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Abstract
Remote sensing is increasingly used to monitor floating plastics in riverine and marine environments, as it can increase
monitoring scale spatially and temporally. Recent work has focused on detection of different plastic types in comparison
to other items in the environment, such as vegetation and water. However, a major unknown is the effect of ambient
conditions on the detectability of plastic items in riverine systems. Ambient conditions such as, water flow characteristics,
submergence of items or weather conditions, can change the spectral signature of the plastics, other floating debris or the
environment. This thesis studies the effect of light intensity, light angle and roughness of the water surface roughness,
quantified by the Froude number, on the ability to distinguish plastic spectral reflectance values from vegetation and water.
In a controlled laboratory and outside environments pristine and weathered plastic, riparian vegetation and water were
scanned by a 9-band multispectral camera (MAIA-S2) under different light intensity, light angle and roughness of the water
stream, quantified by the Froude number. A linear discriminant analysis determined important wavelengths to discriminate
plastic from vegetation and water. A combination of spectral indices NDVI and NIDI had the highest performance, 81%
of the plastic was correctly predicted, when tested by a Naïve Bayes algorithm to classify plastic, vegetation and water.
Furthermore, increasing the Froude number had a strong significant negative correlation with classifier performance
accuracy (Pearson’s r = −0.92), while light angle and light intensity showed no significant correlation with classifier
accuracy. Suggesting that the Froude number of the water has a considerable impact on the ability to discriminate
plastic from vegetation and water. This study contributes to the effectivity of detecting floating plastics in the VIS-NIR
spectrum and to the development of floating plastic detecting algorithms.
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1 | Introduction

1.1 Context and motivation

Plastic pollution in riverine and marine systems is considered to be one of the main environmental challenges, as it
provides a major challenge for the ecosystem (van Emmerik and Schwarz, 2020). Plastic waste accumulates in rivers by
entering through natural drivers, such as wind and surface runoff (Bruge et al., 2018) or direct dumping (Mihai, 2018).
Subsequently, these rivers transport plastic debris at an estimated rate of up to 4 million metric tons of plastic into the
ocean per year. Other societal concerns are flood risks, entanglement and ingestion by animals (Gall and Thompson,
2015), or damage to vessels (McIlgorm et al., 2011). There is a need to find ways to monitor the plastic debris in river
systems to gain insights into the scale of plastic pollution in these systems and the negative effect it has.

Efforts for data collection are increased recently, these efforts focus among others on collecting, monitoring, and
classifying plastic debris. Al-Zawaidah et al. (2021) describes four sampling methods based on the accumulation of plastic
in river systems; floating, riverbank, suspended, and riverbed plastics. Floating and riverbank research methods represent
the dominant research categories. These in-situ methods consist of human visual counting (Van Emmerik et al., 2018),
debris sampling using nets (Rech et al., 2014), and debris sample collection from existing infrastructure (Gasperi et al.,
2014). These methods are labour intensive and are usually conducted over a limited time frame. This limits the capacity
for interpreting the temporal rates of riverine macroplastic transport (Al-Zawaidah et al., 2021). Other methods are
studied to scale up the monitoring capacity of riverine and marine plastics.

Remote sensing provides a set of methods to scale up the monitoring of floating plastic. Both spatially, harder-to-
reach places can be monitored, and temporally, as it has the potential for more continuous and automated monitoring.
Recent studies have focused on both airborne and spaceborne remote sensing. For example, Biermann et al. (2020) studied
the ability to categorize floating litter based on spectral reflectance characteristics of different materials. Furthermore,
Topouzelis et al. (2019) and Themistocleous et al. (2020) used large artificial plastic targets in coastal waters to investigate
the applicability of Sentinel-2 imagery to distinguish plastic items. These studies used satellite data, a limiting factor for
this approach is the spatial and spectral coarseness of the data. Resolutions from commercial satellite imagery, range from
1-5 meter (e.g. SkySat and RapidEye). Open-source satellite imagery, from the Sentinel-2A and 2B Earth Observation
satellites by the European Space Agency (ESA), currently have spatial resolutions between 10-60m (Sentinel-2, n.d.).
With these resolutions, it is hard to identify individual small-scale plastic objects. Plastic items in rivers are most often
categorized as micro-, meso-, and macroplastics. The size of these plastics range respectively from < 5 mm, 5 mm <
5 cm, and > 5cm (Blettler et al., 2017; Lebreton et al., 2018; van Emmerik and Schwarz, 2020). Close-range studies
(imagery at < 100 m distance) have been done in natural and laboratory environments. Cortesi et al. (2022) studied
the ability to detect plastic on a river with a multispectral camera at different altitudes ranging from 20 to 80 meters.
Knaeps et al. focused on the hyperspectral reflectance of dry, wet and submerge marine litter.

Previous studies, both outside and lab-based, utilized spectral signatures and used several remote sensing wavelength
bands to create spectral indices. In 2014, Rokni et al. proposed several indices to extract water features. Among these
NDVI, NDWI, NDMI, MNDWI and AWEI were tested for detecting plastic in water byThemistocleous et al. (2020) using
multispectral data of plastic bottles obtained by the Sentinel-2 satellite and unmanned aerial vehicles (UAVs). They also
introduced the plastic index (PI), based on red (665 nm) and near-infrared (842 nm) wavelengths, specifically to target
the detection of plastic in water. PI values of plastic had the highest separation with water of these six indices. Using PI,
with NIR and red wavelengths proved to be best to identify plastic bottles from water. Moreover, Biermann et al., 2020
proposed a novel index, the floating debris index (FDI), using data from the Sentinel-2 satellite. Besides indices-based
approaches, approaches based on artificial intelligence are emerging (Cortesi et al., 2022; Balsi et al., 2021).

The variation in plastic spectral characteristics based on the imagery set-up such as indoor/outdoor, water conditions,
artificial/natural lighting conditions and plastic deterioration rates, is still poorly understood. Furthermore, a challenge



remains to confirm the reflection characteristics found in a laboratory setup for use in natural riverine environments
(Martınez-Vicente et al., 2019). First, the potential current of the water in riverine and marine environments entails the
movement of floating objects. This can lead to changing the appearance of these objects (Andriolo et al., 2022; Knaeps et
al., 2021). Secondly, light conditions can change rapidly due to weather changes which force repeated sensor calibrations.
Additionally, fluctuations in light conditions complicate the discrimination between plastics and other materials, such
as vegetation. wood and sun glint. These sun glints (Mobley, 1999) and water characteristics such as waves, white
caps (Dierssen, 2019), and bubbles (Hu, 2009) affect spectral signatures of water. Other external factors influencing
the degree of plastic reflectance are wetting, submergence, and weathering (Garaba et al., 2021; Garaba and Dierssen,
2018). However, these effects are not investigated extensively and remain a knowledge gap for the detection of marine
and riverine plastics.

These changing ambient conditions influence the ability to detect floating plastics and create biases in the data sets,
because they are not sufficiently complete for all conditions. A need for unbiased balanced data sets is needed to increase
the performance of machine learning techniques (Gnann et al., 2022). Within the challenges described the main focus
of this study will be on three ambient conditions (1) water surface characteristics, (2) light conditions and (3) plastic
degradation characteristics.

Water influences the effectivity to detect plastic with multispectral remote sensing in several ways. Garaba and
Harmel (2022) demonstrated that submergence of the plastic items decrease the spectral reflectance of these items.
Moshtaghi et al. (2021) discovered that the reflectance of water in near-infrared (NIR) wavelengths increases with
turbidity, negatively effecting the performance to discriminate plastic from water. The effect of water surface roughness
is on floating plastic reflectance and detection is currently poorly understood. Two causes of disturbance in the ability
to detect plastic due to changes in the water surface roughness can be explained. First the effect on the plastic itself
by submergence and second the change in spectral reflectance of the water itself. Water surface roughness effects the
total reflectance and the but also the range of direction of this reflectance (Legleiter et al., 2017), thereby influencing
the total reflectance a sensor captures.

