurt_AHN4 1.0388525 
shape_AHN3_eigen_largest 1.03703002 
Buffer5m_zpcum1_AHN4 1.02473451 
Buffer5m_p3th_AHN3 1.02236741 
Buffer5m_isd_AHN4 1.01650969 
Buffer5m_ipcumzq30_AHN3 1.01354264 
Buffer5m_zskew_AHN4 1.01333626 
zpcum3_AHN3 1.00587353 
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mean_CHM4 1.00309574 
zpcum5_AHN3 1.00308048 
Buffer5m_zpcum8_AHN4 0.97643345 
zq80_AHN3 0.97181266 
Buffer5m_imax_AHN3 0.96870352 
Buffer5m_zpcum1_AHN3 0.95161365 
Buffer5m_zq5_AHN4 0.94607547 
Buffer5m_zpcum2_AHN4 0.94420648 
zsd_AHN3 0.94306775 
iskew_AHN4 0.9421904 
Buffer10m_zq85_AHN3 0.94100351 
Buffer5m_ipcumzq50_AHN4 0.94054832 
fraq_NGBM 0.9387121 
zq90_AHN3 0.93732285 
p1th_AHN3 0.93380946 
Buffer10m_p2th_AHN4 0.93152068 
Buffer5m_zpcum7_AHN3 0.93113963 
Buffer5m_pzabovezmean_AHN3 0.92776364 
zq5_AHN4 0.92514609 
p3th_AHN4 0.92413703 
zq10_AHN4 0.92180201 
ForestPlot_gini_CHMdiv 0.91582612 
buffer5m_overlap_relative 0.90462387 
p5th_AHN3 0.89486006 
Buffer10m_zpcum6_AHN4 0.88589476 
ForestPlot_mean_CHMdiv 0.87775405 
Buffer5m_ipcumzq10_AHN3 0.87356047 
gini_CHMdiv 0.87216838 
fraq_NGLM 0.86829543 
zmean_AHN3 0.85881785 
Buffer5m_zpcum4_AHN4 0.85034799 
zq15_AHN4 0.84692001 
Buffer10m_ipcumzq30_AHN3 0.84282691 
zkurt_AHN3 0.83848154 
zq5_AHN3 0.83670941 
zpcum4_AHN3 0.82785395 
Buffer5m_zpcum5_AHN4 0.8253135 
Buffer5m_zkurt_AHN4 0.81785514 
ipground_AHN4 0.81340488 
zq85_AHN3 0.81241653 
Buffer10m_imax_AHN3 0.810855 
Buffer10m_p4th_AHN3 0.80822247 
Buffer10m_p1th_AHN3 0.806413 
Buffer5m_zpcum6_AHN3 0.80098713 
Buffer10m_zpcum4_AHN3 0.80082524 
Buffer5m_zkurt_AHN3 0.79551489 
Buffer5m_zmax_AHN3 0.79349774 
Buffer10m_ikurt_AHN4 0.78797621 
Buffer5m_zq20_AHN3 0.786856 
ForestPlot_sd_CHM3 0.78087838 
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Buffer5m_pzabove2_AHN4 0.77861807 
Buffer10m_zq90_AHN3 0.77678813 
mean_CHM3 0.77530626 
Buffer10m_zq80_AHN3 0.76905192 
Buffer10m_ikurt_AHN3 0.76785408 
Buffer5m_ipground_AHN4 0.76695945 
ForestPlot_fraq_NGSM 0.76397651 
Buffer5m_zpcum5_AHN3 0.74950249 
Buffer10m_pzabovezmean_AHN3 0.74759078 
Buffer5m_zq35_AHN4 0.74669704 
zq80_AHN4 0.74633814 
Buffer10m_zpcum4_AHN4 0.73987582 
pzabovezmean_AHN4 0.73835266 
Buffer5m_ikurt_AHN3 0.73820213 
Buffer5m_p2th_AHN4 0.73446934 
Buffer10m_ipcumzq50_AHN3 0.73434331 
Buffer10m_zpcum2_AHN4 0.72636325 
sd_CHMdiv 0.72633578 
Buffer5m_p5th_AHN3 0.72607609 
range_CHMdiv 0.72538516 
zq60_AHN4 0.72408007 
zq50_AHN4 0.71573106 
Buffer5m_ipground_AHN3 0.71554355 
zpcum7_AHN4 0.71371851 
Buffer10m_zpcum1_AHN3 0.70742705 
zq70_AHN4 0.70738724 
ForestPlot_min_CHM3 0.70347997 
zq25_AHN4 0.69638524 
Buffer10m_zpcum5_AHN4 0.6958159 
Buffer10m_ipcumzq70_AHN3 0.69276903 
Buffer5m_zq10_AHN4 0.6870136 
Buffer10m_zpcum1_AHN4 0.68028937 
Buffer5m_pground_AHN3 0.67485884 
zpcum8_AHN4 0.67374505 
Buffer5m_zq10_AHN3 0.66726369 
Buffer10m_zskew_AHN4 0.66319923 
Buffer5m_pzabovezmean_AHN4 0.65259902 
Buffer10m_zpcum5_AHN3 0.65217348 
zq20_AHN4 0.64993574 
p4th_AHN3 0.64421926 
Buffer5m_zskew_AHN3 0.64374434 
Buffer10m_p3th_AHN3 0.63908399 
Buffer10m_zq10_AHN3 0.63856998 
Buffer5m_zmax_AHN4 0.63602455 
zpcum4_AHN4 0.62255146 
Buffer5m_zq5_AHN3 0.61950353 
Buffer10m_zq75_AHN3 0.61898985 
Buffer5m_zq25_AHN3 0.61378709 
min_CHMdiv 0.61113966 
shape_AHN4_eigen_largest 0.60276591 



 

 

