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Abstract
Grassland ecosystems cover up to 40% of the global land area and provide many eco-
system services directly supporting the livelihoods of over 1 billion people. Monitoring 
long-term changes in grasslands is crucial for food security, biodiversity conservation, 
achieving Land Degradation Neutrality goals, and modeling the global carbon budget. 
Although long-term grassland monitoring using remote sensing is extensive, it is typi-
cally based on a single vegetation index and does not account for temporal and spatial 
autocorrelation, which means that some trends are falsely identified while others are 
missed. Our goal was to analyze trends in grasslands in Eurasia, the largest continu-
ous grassland ecosystems on Earth. To do so, we calculated Cumulative Endmember 
Fractions (annual sums of monthly ground cover fractions) derived from MODIS 
2002–2020 time series, and applied a new statistical approach PARTS that explic-
itly accounts for temporal and spatial autocorrelation in trends. We examined trends 
in green vegetation, non-photosynthetic vegetation, and soil ground cover fractions 
considering their independent change trajectories and relations among fractions over 
time. We derived temporally uncorrelated pixel-based trend maps and statistically 
tested whether observed trends could be explained by elevation, land cover, SPEI3, 
climate, country, and their combinations, all while accounting for spatial autocorrela-
tion. We found no statistical evidence for a decrease in vegetation cover in grasslands 
in Eurasia. Instead, there was a significant map-level increase in non-photosynthetic 
vegetation across the region and local increases in green vegetation with a concomi-
tant decrease in soil fraction. Independent environmental variables affected trends 
significantly, but effects varied by region. Overall, our analyses show in a statistically 
robust manner that Eurasian grasslands have changed considerably over the past two 
decades. Our approach enhances remote sensing-based monitoring of trends in grass-
lands so that underlying processes can be discerned.
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1  |  INTRODUC TION

Grassland ecosystems cover up to 40% of the global land area 
and harbor over 30% of the global carbon stored in soils (Bardgett 
et al.,  2021; FAO,  2005; Lorenz & Lal,  2018; Panunzi,  2008). 
Grasslands also provide many ecosystem services (Bengtsson 
et al., 2019), support wellbeing of more than 1 billion people, and 
regulate climate through carbon sequestration and albedo-driven air 
circulation (Bengtsson et al., 2019; Lioubimtseva & Henebry, 2009; 
O'Mara, 2012). Anthropogenic and environmental factors influence 
grasslands at different spatial and temporal scales and may lead to 
degradation and vegetation recovery (Bardgett et al., 2021; Cherlet 
et al., 2018; FAO, 2005). While identification of abrupt changes with 
moderate to high magnitudes and their causes is typically straight-
forward, detection of subtle changes taking place over longer time 
periods is more challenging, as is identification of significant drivers 
causing these trends. Appropriate and statistically valid assessment 
of changes in grasslands and identification of their drivers is pivotal 
to support biodiversity, food security, and climate change modeling 
and mitigation efforts (IPBES,  2018; IPCC,  2019; O'Mara,  2012), 
including meeting global environmental and development goals 
(Cowie et al.,  2018), and UN ecosystem restoration efforts (UN 
General Assembly, 2021).

The grasslands of Eurasia are the largest continuous grassland 
ecosystem on Earth and are instrumental to economy, food security 
(O'Mara, 2012), global ecology (Baumann et al., 2020; Smelansky & 
Tishkov, 2012), air circulation (Lioubimtseva & Henebry, 2009), and 
the carbon cycle (Ni,  2002; Rolinski et al.,  2021). However, grass-
land ecosystems in Eurasia vary considerably (De Keersmaecker 
et al.,  2015; Smelansky & Tishkov,  2012), experience diverse cli-
mate change impacts (IPCC, 2019; Lioubimtseva & Henebry, 2009), 
and have different land use histories (Freitag et al.,  2021; Kerven 
et al., 2021). Since the beginning of the 20th century, grassland eco-
systems in Eurasia have sustained several extensive and intensive 
changes in land cover (Winkler et al., 2021) and land use intensity 
that have triggered long-term changes, often accelerated by climate 
change (Jiang et al., 2017). For example, many grasslands in Central 
Asia were ploughed during the Virgin Lands Campaign in the 1950s 
and 1960s (Karch et al., 1964; Prishchepov et al., 2020), others ex-
perience the desertification of the Circum-Aral region that began 
in the 1960s (Saiko & Zonn, 2000), and yet other widespread land 
abandonment after the collapse of the Soviet Union in 1991 (de 
Beurs & Henebry,  2004; Kraemer et al.,  2015; Lesiv et al.,  2018; 
Prishchepov et al., 2013). Those changes have resulted in long-term 
changes in grassland vegetation cover and species composition, al-
tered fire regimes (Dara et al.,  2019; Dubinin et al.,  2011; Freitag 

et al., 2021) and shrub encroachment (Li et al., 2015). In Mongolia 
grasslands are threatened by intensified and often sedentary graz-
ing replacing mobile pastoralism, which results in degradation and 
desertification (Meng et al., 2021; Sanzheev et al., 2020). Similarly, 
in Inner Mongolia of China, current grassland species composition 
and ecology reflect effects of the agricultural intensification that oc-
curred between the early 1950s and late 1990s, followed by rewil-
ding and afforestation initiated by the Great Green Wall and Grain 
for Green programs in late 1970s and 1999s, respectively (Chen 
et al., 2015; Song et al., 2014; Yin et al., 2018). Consequently, when 
analyzing changes in grassland cover in Eurasia it is necessary to rec-
ognize different ground cover trajectories of change to correctly at-
tribute drivers, something that a change in “greenness” alone cannot 
capture.

Remote sensing data are well suited for grassland monitoring, 
including trend detection, due to their reliability and effectiveness 
for large-scale analysis, long-term image archives, and ability to 
capture even subtle changes (Ali et al.,  2016; Dara et al.,  2020; 
Reinermann et al., 2020). Vegetation indices derived based on ac-
tive optical data are commonly used proxies for monitoring grass-
land vegetation cover, productivity and density (e.g., NDVI (Miao 
et al., 2021), LAI (Pasolli et al., 2015), or fPAR (Hobi et al., 2017)). 
Several analyses based on time series of remotely sensed data 
have identified increasing and decreasing trends in grassland 
vegetation productivity and green vegetation cover in Eurasia 
often referred to as “greening” and “browning,” respectively 
(Cortés et al., 2021; de Beurs et al., 2015; de Jong et al., 2012). 
In Kazakhstan and the Russian part of the Caspian Lowlands, veg-
etation indices show “browning” trends in steppes according to 
long- (e.g., 1981–2006: de Jong et al. (2011); 1982–2008: de Jong 
et al. (2013); 1984–2017: Jiang et al. (2017)), medium- (e.g., 2000–
2014: Zhang et al. (2021); and 2001–2013: de Beurs et al. (2015)), 
and short-term analyses (e.g., 2000–2008: de Beurs et al. (2009)). 
This “browning” has been attributed to climate variability (de 
Beurs et al., 2015; de Jong et al., 2013; Jiang et al., 2017) or the 
combination of climate and human activities (Zhang et al., 2021), 
though the effects of weather were not always statistically signif-
icant (de Beurs et al., 2009). Concurrently, grasslands in Mongolia 
and Eastern Mongolia are “greening,” with the increase in produc-
tivity according to long- (e.g., 1982–2008: de Jong et al.  (2012); 
1985–2015: Miao et al.  (2021)) and medium-term studies (e.g., 
2000–2017: Chen et al.  (2019); 2000–2016: Ding et al.  (2020); 
and 2000–2014: Zhang et al.  (2021)). The “greening” has also 
been attributed to climate (de Jong et al., 2013; Miao et al., 2021) 
and a combination of climate and anthropogenic activity (Zhang 
et al., 2021).