Secondly, in natural environments light conditions fluctuate in intensity and incoming angle. The intensity and light
angle both impact the outgoing reflectance rate of an item. Lower overall reflectance decreases the range between the
highest reflectance and the lowest reflectance. This subsequently has an effect on ratios between wavelengths, decreasing
the separation of index values between different objects and making it harder to detect plastic from other objects.

Thirdly, plastics occur in the environment in shapes, size and state of deterioration (Andriolo et al., 2021). Several
previous studies have tested weathered plastic on their spectral reflectance (Garaba et al., 2021; Garaba and Dierssen,
2018; Moshtaghi et al., 2021). However, due to the complexity of the weathering process these studies observed
contrasting outcomes. Garaba et al. found nearly identical absorption features for weathered plastic as for pristine
plastics, while Moshtaghi et al. observed distinct spectral features. Further research is necessary to fully understand the
impact of weathering on the spectral reflectance of plastic. Understanding the impact of these three ambient conditions
on the spectral reflectance and the effectivity to detect natural conditions would be useful to improve the ability to
monitor plastic with remote sensing techniques.



1.2 Research objective & research question

The objective of this study is to investigate the influence of four variables on plastic spectral characteristics and on
the ability to discriminate plastic from riparian vegetation and water. Of these four variables, three relate to ambient
conditions, namely: (1) water surface roughness, (2) light intensity, and (3) light angle. The fourth variable pertains to
plastic items state of degradation. The main research question this study will answer is:

What is the effect of ambient conditions and plastic item characteristics and conditions on the ability to discriminate
plastic from vegetation and water using multispectral imagery?

To help answer the main research question the following sub-questions will be answered:
• Which wavelengths are most effective to discriminate plastic from vegetation and water?

• Which spectral index has the highest performance to discriminate plastic from vegetation and water?

• What is the influence of water surface roughness, light intensity, and light angle on the ability to discriminate plastic
from vegetation and water?

• What is the influence of plastic characteristics and condition on the ability to detect plastic?

1.3 Thesis outline

This thesis starts with the methods in chapter 2, which describes the experiments conducted to collect the data and
the processing of the images and the analyses done with the collected data. In chapter 3 the results are presented and
discussed, at the end of this chapter a synthesis and outlook is given. This is followed by a conclusion in chapter 4.
Additional thesis data can be found in the appendices.



2 | Methods

For this study, data was collected by experiments done in the tilting flume of the Kraijenhoff van de Leur hydrology
lab. Plastic items and vegetation in these experiments are scanned with a multi-spectral sensor, the MAIA-S2 sensor
(engineering SRL; Eoptis SRL; Fondazione Bruno Kessler, 2017). The changing conditions, and variables, under which
these scans were conducted are incident light (Lumen), light angle (degrees), and a measure for the roughness of the water
stream and water surface. Water surface roughness is difficult to quantify on a river scale, in the research the Froude
number was used, as it was a measurement for bulk flow characteristics such as waves and flow-depth interactions (Freeze
et al., 2003). Nakayama and Yokojima, 2001 (2001) discovered that vertical fluctuations increase with Fr. Moreover, in
a natural environment, the Fr of a river can be approximated with the discharge, cross-section, and width of the river at
the study area.

In this chapter, the methodology is described (figure 2.1) starting with the collection of plastic items used in this
study and scanning with the MAIA-S2 sensor. Furthermore, the general experiment setup will be explained as well as
the four configurations of the setup used in this study. Lastly, the data processing is elaborated, consisting of image
correction, manual pixel selection, and spectral analyses.

Figure 2.1: Flowchart of the methods in this study

2.1 Plastic item collection

Plastic items of various polymer types are found in or nearby river systems. In this study, six plastic polymer types (HDPE,
LDPE, PS, PP, PET and ML) are used, based on their prevalence in river systems as floating plastic items (Erni-Cassola
et al., 2019; van Calcar and van Emmerik, 2019). As they make up 65% of plastic production worldwide (PlasticsEurope,
2022). An overview of these polymer types can be found in table 2.1, describing their optical properties and examples of
plastic items which are made with different polymer types. This study focuses specifically on plastic items that are found
as (floating) plastics in or near rivers, other litters found in riverine systems such as submerged plastics, wood, and other
litter are not included in this study.

Table 2.1: Types of plastic polymers used in this study with examples of use. (Barboza et al., 2019)

Type of plastic Optical properties Examples
Low-density polyethylene (LDPE) (semi)transparent/coloured cling film, garbage bags, shopping bags
High-density polyethylene (HDPE) opaque/semitransparent white/coloured milk bottles, detergent bottles
Polystyrene (PS) opaque white/grey plastic cutlery, food containers
Multi-layer (ML) opaque coloured chip bags, snack food packaging
Polypropylene (PP) opaque white/coloured drinking straws, yoghurt containers
Polyethylene terephthalate (PET) (semi)transparent clear/coloured soft drink bottles, clamshell packages



Both pristine plastics and plastics found at riverbanks, to be called weathered plastic, are used. The pristine plastics
are plastics that have not been used and thus show no marks, these items are newly purchased. The weathered plastic
items have been collected at the banks of the Nederrijn and Waal, appendix A.1 shows the location and date. The items
are found and collected between the water line and the high water line. Slight degradation and weather marks, such as
crumpling, scratching, and tearing, are present on the collected weathered items. For each plastic type named in table
2.1 both pristine and weathered plastic items are used in this study. The vegetation that is used is collected from the
riparian zone of the Nederrijn near Wageningen. Figure (2.2) gives an overview of the items used for the experiments.
The total number of plastic items is 38, of which 17 are pristine plastics (figure 2.2A) and 21 are weathered plastics
(figure 2.2B).

(A) (B)
Figure 2.2: Plastic collection used in this study with pristine plastic in figure A and weathered plastic in figure B

2.2 Multi-spectral imaging

2.2.1 MAIA-S2 sensor

The multispectral imaging of plastic, vegetation and water was performed by the MAIA-S2 sensor, a nine-band multi-
spectral sensor in the visible and near-infrared wavelength range. These nine bands have wavelength intervals similar to
the ESA Sentinel-2 MSI satellite, which has been used as a potential tool for floating plastic monitoring (Garaba et al.,
2021; Ciappa, 2021; Kikaki et al., 2020). The wavelength intervals for both the MAIA-S2 sensor and the Sentinel-2
satellite are detailed in table 2.2. Besides the wavelength range corresponding with the Sentinel-2 satellite bands, this
sensor has several other advantages for monitoring plastics in riverine environments. The sensor is applicable for both
drone and static imagery, which allows for monitoring in both accessible and less accessible locations in riverine systems.
During these experiments the sensor was only used for static imagery. Another advantage is the exposure time of the
MAIA S2 sensor which ranges from 0.1 ms to 50 ms (typical 1ms). This short exposure time makes this camera better
suited for in field high resolution measurements than hyperspectral cameras, which have typically a longer exposure time.
However, this sensor has a shortcoming as well which have to be considered. First, the wavelength range of the sensor is
not suited for some spectral indices used in other studies to detect floating plastics (Biermann et al., 2020). Furthermore,
P. Tasseron et al. (2021) showed that wavelengths best suited to distinguish various plastic polymer types with certainty
are within the short-wave infrared (SWIR) ranges of the spectrum.