70 

Buffer10m_iskew_AHN3 0.60204281 
Buffer10m_zpcum6_AHN3 0.60031288 
Buffer5m_zq95_AHN3 0.59893201 
Buffer5m_zq30_AHN4 0.59538475 
Buffer5m_zpcum3_AHN4 0.59292019 
zq35_AHN4 0.58655584 
Buffer10m_zq20_AHN3 0.58446724 
zq40_AHN4 0.58280442 
Buffer5m_zq20_AHN4 0.57689316 
Buffer5m_zpcum4_AHN3 0.57444174 
ForestPlot_fraq_RGCM 0.5709781 
sd_CHM4 0.56528033 
zkurt_AHN4 0.56288483 
Buffer5m_p4th_AHN3 0.55989473 
zq75_AHN4 0.55984114 
zq90_AHN4 0.55455922 
zq95_AHN4 0.55447891 
zq45_AHN4 0.5522119 
max_CHM3 0.55202064 
Buffer5m_p1th_AHN3 0.54932934 
Buffer10m_ipground_AHN3 0.54929219 
Buffer5m_zq50_AHN4 0.54812923 
Buffer5m_pground_AHN4 0.54260779 
Buffer10m_zpcum2_AHN3 0.54216112 
Buffer10m_zq40_AHN3 0.53958501 
Buffer10m_zq95_AHN4 0.53561738 
Buffer10m_zmean_AHN4 0.53485837 
Buffer10m_zq5_AHN3 0.53137845 
Buffer10m_pzabovezmean_AHN4 0.53063232 
zq85_AHN4 0.52925777 
Buffer10m_zq30_AHN3 0.52906716 
Buffer10m_zq10_AHN4 0.5249089 
Buffer5m_zq90_AHN3 0.52461842 
zmax_AHN4 0.51933095 
Buffer10m_pground_AHN3 0.51885487 
zpcum5_AHN4 0.51829765 
Buffer10m_zpcum3_AHN3 0.51727121 
zsd_AHN4 0.50946097 
Buffer10m_zq15_AHN4 0.50555165 
Buffer5m_zpcum3_AHN3 0.50480131 
zpcum1_AHN4 0.50224373 
Buffer5m_zpcum2_AHN3 0.50092287 
max_CHM4 0.49601972 
zmean_AHN4 0.48839234 
Buffer10m_zq25_AHN3 0.48766088 
Buffer10m_ipground_AHN4 0.48495566 
zq65_AHN4 0.48247812 
Buffer10m_zq60_AHN3 0.47928847 
Buffer10m_zpcum3_AHN4 0.47774579 
Buffer10m_zskew_AHN3 0.47670481 
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Buffer10m_zq60_AHN4 0.47025284 
pground_AHN4 0.46874146 
ForestPlot_min_CHM4 0.46666226 
Buffer10m_zq35_AHN3 0.46599435 
Buffer5m_zq75_AHN4 0.46060212 
Buffer5m_pzabove2_AHN3 0.46037825 
Buffer5m_zq40_AHN4 0.45631752 
Buffer10m_zsd_AHN4 0.45573726 
zq95_AHN3 0.45119844 
Buffer5m_zq95_AHN4 0.44827275 
Buffer5m_zmean_AHN4 0.43894659 
Buffer10m_zq15_AHN3 0.43532649 
range_CHM4 0.43521902 
Buffer10m_zq20_AHN4 0.43220925 
Buffer10m_zq65_AHN3 0.43117204 
zpcum6_AHN4 0.42989286 
zskew_AHN4 0.42668643 
zq30_AHN4 0.42065244 
Buffer10m_pzabove2_AHN3 0.41919552 
zpcum2_AHN4 0.41833615 
zq55_AHN4 0.41613521 
Buffer5m_zq15_AHN3 0.41609845 
Buffer10m_zq45_AHN4 0.41384856 
Buffer10m_zq45_AHN3 0.41209971 
Buffer5m_zq50_AHN3 0.41061621 
zmax_AHN3 0.41007936 
pzabove2_AHN4 0.40994574 
Buffer5m_zq30_AHN3 0.40283812 
Buffer10m_zq70_AHN3 0.38943782 
Buffer10m_pground_AHN4 0.38631089 
Buffer5m_zq65_AHN4 0.38623269 
Buffer5m_zq85_AHN3 0.38327931 
Buffer5m_zsd_AHN4 0.38214981 
Buffer5m_zq60_AHN4 0.38207058 
Buffer10m_zq40_AHN4 0.37167624 
Buffer5m_zq45_AHN3 0.37163237 
Buffer5m_zq35_AHN3 0.36516017 
Buffer5m_zq80_AHN3 0.36215561 
Buffer5m_zq55_AHN3 0.35212878 
Buffer5m_zq25_AHN4 0.35065729 
Buffer5m_zq80_AHN4 0.34727629 
Buffer10m_zq90_AHN4 0.34720515 
zpcum3_AHN4 0.34690035 
Buffer10m_zq35_AHN4 0.34589447 
Buffer10m_zq50_AHN4 0.34551372 
Buffer5m_zq55_AHN4 0.33468703 
Buffer5m_zq70_AHN4 0.33128757 
Buffer5m_zmean_AHN3 0.32870517 
Buffer5m_zq90_AHN4 0.32360288 
Buffer10m_zq30_AHN4 0.31382198 
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Buffer5m_zq45_AHN4 0.30689962 
Buffer10m_zq65_AHN4 0.30658182 
Buffer10m_zq55_AHN3 0.30625429 
Buffer10m_zq70_AHN4 0.30477834 
Buffer10m_zq85_AHN4 0.29438566 
Buffer5m_zq15_AHN4 0.29229573 
Buffer10m_zmean_AHN3 0.29116139 
Buffer10m_zq50_AHN3 0.28603149 
Buffer10m_zq55_AHN4 0.2851455 
Buffer5m_zq65_AHN3 0.27585743 
Buffer5m_zq40_AHN3 0.26210126 
Buffer10m_zq25_AHN4 0.24417661 
Buffer5m_zq85_AHN4 0.23747181 
Buffer10m_pzabove2_AHN4 0.22936846 
Buffer10m_zq80_AHN4 0.22083158 
Buffer5m_zq60_AHN3 0.21378557 
Buffer5m_zq70_AHN3 0.20903902 
Buffer10m_zq75_AHN4 0.20456607 
Buffer5m_zq75_AHN3 0.18563211 
fraq_RGCM 0.17962385 
fraq_NGSM 0.16860162 

 

D2: “number of trees” model with only the most important variables included 

variable importance 
shape_AHN3_planarity 556.540363 
ForestPlot_fraq_NGLM 239.952029 
ForestPlot_GD 225.632386 
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D3: management type model with all variables included 