K E Y W O R D S
arid environments, autoregressive, Cumulative Endmember Fractions, MODIS, PARTS, 
remotePARTS, spectral mixture analysis, spectral unmixing, steppe, time series
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Unfortunately, the different trend analyses often show differ-
ent change patterns and sometimes even contradicting trends for 
a given region (e.g., “browning” in central and northern Mongolia 
in Miao et al.  (2021) based on a 1982–2015 time series, but not in 
Zhang et al.  (2021) based on a 2000–2014 time series; or “brown-
ing” in NorthEastern Kazakhstan in de Beurs et al. (2015) based on 
a 2001–2013 time series, but not in Jiang et al.  (2017) based on a 
1984–2013 time series). The differences between identified trends 
may be due to differences in the timing and length of the obser-
vation records (Cortés et al., 2021) as well as due to different an-
alytical approaches (Pan et al.,  2018). Furthermore, although the 
long-term changes in grasslands in Eurasia have been extensively 
studied, most of the analyses are based on “one-dimensional” indi-
ces of photosynthetical activity (but see de Beurs et al., 2015; Hill & 
Guerschman, 2020), and do not account for temporal and spatial au-
tocorrelation in the remotely sensed data. We sought to overcome 
both of these limitations here.

Spectral mixture analysis (SMA) quantifies all ground cover 
components of grassland cover (i.e., green vegetation, non-
photosynthetic vegetation, soil, and shade), which characterize 
grassland conditions more comprehensively compared with veg-
etation indices (Masiliunas et al., 2021). Furthermore, spectral un-
mixing is advantageous in sparse vegetation conditions where soil 
reflectance affects vegetation indices (Elmore et al.,  2000; Huete 
et al.,  1985; Smith et al.,  2019). Cumulative Endmember Fractions 
(CEFs), calculated as sums of endmember fractions over a period of 
1 year, or a growing season (Lewińska et al., 2020, 2021), capture 
the full range of illumination conditions and phenology phases, and 
“normalize” those effects, which allows unbiased year-to-year com-
parisons. The “four-dimensional” information space of CEFs allows 
the identification of change trajectories (e.g., to separate a change 
from green vegetation to soil from a change from green vegetation 
to non-photosynthetic vegetation). To better capture trajectories, 
single fractions can be combined into ratios to illustrate transitions 
among fractions over time, which facilitates the mapping and under-
standing of change processes and their drivers.

Prior trend analyses of remotely sensed data have largely not 
accounted for temporal nor spatial autocorrelation leading to 
potentially incorrect conclusions (Ives et al.,  2021). In per-pixel 
trend analyses, not accounting for temporal autocorrelation can 
lead to false positive identification of temporal trends (de Beurs 
& Henebry, 2004). Similarly, failing to account for spatial autocor-
relation across the data (or a map), precludes recognition of true 
and statistically significant changes at the map scale (i.e., at the 
scale of the entire study area), which can result in both, false de-
tection of clustered changes, and omission of subtle trends (Ives 
et al.,  2021). Although the complications originating from auto-
correlation in remotely sensed data are recognized (e.g., de Beurs 
et al., 2015; Tomaszewska et al., 2020; Zhou et al., 2001), few anal-
yses have correctly accounted for it due to associated statistical 
and computational challenges (but see Bi et al.,  2013; de Beurs 
et al., 2015; Xu et al., 2013). The Mann–Kendell test, despite fre-
quent claim to the contrary, does not account at all for temporal 

autocorrelation, and the seasonal Mann–Kendall test accounts 
only for temporal autocorrelation among seasons, but not among 
years (Hirsch & Slack, 1984).

Our goal was to investigate systematic trends in ground cover 
composition of grassland ecosystems in Eurasia while accounting for 
temporal and spatial autocorrelation in remotely sensed time series 
using the Partitioned Autoregressive Time Series (PARTS) approach 
(Ives et al., 2021). Specifically, our objectives were to: (i) calculate 
CEFs for all grassland-specific ground cover fractions (i.e., green 
vegetation, non-photosynthetic vegetation, soil, and shade) based 
on MODIS 2002–2020 time series; (ii) identify per-pixel systematic 
temporal trends in grassland ground cover depicting diverse trajec-
tories of change and evaluate the range of spatial autocorrelation 
of these changes; and (iii) analyze the detected trends at map-scale, 
testing hypotheses about the effects of different independent envi-
ronmental variables and their interactions (i.e., climate zone, country, 
elevation, land cover class, and SPEI3 (Standardized Precipitation-
Evapotranspiration aggregated over 3 months)) on ground cover 
composition while accounting for spatial autocorrelation.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The Eurasian grasslands (Figure  1) comprise 33 ecoregions from 
forest steppe to deserts (Olson et al.,  2001) (Figure  SA1), and 
represent 6 of 14 global biomes with a strong climate gradient 
from north to south (Figure SA2). In the northern part and in the 
mountain regions of the Pamir and the Tian Shan, climate is conti-
nental, but that changes toward the south into cold semiarid and 
cold desert. The mean annual temperature varies from −23°C in 
the mountain regions to 20°C elsewhere. The maximum of the 
warmest month varies from 10° to 40°C, while the minimum of 
the coldest month varies from 0° to −35°C. The annual precipita-
tion ranges from 60 to 600 mm/year, with extreme values from al-
most 0 mm/year in the Taklamakan and Gobi Deserts to 1000 mm/
year in the Pamir, the Tian Shan, and the Altai mountains (Beck 
et al., 2018; Karger et al., 2017).

The soils are mainly chernozems and dark kastanozems in the 
north, light-colored kastanozems in the center, and yermosols in the 
south (Figure SA3). Sandy soils, along with salty soils, are common 
in both the Aral and the Caspian depressions, and in the Kyzylkum, 
the Karakum, the Taklamakan, and the Gobi deserts. Lithosols are 
found in the mountains. The vegetation varies from forest steppe 
and meadow steppe (forbs) to shrubby deserts, depending on hu-
midity, with some enclaves of boreal forests in the mountains.

In terms of land use, the west, northwest, and far northeast, 
where soil and weather conditions are the most favorable, are largely 
ploughed. Some enclaves of croplands are also located along larger 
rivers in the desert parts of the Eurasian grasslands (Hankerson 
et al.,  2019; Sulla-Menashe et al.,  2019). Abandoned fields are  
more common toward the south of the former Soviet republics 
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(Meyfroidt et al., 2016). Central Kazakhstan and most of Mongolia 
are covered by dry grasslands and used as pastures (Hankerson 
et al.,  2019; Mongolian Statistics Office http://www.en.nso.mn/). 
The deserts or mountains of the South are also used as pastures or 
are depopulated.