Table 2.2: Wavelength intervals of the MAIA-S2 Bands and corresponding Sentinel-2 MSI band

MAIA-S2 band Color Start WL (nm) Stop WL (nm) Central WL (nm) Corresponding Sentinel-2 band
B1 Violet 433 453 443 B1
B2 Blue 457.5 522.5 490 B2
B3 Green 542.5 577.5 560 B3
B4 Red 650 680 665 B4
B5 Red Edge 1 697.5 712.5 705 B5
B6 Red Edge 2 732.5 747.5 740 B6
B7 NIR 1 773 793 783 B7
B8 NIR 2 784.5 899.5 842 B8
B9 NIR 3 855 875 865 B8a

2.2.2 Experiment setup

To study the different variables a total of four experiments were performed. In table 2.3 an overview is given of the
different experiment setups. Experiments 1 and 2 were executed in a dry environment. The items were scanned in front
of a dark paper background. Experiment 3 and 4 were executed in a wet environment in which the items are being
scanned while floating in water. The standard light angle of 80 degrees is used in all experiments with the exception
of experiment 1. In this experiment, plastic is scanned under various incident light angles between 60-90 degrees to
the surface. Furthermore, the standard illumination of experiments 1 and 4 is 1500 (Lumen). In contrast to the other
experiments, the images of experiment 4 have been scanned one item at a time instead of multiple items at once. Due
to the flowing water, it was not possible to position multiple items in the image frame. As a consequence, the number
of images were higher for experiment 4 than for experiments 1,2, and 3.

Table 2.3: Overview of the various configuration of the experiment setup. *For a light angle of 80 degrees the data from
Illumination (dry) 1200 Lumen is used. ** For 0.0 Fr the data from Illumination (wet) 1500 Lumen is used.

Experiment Studied variable Range of parameter change Step size Total number of images
1 Light Angle (dry) 60 – 90 (degrees)* 10 degrees 39
2 Illumination (dry) 600 – 1500 (Lumen) 300 Lumen 52
3 Illumination (wet) 600 – 1800 (Lumen) 300 Lumen 65
4 Froude Number (wet) 0 – 1.2** 0.2 234

The experiments were executed in a tilting flume of the Kraijenhoff van de Leur laboratory of the Wageningen
University. This flume has a length of 17 meters, a width of 1.2 meter, and a maximum water depth of 0.5 meter. The
discharge, 0-100 L/s, and the incline, 0-4%, were adjustable and were used to change the water flow. Figure 2.3 gives
an overview of the general experiment setup. Fixed on top of the flume is the Maia-S2 sensor with ILS sensor on a
scaffold. To ensure consistent illumination for the duration of a run, a halogen light was fixed to a scaffold opposing
the Maia-S2 sensor. This general setup is the core setup for the all the experiments of the different variables studied.
The sensor captures the images at a 0 degree nadir angle, perpendicular to the surface. With a wifi connection to the
Maia-S2 sensor, a computer could configure parameters and take images of the plastic with a web interface linked to the
sensor. To ensure the (floating) items were captured within the image frame, the sensor was set to acquire images with
a frequency of 4 images per second.



Figure 2.3: (A) An overview of the experiment setup within the tilting flume. (B) a schematic overview of the experiment
setup for the wet experiments, dry experiments have a similar setup without water.

Changes in light angle and illumination was carried out by altering the position and brightness of the halogen light
respectively. The roughness of the water surface does not have a direct quantitative measure. So to quantitatively
represent the water surface roughness the Froude number (Fr) was used. This dimensionless number describes flow
regimes of open channel flow. Floating plastic debris is most common in lowland riverine systems, as river plastic
quantities show high correlation with population density and urbanization (Best, 2019). Near these lowland systems the
population density of humans is larger. Fr in these rivers ranges from 0 to 2, and most commonly between 0 to 1 (Ferrick,
1985). With the following equation 2.1 Fr is calculated for open channel flow.

Fr =
V√
gD

(2.1)

Where V is flow velocity (m/s) and g is the gravitational acceleration (9.81m/s2). The hydraulic depth (D) is
the ratio the cross-sectional area,A (m2), to the width of the flume W (m). Flow velocity was calculated by dividing
the discharge, Q (m3/s), by the cross-sectional area of the flume. Incorporating the hydraulic depth from the flume
dimensions and the flow velocity from the discharge of the flume the Fr is calculated by the equation 2.2.

Fr =
Q/A√
g A
W

(2.2)

To change Fr at the image area the discharge of the flume and the water depth were changed. The flume was
rectangular therefore the water depth was consistent over the entire width. Fr was changed using equation 2.2, by
altering the water height by raising and lowering a weir at the end of the flume and changing the discharge of the flume.

2.3 Data preparation

After all the experiments were executed the images were processed with the MAIA - MultiCam Stitcher Pro software to
process the images from the MAIA-S2 sensor. From all the images captured, a set of images displaying plastic items and
representing all the experiment setups and containing all the plastic and vegetation types was manually selected for data
analysis. This set of images is converted to relative reflectance data, to optimize the signal-to-noise ratio. This was done
using the reflectance values of a white reference and a dark reference. Based upon the approach of ElMasry and Sun,
referring to equation 2.3:



I =
(I0 −D)

(W −D)
(2.3)

Where I is the relative reflectance image, I0 is the raw image, and W and D are respectively the white and dark
references. These references were collected by a white sheet as a white reference and the black background as a dark
reference. The common practice to capture the dark reference of closing the aperture of the camera, so that no light is
striking into the sensor, was not possible. The data pre-processing with the built-in software of this sensor did not allow
for images with low reflectance. Therefore the dark reference image was captured by a black sheet. For the experiments
that did not change the illumination or light angle the same reference image is used. When the illumination levels were
changed a reference image that was representative of that illumination level was used.

2.4 Manual pixel selection

Using the PerClass machine learning toolbox (perClass BV, n.d.) in MATLAB representative pixels were manually an-
notated into five classes; (1) all plastics combined, (2) pristine plastics, (3) weathered plastics, (4) vegetation, and (5)
water. All six polymer types discussed in table 2.1 were incorporated in the classes 1,2, and 3. The combined plastic
class included the pixels from both the pristine and weathered plastic classes. These classes were annotated for all data
from the different experimental runs. In table 2.4 an overview of the classes is shown including the number of items and
total number of pixels per wavelength band. During this study, class 1 was used to investigate into the performance of
indices and the effect (section 3.2) of the ambient conditions (section 3.3). Classes 2 and 3 were used to investigate
the differences between pristine and weathered plastics (section 3.1) and for the analysis of effect of plastic deterioration
(section 3.4) on the effectivity to discriminate plastic from vegetation and water.

Table 2.4: An overview of the items used in the study, and the number
of pixels per wavelength band for each class.

Class Items Total pixels per bands (#)
(1) Plastic 38 5567152
(2) Pristine plastic 18 3197980
(3) Weathered plastic 20 2369172
(4) Vegetation 9 246501
(5) Water NA 667558

2.5 Data analysis

2.5.1 Spectrum analysis

In total 6.5 million pixels were sampled for all classes and experiments for each wavelength band of the sensor. Due
to the large number of pixel a spectral signature was extracted with the mean and standard deviation of the pristine
and weathered plastic, vegetation, and water classes. Furthermore, a Fisher’s linear discriminant analysis (LDA) (Fisher,
1936) was calculated to show the importance of each wavelength in the separation of plastic pixels from vegetation and
water. The LDA describes the relative contribution to the variance of reflectance signatures between two classes. Higher
levels of LDA weights imply larger contributions of these bands in the separation of two classes. LDA is widely used to
lower high-dimensional data to two dimensions without losing the variation between two classes. The linear discriminant
is based on maximizing a ratio of between-class variance to within-class variance with the goal of reducing data variance
in the same class and increasing the separation between classes (Li and Wang, 2014). The between-class variance SB



is the difference between the mean values of two classes (equation 2.4). The within-class variance SW is the difference
between each value and the mean of that class (equation 2.5). Combining these equations and maximizing the ratio, will
result in Fisher’s linear discriminant J(w) (equation 2.6). Where m1 and m2 are the mean values of a class, xi individual
values of a class, and w the weights vector.