variable importance 
ForestPlot_gini_CHM4 152.787068 
ForestPlot_fraq_NoG 41.0123291 
ForestPlot_fraq_NGLM 28.8188507 
ForestPlot_GD 19.2906064 
ForestPlot_fraq_VC 13.2442281 
ForestPlot_mean_CHMdiv 12.970866 
ForestPlot_fraq_NGBM 12.4378948 
ForestPlot_mean_CHM3 11.4290351 
ForestPlot_gini_CHMdiv 7.28968015 
ForestPlot_mean_CHM4 7.10472603 
Buffer10m_ipcumzq30_AHN4 6.0811985 
ForestPlot_sd_CHM4 4.72298554 
ForestPlot_fraq_NGSM 4.3393727 
Buffer5m_ipcumzq70_AHN4 3.77832042 
Buffer10m_ipcumzq70_AHN3 3.77429692 
Buffer10m_zq50_AHN4 3.04711779 
ForestPlot_PIG 2.89526537 
ForestPlot_gini_CHM3 2.80262763 
Buffer10m_zmean_AHN4 2.72996115 
Buffer10m_zpcum1_AHN3 2.66822777 
Buffer10m_zkurt_AHN3 2.49311953 
ForestPlot_range_CHMdiv 2.19920225 
ForestPlot_max_CHMdiv 2.12591713 
ForestPlot_min_CHMdiv 2.04619712 
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ForestPlot_min_CHM3 1.91993739 
ForestPlot_max_CHM3 1.88596445 
Buffer5m_ipcumzq90_AHN3 1.85970309 
Buffer10m_zpcum3_AHN4 1.83594842 
ForestPlot_range_CHM4 1.68442119 
Buffer10m_ipcumzq70_AHN4 1.63789337 
ForestPlot_min_CHM4 1.58748598 
ForestPlot_max_CHM4 1.4875399 
ForestPlot_range_CHM3 1.48508054 
ForestPlot_sd_CHMdiv 1.43461776 
Buffer10m_ipcumzq90_AHN4 1.27333711 
Buffer10m_zpcum1_AHN4 1.25891973 
Buffer10m_ipcumzq90_AHN3 1.24570201 
ForestPlot_fraq_RG 1.16551264 
Buffer10m_ipcumzq50_AHN3 1.15878451 
ForestPlot_fraq_DG 1.01718996 
Buffer5m_ipcumzq70_AHN3 1.00564038 
Buffer5m_zpcum8_AHN3 0.9208675 
ipcumzq50_AHN3 0.89006136 
Buffer10m_zq45_AHN4 0.88213307 
Buffer10m_p3th_AHN3 0.87390598 
Buffer5m_zpcum9_AHN4 0.87251651 
Buffer10m_zpcum9_AHN3 0.77768254 
ForestPlot_fraq_RGCM 0.75772763 
Buffer5m_zkurt_AHN3 0.75761698 
Buffer10m_ipcumzq50_AHN4 0.75628635 
Buffer5m_pzabovezmean_AHN4 0.73910683 
Buffer10m_zpcum9_AHN4 0.71932648 
ForestPlot_sd_CHM3 0.69546648 
ipcumzq70_AHN3 0.67421668 
Buffer10m_pground_AHN3 0.64477239 
p2th_AHN3 0.5140113 
Buffer10m_ipcumzq10_AHN4 0.50293877 
Buffer5m_p3th_AHN3 0.43765663 
imean_AHN3 0.42842577 
Buffer10m_imax_AHN3 0.41980813 
Buffer10m_p2th_AHN4 0.41134192 
gini_CHM4 0.40718749 
shape_AHN4_planarity 0.30348034 
Buffer5m_zpcum9_AHN3 0.29160027 
shape_AHN4_eigen_medium 0.28919737 
Buffer5m_zpcum2_AHN4 0.28486227 
Buffer5m_ipcumzq50_AHN4 0.2806899 
Buffer10m_isd_AHN3 0.27901486 
ipcumzq90_AHN3 0.27682906 
Buffer10m_zpcum3_AHN3 0.26634898 
pzabovezmean_AHN3 0.26573182 
ipcumzq90_AHN4 0.2632257 
Buffer5m_zq45_AHN4 0.25404966 
Buffer10m_zpcum2_AHN3 0.25161366 
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Buffer5m_imax_AHN4 0.25019533 
Buffer5m_zq30_AHN3 0.24986247 
Buffer10m_zkurt_AHN4 0.24596231 
dist_nn 0.23768351 
Buffer5m_p1th_AHN3 0.22959026 
Buffer5m_ipcumzq90_AHN4 0.22416675 
Buffer10m_n_AHN3 0.20974149 
Buffer10m_imax_AHN4 0.19428831 
ipground_AHN3 0.19207246 
Buffer5m_ipcumzq10_AHN4 0.18347242 
Buffer10m_zskew_AHN4 0.18239564 
Buffer10m_itot_AHN3 0.17510876 
ipcumzq10_AHN4 0.17449835 
Buffer10m_zq25_AHN3 0.1654139 
p2th_AHN4 0.16236202 
Buffer10m_p3th_AHN4 0.1578656 
isd_AHN3 0.15761111 
Buffer5m_zpcum1_AHN3 0.15728321 
Buffer5m_ipcumzq50_AHN3 0.15581033 
pzabove2_AHN3 0.14855486 
Buffer10m_pzabovezmean_AHN4 0.14733101 
Buffer10m_p4th_AHN4 0.14606978 
Buffer10m_zq55_AHN4 0.14092842 
Buffer5m_zpcum3_AHN4 0.13478713 
Buffer10m_p1th_AHN4 0.13373749 
Buffer10m_p1th_AHN3 0.13336271 
Buffer10m_zmax_AHN3 0.12884369 
Buffer5m_zpcum5_AHN4 0.12811519 
Buffer5m_ipcumzq30_AHN4 0.12754118 
Buffer10m_ipcumzq10_AHN3 0.12425962 
Buffer5m_p3th_AHN4 0.1182395 
sd_CHM3 0.1177501 
Buffer5m_imax_AHN3 0.11657124 
Buffer10m_n_AHN4 0.11400616 
Buffer5m_p4th_AHN4 0.11338091 
Buffer10m_zsd_AHN3 0.10759444 
zq60_AHN4 0.10417568 
Buffer5m_imean_AHN4 0.10288273 
Buffer5m_n_AHN3 0.10164893 
Buffer10m_zq5_AHN4 0.09894308 
Buffer5m_isd_AHN4 0.09800963 
p1th_AHN4 0.09457641 
Buffer10m_zpcum7_AHN3 0.0941914 
Buffer5m_p2th_AHN3 0.09326959 
Buffer10m_isd_AHN4 0.09317415 
gini_CHM3 0.09284786 
shape_AHN4_linearity 0.09127044 
Buffer10m_zq10_AHN4 0.0910562 
zmax_AHN4 0.09083698 
Buffer5m_imean_AHN3 0.08856818 
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p3th_AHN4 0.08721756 
zskew_AHN4 0.08677786 
Buffer5m_zq80_AHN3 0.08529279 
Buffer5m_ikurt_AHN3 0.08450426 