2.2  |  Earth observation data

We analyzed the 2002–2020 time series of the 8-day 500 m MODIS 
surface spectral reflectance product (MOD09A1; Collection 6) avail-
able in Google Earth Engine (Gorelick et al., 2017; data accessed in 
March 2021) to calculate CEF (Lewińska et al., 2020, 2021). The data 
are atmospherically corrected (Vermote et al., 2002) and adjusted 
for sensor degradation (Lyapustin et al., 2014). We selected only 
high-quality pixels, and excluded clouds and snow (based on the 
“StateQA” band). We did not include data acquired prior to 2002 due 
to their lower quality.

To identify endmembers of ground cover fractions, which are 
essential to derive CEFs, we analyzed 55 Landsat scenes acquired 
between 2003 and 2019 in 11 footprints (Figure  1, Table  SB1). 
When selecting footprints we prioritized those representing the 
predominantly arid climate of our study area, while ensuring repre-
sentation of the main ecosystems, soil types, and country-specific 
conditions (Figures SA1–SA3). For each footprint, we selected cloud-
free or nearly cloud-free scenes acquired during multi-year dry and 
wet spells (Figure SB1, Table SB1) as well as different phenological 
phases. This approach ensured a broad selection of vegetation and 
soil conditions, hence maximizing the diversity in our endmembers' 
pool. Suitable winter-time scenes were not available sue to snow and 
cloud (Table SB1), but this did not hinder analyses due to the design of 
the CEF (Section 2.4). We downloaded all the Landsat data from the 

U.S. Geological Survey (USGS) service (data accessed in November 
2020) as collection 1 tier 1 surface reflectance products that were 
atmospherically corrected with LEDAPS (ETM+: Masek et al., 2006) 
or LaSRC (OLI: Vermote et al., 2016). We removed all pixels flagged 
as cloud, shadow, or snow according to the pixel quality assessment 
bands (Zhu & Woodcock, 2012). Finally, we adjusted the OLI scenes 
to ETM+ surface reflectance following Roy et al. (2016).

2.3  |  Ancillary data

We adopted a broad definition of grasslands, that is, “grazing land” 
(FAO,  2005) and accordingly used the FAO LCC2 land cover clas-
sification available in the 2002–2019 MODIS MCD12Q1 product 
(Sulla-Menashe et al., 2019; Sulla-Menashe & Friedl, 2018) (data ac-
cessed in November 2020) to select which areas to focus on. Based 
on the land cover time series we identified pixels with stable “Natural 
Herbaceous” and “Barren” land cover, and assigned a “Transition” 
class when there was at least one change between these two classes 
between 2002 and 2019 (Figure 1). We included the barren class be-
cause it comprises areas up to 40% vegetation cover, many of which 
are used as pasture in Central Asia and Mongolia.

We used ancillary datasets to test hypotheses about the rela-
tions between environmental conditions and the observed trends 
in grassland ground cover composition in Eurasia. To characterize 
climate information we used the Koeppen–Geiger climate classi-
fication (Kottek et al.,  2006) (Figure SA2; 30 climate zones within 
our study area). We sourced elevation information from GTOPO30 
dataset at 30 arc resolution (USGS, 1997) and incorporated adminis-
trative information at the country level as demarcated in FAO Global 
Administrative Unit Layers 2015 (FAO,  2015). We used monthly 
averaged precipitation and potential evapotranspiration from the 

F I G U R E  1  Grasslands in Eurasia with respective land cover class based on the FAO LCCS 22001–2018 MCD12Q1 annual products. 
Note that map lines delineate study areas and do not necessarily depict accepted national boundaries. ARM, Armenia; AZR, Azerbaijan; BG, 
Bulgaria; GE, Georgia; MLD, Moldova; RO, Romania.
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ERA5-Land ECMWF climate reanalysis data at 0.1 degree reso-
lution (Muñoz Sabater,  2019) and calculated SPEI3 (Standardized 
Precipitation-Evapotranspiration Index calculated at the time scale 
of 3 months) (Vicente-Serrano et al., 2010, 2012) using the SPEI R 
library (https://cran.r-proje​ct.org/web/packa​ges/SPEI). We chose 
ERA5-Land due to its reliability in Central Asia (Zandler et al., 2020). 
All ancillary data were resampled to 500 m to match MODIS data 
using majority rule (for categorical data) and bilinear interpolation 
(for continuous data).

2.4  |  Cumulative Endmember Fraction time series

For the SMA we identified four ground cover fractions charac-
terizing grasslands, herein called endmembers: green vegetation, 
non-photosynthetic vegetation (i.e., dry leaves, shrub twigs), soil 
(or rock), and shade (i.e., vegetation micro-shadowing and topo-
graphic effect). Because 500-m resolution is too coarse to ensure 
spectrally pure pixels for endmember identification, we exploited 
in the similarity of spectral and orbital parameters of MODIS and 
Landsat (Gao et al.,  2006; Hilker et al.,  2009; Zhu et al.,  2019). 
Following the methodology of Lewińska et al. (2020) we identified 
candidate “image endmembers” from Landsat images, making sure 
to cover a wide range of environmental and meteorological condi-
tions across the study area (see Section  2.2, and Supplement B  
for details). By calculating the Minimum Noise Fraction and Pixel 
Purity Index for each selected Landsat scene, we identified and 
tested spectra of multiple soil types and green vegetation in dif-
ferent phenological stages (Table  SB2). Additionally, we used 
the Ecological Spectral Information System (ECOsis) Spectral 
Library (https://ecosis.org; accessed in May 2019) to add the non-
photosynthetic vegetation endmember, which cannot be identi-
fied reliably from the Landsat images (Supplement B). We selected 
the set of final endmembers ensuring the lowest collinearity (Meer 
& Jia, 2012) and the lowest overall SMA RMSE, which quantifies 
how well endmembers explained the variance in the data (see 
Supplement B for details). Because our approach aims at quan-
tifying the main ground cover characteristics of grasslands (i.e., 
green vegetation, non-photosynthetic vegetation, soil, and shade) 
and their change over time, rather than mapping the abundance 
of specific plant species, it allowed us to use more generically de-
fined endmembers. The use of non-specie-specific endmembers 
definitions is common in SMA-based studies covering large grass-
land areas (Guerschman et al., 2015; Lewińska et al., 2020), and in 
other vegetation types (Bullock et al., 2018; Chen et al., 2021; Nill 
et al.,  2022) because it allows to track changes in ground cover 
over time.

We applied the selected four endmembers in a constrained SMA 
model and ran it on each 8-day MODIS surface reflectance data-
set available for 2002–2020 over Eurasia. Because MODIS band 5 
has no equivalent in Landsat TM/ETM+, we excluded it from the 
SMA. We composited the resulting time series to monthly obser-
vations selecting from all corresponding 8-day datasets a set of 

endmembers with the highest green vegetation fraction. Finally, we 
calculated pixel-based endmember-specific CEFs, that is, the sums 
of monthly fractions aggregated for the snow-free period of each 
year. We identified the pixel-specific snow-free period based on 
the 2002–2020 MODIS data taking the median of the first and last 
snow-free months to define the aggregation period (Figures SA4 and 
SA5, respectively). For each year we normalized the four CEFs on a 
per-pixel basis to conjointly sum up to 100%, allowing for straight-
forward comparison among years.