SB = (m1 −m2)(m1 −m2)
T (2.4)

SW =
∑
iϵc

(xi −m1)(xi −m1)
T +

∑
iϵc

(xi −m2)(xi −m2)
T (2.5)

J(w) =
wTSBw

wTSWw
(2.6)

2.5.2 Naive Bayes classifier

To study the ability of indices and the effect of the ambient conditions and plastic variables a Gaussian naive Bayes
classifier was used. This classifier was trained with the Classification Learner application in MATLAB (The MathWorks,
2013), leveraging Bayes Theorem (Leung, 2007). The classifier used the following procedure. First, the classifier estimates
the densities of the predictors within each class by computing the class-specific weighted mean and the unbiased estimate
of the weighted standard deviation. Second, the classifier posterior probabilities are calculated according to Bayes rule
with equation 2.7. Where Y is the random variable corresponding to a class of an observation, X1, ..., Xn are the random
predictors of an observation and π(Y = k) is the prior probability that a class is index k.

P̂ (Y = k|X1, ..., Xn) =
π(Y = k)

∏P
j=1 P (Xj |Y = k)∑K

k=1 π(Y = k)
∏P

j=1 P (Xj |Y = k)
(2.7)

The pixels were manually annotated (section 2.4), thus for each pixel in the database the true class was known.
The classifier was trained for 60% of the data (Dobbin and Simon, 2011; Picard and Berk, 1990). Next, the classifier
was tested on the other 40% of the data for accuracy (ACC), recall (RE) and precision (PR). This train and test set
ratio was used throughout all classifier calculations in this study. The specific data sets to train and test the classifier
differed depending on the analysis performed, this is mentioned in the relevant sections. The spectral indices were the
parameters of the algorithm, so based upon the number of indices the classifier had one or two parameters. With the
exception of the nine band spectrum which used all nine wavelength bands as parameters. The input classes used were
(1) all plastic combined, (4) vegetation and (5) water for the analysis in sections 3.2 and 3.3. In section 3.4, classes (2)
pristine plastic, (3) weathered plastic, (4) vegetation and (5) water are used.

Next, the trained classifier predicted the annotation of classes for the pixels of the test data set. To determine
the performance a confusion matrix was constructed. From this confusion matrix the ACC of the entire classifier was
calculated as well as the RE and precision PR of plastic, vegetation, and water. The ACC was calculated as the total
number of correct predictions divided by the total number of a data set (equation 2.8). In which TP are the true
positives, the pixels that are correctly predicted as true observations and TN are the true negatives, pixels that are
correctly predicted as false observations. P and N are the total correctly and falsely predicted observations respectively.

ACC =
TP + TN

P +N
∗ 100 (2.8)

The RE was calculated by equation 2.9 and describes the probability of a model that an observation with a true
outcome is predicted as a true predicted outcome. In which FN are the false negatives, the pixels that are falsely
predicted as true observations by the classifier.



RE =
TP

TP + FN
∗ 100 (2.9)

The PR was calculated by equation 2.10 and described the probability that an observation with a true positive
predicted outcome actually has a positive outcome. In which FP are the false positives, the pixels that are falsely
predicted as true observations.

PR =
TP

TP + FP
∗ 100 (2.10)

2.5.3 Spectral Indices

A comparison is made of the ability of 8 spectral indices to distinguish plastic from vegetation and water. The indices
that are tested are all containing the wavelengths with the largest variability between plastic, vegetation and water as
calculated by the LDA. The indices have been used to detect plastic in previous studies (Cortesi et al., 2021; Rokni et al.,
2014; Themistocleous et al., 2020), and contain wavelengths that have the highest LDA weights, red (665 nm), red-edge
(740 nm), and NIR (842 nm). Table 2.5 shows a detailed depiction of these wavelengths.

Table 2.5: Overview of the indices evaluated in this study

Index Algorithm Reference
9 band spectrum (-) This report
EVI: Enhanced vegetation index EV I = 2.5( (ρNIR−ρred)

(ρNIR+6ρred+7.5ρblue+1) ) Liu and Huete, 1995
NDWI: Normalized different water index WDV I =

(ρgreen−ρNIR)
(ρgreen+ρNIR) Rokni et al., 2014

NDVI: Normalized difference vegetation index NDV I = (ρNIR−ρred)
(ρNIR+ρred)

Rouse et al., 1974
PI: Plastic index PI = ρNIR

(ρNIR+ρred)
Themistocleous et al., 2020

NIDI: Normalized infrared difference index NIDI =
(ρNIR−ρred−edge)
(ρNIR+ρred−edge)

Vescovo et al., 2012
NDVI + NIDI NDV I +NIDI This report
NDVI + NDWI NDV I +NDWI This report

.

2.5.4 Influence of ambient conditions and plastic variability

To analyse the influence of the ambient conditions, Fr, illumination in both wet and dry circumstances and the light
angle, a naive Bayes classifier was used as well. This classifier was trained using both NDVI and NIDI data, which had
the highest performance of all indices tested. The accuracy of the classifier was 91% against other indices which had
86% accuracy or lower, further elaboration can be found at section 3.2. The classifier was trained with data from the
lowest value of each of the four variables and tested for each value of that specific variable. For example, to analyse
the influence of Fr the classifier was trained for Fr 0.0 and tested for each of the Fr values. The accuracy of the entire
classifier was calculated together with the RE and PR of plastic, vegetation, and water, for each value of the ambient
conditions. A Pearson and a Spearman correlation between the accuracy of the classifier and ambient condition values
were tested. The Pearson correlation examines the linear relation between two variables and the Spearman correlation is
used to examine a non-linear relation between two variables. The classifier approach is repeated for a classifier trained
for the entire data set to include a larger variety of values for each class, instead of training the classifier for one specific
situation.



Similarly, a Naive Bayes classifier is used to test the influence of plastic characteristics and conditions. Hereby a
comparison is made between a classifier trained for pristine plastics and a classifier trained for weathered plastics, by
testing the performance of both classifiers on a pristine and a weathered plastic data set. An analysis of the specific effect
of different plastic polymer types will not be conducted in this study. Because discrimination of specific polymer types is
difficult in the VIS-NIR (400-900 nm) wavelength range used in his study, since specific polymer absorption features are
found at wavelengths >900 nm (Garaba and Dierssen, 2020; P. Tasseron et al., 2021).



3 | Results & Discussion

3.1 Spectral variability and linear discriminant analysis

Differences in mean value and standard deviation were found comparing the spectral signature of water, vegetation, pristine
plastics, and weathered plastics (figure 3.1). Spectral signatures found for water and vegetation show characteristics
similar to signatures found in previous studies (Corbari et al., 2020; Themistocleous et al., 2020). The water reflectance
values were close to zero for the entire spectrum and decreased with larger wavelengths. The vegetation reflectance
had a sharp increase in spectral reflectance from 700 nm to 780 nm, caused by the internal cell structure of leaves
(Meacham-Hensold et al., 2019).

(A) (B)

(C) (D)
Figure 3.1: Mean and standard deviation of the normalized reflectance spectra of (A) Pristine plastic, (B) weathered
plastic, (C) vegetation, and (D) water.

The standard deviation of plastics, both pristine and weathered, was high in comparison to the standard deviation of
vegetation and water. A likely cause is the use of different polymer types, which have differences in individual reflection
spectra (Iordache et al., 2022). Overall the spectral signature of pristine plastics shows good agreement with previous
studies (P. Tasseron et al., 2021; Corbari et al., 2020), characterized by a small dip at 710 nm followed by an increase
at 750 nm. The reflection characteristics of weathered plastics were more stable for different wavelengths. Differences in
the standard deviation between pristine and weathered plastics is likely explained by differences in the collected items of
weathered plastics and pristine plastics used in the study. The sampled pristine plastics and weathered plastics differed
in size, shape, and apparent colour. The size and shape of an item influences the susceptibility of that item to water
conditions. A thin sheet plastic is more prone to be effected by waves in the water than a PET bottle. As a consequence



the item can submerge affecting the spectral signature of the item (Garaba and Harmel, 2022). Apparent colour affects
the spectral reflectance in the visual wavelength range (400-800 nm) (Moshtaghi et al., 2021).