Buffer5m_zmax_AHN3 0.08417154 
zsd_AHN3 0.08231293 
Buffer5m_zq70_AHN3 0.08099194 
Buffer5m_zq75_AHN3 0.08093124 
Buffer10m_p5th_AHN4 0.08085398 
Buffer10m_zq95_AHN4 0.08051986 
fraq_NGBM 0.08001246 
ipcumzq30_AHN3 0.07875656 
Buffer10m_pzabovezmean_AHN3 0.07823897 
Buffer5m_zq5_AHN3 0.07789409 
Buffer10m_zq15_AHN4 0.07773953 
Buffer10m_zpcum6_AHN4 0.07755622 
zq15_AHN3 0.07701139 
Buffer10m_zq95_AHN3 0.07609408 
shape_ECD 0.07557834 
Buffer10m_zq90_AHN3 0.07550676 
Buffer10m_zmax_AHN4 0.07525666 
Buffer5m_zq90_AHN4 0.07455344 
Buffer10m_zq50_AHN3 0.07305927 
Buffer10m_iskew_AHN4 0.07268213 
iskew_AHN3 0.07234058 
ikurt_AHN4 0.07165046 
imax_AHN4 0.07134073 
Buffer5m_zpcum8_AHN4 0.07129287 
Buffer5m_zsd_AHN3 0.07100317 
shape_IER 0.06912369 
zq95_AHN4 0.06832716 
Buffer10m_p2th_AHN3 0.06743773 
zsd_AHN4 0.06707778 
Buffer5m_p5th_AHN4 0.06690748 
Buffer10m_zpcum8_AHN3 0.06582222 
shape_AHN4_anisotropy 0.06555042 
Buffer5m_area_AHN4 0.06533824 
shape_AHN3_horizontality 0.06531875 
Buffer10m_itot_AHN4 0.06528374 
Buffer10m_zpcum7_AHN4 0.06483358 
p3th_AHN3 0.06407013 
shape_AHN3_eigen_smallest 0.06396419 
Buffer10m_zpcum4_AHN4 0.06359307 
zq65_AHN3 0.0635917 
Buffer5m_ipcumzq10_AHN3 0.06351485 
Buffer5m_itot_AHN4 0.06323898 
Buffer10m_zq85_AHN3 0.06320998 
Buffer10m_zq85_AHN4 0.06279192 
Buffer10m_zq75_AHN3 0.06258246 
itot_AHN3 0.06198711 
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Buffer10m_zpcum5_AHN3 0.06188015 
Buffer10m_p4th_AHN3 0.06143377 
zq5_AHN3 0.0610873 
p1th_AHN3 0.06089708 
zq70_AHN3 0.06020284 
Buffer10m_zq5_AHN3 0.05968118 
zmean_AHN4 0.05956752 
shape_AHN3_curvature 0.05897133 
zkurt_AHN3 0.05857733 
Buffer10m_imean_AHN3 0.05843788 
Buffer10m_ipcumzq30_AHN3 0.05823824 
zq65_AHN4 0.05797143 
Buffer10m_iskew_AHN3 0.05680996 
Buffer5m_zq40_AHN4 0.0567919 
Buffer5m_ikurt_AHN4 0.05645103 
isd_AHN4 0.05630635 
Buffer10m_ipground_AHN3 0.05580988 
zpcum6_AHN3 0.05554944 
Buffer10m_p5th_AHN3 0.0548435 
iskew_AHN4 0.05469915 
zq80_AHN3 0.05404737 
zq50_AHN4 0.05392338 
Buffer5m_zpcum6_AHN3 0.05378279 
n_AHN4 0.05280556 
pground_AHN3 0.0524514 
Buffer5m_zq10_AHN4 0.0519974 
Buffer5m_itot_AHN3 0.05179204 
Buffer10m_zq30_AHN3 0.05076709 
shape_ESV 0.0505477 
shape_AHN4_sphericity 0.05011666 
shape_perimeter 0.04984747 
imean_AHN4 0.04980348 
Buffer5m_zpcum2_AHN3 0.04919888 
Buffer10m_area_AHN4 0.04842358 
shape_FD 0.04817487 
Buffer5m_zq20_AHN4 0.04762069 
zq90_AHN3 0.04723725 
Buffer5m_zq90_AHN3 0.04696785 
shape_solidity 0.04555145 
shape_SI 0.04554762 
Buffer10m_ikurt_AHN3 0.04534478 
shape_AHN3_linearity 0.04528581 
shape_AHN3_anisotropy 0.04525585 
zpcum8_AHN4 0.04515368 
p4th_AHN3 0.04513548 
Buffer5m_zskew_AHN3 0.04500611 
zq15_AHN4 0.04480938 
shape_AFF 0.04471661 
zpcum6_AHN4 0.04464649 
zpcum3_AHN3 0.04464169 
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zpcum7_AHN3 0.04431875 
shape_AHN4_eigen_smallest 0.04428437 
Buffer10m_zpcum6_AHN3 0.04423312 
Buffer10m_zq90_AHN4 0.04399841 
Buffer10m_zq15_AHN3 0.04358795 
Buffer5m_zq35_AHN3 0.04350739 
zpcum9_AHN4 0.04344636 
Buffer10m_zpcum8_AHN4 0.0433536 
zkurt_AHN4 0.0429364 
zq95_AHN3 0.04237167 
zq75_AHN3 0.04197143 
min_CHMdiv 0.04193578 
shape_AHN3_eigen_medium 0.04189507 
Buffer5m_zpcum7_AHN4 0.04170726 
Buffer5m_zpcum6_AHN4 0.04166855 
max_CHM3 0.04156364 
zq5_AHN4 0.04138517 
Buffer10m_zq60_AHN3 0.04093333 
zq10_AHN4 0.0409069 
Buffer5m_area_AHN3 0.04061094 
Buffer10m_zq65_AHN3 0.04055975 
zpcum5_AHN4 0.04036667 
pzabovezmean_AHN4 0.04033862 
zpcum9_AHN3 0.04032285 
Buffer5m_zq95_AHN3 0.04012248 
Buffer5m_zmean_AHN3 0.0399342 
zq25_AHN4 0.03991886 
Buffer5m_zq65_AHN4 0.03954762 
zq50_AHN3 0.03936173 
p4th_AHN4 0.03924615 
min_CHM4 0.03879798 
Buffer5m_isd_AHN3 0.03869484 
Buffer5m_zskew_AHN4 0.0386594 
shape_circularity 0.03850014 
sd_CHM4 0.03829403 
zq70_AHN4 0.03823266 
Buffer5m_zq5_AHN4 0.03801515 
shape_AHN4_curvature 0.03800168 
sd_CHMdiv 0.03780847 
Buffer5m_zq85_AHN3 0.03768333 
zq40_AHN3 0.0376601 
Buffer5m_zq60_AHN3 0.03761866 
shape_area 0.03747603 
range_CHMdiv 0.03739169 
zq55_AHN4 0.03716667 
Buffer5m_zq80_AHN4 0.0370697 
ipcumzq30_AHN4 0.03705117 
Buffer10m_ikurt_AHN4 0.03679258 
area_AHN4 0.03677427 
Buffer10m_zmean_AHN3 0.03673333 