2.5  |  Change trajectories in grassland ground cover 
composition

The design of the CEFs reflects a four-dimensional feature space 
with each of the ground cover types being represented by one axis 
used to describe the ground cover conditions. Because the sum of all 
ground cover fractions is constrained to be 100%, this feature space 
can be represented by a tetrahedron where at respective apexes 
each ground cover fraction reaches 100% coverage (Figure  2). 
Hence, by definition a change in one ground cover fraction results in 
a change in at least one other ground cover fraction. This principle 
applies to both a change in ground cover composition between two 
time-steps and long-term changes. It is possible to analyze changes 
in individual ground cover fractions, yet such an approach misses 
important aspects of the changes. Instead, it is advantageous to 
analyze the relationship between two or more fractions captured 
through ratios between fractions, which greatly facilitates interpre-
tation of change trajectories. Because statistical distributions of ra-
tios are often highly skewed, and were in our data too, we applied a 
logarithmic transformation to the response variables:

where e_i and e_ j are CEFs for endmember i and j, respec-
tively, in year n, and c is a small constant of 0.0001 (to pre-
vent dividing by 0). Importantly, logarithmic transformation 
preserved the additive properties of our ratios allowing comparisons 
(log x

z
= log

x

y
×

x

z
= log

x

y
+ log

x

z
 ).

We first assessed overall long-term changes in vegetation 
cover, which we estimated as the trend in the sum of green 
and non-photosynthetic vegetation over soil CEFs (gv+ npv

soil
). 

Subsequently, we analyzed positive trends in green vegetation (gv),  
non-photosynthetic vegetation (npv), and soil CEFs. Since positive 
and negative changes are interconnected among all fractions, we 
focus in our results on positive changes. Finally, we investigated 
trends in green vegetation in relation to non-photosynthetic veg-
etation ( gv

npv
) and soil ( gv

soil
), which allowed us to distinguish areas 

where the balance between green and dry vegetation fractions 
changed, irrespective of overall trends of either revegetation or 
desertification. Overall, the use of ratios allows for better un-
derstanding of the changes and their drivers (Table 1). Although 
some of the results were visually similar (e.g., gv and gv

soil
), the ratios 

(1)ratio_ ijn = log
e _ in + c

e _ jn + c
,
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provide a quantitative assessment of specific change pathways 
(e.g., change in green vegetation in relation to soil) that single 
ground fractions do not capture, especially when testing map-
scale statistical hypotheses as we intended (see Section  2.6). 
For clarity, we refer to the overall direction of changes in ground 

cover composition using full names of fractions, that is, “green 
vegetation,” whereas when discussing a specific change trajec-
tory we use the abbreviation, for example, gv. Finally, we pres-
ent the shade ground cover fraction and all relevant results in the 
Supplement A, section SA.1.

F I G U R E  2  Conceptual 4D feature space of the Cumulative Endmember Fractions in grasslands showing change trajectories in ground 
cover composition captured with single fractions and their ratios. For process-based meanings of the trajectories, see Table 1.

TA B L E  1  Examples of process-based meanings of change trajectories in grassland ground cover composition.

Endmember Increase Decrease

gv Increase in vegetation productivity or vegetation cover due 
to natural (e.g., revegetation) and anthropogenic factors 
(e.g., recultivation, cultivation practices)

Change in species composition
Longer vegetation season

Decrease in vegetation productivity or vegetation cover 
due to natural and anthropogenic factors (e.g., land 
abandonment, cultivation practices, grazing)

Change in species composition
Shorter vegetation season

npv Desiccation due to natural (e.g., increasing aridity) and 
anthropogenic factors

Overall increase in biomass leading to more dry matter in the 
senescence phase

Change in species composition (e.g., shrub encroachment)

Desiccation due to natural (e.g., decreasing aridity) and 
anthropogenic factors

Overall decrease in biomass leading to less dry matter in the 
senescence phase

Change in species composition

soil Increase in soil visibility due to natural (e.g., desertification) 
and anthropogenic factors (e.g., introduction or change in 
cultivation practices)

Decrease in soil visibility due to natural (e.g., revegetation) and 
anthropogenic factors (e.g., land abandonment, change in 
cultivation practices)

shade Change in vegetation structure, for example, shrub 
encroachment

Increase in soil crust

Change in vegetation structure, for example, reversing of 
shrub encroachment

Decrease in soil crust
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2.6  |  PARTS: Accounting for temporal and spatial 
autocorrelation in trends

Developed by Ives et al. (2021, 2022) PARTS is a three-step statisti-
cal approach that allows for the analysis of trends in time series of 
raster data while accounting for temporal and spatial autocorrela-
tion and in combination with additional covariates (e.g., meteorologi-
cal data, or land cover information). First, by using an autoregressive 
model, PARTS derives temporally uncorrelated trends for each pixel 
in the time series. Second, using residuals from the autoregressive 
model PARTS estimates the spatial autocorrelation structure of the 
per-pixel trends. Third, PARTS conducts map-scale hypotheses about 
the relation between per-pixel trends and independent variables by 
performing a generalized least square (GLS) regression that takes into 
account the spatial autocorrelation structure of the per-pixel trends. 
This is a major advancement over prior methods because p-values of 
pixel-level trends give only a visual impression of the spatial patterns 
and cannot be used to evaluate overall significance of changes, due to 
spatial autocorrelation among pixels. Instead, the GLS step in PARTS 
includes per-pixel trends regardless of their individual p-values and de-
rives statistically valid map-scale p-values for each tested hypothesis 
while accounting for spatial autocorrelation. Pixel-level trend maps can 
be useful to visualize the general spatial pattern of changes, but they 
are only an intermediate results. For a proper statistically meaningful 
interpretation pixel-level trends need to be analyzed with appropri-
ate map-scale statistical tests that analyze all pixels simultaneously to 
obtain the greatest statistical power. PARTS is designed to do that.

2.6.1  |  Temporal autocorrelation—Autoregressive 
trend analyses

To account for temporal autocorrelation in the time series, we followed 
PARTS of Ives et al. (2021), and estimated per-pixel time trends using 
autoregressive models implemented in the R package remotePARTS 
(https://github.com/morro​wcj/remot​ePARTS). We separately ana-
lyzed trends in each single CEF and in the time series of the ratios. For 
each, we produced a pixel-based map depicting systematic trends and 
a map of the strength of temporal autocorrelation. For single CEFs we 
reported trends as percentage point change in abundance of a given 
fraction per year. For ratios, the trends represent qualitative and not 
quantitative information due to the logarithmic transformation of ra-
tios. We used the autoregressive model implemented in remotePARTS 
to calculate per-pixel systematic trends in 2002–2020 SPEI3 time se-
ries aggregated to annual sums, which we used as an explanatory vari-
able in the GLS regression analysis (Section 2.6.2).