The distinctly different spectral reflectance of plastics, vegetation and water resulted in high and low LDA weights
for different wavelengths. Wavelength 842 nm gave high LDA weights for plastic and water. For plastic with vegetation
LDA weights peaked at 665 nm and 740 nm. Figure 3.2 shows the LDA weights, describing the ability of each wavelength
to discriminate between pristine and weathered plastics and water (A) and vegetation (B). The LDA weight for plastic
and water varied between pristine and weathered plastic. Pristine plastic weights had a large peak at 842 nm indicating
that pristine plastic and water had the largest separation of spectral reflectance at that wavelength. In contrast, LDA
weights for weathered plastic and water peaked at four wavelengths, 560, 665, 740, and 865 nm. However, LDA weights
in the visible wavelength range 400-700 nm are considered to be of less importance because the reflection of these
wavelengths is strongly influenced by the apparent color of the item (Garaba et al., 2021). This results in varying LDA
weights depending on the collection of sample items. These findings correspond with the findings of P. Tasseron et al.
(2021), who showed that for the Sentinel-2 B6 (740 nm) were powerful for discriminating water and floating debris and
Biermann et al. (2020) suggested that B8 (842 nm) is key for the detection of floating debris in coastal waters. A large
variation between the LDA weights of pristine plastics and weathered plastic exists at 842 nm. The LDA weight for
pristine plastic is twice that of weathered plastic, which is expected considering the difference in spectral reflectance of
these items (figure 3.1(A & B)). Pristine plastic had a mean spectral reflectance of 0.37, and a standard deviation of
0.19 at 842 nm. Whereas weathered plastic had a mean reflectance of 0.24, and a standard deviation of 0.18 at that
wavelength. The spectral reflectance of water was 0.1 at the same wavelength. Therefore the difference between the
reflectance of water and pristine plastics is larger than the difference between water and weathered plastic at 842 nm.
This leads to a higher LDA weight, as the LDA weight is calculated by the difference of the means between two classes
divided by the variance within the classes.

(A) (B)
Figure 3.2: LDA weights of reflectance values of pristine and weathered plastics with
water (A) and vegetation (B). The dots represent the different bands (B1-B9) of the
MAIA-S2 camera depicted on their respective wavelengths

The LDA of pristine and weathered plastic with vegetation had similar results with both the highest LDA weights at
665 nm and 740 nm. The peak of weathered plastic was slightly higher than that of pristine plastic, this is expected to
be caused by differences in plastic sample collection since reflection is dependent on the apparent color in this wavelength
range. The LDA weights correspond largely to results demonstrated by P. Tasseron et al. (2021), who showed high LDA
weights for Sentinel-2 bands, B4,B5 and B6 corresponding to respectively 665, 705, and 740 nm. However, in contrast
to P. Tasseron et al. low LDA values had been found for 705 nm. This wavelength is located in the red-NIR transition
of vegetation reflectance, therefore difference is vegetation samples could lead to difference in reflectance. Subsequently



causing the LDA weight to differ.
Combining results for plastic with water and plastic with vegetation, wavelengths 665, 740 and 842 nm are most

important to discriminate plastic from water and vegetation. These wavelength correspond to MAIA-S2 bands B4,B6
and B8. Indices utilizing these wavelengths are expected to discriminate plastic best from vegetation and water. In the
next section this will be tested with Naive Bayes classifications trained for eight different indices or index pairs.

3.2 Spectral indices

In table 3.1 the accuracy of these Naive Bayes classifiers evaluated on a test data set is displayed. For this classification
all plastic combined, vegetation and water are used as prediction classes. The total accuracy of the classifier is depicted,
as well as the RE and the PR of plastics. Classifiers trained for indices NDVI and PI were most accurate for classifiers
trained for one index. The classifier had an accuracy 86% for these two indices. This accuracy is 7% higher than the
accuracy of the classifier using the reflectance values of all nine bands scanned, demonstrating the importance of distinct
spectral signatures to detect objects (Topouzelis et al., 2019; Topouzelis et al., 2020). NDVI and PI are comprised of
red (665 nm) and near-infrared (842 nm) wavelengths confirming the importance of these wavelengths for the separation
of plastic, vegetation and water pixels. This is in agreement with the LDA weights previously demonstrated.

Table 3.1: Overview of the accuracy of the trained Naive Bayes classifiers. As well
as the RE and PR of the prediction of plastic.

Index Accuracy (%) Plastic RE (%) Plastic PR (%)

9-band spectrum 79 48 83
EVI 33 0 100
WDVI 79 49 84
NDVI 86 66 90
PI 86 66 90
NIDI 67 26 76
NDVI + NIDI 91 81 92
NDVI + WDVI 86 67 88

Other indices have lower classifier performance separating plastic, vegetation and water. WDVI, which uses besides
NIR wavelengths green wavelengths (560 nm), had similar to the 9-band spectrum an accuracy of 79%.. EVI, which
besides NIR and red wavelengths uses blue wavelengths (490 nm), had an accuracy of 33%. Both indices have lower
performance than NDVI and PI, confirming that green and blue wavelengths show less potential to distinguish plastic,
vegetation and water. However this could be influenced by the color of the sampled items in this study as discussed
before (3.1).

NIDI, calculated with Red-Edge (740 nm) and NIR (842 nm) wavelengths, had an accuracy of 67%, 19% lower than
the accuracy off NDVI and PI. Despite the fact that both wavelengths were found to be important in the separation of
plastic, vegetation and water. However, the LDA weights of plastic and vegetation which were higher for red wavelengths
(0.32) than for red-edge wavelengths (0.25) (figure 3.2B). Subsequently, the vegetation is overpredicted at a higher rate
than water with NIDI. The PR for vegetation is 57%, stating that 57% of pixels predicted as vegetation are actually
vegetation. Meanwhile 89% of the true vegetation is predicted correctly as vegetation (RE), causing a difference of 32%
between RE and PR. This effect did not occur as strongly for water, since the difference between RE and PR was 8%.
Given the high RE of water and the low RE of plastic, this overprediction of vegetation is caused by a misclassification of
plastics. In contrast to NIDI, the difference in PR and RE for NDVI was similar for vegetation (12%) and water (11%).
Confirming that red wavelengths were better to discriminate plastic from vegetation than red-edge wavelengths.



However, a classifier trained with NDVI and NIDI as parameters increased the ACC with 5% to 91%. A combination
with PI and NIDI had similar results. Combining two indices proves to be a promising approach to discriminate plastic
vegetation and water. Similarly, Biermann et al. (2020) found that examining two indices together is a promising method
to discriminate plastic from marine materials, including seaweed, water, timber and foam. As these materials showed
distinct clustering when examined for floating debris index (FDI) and NDVI together. In agreement with the lower LDA
weights for green wavelengths, combining NDVI and WDVI did not increase the accuracy of the classifier in comparison
with the classifier trained for only NDVI.

Next, the performance of the classifier to predict plastic was examined. The RE of plastic is consistently lower
than the overall accuracy of the classifier. As was expected due to the high standard deviation of plastic compared to
vegetation and water. For NDVI an PI 66% of the true plastic pixels is correctly predicted as plastic. The FN of plastic
are predicted both as vegetation and water at similar rates. The RE of vegetation and water is with, 93% and 99%
respectively. But for both classes the PR is lower indicating an overprediction of these classes, resulting in a decrease
in the overall accuracy of the classifier. Combining NDVI and NIDI in the classifier increases the RE of plastic to 81%.
Vegetation increases to 99%, but water decreases slightly to 93% and for both classes an slight increase in PR (appendix
A.2). The performance of the classifier with both NVDI and NIDI is promising and shows similar levels of performance
to automated classifier used in previous studies (Acuña-Ruz et al., 2018; Sannigrahi et al., 2022). However a direct
comparison is complicated. These classifier were performed for more classes and for far-range imagery, which generally
have lower standard variation than high resolution close-range imagery used in this study. Which decreases the overall
performance of a classifier (Chen* et al., 2004).