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zq75_AHN4 0.03658095 
Buffer5m_iskew_AHN3 0.03630051 
Buffer5m_zq55_AHN4 0.03629841 
zq45_AHN3 0.03629741 
n_AHN3 0.03613746 
range_CHM3 0.03582963 
Buffer5m_zq75_AHN4 0.03578626 
Buffer10m_zpcum4_AHN3 0.03512632 
zq35_AHN3 0.03511111 
Buffer5m_zmax_AHN4 0.03503088 
zq30_AHN3 0.03500566 
Buffer5m_ipcumzq30_AHN3 0.03485519 
imax_AHN3 0.03424267 
Buffer10m_zq10_AHN3 0.03422787 
Buffer10m_zq35_AHN3 0.03412381 
Buffer10m_zq70_AHN4 0.03405 
zpcum2_AHN3 0.03403493 
Buffer10m_area_AHN3 0.03402472 
shape_AHN3_sphericity 0.03355162 
zpcum7_AHN4 0.0333539 
Buffer10m_zq55_AHN3 0.03303333 
Buffer5m_ipground_AHN4 0.03300317 
shape_GSCI 0.03271429 
Buffer5m_n_AHN4 0.03268494 
Buffer5m_zpcum7_AHN3 0.03217663 
mean_CHM4 0.03199664 
Buffer5m_zq85_AHN4 0.03170909 
Buffer10m_zq45_AHN3 0.03156667 
Buffer5m_zq15_AHN4 0.03128889 
fraq_NGM 0.03123142 
max_CHMdiv 0.03119936 
zskew_AHN3 0.03095559 
Buffer5m_zsd_AHN4 0.03073333 
ipcumzq10_AHN3 0.03069402 
Buffer10m_zq80_AHN4 0.03068571 
Buffer10m_imean_AHN4 0.0306381 
Buffer5m_zpcum4_AHN3 0.03051429 
Buffer10m_zskew_AHN3 0.03047879 
zq60_AHN3 0.03040719 
zpcum1_AHN4 0.03034762 
zpcum4_AHN3 0.03004574 
Buffer10m_pground_AHN4 0.03002417 
zq35_AHN4 0.03 
ipground_AHN4 0.02983827 
Buffer5m_zq65_AHN3 0.029825 
Buffer5m_zpcum5_AHN3 0.02977535 
shape_AHN4_eigen_largest 0.02974762 
Buffer5m_pzabove2_AHN3 0.0296804 
zq20_AHN4 0.02934722 
Buffer10m_zq40_AHN3 0.02836365 
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Buffer5m_zq30_AHN4 0.02835382 
zpcum3_AHN4 0.02834685 
Buffer5m_zq95_AHN4 0.02782222 
zq30_AHN4 0.02663333 
zq25_AHN3 0.02656531 
Buffer5m_p1th_AHN4 0.02632418 
Buffer10m_zpcum2_AHN4 0.02622095 
shape_roundness 0.02588571 
zpcum2_AHN4 0.02545364 
gini_CHMdiv 0.02514514 
pground_AHN4 0.02486667 
Buffer10m_zq80_AHN3 0.02471515 
ikurt_AHN3 0.02448889 
area_AHN3 0.02441468 
Buffer10m_zsd_AHN4 0.02422381 
Buffer10m_zq30_AHN4 0.02403195 
buffer5m_overlap_relative 0.02384329 
zpcum1_AHN3 0.02376528 
zq10_AHN3 0.02361686 
zq80_AHN4 0.0235812 
Buffer5m_zq40_AHN3 0.02352381 
zq20_AHN3 0.02324762 
Buffer10m_ipground_AHN4 0.02309229 
Buffer10m_zq60_AHN4 0.02273333 
Buffer5m_zkurt_AHN4 0.02247888 
p5th_AHN3 0.02195204 
buffer10m_overlap_relative 0.02175556 
zq85_AHN3 0.02162487 
zq55_AHN3 0.02128976 
Buffer5m_zpcum1_AHN4 0.02119464 
Buffer5m_pzabovezmean_AHN3 0.02103985 
Buffer5m_zq45_AHN3 0.02060784 
Buffer5m_zq70_AHN4 0.02049595 
Buffer5m_iskew_AHN4 0.02028253 
Buffer5m_pground_AHN3 0.02026032 
Buffer10m_zq25_AHN4 0.02022222 
Buffer5m_zmean_AHN4 0.01965359 
Buffer5m_zq50_AHN4 0.01915238 
zmean_AHN3 0.01889524 
ipcumzq50_AHN4 0.01866667 
Buffer5m_p2th_AHN4 0.01838702 
Buffer5m_zq25_AHN3 0.01795122 
p5th_AHN4 0.0178 
ipcumzq70_AHN4 0.0177619 
zq85_AHN4 0.01763361 
Buffer10m_zq35_AHN4 0.01763333 
Buffer10m_zq20_AHN3 0.01739394 
Buffer5m_zq50_AHN3 0.01725439 
Buffer10m_pzabove2_AHN4 0.0172193 
mean_CHM3 0.0172 
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Buffer5m_zpcum3_AHN3 0.01702165 
shape_convexity 0.01695905 
Buffer5m_zq55_AHN3 0.01672018 
Buffer5m_zq60_AHN4 0.0162403 
zq40_AHN4 0.01593651 
Buffer5m_zq10_AHN3 0.01585311 
Buffer10m_zq40_AHN4 0.01573333 
Buffer10m_zq65_AHN4 0.01537839 
Buffer5m_zq35_AHN4 0.01533333 
zq45_AHN4 0.015 
Buffer5m_p4th_AHN3 0.01466667 
pzabove2_AHN4 0.01466667 
Buffer5m_zpcum4_AHN4 0.0146087 
Buffer5m_pground_AHN4 0.01436667 
Buffer5m_p5th_AHN3 0.01353187 
Buffer10m_zq20_AHN4 0.01322564 
Buffer10m_zpcum5_AHN4 0.01312281 
zmax_AHN3 0.01286667 
shape_AHN4_horizontality 0.0123355 
Buffer5m_zq20_AHN3 0.01233333 
Buffer10m_zq70_AHN3 0.01222222 
Buffer5m_zq25_AHN4 0.01186667 
Buffer5m_ipground_AHN3 0.01116667 
Buffer5m_pzabove2_AHN4 0.0102619 
itot_AHN4 0.01013333 
shape_AHN3_eigen_largest 0.00968301 
zq90_AHN4 0.0087619 
zpcum8_AHN3 0.00866667 
max_CHM4 0.00866667 
Buffer10m_pzabove2_AHN3 0.00833333 
zpcum4_AHN4 0.008 
mean_CHMdiv 0.00709524 
Buffer5m_zq15_AHN3 0.00666667 
range_CHM4 0.00589189 
shape_AHN3_planarity 0.00566667 
zpcum5_AHN3 0.00266667 
min_CHM3 0.00266667 
Buffer10m_zq75_AHN4 0 
fraq_NGSM 0 
fraq_RGCM 0 
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D4: management type model with only the most important variables included 