2.6.2  |  Spatial autocorrelation in time trends: 
Generalized least square regression

To investigate whether the spatial patterns of our trends could 
be explained by environmental variables, we tested map-scale 

statistical hypotheses with GLS regressions that accounted for 
spatial autocorrelation. We defined the magnitude of the spatial 
correlation in each trend dataset as the unexplained variation in 
trends among pixels where the magnitude of autocorrelation de-
pends on the distance between pixels (i.e., pixels located closer are 
more similar):

where cor{ei, ej} is the correlation between the random errors in pixels 
i and j, ei and ej, dij is the distance between pixels, and nugget, range, 
and shape are parameters that determine the dependence of the cor-
relation on distance. We calculated the range and shape of spatial cor-
relation for each trend map, which give the distance beyond which two 
pixels are uncorrelated and the shape of the decay function, respec-
tively (Ives et al., 2021, 2022).

We used this information in PARTS' GLS when we tested map-
scale statistical hypotheses on the relation between the trends and 
the following explanatory variables: land cover (3 levels), climate 
zones (12 levels), countries (8 levels), elevation (continuous), and a 
temporally uncorrelated trend in SPEI3 (continuous). To examine 
changes in grasslands originating from regional land use legacies 
and policies, we further tested for statistical interactions between 
climate zone and country, land cover class and country, and SPEI3 
trend and country factors. Due to the limited area of grasslands in 
some countries, we limited our country-specific analyses to China, 
Kazakhstan, Kyrgyzstan, Mongolia, Russia, Tajikistan, Turkmenistan, 
and Uzbekistan.

To overcome reduced statistical power arising from high cor-
relation between adjacent pixels (Ives et al., 2021) we defined the 
magnitude and shape of spatial autocorrelation for each dataset and 
performed all subsequent GLS analyses using every third pixel in x 
and y direction of each map. Considering every third pixel aimed at 
preserving as much of the original data as possible, yet systematic 
sampling reduced data volume to about 11% of all pixels, which sub-
stantially accelerated the computations. Because remote PARTS di-
vides the data points of the time trends in large remotely sensed 
data into random, non-overlapping partitions, then performs GLS re-
gression on each partition and finally combines the statistical results 
from each partition (Ives et al., 2021, 2022), preserving as much as 
much of the original data as possible is critical for sufficient repre-
sent all factors' levels within each partition. Our tests showed that 
using a systematic subsample of a dataset has negligible impact on 
differences in the estimated range and shape of spatial autocorrela-
tion (Table SA1).

Using PARTS' GLS allowed us to test for each trend map statis-
tical hypotheses on the significance of the overall map-scale trend, 
and whether environmental variables explained spatial patterns of 
trends (H0: there is no temporal trend in level i). For each model, 
we reported the trend within each level and checked for an overall 
effect of a given factor on the observed trends (H0: factor x has no 
overall effect on trends). In all tests we used a significance threshold 
of p = .05.

(2)cor
{

ei , ej
}

= nugget + (1 − nugget)exp
−

(

dij

range

)shape

,
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3  |  RESULTS

3.1  |  Cumulative Endmember Fractions

We successfully derived annual 2002–2020 CEFs for grasslands in 
Eurasia. The four endmembers that we selected for the SMA rep-
resented well the grassland ground cover fractions for the entire 
study area. The pixel-specific CEF aggregation period accounted 
for local phenological activity and excluded spurious values from 
the off-season. The per-pixel mean annual cumulative RMSE ag-
gregated for the corresponding snow-free period rarely exceeded 
1% reflectance, with the standard deviation not greater than 0.5% 
(Figure SA6), indicating how well our unmixing performed.

3.2  |  Trends in vegetation cover

Vegetation cover, estimated by relating the sum of green and non-
photosynthetic vegetation to soil CEFs, was variable across Eurasia. 
At the pixel level, the gv+ npv

soil
 ratio increased in Inner Mongolia and 

in the northern portion of our study area, especially in northern 
Kazakhstan (Figure 3). Decrease in vegetation cover occurred mainly 
in Central Asia, the Caspian Sea Depression, North of the Tian Shan 
Mountains, and the Taklamakan and Gobi Deserts. Notably, the 
range of spatial autocorrelation for this ratio was 136 km (Table 2), 
indicating that only pixels located further away are assumed statisti-
cally independent.

The overall changes in vegetation cover were insignificant at 
the map scale (Table 3), but changes in vegetation cover were pos-
itively related to changes in SPEI3 (Table 4). At the map scale, the 
increase in vegetation cover was significant in herbaceous grass-
lands (Table  SA3), regions under diverse variants of cold climates 
(Table SA4), and in Kyrgyzstan and Russia (Table SA5). Moreover, we 
confirmed a significant increase in vegetation cover in cold climates 

with dry winter and cold summers in China. We also found signif-
icant decreases in vegetation cover in cold climates without dry 
season in China, Kazakhstan, Kyrgyzstan and Russia, and in tundra 
areas in Kyrgyzstan and Russia (Table SA8). Individual factors had a 
significant overall effect on shaping trends in the gv+ npv

soil
 ratio, but the 

effects of their interactions were insignificant.

3.3  |  Increase in green vegetation fraction

Positive trends in green vegetation fraction were widespread in 
Mongolia, China, northeastern Kazakhstan, and in the Tian Shan 
Mountains (Figures 4a and 5a,b). That pattern was apparent in gv , 
and in the gv

soil
 ratio time series. The pixel-level positive trends in the 

gv

npv
 ratio were the strongest in the Aral region (Figure 5a). The range 

of spatial autocorrelation in trends, which quantifies the maximum 
distance within which two observations are statistically dependent, 
was >110 km for gv, and around 50 and 33 km for gv

soil
 and gv

npv
, respec-

tively (Table 2).
The overall map-scale positive systematic trend in green vegeta-

tion fraction was significant only for the gv
soil

 ratio (Table 3). We found, 
however, a significant positive impact of elevation on gv trend (slope 
0.096), and significant correlation between trends in gv and SPEI3 
(0.089), and in the gv

soil
 ratio and SPEI3 (Table 4).

At the map scale, that is, across our entire study area, relations 
between environmental variables and spatial patterns in green veg-
etation trends were complex. Within the areas with herbaceous 
land cover we confirmed a significant increase in the gv

soil
 ratio, 

and so did we in the “Transition” class in the gv fraction (0.107; 
Table  SA3). Concomitantly, increases in green vegetation fraction 
were significant in regions with cold and dry winters as indicated 
by positive changes in gv and gv

soil
, as well as in cold climates with-

out dry season according to the gv
soil

 ratio (Table SA4). When compar-
ing the increase in green vegetation fraction among countries, we 

F I G U R E  3  Systematic trends in the ratio of the sum of green vegetation and non-photosynthetic vegetation over soil (gv+ npv

soil
) Cumulative 

Endmember Fractions. Corresponding map with the strength of the temporal autocorrelation in Figure SA11, and map showing pixel-level 
trends with p < .05 significance are presented in Figure SA7.
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detected significant but small increasing trends in gv in China and 
Mongolia (0.091 and 0.093, respectively; Table SA5), and in gv

soil
 ratio 

in Kazakhstan, Kyrgyzstan, and in Russia. Importantly, increases 
in the gv

soil
 ratio were significantly related to an increase in SPEI3 in 

China, Kazakhstan, Mongolia, and Russia (Table SA6), whereas the 
increases in the gv

npv
 ratio were related to increase in SPEI3 in China 

and Mongolia. Although we found no significant increase in green 
vegetation fraction for the interactions of country and land cover 
(Table  SA7), we did find significant increase in gv in cold and dry 
regions in China, Mongolia, and Tajikistan (Table  SA8), and posi-
tive systematic changes in the gv

npv
 ratio in arid deserts and steppes 

in China, Kazakhstan, Kyrgyzstan, Turkmenistan, and Uzbekistan. 