In figure 3.3 a visualization is shown of the Naive Bayes classifier performance, for pristine HDPE plastics in standing
water. Figure 3.3A is an RGB image to show the true pixel representation. In the image only HDPE plastics and water
is present, in the bottom center water glints are present. In both figure 3.3B, the NDVI-trained classifier, and figure
3.3C, NDVI + NIDI-trained classifier, the majority of the plastic item pixels were predicted correctly. However, near
item borders and relief within the plastic items pixel were predicted as vegetation or water. The visualization displays
results comparable with the RE and PR findings previously discussed. The NDVI-trained classifier performed slightly
better separating plastic and water. Especially the most right sample item is better predicted by the NDVI classifier.
However, the NDVI classifier predicted more plastic pixels as vegetation than the NDVI + NIDI classifier. Meanwhile
water was overpredicted for the NDVI + NIDI-trained classifier. Furthermore, most of the water is correctly predicted as
water, however near the water glints the prediction was less accurate (Topouzelis et al., 2019). Especially the NDVI +
NIDI-trained classifier incorrectly predicted these pixels as plastic.



(A)

(B)

(C)
Figure 3.3: Visual representation of the classifier performance for pristine HDPE
plastics under standing water conditions with 1800 Lumen of light.(A) RGB image (B)
Naive Bayes NDVI prediction (C) Naive Bayes NIDI-NDVI prediction. The classifier
was trained for three classes; plastic (red), vegetation (yellow) and water (blue).



3.3 Influence of ambient conditions

Increasing Fr had a large negative effect on the performance of classifier, this indicates that Fr variation effects the ability
to detect plastic. Table 3.2 depicts a Pearson and Spearman correlation between the four variables and a Naive Bayes
classifier trained on the NDVI and NIDI data of the lowest value for each variable. The Pearson and Spearman correlation
between Fr and the classifier performance had a very strong negative correlation of -0.92 and -0.96. The p-value for
both correlations was <0.01 indicating strong evidence against the null hypothesis and thus statistically significance. The
classifier performance for varying wet and dry illumination levels and light angle had moderate to strong correlation but
have no significance with p-values larger than 0.05. Although the p-value of illumination in the dry situation is close to
significance, as 0.08 was close to 0.05, the correlation is deemed insignificant because of the small number of variable data
points. This could lead to both an underestimation or an overestimation of the significance. Besides the relatively small
amount of data points, the dry illumination data could be influenced by the experiments both done inside and outside.
Differences in setup, light source and camera position could have an effect on the results. No significant correlation
was found when calculated for the varying illumination levels inside and outside separately (appendix A.2). Appendix
A.3 presents an overview of the classifier performance for all ambient conditions is presented, where the accuracy of the
classifier and the RE and positive predictive value of plastic, vegetation, and water can be found.

Table 3.2: Correlation between ambient conditions and NDVI-NIDI trained
Naive Bayes classifier

Pearson correlation Spearman correlation
Ambient condition r p r p

Froude number -0.92 <0.01 -0.96 <0.01
Illumination (Wet) -0.53 0.36 0.00 1.0
Illumination (Dry) -0.76 0.08 -0.6 0.24
Light angle -0.58 0.42 -0.8 0.33

In table 3.3 an overview of the classifier accuracy, and corresponding plastic RE and PR are described. The classifier
performance decreased sharply at Fr 0.4 from 91% to 58%, after this the accuracy had a slightly decreasing trend
with increasing Fr. Although the RE of the classifier to predict plastic has an increasing trend this is in all probability
contributed to an over-prediction of plastics which is indicated by the sharp decrease in PR at Fr 0.4 and higher. Figure
3.4 presents a confusion matrices of the classifier prediction for two situations, Fr 0.2 (figure 3.4A) and Fr 1.2 (figure
3.4B). This confusion matrix demonstrates a more detailed view into the prediction of the individual classes against the
true values of these classes.

Table 3.3: Confusion matrix for different Fr, total accuracy, RE and PR. For
classifier trained for 1 situation (Fr 0.0)

Froude number Total accuracy (%) RE (%) PR (%)

0.0 96 93 93
0.2 89 94 80
0.4 61 96 28
0.6 66 96 28
0.8 66 99 44
1.0 62 98 34
1.2 43 99 23



The decrease in the overall performance of the classifier can be attributed to a decrease in performance to correctly
predict water and vegetation from FR 0.2 and Fr 1.2 . For Fr 0.2 37.1% of the vegetation, pixels were predicted as
plastic, this false prediction increased to 76% pixels for Fr 1.2. The prediction accuracy for water decreased even more
sharply from 2.4% to 99.7% of pixels that were falsely predicted as plastic. At the same time, the percentage of false
predictions of plastic as vegetation and water varied slightly comparing both situations. Furthermore, the prediction of
vegetation and water as each other is negligible. This suggests that the index values of plastic do not change with higher
Fr and the index values of vegetation and water converge toward plastic index values. Figure 3.5 shows the NDVI and
NIDI values for varying Fr.

(A) (B)
Figure 3.4: Normalized confusion matrix of the Naive Bayes classifier trained for Fr 0.0 and tested for Fr 0.2
(A) and Fr 1.2 (B). Empty cells have a value of 0, meaning that there is no pixel predicted that represents
that cell.

The decrease in performance to detect vegetation is likely caused by submersion of the vegetation. The vegetation
samples used are, due to the dimensions of the vegetation items used in the study, more susceptible to submersion by a
rougher water flow than the plastic items used. Knaeps et al. (2021) found that submersion decreased the reflectance of
an item. This leads to a decrease in the ratio between the specific wavelengths used to calculate NDVI and NIDI, and
thus to a decrease in index values. Furthermore, the decrease in the performance to detect water is most likely caused
by the change in spectral features of the water surface. For higher Fr the water surface roughness increases, which leads
to a change in spectra reflectance (Hauer et al., 2022; Legleiter et al., 2017). This change in spectral reflectance leads
to an increase in NDVI value for water.

(A) (B)
Figure 3.5: (A) mean, standard deviation and trend line of pristine and weathered plastics,
vegetation and water NDVI values against Fr. (B) mean, standard deviation and trend line of
pristine and weathered plastics, vegetation and water NIDI values against Fr.



3.3.1 Classifier trained for all data

In section 3.3 it is demonstrated that a change in Fr has a large influence on the performance of a classifier to detect
plastic form vegetation and water. However this loss in accuracy is decreased by increasing the data set the classifier is
trained on. Training the classifier for all data collected in this study decreases the loss in classifier accuracy with increasing
Fr as is shown in table 3.4. Hereby, limiting the effect of Fr changes on the detectability of plastics from vegetation and
water by the classifier. This is expected of a classifier that is trained on a data set with more variability. However, a
decrease in the maximum accuracy of the classifier would have been expected because using a more variable data set
leads to the range of values of a class being larger. Which could lead to more overlap between classes. Contrarily, the
results show only a small decrease in maximum classifier accuracy. For Fr up to 1.0, values that represent the majority of
rivers, the range of accuracy was 86-92%. Similar to previous classifier results the performance to predict plastic is lower
than the overall accuracy of the classifier. The RE of plastic pixels is between 72% and 81%, and the PR is between
80% and 95%. The performance of the algorithm was slightly lower than the performance of algorithms used in previous
studies. Iordache et al. (2022) found a plastic RE of 90 % and a PR of 94% with a random forest classifier for drone
imagery. Similarly, Lavender (2022) determined a plastic RE of 89% for a classifier trained with Sentinel-2 imagery. The
relatively high resolution could explain the reduced performance of the classifier used in this study compared to other
studies. As Chen* et al. (2004) found that standard deviation is higher for finer resolutions, this causes a decrease in
classifier performance. A counterargument is that the compared studies use more classes than the three that are used
in this study. For instance in the study of Iordache et al. (2022) plastic are most often falsely predicted as bare soil and
painted surface.