variable importance 
ForestPlot_gini_CHM4 134.17408 

ForestPlot_fraq_NoG 114.41287 

ForestPlot_fraq_NGLM 104.11153 

ForestPlot_GD 61.21909 
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D5: management type model without forest plot variables included 

variable importance 
Buffer10m_ipcumzq90_AHN4 4.92773978 

Buffer10m_ipcumzq10_AHN4 4.2689557 

Buffer5m_ipground_AHN4 4.04184966 

Buffer10m_ipcumzq50_AHN4 3.8021842 

Buffer5m_ipcumzq90_AHN4 3.46991955 

Buffer10m_ipground_AHN3 3.46466745 

Buffer5m_ipcumzq70_AHN4 3.41793246 

Buffer10m_iskew_AHN4 3.41207591 

Buffer10m_zq25_AHN3 3.33464116 

Buffer5m_ipcumzq50_AHN4 3.28199769 

Buffer5m_zq20_AHN3 3.21765873 

Buffer10m_ipcumzq30_AHN4 3.13957376 

ipground_AHN3 3.10499946 

Buffer10m_ipcumzq50_AHN3 3.09252474 

Buffer5m_ipcumzq50_AHN3 2.95358877 

Buffer10m_ipcumzq90_AHN3 2.95042646 

Buffer10m_zq35_AHN4 2.90819993 

Buffer5m_ipcumzq30_AHN4 2.83703158 

Buffer10m_ipcumzq70_AHN3 2.79484849 

Buffer5m_ipcumzq90_AHN3 2.78388214 

Buffer10m_ipcumzq70_AHN4 2.74601264 

Buffer10m_zpcum7_AHN3 2.74372165 

Buffer10m_zq20_AHN3 2.67245384 

ipcumzq50_AHN3 2.6502374 

Buffer10m_zpcum8_AHN4 2.63292524 

Buffer5m_p3th_AHN3 2.59392825 

Buffer10m_zq40_AHN4 2.58299837 

Buffer5m_ipcumzq10_AHN4 2.53477598 

Buffer10m_zpcum8_AHN3 2.44892117 

Buffer5m_zpcum9_AHN3 2.40654057 

ipcumzq70_AHN3 2.36185851 

Buffer10m_pzabove2_AHN4 2.33913094 

Buffer10m_zkurt_AHN4 2.33182307 

Buffer10m_zpcum6_AHN3 2.32964101 

zq20_AHN3 2.31748692 

Buffer5m_zq35_AHN4 2.28388546 

pground_AHN3 2.25275549 

Buffer10m_ipcumzq30_AHN3 2.23265068 

Buffer10m_zq30_AHN4 2.23249184 

Buffer10m_zsd_AHN4 2.18022317 

Buffer10m_p1th_AHN3 2.17918184 

Buffer10m_zpcum9_AHN3 2.14104088 

Buffer5m_ipground_AHN3 2.04496897 

Buffer5m_zq15_AHN3 2.03268885 

Buffer10m_p4th_AHN3 1.9982754 

Buffer5m_zpcum7_AHN3 1.99718081 

Buffer5m_pground_AHN4 1.97272506 

Buffer5m_zq45_AHN4 1.97105806 
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Buffer5m_ipcumzq30_AHN3 1.96402758 

Buffer5m_pzabove2_AHN4 1.9424562 

Buffer10m_zq75_AHN3 1.92360551 

Buffer5m_isd_AHN3 1.90021777 

Buffer10m_zq90_AHN3 1.90015717 

Buffer5m_ipcumzq10_AHN3 1.8999643 

Buffer5m_zpcum9_AHN4 1.89662476 

Buffer5m_zq30_AHN4 1.86772301 

Buffer10m_zpcum7_AHN4 1.85839674 

Buffer10m_zq45_AHN4 1.82984061 

Buffer10m_zq80_AHN3 1.82143603 

zq15_AHN3 1.81927304 

Buffer5m_zpcum1_AHN4 1.80305404 

Buffer10m_zq60_AHN4 1.75767601 

Buffer5m_zq40_AHN4 1.75102732 

Buffer5m_pground_AHN3 1.74956284 

Buffer5m_ipcumzq70_AHN3 1.74667649 

Buffer10m_zq90_AHN4 1.74038904 

Buffer10m_zq15_AHN3 1.73905602 

Buffer5m_zq70_AHN3 1.73165382 

Buffer5m_zpcum8_AHN3 1.7281357 

Buffer5m_zq25_AHN4 1.7213616 

Buffer10m_zq75_AHN4 1.69317881 

Buffer10m_iskew_AHN3 1.68783167 

buffer10m_overlap_relative 1.68441297 

Buffer10m_ipground_AHN4 1.68411174 

Buffer5m_zq85_AHN3 1.67660227 

Buffer10m_zpcum1_AHN4 1.6711432 

Buffer10m_zq65_AHN4 1.66173033 

Buffer10m_zq55_AHN3 1.64901604 

Buffer10m_zq70_AHN4 1.64499421 

Buffer5m_zq65_AHN3 1.64044566 

Buffer10m_zmean_AHN3 1.62398964 

Buffer10m_zsd_AHN3 1.62281567 

ipcumzq10_AHN3 1.62121429 

Buffer10m_p3th_AHN3 1.61694614 

Buffer10m_zpcum9_AHN4 1.61487555 

Buffer10m_zq15_AHN4 1.6057637 

Buffer10m_isd_AHN3 1.60137236 

Buffer10m_ipcumzq10_AHN3 1.59115032 

Buffer5m_zsd_AHN4 1.59081246 

Buffer5m_zsd_AHN3 1.58087604 

ipcumzq30_AHN3 1.57291268 

Buffer10m_zq20_AHN4 1.55549879 

Buffer5m_pzabove2_AHN3 1.53190307 

Buffer10m_zq60_AHN3 1.51864749 

Buffer10m_zq70_AHN3 1.5160187 

Buffer10m_p4th_AHN4 1.51456601 

Buffer10m_zpcum3_AHN4 1.51407 

Buffer5m_zq20_AHN4 1.50347572 
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isd_AHN3 1.49477553 

Buffer10m_pground_AHN4 1.48115184 

Buffer5m_zpcum6_AHN3 1.4749647 

Buffer10m_zq85_AHN3 1.46919328 

Buffer10m_ikurt_AHN4 1.46776722 

zq30_AHN3 1.43782107 

Buffer10m_zkurt_AHN3 1.43147146 

Buffer5m_zmean_AHN3 1.42868118 

Buffer10m_zq50_AHN3 1.42802225 

zq25_AHN3 1.42608451 

Buffer10m_pground_AHN3 1.42499436 

zmax_AHN4 1.41339358 

Buffer10m_p2th_AHN4 1.41147813 

Buffer5m_zq30_AHN3 1.40845503 

Buffer5m_p4th_AHN4 1.39826673 

Buffer10m_zq85_AHN4 1.38956086 

Buffer10m_zq10_AHN3 1.38747012 

Buffer10m_zq80_AHN4 1.38640647 

Buffer5m_zq75_AHN4 1.37615256 

Buffer10m_p3th_AHN4 1.37565323 

Buffer5m_zq50_AHN4 1.36651486 

Buffer5m_isd_AHN4 1.36580033 

Buffer5m_zq25_AHN3 1.3612136 

Buffer5m_p1th_AHN3 1.35596757 

Buffer10m_p1th_AHN4 1.32897114 

Buffer5m_zkurt_AHN4 1.32407784 

zq10_AHN4 1.31373862 

Buffer10m_zskew_AHN4 1.30555334 

Buffer10m_zq25_AHN4 1.30394864 

Buffer5m_zq90_AHN3 1.30296208 

Buffer10m_zq65_AHN3 1.29108748 

Buffer5m_zq55_AHN3 1.29038885 

Buffer10m_zq10_AHN4 1.28844938 

pzabove2_AHN3 1.28642897 

Buffer10m_zq95_AHN3 1.28369773 

Buffer10m_zq30_AHN3 1.27461367 

zq40_AHN3 1.27157699 

Buffer10m_zpcum6_AHN4 1.26366985 

Buffer10m_zpcum4_AHN4 1.25883059 

Buffer5m_zmax_AHN4 1.25761463 

Buffer5m_zskew_AHN4 1.25058778 

Buffer5m_zq90_AHN4 1.24462601 

ipcumzq90_AHN4 1.21603934 

Buffer10m_zq45_AHN3 1.21541442 

Buffer10m_imean_AHN4 1.20890423 

zsd_AHN3 1.20364069 

Buffer10m_pzabovezmean_AHN4 1.19912414 

max_CHM4 1.19555443 

zq35_AHN3 1.19437437 

Buffer10m_zq95_AHN4 1.19308734 



 

 