Importantly, we confirmed a significant effect of our environmen-
tal variables and their interactions on changes in green vegetation 
fraction (Chi-square results in Tables SA3–SA8). The only exceptions 
were the gv

soil
 ratio for interactions between country and land cover, 

and the gv
npv

 for interaction between country and climate zone.

3.4  |  Increase in non-photosynthetic 
vegetation fraction

Increasing trends in the non-photosynthetic vegetation fraction 
were abundant in Eurasia at the pixel level, and especially com-
mon in Central Asia and Inner Mongolia (Figure 4b), with the latter 
having the strongest npv trends. An increase in the amount of non-
photosynthetic vegetation combined with decreases in photosyn-
thetically active vegetation captured in the gv

npv
 ratio was widespread 

in Central Asia, the Gobi Desert, and in the mountains (Figure 5a). 
The range of spatial autocorrelation was of about 14 and 33 km for 
npv and gv

npv
, trends, respectively (Table 2).

Across Eurasia, we found a strong and significant overall map-
scale increase in the npv fraction (Table  3; trend slope: 0.246). 
Moreover, both elevation and SPEI3 had positive relationships 
with changes in the npv fraction (Table 4; 0.247 and 0.248, respec-
tively). The map-scale hypothesis testing confirmed the increase 
in non-photosynthetic fraction was significant across many fac-
tors' levels (Tables  SA3–SA8). For example, the increase in npv 
was significant in the “transition” and herbaceous land cover, as 
was the decrease in the gv

npv
 ratio in barren and “transition” classes 

(Table SA3). Increasing trends in npv were significant and strong in 
arid deserts and steppe, in polar climates, and in areas with cold 
climate with no dry season, or dry summer (Table SA4). Conversely, 
decreasing trends in the gv

npv
 ratio were significant only in arid des-

erts (Table  SA4). Our map-scale analyses confirmed significant 
positive trends in npv in all countries except Mongolia (Table SA5). 
Interestingly, in Russia the increase in npv was significantly related 
to negative changes in SPEI3, whereas in Uzbekistan increasing npv 
was associated with increasing SPEI3 (Table SA6). Negative trends 
in the gv

npv
 ratio were limited to China (Table SA5), where they were 

also significantly related with SPEI3 increases (Table  SA6). We 
found significant increasing trends in npv for interactions between 

TA B L E  2  Range of spatial autocorrelation (r) in trends in change 
trajectories in grassland ground cover composition.

Dataset r (km)

gv 110.41

npv 14.51

soil 11.53
gv

npv
 ratio 33.50

gv

soil
 ratio 49.86

gv+ npv

soil
 ratio 136.12

Abbreviations: gv, green vegetation; npv, non-photosynthetic 
vegetation.

TA B L E  3  Comparison of overall map-scale trends in change 
trajectories in grassland ground cover composition.

Dataset Slope
Slope 
SE t-val. p-val.

gv 0.073 0.040 1.817 .069

npv 0.246 0.095 2.594 .009

soil −0.218 0.100 −2.181 .029
gv

npv
 ratio −0.033 0.020 −1.630 .103

gv

soil
 ratio 0.045 0.019 2.433 .015

gv+ npv

soil
 ratio 0.047 0.024 0.024 .052

Abbreviations: gv, green vegetation; npv, non-photosynthetic 
vegetation slope − slope of the trend; slope SE, slope standard error; 
t-val., t-test value; p-val., significance level of the slope.

TA B L E  4  Relationship between trends in change trajectories in grassland ground cover composition with elevation and SPEI3.

Dataset

Elevation SPEI3

Slope Slope SE t-val. p-val. Slope Slope SE t-val. p-val.

gv 0.096 0.040 2.384 .017 0.089 0.040 2.217 .027

npv 0.247 0.095 2.595 .009 0.248 0.096 2.595 .009

soil −0.206 0.100 −2.054 .040 −0.276 0.101 −2.747 .006
gv

npv
 ratio −0.039 0.022 −1.750 .080 −0.031 0.021 −1.467 .142

gv

soil
 ratio 0.031 0.020 1.572 .116 0.054 0.019 2.881 .004

gv+ npv

soil
 ratio 0.041 0.024 1.659 .097 0.060 0.024 2.491 .013

Note: Abbreviation as in Table 3.
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    |  4629LEWIŃSKA et al.

country and land cover only in “transition” and herbaceous classes 
in Tajikistan and Turkmenistan (Table SA7). Map-scale npv trends 
for the interactions between country and climate were signifi-
cant only in arid deserts in China, cold regions with dry and cold 

summers in Kyrgyzstan, and in temperate climates with dry and hot 
summer in Turkmenistan (Table SA8). A Chi-square test confirmed 
insignificant differences between npv trends among countries, and 
the combination of country and climate (for npv and gv

npv
).

F I G U R E  4  Systematic trends in (a) green vegetation (gv), (b) non-photosynthetic vegetation (npv), and (c) soil (soil) Cumulative 
Endmember Fractions. The slope is reported in percentage points. Corresponding maps with the strength of temporal autocorrelation in 
Figures SA11–SA13, respectively, and maps showing pixel-level trends with p < .05 significance in Figure SA7. Area statics for negative and 
positive trends are presented in Table SA2.
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3.5  |  Decrease in vegetation cover

Increases in pixel-level abundance of soil fraction were most wide-
spread in Central Asia, Caspian Sea Depression, and the Gobi 
Desert (Figures 4c and 5b). While positive trends in the soil fraction 
were often clustered, changes in the gv

soil
 ratio were more dispersed, 

which was reflected in the range of spatial autocorrelation identi-
fied at around 12 and 50 km, respectively (Table  2). We found no 
overall map-scale significant increase in the soil fraction abundance 
(Table 3), but higher elevation and SPEI3 were inversely related to 
the increase in soil fraction at the map scale (Table 4; trend slope of 
−0.206 and −0.276, respectively).

The increase in the soil fraction was insignificant at the map 
scale (Tables SA3–SA8). The only exception occurred in regions with 
a cold climate and dry and hot summers in Kazakhstan (for soil) and 
with a cold climate with no dry season and cold summer in Russia 
( gv
soil

; Table SA8). Notably, all environmental factors had a significant 
impact on trends in soil and gv

soil
 when inspected separately. However, 

for factor's interaction, we found significant impacts only for 

interactions between country and land cover for soil and between 
country and climate for gv

soil
 (Tables SA7 and SA8, respectively).