Table 3.4: Confusion matrix for different Fr, total accuracy, RE, PR, Classifier trained
for total data-set

Froude number Classifier accuracy RE (%) PR (%)

0.0 91 74 93
0.2 87 72 86
0.4 86 76 81
0.6 92 80 96
0.8 86 80 82
1.0 89 80 88
1.2 78 87 66

Figure 3.6 displays two normalized confusion matrices for Fr 0.2 (A) and Fr 1.2 (B). The classifier trained for all
ambient conditions increased most in performance for the in the RE and PR of water pixels compared to the classifier
trained for one ambient condition. The percentage of accurately predicted water is relatively stable with a decrease of
only 4% from 100% to 96% true positive predictions. While the prediction performance to predict vegetation shows
similar levels of decrease as the classifier trained for one circumstance (figure 3.4). This disparity between the increased
performance of water prediction and the more stable performance of vegetation prediction by the classifier is probably
caused by the data set characteristics. FR is one of the ambient conditions that was changed in the experiments. Making
use of the whole data set to train the classifier increased the range of values the classifier labels as water. In contrast,
vegetation was not a primary variable within the experiment. Changes in vegetation values occurred solely due to changes
in ambient conditions. In a similar way, these ambient conditions affected plastic item values. This caused the vegetation
range to increase considerably less than Fr values when the entire data set is used. Which leads to a decrease in the
performance gain of the classifier train for the entire data set as well..



(A) (B)
Figure 3.6: Normalized confusion matrix of the Naive Bayes classifier trained for the entire data-set and
tested for Froude 0.2 (A) and Froude 1.2 (B). Empty cells have a value of 0, meaning that there is no pixel
predicted that represents that cell.

3.4 Influence of plastic variability

The classifiers preformed better for detecting pristine plastics compared to weathered plastics. The difference in the
performance of the classifier occured in the rate of correctly predicted plastics (RE), as can be seen in figure 3.7. The
RE of pristine plastics is 85% (figure 3.7A) in comparison to 75% (figure 3.7 C) for weathered plastics. For weathered
plastic, this extra 10% of plastic pixels is mostly predicted as water. The classifier predicted 17% of weathered plastic as
water in comparison to only 8% of pristine plastics. In contrast, pristine and weathered plastic are predicted as vegetation
at relatively similar rates, 6% and 9% respectively. The pristine plastics are thus easier to discriminate from water than
weathered plastic by a Naive Bayes classifier. This is in agreement with the LDA results (figure 3.2) that had a larger
difference for the separation of the plastics with water than for plastics with vegetation. A large difference in LDA weights
at 842 nm was demonstrated for the LDA with water, causing a disparity in the ability to separate pristine and weathered
plastic from water. The pristine plastic LDA was more than twice as large as that of weathered plastic and water, 0.35
and 0.15 respectively. The LDA at 665 nm, which was most important to separate plastic from vegetation, demonstrated
smaller differences between pristine and weathered plastic. The LDA weight for pristine plastic was 0.27 compared to
0.33 for weathered plastic.

The conditions of plastic used to train an algorithm had limited influence on the performance of that classifier to
discriminate plastic from vegetation and water. A pristine plastic data set had similar percentages of correctly predicted
pixels for all classes, both for a classifier trained on pristine plastics (figure 3.7A) and a classifier trained on weathered
plastics (3.7B). However the classifier trained on pristine plastic (figure 3.7D) decreased slightly, 5%, when it predicted
weathered plastic in comparison to a classifier that was train for weathered plastic (figure 3.7C).



(A) (B)

(C) (D)
Figure 3.7: (A)Pristine plastic tested by a classifier trained on a pristine plastic data-set. (B)Pristine plastic
tested by a classifier trained on a weathered plastic data-set. (C)weathered plastic tested by a classifier
trained on a weathered plastic data-set. (D) Weathered plastic tested by a classifier trained on a pristine
plastic data-set.

3.5 Synthesis and outlook

This study provides insights into the ability to detect macroplastics using multi-spectral remote sensing tools in the VIS-
NIR range under various ambient conditions. Several studies have explored the plastic reflectance of macroplastics for
imagery of varying spatial resolutions and wavelength ranges (Gnann et al., 2022). In this study red (665 nm), red-edge
(740 nm), and near-infrared (842 nm) wavelengths were identified as important to discriminate plastic from vegetation.
Similar wavelengths were identified by other studies(P. Tasseron et al., 2021; Topouzelis et al., 2021). Furthermore, it
was indicated by the results that NDVI and PI were most suitable for plastic detection. yet, a combination of these indices
with NIDI was proven to be 15% more accurate in the prediction plastic. Thereby, following the promising approach of
combining spectral indices for plastic detection (Biermann et al., 2020).

As Gnann et al. (2022) stated in their review, external factors influencing the degree of reflections are wetting,
submergence, and weathering. Also the light condition and the inherent and apparent optical properties of water are
important to consider (Mishra et al., 2017). However their effects have not been researched on a large scale (Moshtaghi
et al., 2021). This study investigated the spectral reflectance and detection under changing Fr of the water stream
and incident light intensity and angles. From this selection of ambient conditions, changing Fr conditions had the most
influence on the detectability of plastic. Furthermore, when the influence of ambient conditions was tested with a Naive



Bayes classifier a strong significant negative correlation was found between Fr and accuracy of the classifier. Even though
spectral reflectance of the plastic itself was not effected by Fr, it changed the spectral reflectance of water and vegetation
which converged the NDVI value range between plastic, vegetation and water. As a consequence, this decreased the
ability to detect plastic, from vegetation and water. Biermann et al. (2020) saw similar effects on the functionality of
algorithms with increasing water turbidity levels, as that also caused higher NDVI values of the water. Simultaneously,
the vegetation was more susceptible to waves than plastic items, due to its dimensions. An increase in water roughness
attributed to the submergence of vegetation, and thereby lowered the spectral reflectance of vegetation (Moshtaghi et al.,
2021). The other variables, light intensity, light angle and the condition of the plastic seemed to have less influence on
the ability to discriminate plastic from vegetation and water. But more investigation into the effect of these factors is
needed to conclude that their effects are negligible.

A major limitation of this research is that it mostly has been conducted in a laboratory environment under artificial
lighting. In natural environments, the detection and identification of macroplastics is influenced by external factors not
taken into account, such as submergence, water turbidity, and atmospheric effects (Gnann et al., 2022). P. F. Tasseron
et al. found a smaller range of reflectance intensity of plastic and vegetation comparing lab and field measurements,
which they contributed to rapidly differing light conditions. Secondly, plastic was in this research compared to water
and vegetation. Other items commonly found near riverine systems, items such as non-plastic waste, wood, and water
turbidity and color (Biermann et al., 2020; Iordache et al., 2022), were excluded. This complicates the translation of these
results into natural environments. A third limitation is the range of wavelengths used in this study. Most studies that
used spectral indices to detect floating plastics used wavelength up to 2500 nm (Garaba and Dierssen, 2018; Topouzelis
et al., 2021) which are deemed more suitable for plastic detection (empty citation). However, the classifier for NDVI +
NIDI used in this study had similar effectivity to correctly predict plastic (81%) as classifiers used by (Acuña-Ruz et al.,
2018; Sannigrahi et al., 2022), which predicted 70-90% of the plastic correctly.