86 

Buffer10m_ikurt_AHN3 1.19139125 

dist_nn 1.18782026 

Buffer10m_pzabove2_AHN3 1.17903758 

Buffer5m_zq60_AHN3 1.16628645 

Buffer5m_zq95_AHN4 1.1642485 

Buffer5m_zpcum8_AHN4 1.16249531 

zq50_AHN3 1.15522881 

zq65_AHN3 1.14860265 

Buffer10m_zpcum5_AHN3 1.14325643 

ipground_AHN4 1.14047084 

Buffer5m_p3th_AHN4 1.12796964 

Buffer10m_zpcum5_AHN4 1.12392791 

Buffer10m_zq40_AHN3 1.12265305 

Buffer5m_p1th_AHN4 1.11422322 

Buffer5m_zq75_AHN3 1.11409456 

Buffer10m_zq5_AHN4 1.10870183 

Buffer10m_zpcum3_AHN3 1.10459375 

Buffer5m_zq70_AHN4 1.09895698 

Buffer5m_ikurt_AHN4 1.09859572 

Buffer5m_zpcum4_AHN4 1.0944349 

Buffer10m_isd_AHN4 1.092934 

ipcumzq90_AHN3 1.08801186 

Buffer5m_zq85_AHN4 1.08506118 

Buffer10m_zmax_AHN4 1.07782459 

Buffer5m_zq55_AHN4 1.07529777 

Buffer5m_zq50_AHN3 1.06211545 

mean_CHM3 1.04679952 

zq95_AHN3 1.04449634 

Buffer5m_zq95_AHN3 1.04273888 

Buffer10m_imax_AHN3 1.04174197 

zq10_AHN3 1.03217319 

zmean_AHN3 1.03207538 

Buffer10m_zq5_AHN3 1.02761269 

zq5_AHN4 1.02138916 

Buffer5m_zkurt_AHN3 1.01918095 

Buffer10m_p5th_AHN4 1.00174459 

Buffer5m_iskew_AHN3 1.00143574 

Buffer5m_zq80_AHN4 0.98897571 

Buffer10m_zpcum2_AHN4 0.98278776 

Buffer5m_iskew_AHN4 0.97655131 

Buffer5m_zpcum4_AHN3 0.97312908 

Buffer5m_zq65_AHN4 0.95914991 

Buffer5m_zpcum3_AHN4 0.9550592 

Buffer5m_zmax_AHN3 0.95051594 

Buffer5m_p4th_AHN3 0.94980652 

zq45_AHN3 0.94917169 

Buffer10m_pzabovezmean_AHN3 0.94683492 

Buffer10m_zq55_AHN4 0.94350967 

p1th_AHN3 0.94179011 

Buffer10m_zmean_AHN4 0.94163972 
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Buffer5m_zpcum2_AHN4 0.93448202 

Buffer5m_zpcum7_AHN4 0.93433891 

shape_AHN3_eigen_largest 0.93284915 

zq60_AHN3 0.93208051 

pzabovezmean_AHN3 0.9262294 

Buffer10m_zmax_AHN3 0.92348517 

zpcum2_AHN3 0.90569046 

Buffer10m_zskew_AHN3 0.89886463 

zq85_AHN3 0.89660134 

zkurt_AHN3 0.89420609 

Buffer5m_pzabovezmean_AHN4 0.89024465 

Buffer5m_zq5_AHN4 0.88700904 

Buffer5m_p5th_AHN3 0.87205357 

zpcum3_AHN3 0.8644849 

gini_CHM3 0.86383144 

shape_IER 0.85560301 

Buffer5m_imax_AHN3 0.85470049 

Buffer5m_p5th_AHN4 0.85438412 

Buffer10m_p5th_AHN3 0.85421882 

ipcumzq70_AHN4 0.85100387 

zq15_AHN4 0.84406923 

Buffer5m_zq80_AHN3 0.8407322 

imean_AHN3 0.82029239 

Buffer5m_zq10_AHN3 0.81861694 

zskew_AHN3 0.81753984 

Buffer10m_zq50_AHN4 0.81676487 

max_CHM3 0.81533114 

Buffer5m_zskew_AHN3 0.80866119 

buffer5m_overlap_relative 0.80820043 

iskew_AHN3 0.80089254 

Buffer5m_zq15_AHN4 0.80039125 

Buffer5m_zq35_AHN3 0.79925598 

Buffer5m_zpcum1_AHN3 0.79806883 

Buffer5m_zq45_AHN3 0.79483316 

zq20_AHN4 0.79454779 

zq95_AHN4 0.79340334 

Buffer5m_imax_AHN4 0.79106881 

zpcum4_AHN3 0.78685188 

p3th_AHN3 0.78576321 

zq75_AHN3 0.78507384 

zpcum5_AHN3 0.78136038 

Buffer5m_zpcum6_AHN4 0.77101623 

Buffer5m_zq60_AHN4 0.77044493 

Buffer5m_zpcum5_AHN4 0.77003791 

zq5_AHN3 0.7697371 

Buffer5m_pzabovezmean_AHN3 0.76759285 

Buffer5m_ikurt_AHN3 0.76489374 

zq45_AHN4 0.75705803 

min_CHM3 0.7566565 

Buffer5m_zpcum3_AHN3 0.75511328 
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p3th_AHN4 0.7541195 

p2th_AHN3 0.75251577 

shape_solidity 0.74777567 

pground_AHN4 0.74586924 

Buffer5m_zpcum5_AHN3 0.74575227 

shape_AHN3_sphericity 0.74566657 

zq80_AHN4 0.74523339 

Buffer5m_p2th_AHN4 0.74517613 

min_CHMdiv 0.74299307 

Buffer10m_zpcum4_AHN3 0.74059223 

zpcum1_AHN3 0.73526077 

range_CHMdiv 0.73327151 

shape_FD 0.73311046 

Buffer5m_zq40_AHN3 0.7310422 

zq25_AHN4 0.72533046 

zq50_AHN4 0.72170485 

zsd_AHN4 0.72095103 

sd_CHM3 0.71863222 

sd_CHM4 0.71332012 

shape_AHN3_curvature 0.71292799 

Buffer10m_zpcum1_AHN3 0.71202443 

Buffer5m_zmean_AHN4 0.7084665 

zq70_AHN3 0.70751808 

imax_AHN3 0.70555514 

ipcumzq50_AHN4 0.70515362 

zq90_AHN3 0.70407637 

ipcumzq30_AHN4 0.70229751 

Buffer5m_zpcum2_AHN3 0.70224736 

p1th_AHN4 0.70015882 

zq90_AHN4 0.69881502 

mean_CHM4 0.69814961 

zq85_AHN4 0.69470671 

zmax_AHN3 0.69455124 

Buffer5m_zq5_AHN3 0.69374744 

range_CHM4 0.69177106 

zq75_AHN4 0.69122572 

Buffer10m_imean_AHN3 0.69009061 

zq70_AHN4 0.68986056 

zq55_AHN3 0.68295663 

ipcumzq10_AHN4 0.68051493 

gini_CHM4 0.67334487 

sd_CHMdiv 0.66810336 

shape_AHN4_eigen_largest 0.66098258 

zq65_AHN4 0.65916317 

mean_CHMdiv 0.65245553 

p2th_AHN4 0.65087427 

zpcum8_AHN3 0.65027338 

Buffer5m_zq10_AHN4 0.64680599 

Buffer10m_imax_AHN4 0.64209765 

Buffer5m_imean_AHN4 0.63713327 
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zpcum9_AHN3 0.63659495 