4  |  DISCUSSION

We analyzed systematic trends in grasslands ground cover com-
position in Eurasia between 2002 and 2020 using ground cover 
fractions and statistical methods that directly account for tem-
poral and spatial autocorrelation in the remotely sensed data. 
Across Eurasia, we found a statistically significant increase in 
non-photosynthetic vegetation, as well as localized increases in 
green vegetation. The wetter weather conditions after severe 
droughts in the late 1990s and early 2000s had significant ef-
fects on the overall increases in non-photosynthetic vegetation, 
increase in green vegetation combined with the decreases in the 
soil fraction in China, Kazakhstan, Mongolia, and Russia, and on 
the increases in green vegetation combined with the decrease in 
non-photosynthetic vegetation in Mongolia and China. We found 

F I G U R E  5  Systematic trends in ratios of (a) green vegetation over non-photosynthetic vegetation ( gv
npv

) and (b) green vegetation over 
soil ( gv

soil
) Cumulative Endmember Fractions. Corresponding maps with the strength of temporal autocorrelation in Figures SA14 and SA15, 

respectively, and maps showing pixel-level trends with p < .05 significance in Figure SA8.
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    |  4631LEWIŃSKA et al.

no statistical evidence for a map-level increase in the soil fraction 
across Eurasia. This shows that over the past 20 years there was 
an overall increase in vegetation cover in the grasslands of Eurasia, 
with grasslands now comprising greater non-photosynthetic frac-
tion due to an overall increase in vegetation matter and potential 
shifts in vegetation type.

4.1  |  Increase in vegetation cover

Our results demonstrated interesting differences in the change 
pathways of vegetation cover when analyzed as green vegetation, 
non-photosynthetic vegetation, and the sum of both. Through 
hypothesis testing we rejected the hypothesis of an overall map-
level increase in vegetation cover (gv+ npv

soil
) and gv fraction, but con-

firmed significant increase in non-photosynthetic vegetation (npv) 
and increase in green vegetation paired with a decrease in soil 
( gv
soil

 ) (Table  3). This shows the importance of disentangling green 
and non-photosynthetic vegetation fractions and analyzing their 
specific change pathways separately. Although both fractions are 
closely related, and even though both together represent vegeta-
tion cover, the relation between gv and npv can alter due to suc-
cessional changes in vegetation type or management practices (e.g., 
due to restoration programs like in China; Chen et al., 2015; Song 
et al.,  2014; Yin et al.,  2018). Consequently, we do not interpret 
the increase in non-photosynthetic vegetation, often detected as 
“browning,” as a clearly negative change, but rather as one of the 
change pathways in vegetative ground cover. The joint character of 
green and non-photosynthetic vegetation is further clarified by the 
positive map-scale effects of SPEI3 on the increases in green veg-
etation and non-photosynthetic vegetation, and their sum, but not 
on the gv

npv
 ratio (Table 4), which suggests that both fractions were 

similarly affected by meteorological conditions. The observed posi-
tive trends in vegetation-related fractions and their relation to SPEI3 
may reflect a return to normal and wet weather conditions after the 
prolonged dry period in 1990s and 2000s (Guo et al., 2018; Sheffield 
et al., 2009).

Pixel-level increases in vegetation were common across 
Eurasia. Our trend maps showed strong gv+ npv

soil
 increases in north-

ern Kazakhstan, northern Mongolia, northeast China, and Inner 
Mongolia (Figure 3). When compared to other trend maps, the in-
crease in vegetation was similar pixel-level positive trends in gv

soil
 and 

the increase in npv (Figures 4b and 5). Positive trends in gv, concen-
trated in the northern parts of our study area and in the mountains, 
also added to the overall pattern, though their contribution was less 
pronounced.

The overall footprint of our vegetation increase-related path-
ways corresponded well with the pixel-based “greening” patterns 
identified by de Jong et al. (2011, 2013), Jiang et al. (2017), Munier 
et al.  (2018), Zhang et al.  (2021), and Chen et al.  (2019), but that 
greening was less pronounced in our maps. The difference is most 
likely due to our method accounting for temporal autocorrelations 
(Figures  SA10, SA11, SA12, and SA15), but could also be due to 

differences in metrics and study periods. Explicitly, the pixel-level 
increase in the gv

soil
 change trajectory in northeastern Kazakhstan cor-

responds with “greening” attributed to land abandonment (de Beurs 
& Henebry, 2004; Robinson, 2016), whereas “greening” in Mongolia, 
Inner Mongolia, and northeast China has been associated with ben-
eficial combination of grazing and precipitation (Miao et al., 2021; 
Zhang et al., 2021) and land use changes arising from the Grain for 
Green reforms (Chen et al., 2015; Song et al., 2014; Yin et al., 2018). 
At the same time, the increase in the non-photosynthetic vegeta-
tion fraction, which was the most widespread change we detected 
at the pixel level (Figure 3), agreed with many areas previously iden-
tified as “browning” hotspots (de Beurs et al., 2009, 2015; de Jong 
et al., 2012, 2013; Ives et al., 2021; Jiang et al., 2017). Some differ-
ences among the patterns we attributed to a different “browning” 
definition, monitoring approach, length of the time series, and treat-
ment of temporal autocorrelation (Figures SA12 and SA14).

However, not all of the pixel-level trends were significant at 
the map level. For example, the increase in gv+ npv

soil
 ratio was signif-

icant only in Kyrgyzstan and Russia, gv was in China and Mongolia, 
whereas increasing trends in gv

soil
 were significant in Kazakhstan, 

Kyrgyzstan, and Russia (Table  SA4). Concomitantly, the increase 
in npv was significant, strong, and uniform in all countries expect 
Mongolia (Table  SA5). Moreover, in China, Kazakhstan Mongolia, 
and Russia increasing trends in gv

soil
 matched positive changes in SPEI3 

(Table  SA6), which complements results from Jiang et al.  (2017), 
Zhang et al. (2021) and Miao et al. (2021), and is likely due to vege-
tation recovery after severe droughts in late 1990s and early 2000s 
(Guo et al.,  2018; Sheffield et al.,  2009). Significant map-scale in-
creases in photosynthetic activity in regions under cold climates align 
with easing of temperature-related vegetation growth limitations 
and a shift toward warmer and wetter conditions (Zhang et al., 2021) 
and with shorter snow seasons in the mountains (Tomaszewska & 
Henebry, 2018).

The distinction between the increase in green vegetation and 
non-photosynthetic vegetation was possible through the gv

npv
 ratio 

(Figure 5a). Although we found neither an overall map-level “green-
ing” nor “browning” in Eurasia (Tables 3 and 4), map-level “browning” 
was statistically significant in barren areas, transitional grasslands 
(Table SA2), and arid cold deserts (Table SA4). Moreover, in China we 
found a surplus of non-photosynthetic vegetation over green vege-
tation (Table SA5), which was related to meteorological conditions 
(Table  SA6), and may reflect a change in vegetation composition, 
such as shrub encroachment or afforestation, which have occurred 
in Central Asia, Northwest China (Li et al.,  2015), the Tian Shan 
Mountains (Zhumanova et al., 2021), and Inner Mongolia (Bardgett 
et al., 2021; Hu & Nacun, 2018). At the pixel level, we found particu-
larly good alignment of negative trends in the gv

npv
 ratio with “brown-

ing” detected during the last two decades, which could be due to 
suggested turning points in vegetation response from “greening” to 
“browning” (Horion et al., 2016; Li et al., 2015; Pan et al., 2018), or 
vegetation recovery after persistent dry spells in the late 1990s and 
early 2000s (Guo et al., 2018; Sheffield et al., 2009). Furthermore, 
our results are similar to the increase in non-photosynthetic 
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vegetation mapped by Hill and Guerschman  (2020). Strong inter-
annual autocorrelation in gv

npv
 time series indicates a gradual process, 

typically associated with accumulation of dry vegetation mater and 
change in meteorological conditions.