The findings of this study enable future research in several directions. This research should focus on ambient factors
that simultaneously effect a only part of the objects scanned in riverine or marine environments. For example, this study
found Fr to have the larger influence on the effectivity to discriminate plastic, vegetation and water. However the change
in FR did not influence the reflectance of plastic itself, only the reflectance of vegetation and water. Therefore causing a
divergence in the range of NDVI values of all three classes, and subsequently an overprediction of plastic. Other ambient
conditions that lead to changes in spectral reflectance and detectability of plastic items were found previously due to
submergence and turbidity of the water (Garaba and Harmel, 2022; Knaeps et al., 2021). All three ambient variables,
Fr, submergence of plastic and turbidity, influence the spectral reflectance of one object class, causing the ratio of index
values to change between different object classes. Further research is needed to properly asses the impact of these
ambient conditions on the detection of plastic objects in riverine and marine environments.

Furthermore, a study into the effect of Fr can be conducted in natural environments. The floating characteristics
of plastic items in rivers can be different than observed in a laboratory environment. For example, the plastic items
occur mostly floating on top of the water in the flume, while plastic items have been found floating (partially) submerged
in natural environments (van Emmerik and Schwarz, 2020). Furthermore this study provided a promising method, a
combination of spectral indices NDVI and NIDI, to detect plastic items from vegetation and water. This method can be
used for close range multispectral analysis and space borne analysis utilising Sentinel-2 sensors of floating plastics.



4 | Conclusions

This study provides a database of multi-spectral imagery of plastics and vegetation under multiple ambient conditions.
As well as an analysis of the effect of ambient conditions on the ability to distinguish plastic pixels from vegetation and
water. Based on the analysis and discussion the following conclusion can be drawn:

• Froude numbers changes were found to have a high negative and significant correlation (Pearson’s r=-0.92) with
the accuracy of a Naive Bayes classifier. Suggesting that Froude number changes within the range most commonly
in riverine systems have a considerable impact on the ability to discriminate plastic from vegetation and water.
Future studies exploring the effects of ambient conditions on remote sensing of macroplastics can build upon this
knowledge.

• The importance of each of the nine wavelength bands of the MAIA-S2 sensor is showed by conducting linear
discriminant analyses of the reflectance values of plastic, water and vegetation. High LDA weights were found at
bands B4 (665 nm), B6 (740 nm) and B8 (842 nm), indicating which component of spectral indices perform best.
However, Pristine plastics had a higher LDA weights for the separation than weathered plastics, suggesting that
they can be discriminated more efficiently.

• Using a combination of NDVI and NIDI is a promising approach for the ability to distinguish plastics, vegetation and
water. Training a classifier using both NDVI and NIDI improved the accuracy with 5% point to 91% in comparison
to a NDVI trained classifier and improving the plastic RE with 15% point to 81%.

• The classifier showed similar levels of performance for detecting weathered plastic, when trained for pristine plastic
as for weathered plastic with the RE decreasing 5%. This suggests that the plastic conditions tested possibly have
limited influence on the detectability of plastic form vegetation and water, but more research into this is needed to
test for macroplastic various databases.

• The classifier performed better when predicted pristine plastic than weathered plastics, the RE for pristine plastics
was 86% against 74% for weathered plastic. This would suggest that pristine plastics can be more effectively
discriminated than weathered plastics from vegetation and water.
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A | Appendix

A.1 Overview of plastic items and pixels in database

Figure A.1: An overview of the locations where the plastic (A B) and vegetation (C) is collected. The collection
date is attached to the locations on the map.

A.2 Classifier performance for different indices

Table A.1: Correlation between ambient conditions and NDVI-NIDI trained
Naive Bayes classifier, including inside and outside measurements for illumina-
tion (Dry)

Pearson correlation Spearman correlation
Ambient condition r p r p

Froude number -0.92 <0.01 -0.96 <0.01
Illumination (Wet) -0.53 0.36 0.00 1.0
Illumination (Dry) -0.76 0.08 -0.6 0.24
Light angle -0.58 0.42 -0.8 0.33
Illumination (Dry inside) 0.99 0.06 1.00 0.33
Illumination (Dry outside) 0.62 0.57 0.50 1.00

A.3 Classifier performance for different indices



Plastic Vegetation Water
Index Accuracy RE PR RE PR RE PR
9 Bands 79 48 83 92 80 98 77
NDVI 86 66 90 93 81 99 88
EVI 33 0 100 100 33 0 0
PI 86 66 90 92 81 99 88
NIDI 67 26 76 89 57 86 78
NDSI 44 21 64 25 56 86 39
NDWI 72 39 74 81 82 96 65
NDVI_NIDI 91 81 92 99 91 93 88
NDVI_NDWI 96 67 88 91 81 99 90

Table A.2: Confusion matrix for classifier trained for different indices. The total
classifier accuracy and RE and PR for the three classes, plastic, vegetation and
water is depicted in percentages.

A.4 Classifier performance, single circumstance trained

Ambient Accuracy Plastic Vegetation Water
Condition RE PR RE PR RE PR
Fr 0.0* 92 74 89 97 92 99 96
Fr 0.2 87 79 79 84 84 98 98
Fr 0.4 58 83 26 81 87 0 0
Fr 0.6 61 77 23 89 79 0 5
Fr 0.8 61 82 39 75 74 23 100
Fr 1.0 54 93 32 68 85 1 86
Fr 1.2 45 80 20 56 69 0 67
Wet 600 Lumen** 87 70 98 0 0 99 97
Wet 900 Lumen* 90 72 84 93 87 99 97
Wet 1200 Lumen 91 75 88 93 87 99 97
Wet 1500 Lumen 92 71 92 98 91 99 97
Wet 1800 Lumen 73 74 50 90 74 52 96
Dry 600 Lumen* 82 80 85 84 78
Dry 900 Lumen 86 84 92 89 79
Dry 1200 Lumen 89 88 92 91 87
Dry 22500 Lumen 85 72 100 100 72
Dry 45000 Lumen 81 65 100 100 70
Dry 95000 Lumen 79 61 100 64 100
Light angle 60° * 91 84 95 96 88
Light angle 70° 89 81 95 96 84
Light angle 80° 86 85 91 88 79
Light angle 90° 89 85 91 92 86

Table A.3: Confusion matrix for different Fr numbers. The total classifier
accuracy and RE and PR for the three classes, plastic, vegetation and water is
depicted in percentages. For a classifier trained for 1 situation. For variables
dry illumination and light angle, water was not taken into account. *Data set
classifier is trained on. **Classifier not trained for WET600, because of the
corruption of vegetation imagery for the WET600 situation



A.5 Classifier performance, trained on all circumstances

Ambient Plastic Vegetation Water
condition Accuracy RE PR RE PR RE PR
Fr 0.0 91 74 93 98 98 100 86
Fr 0.2 87 72 86 88 96 100 89
Fr 0.4 86 76 81 83 97 100 90
Fr 0.6 92 80 96 96 94 100 94
Fr 0.8 86 80 82 86 94 94 89
Fr 1.0 89 80 88 88 93 97 91
Fr 1.2 78 87 66 53 95 96 95
Wet 900 Lumen 88 78 88 94 96 100 90
Wet 1200 Lumen 89 75 89 93 97 100 81
Wet 1800 Lumen 92 81 97 96 96 100 89
Dry 600 Lumen 88 90 89 86 93
Dry 900 Lumen 92 94 94 89 94
Dry 1200 Lumen 92 91 94 94 97
Dry 22500 Lumen 87 75 100 100 75
Dry 45000 Lumen 83 66 100 100 72
Dry 95000 Lumen 80 60 100 100 63
Light angle 60 96 93 99 99 97
Light angle 70 96 93 99 99 96
Light angle 90 95 91 99 99 96

Table A.4: Confusion matrix for different Fr numbers. The total classifier
accuracy and RE and PR for the three classes, plastic, vegetation and water is
depicted in percentages. For a classifier trained for all data. For variables dry
illumination and light angle, water was not taken into account.