p4th_AHN4 0.63394532 

zq40_AHN4 0.63299848 

p4th_AHN3 0.63127458 

Buffer5m_n_AHN3 0.62848853 

gini_CHMdiv 0.62590802 

Buffer10m_zpcum2_AHN3 0.62319188 

zpcum7_AHN3 0.61917371 

zpcum2_AHN4 0.61714608 

shape_AHN3_anisotropy 0.61699995 

Buffer5m_imean_AHN3 0.61450906 

imax_AHN4 0.60632044 

zq35_AHN4 0.60594842 

Buffer10m_zq35_AHN3 0.60535672 

imean_AHN4 0.60474969 

shape_convexity 0.60280036 

range_CHM3 0.60080695 

Buffer10m_p2th_AHN3 0.60077442 

zkurt_AHN4 0.59800267 

zq55_AHN4 0.59721167 

zq80_AHN3 0.59395576 

zq30_AHN4 0.59033326 

ikurt_AHN3 0.58867837 

shape_AHN3_linearity 0.5858635 

n_AHN3 0.58390214 

shape_AHN4_anisotropy 0.58330259 

zq60_AHN4 0.58151185 

Buffer5m_p2th_AHN3 0.57905751 

max_CHMdiv 0.57507009 

shape_roundness 0.57283236 

p5th_AHN3 0.57174681 

iskew_AHN4 0.57172845 

itot_AHN3 0.56931015 

shape_SI 0.5643051 

shape_circularity 0.56157304 

itot_AHN4 0.56015364 

zpcum6_AHN3 0.55989389 

zskew_AHN4 0.55955519 

min_CHM4 0.55561457 

shape_AHN4_curvature 0.55240982 

zpcum1_AHN4 0.55177042 

Buffer10m_itot_AHN3 0.54932633 

isd_AHN4 0.54785073 

shape_AFF 0.54578886 

Buffer5m_itot_AHN3 0.54206216 

zpcum4_AHN4 0.54021155 

shape_AHN4_horizontality 0.53800497 

pzabove2_AHN4 0.53319787 

zpcum6_AHN4 0.52802011 

zmean_AHN4 0.52545154 
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fraq_NGLM 0.52080456 

zpcum5_AHN4 0.52078251 

zpcum3_AHN4 0.51824288 

shape_AHN4_sphericity 0.51791953 

zpcum7_AHN4 0.51750481 

Buffer5m_itot_AHN4 0.51747765 

Buffer5m_area_AHN3 0.51597644 

shape_AHN3_eigen_smallest 0.51543899 

Buffer10m_area_AHN3 0.51256694 

shape_AHN3_horizontality 0.50627512 

Buffer5m_area_AHN4 0.50382341 

shape_AHN4_linearity 0.50171686 

zpcum8_AHN4 0.50031324 

shape_AHN3_planarity 0.50018116 

Buffer5m_n_AHN4 0.4981758 

shape_ECD 0.49072078 

shape_AHN3_eigen_medium 0.48816323 

Buffer10m_n_AHN3 0.48053836 

shape_AHN4_eigen_smallest 0.47529074 

shape_GSCI 0.47091421 

Buffer10m_n_AHN4 0.46098356 

Buffer10m_itot_AHN4 0.45907797 

shape_area 0.45806937 

shape_AHN4_planarity 0.45590968 

area_AHN3 0.44975593 

Buffer10m_area_AHN4 0.44835249 

shape_AHN4_eigen_medium 0.43912111 

ikurt_AHN4 0.43812708 

area_AHN4 0.43327449 

pzabovezmean_AHN4 0.43123292 

zpcum9_AHN4 0.42772761 

shape_ESV 0.42250656 

fraq_NGBM 0.40942944 

shape_perimeter 0.40909462 

p5th_AHN4 0.40875161 

n_AHN4 0.40370925 

fraq_RGCM 0.19547263 

fraq_NGSM 0.15836321 
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Appendix E: Statistical comparisons to determine influence of management type for 

selection of variables on canopy gap level (E1) and on forest plot level (E2). 

E1 
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E2 
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Appendix F: Statistical comparisons to determine influence of dominant tree species 

for selection of variables on canopy gap level (F1) and on forest plot level (F2).  

F1 
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F2 
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Appendix G: Statistical comparisons to determine influence of management type for 

beech for selection of variables on canopy gap level (G1) and on forest plot level (G2).  

G1 
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G2 
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Appendix H: Statistical comparisons to determine influence of forest plot age for 

selection of variables on canopy gap level (H1) and on forest plot level (H2).  

H1 
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H2 
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Appendix I: Number of canopy gaps and forest plots per tree species per management 

type (I1 & I2), per tree species and age class (I3 & I4), and per management type and 

age class (I5 & I6) 

 

I1: Canopy gaps per tree species per management type 

 

Tree species Managed  Pseudo-unmanaged 
 

Unmanaged 
 

Total  

Beech 284  230  81 595 

Oak 34  7  0  41  

Scotch pine 407  0  5  412 

Japanese larch 278  0  2  280 

Douglas fir 774  0  2  776 

Norway spruce 87 0  0  87  

 

I2: Forest plots per tree species per management type 

 

Tree species Managed  Pseudo-unmanaged 
 

Unmanaged 
 

Total  

Beech 36 18 5 59 

Oak 7 1 0 8 

Scotch pine 18 0 1 19 

Japanese larch 34 0 1 35 

Douglas fir 51 0 1 52 

Norway spruce 7 0 0 7 

 

I3: Canopy gaps per tree species per age class 

 

Tree species 0-40  
(y) 

40-80 
(y) 

80-120 
(y) 

120-160 
(y) 

160-200 
(y) 

Total  

Beech 49  70  130  36  310  595  

Oak 0  16  18  0  7  41  

Scotch pine 4 352  49  7  0  412  

Japanese larch 61  184  35  0  0  280  

Douglas fir 31 637  108  0  0  776  

Norway spruce 18  69  0  0  0  87  

Total  163 1328  340  43  317  2191  

 

I4: Forest plots per tree species per age class 

 

Tree species 0-40  
(y) 

40-80 
(y) 

80-120 
(y) 

120-160 
(y) 

160-200 
(y) 

Total  

Beech 8 8 18 3 22 59 

Oak 0 5 2 0 1 8 

Scotch pine 1 12 2 4 0 19 

Japanese larch 6 20 9 0 0 35 

Douglas fir 2 41 9 0 0 52 

Norway spruce 1 6 0 0 0 7 

Total  18 92 40 7 23 180 
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I5: Canopy gaps per management type per age class 

 

Management type 0-40  
(y) 

40-80 
(y) 

80-120 
(y) 

120-160 
(y) 

160-200 
(y) 

Total 

Managed 229  1515  347  47  0 2138  

Pseudo-unmanaged 0  0  0  0  237  237  

Unmanaged 0  10  8  0  80  98  

Total 229  1525  355  47  317  2473  

 

I6: Forest plots per management type per age class 

 

Management type 0-40  
(y) 

40-80 
(y) 

80-120 
(y) 

120-160 
(y) 

160-200 
(y) 

Total 

Managed 28 99 38 9 0 174 

Pseudo-unmanaged 0 0 0 0 19 19 

Unmanaged 0 2 3 0 4 9 

Total 28 101 41 9 23 202 
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Appendix J: Statistical comparisons of the fifteen most important new canopy gap 

variables in the “number of trees” classification. 

 
J1 
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