4.2  |  Decrease in vegetation cover

Prior studies suggested widespread grassland degradation and 
desertification in Eurasia (Cai et al.,  2022; Hu et al.,  2020; Zhang 
et al.,  2018). However, our hypothesis tests found no significant 
map-scale decrease in vegetation combined with an increase in the 
soil fraction (Table  3) even though our trend maps showed pixel-
level decrease in vegetation cover in favor of soil in Central Asia 
(gv+ npv

soil
, soil and gv

soil
), and the Gobi Desert ( gv

soil
) (Figures 3, 4c, and 5b). 

Statistical tests showed that these trends were significant only in 
areas with cold climates in Kazakhstan, and in regions under cold 
climate with hot summers and without dry season in China, Russia, 
and Kyrgyzstan (Table SA8), which are typical for high mountains, 
such as the Altai Mountains and Caucasus.

Our pixel-level trend maps resembled to some extent the “brown-
ing” hotspots reported by Jiang et al. (2017), the decrease in vegeta-
tion indices and increase in Tasseled Cap brightness demonstrated 
by de Beurs et al. (2015), negative NDVI trends after 1998 observed 
by Li et al.  (2015), and increases in bare soil mapped by Hill and 
Guerschman  (2020). Overall, we expected to find only limited co-
incidence between our soil-specific results and generic “browning” 
maps, because most of the previous research considered “browning” 
as an overall decrease in vegetation indices, not an increase in soil 
presence, which is relatively sparse in Eurasia (Hu et al., 2020). As 
such, the detected pixel-based changes in soil, gv

soil
 and gv+ npv

soil
 frac-

tions corresponded best with desertification in Central Asia and 
Kazakhstan arising from agricultural exploitation and climate change 
(Cai et al., 2022; Hu et al., 2020), and salinization (Robinson, 2016; 
UNEP, 2011). The high inter-annual autocorrelation in the detected 
increase in soil fraction indicates the steadiness of desertification 
processes, presumably propelled by rising temperatures and aridity 
(Li et al., 2015). Furthermore, the small range of spatial autocorrela-
tion and well-defined footprints of areas showing an increase in soil 
fraction may suggest land use drivers, such as localized overgraz-
ing (Dara et al., 2020) and chemical degradation (Robinson, 2016). 
However, negative trends in the gv

soil
 and gv+ npv

soil
 fractions may also 

indicate cropland expansion demonstrated by recultivation in north-
ern Kazakhstan (Dara et al., 2018; Meyfroidt et al., 2016).

4.3  |  Significance and limitations of the approach

We identified systematic changes in grasslands in Eurasia by apply-
ing a new and statistically rigorous approach. First, our approach is 
based on spectral unmixing, which provides physically based infor-
mation on four grassland-specific ground cover fractions derived 
from multiple spectral bands. This is an advancement compared 

with vegetation indices and allowed us to better analyze main char-
acteristics of grassland ecosystems and their changes (Masiliunas 
et al.,  2021). However, we acknowledge the potential limitations 
of SMA in separating soil and non-photosynthetic vegetation frac-
tions (Kowalski et al., 2022) apparent in higher RMSE in regions with 
sparse vegetation cover (Figure SA6).

Second, by combining multiple ground cover fractions into ra-
tios, we were able to identify distinct change trajectories better 
reflecting change processes. For example, ratio-based analyses per-
mitted us to identify desertification-related changes constituting a 
decrease in vegetation accompanied by an increase in soil fraction. 
However, since various processes can result in the same change 
trajectory final process attribution still requires knowledge on local 
land use changes.

Third, by accounting for temporal autocorrelation at the pixel 
level our results give reliable pixel-based trends in ground cover 
fractions and their ratios. We found that temporal autocorrelation 
was very common in our time series (Figures  SA10–SA15). When 
comparing the locations of autocorrelation hotspots in our data with 
the locations of long-term changes reported previously we noted a 
troublingly high degree of correspondence suggesting that some of 
the previously reported trends and hotspots may not be significant 
if they did not account for temporal autocorrelation.

Fourth, the range of spatial autocorrelation in the data varied 
between the datasets but was estimated consistently regardless of 
the spatial density of sample points (Table 2, Table SA1). This con-
firms the persistent character of spatial autocorrelation, the need 
to account for it, and highlights the spatial variability of different 
processes (e.g., wide-scale increase in gv vs. small-scale increase in 
soil fractions). Although the uniform range of spatial autocorrelation 
is a simplification, accounting for it in the PARTS' GLS regression 
allowed us to examine different map-scale statistical hypotheses. 
This is an important advancement because accounting for autocor-
relation in the data both lends confidence to our results and demon-
strates how the significance of the changes depends on the level 
of stratification and the hypothesis being tested (e.g., country vs. 
combination of country and climate zone).

Fifth, the PARTS method was designed specifically for 
regression-type analyses, identifying time trends in the response 
variable associated with explanatory variables. Therefore, PARTS 
makes it possible to predict changes in the response variable if there 
are changes in the future values of the environmental variables. 
PARTS, however, does not assess the unexplained variations in the 
data. Specifically, it does not assess whether areas of, for example, 
“browning” trends seen on a map will continue if they are not ex-
plained by environmental variables used in the regression analysis.

Finally, we focused in our presentation on the most commonly 
studied changes and change trajectories, and discussed only a sub-
set of the results stemming from our analyses to maintain clarity of 
the manuscript. However, our approach provides opportunity to ex-
plore other change trajectories, such as changes in the shade frac-
tion, which may indicate shrub encroachment and development of 
soil crust (Chen et al., 2005) (Supplement A).
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5  |  CONCLUSIONS

Our trend analyses showed that there was no significant decrease 
in vegetation cover in Eurasia over the past 20 years. On the con-
trary, the increase in non-photosynthetic vegetation fraction was 
by far the most widespread and statistically significant trend across 
Eurasia, and in all countries expect Mongolia. Increases in green 
vegetation were more localized and moderate, but mostly signifi-
cantly related to changes in meteorological conditions. Our results 
corroborate previous studies, especially those analyzing changes 
in Eurasian grasslands in the past two decades, but expand further 
upon the direction and character of changes, as well as the under-
lying process. Importantly, our state-of-the-art statistical approach 
accounting for temporal and spatial autocorrelation in the data en-
sures statistically robust assessment of the trends in the region. This 
is of great importance for understanding the changes and correct at-
tribution of their drivers, especially considering recently arising am-
biguity around trends analyses (Cortés et al., 2021; Ives et al., 2021). 
Furthermore, we tested a wide range of statistical hypotheses about 
the effect of different variables on changes in grasslands and found 
that all variables affected grasslands in Eurasia, but the map-scale 
significance of responses and relations varied greatly. This complex-
ity highlights the wide range of change drivers and processes in 
grassland in Eurasia and thus the importance of an analysis design 
that allows for hypothesis testing. Lastly, our approach is scalable 
and transferable to other time series of satellite data and regions, 
and can be implemented in any computational environment, assur-
ing accessibility and reproducibility.
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