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Abstract 
Photosynthesis is one of the most important mechanisms found in nature, on which many organisms 

rely as energy source. During the light reaction, light energy is converted into chemical energy and 

fixed during the dark reaction in carbohydrates. In high light conditions, excess energy is dissipated as 

heat through the photoprotection mechanism called non photochemical quenching (NPQ). However, 

under fluctuating light conditions, NPQ inhibits photochemistry decreasing the quantum yield of 

photosystem II (φPSII). This in turn decreases the amount of biomass accumulation. So, in order to 

improve acclimation of photosynthetic efficiency after fluctuating light (FL) periods, two FL 

experiments were performed with a Dutch Arabidopsis thaliana population. These two experiments 

had the exact same conditions, only the FL treatments were reversed to account for plant age, since 

plant age is an important factor in variation of photosynthetic efficiency. For one of the two 

experiments, photosynthetic parameters for each individual leaf were collected, to further decrease 

influences of plant age. The resulting phenotypic data was used for genome wide association studies 

(GWAS), to identify QTLs involved in the acclimation of photosynthetic parameters after periods of FL. 

The resulting QTLs showed that most of the variation in photosynthetic efficiency can be attributed to 

plant development. The most promising QTLs to be involved in the acclimation of photosynthetic 

efficiency after periods of FL, were identified on chromosome 1, 3 and 4 of A. thaliana.  
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Introduction 

Background 
Life on earth is highly dependent on the process of photosynthesis by plants, algae and some bacteria. 

Photosynthesis is a complex mechanism in which light energy is converted into chemical energy, 

forming the base for every ecosystem. The energy is fixed in organic compounds using inorganic, 

atmospheric and soil compounds. Because of this photosynthesis not only provides other organisms 

with energy, but it is also important for maintaining earth’s atmosphere and in turn climate.  

The light reaction of photosynthesis is mediated by a chain of several proteins in the membrane of 

thylakoids inside chloroplasts (Figure 1). The main protein complexes are photosystems I and II (PSI & 

PSII respectively), PSII uses the energy from incoming light to split water molecules into hydrogen and 

an electron. The resulted hydrogen gradient is then used by ATP-synthase to create Adenosine 

Triphosphate (ATP) from Adenosine Diphosphate (ADP). The electron is transported through a 

cytochrome complex and plastocyanin to reach PSI, where the electron is used to drive the reduction 

of Nicotinamide adenine dinucleotide phosphate (NADP+) into NADPH (Hou, 2012).  

The other important reaction of photosynthesis is called the dark reaction. The dark reaction or Calvin 

cycle happens simultaneously with the light reaction but is called dark reaction as it does not require 

light to function. In the Calvin cycle the previously formed ATP and NADPH are used to add carbon 

molecules from carbon dioxide (CO2) to unstable sugar molecules and form glucose and other 

carbohydrates useful for the plant (A Dictionary of Biology, 2019). 

 

Figure 1: Schematic representation of the thylakoid membrane with the photosynthesis machinery of the light reaction 
(Wikimedia Commons, 2015). Light energy is absorbed by photosystem II (PSII), which mediates electron transport through 
the membrane. This electron is obtained from separating hydrogen from water, resulting in a hydrogen gradient between the 
inside and outside membrane. This gradient is used to create Adenosine Triphosphate (ATP) from Adenosine Diphosphate 
(ADP). The electron travels through the membrane, through the cytochrome complex, to Photosystem I (PSI) where it is used 
to create NADPH from Nicotinamide adenine dinucleotide phosphate (NADP) (A Dictionary of Biology, 2019). 

The theoretical energy conversion of photosynthesis is only 4-6% in plants, which means that 4-6% of 

all incoming light is used in fixating chemical energy in carbohydrates. This inefficiency is due to the 

fact that only 45% of solar energy is photosynthetically active, and further energy loss is due to 
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reflection and respiration (Zhu et al., 2008). Compared to the most recent advancements in 

photovoltaics, with solar cells with an efficiency of around 25% (Green et al., 2021), this is a very low 

efficiency. On top of that the 4-6% energy conversion is only theoretical, the maximum recorded 

energy conversion is only 3-4%. Generally the observed maximum energy conversion is a third of the 

theoretical energy conversion (Zhu et al., 2010).  

This difference between maximum theoretical energy conversion and maximum energy conversion is 

due to a variety of factors, like photorespiration and the photoprotection mechanism present in PSII. 

When in high light conditions, the Light Harvesting Complex (LHC) in PSII becomes oversaturated and 

needs to dissipate the excess energy. Otherwise the excess energy will form reactive oxygen species 

that will damage the cell (Tietz et al., 2017). I will focus further on the photoprotection mechanism, 

because most of the previous research on improving energy conversion has been on improving rubisco, 

but there is less known about photosynthetic efficiency and photoprotection mechanisms.  

All incoming light that is absorbed by the LHC, is either used for photosynthesis (photochemistry), re-

emitted as heat, or re-emitted as fluorescence. The part of the light that is used for photosynthesis is 

called the quantum yield of PSII (φPSII)(Murchie & Lawson, 2013). The dissipation of excess energy 

through heat is called Non-Photochemical Quenching (NPQ) and is dependant on the ratio between 

φNO/φNPQ, of which φNPQ is the regulated dissipation of energy, and φNO is the non-regulated 

dissipation. Because all of these processes constitute the total energy absorbed by the LHC, they exist 

in competition with each other, so the sum of φPSII + φNPQ + φNO = 1 (Kramer et al., 2004). In nature 

plants are exposed to fluctuating light intensities, from being in the shade of other plants or its own 

leaves. When a plant is exposed to what it perceives as high light intensity, NPQ is activated. But when 

the light intensity again decreases, because of shade for example, it takes some time for NPQ to relax 

causing it to compete with φPSII (Müller et al., 2001). The rate of NPQ induction and relaxation are 

important for efficient photosynthesis in fluctuating light conditions. To increase the photosynthetic 

efficiency, it is worthy to improve the regulation of φPSII as well as of NPQ, as they directly correlate 

with each other.  

To study φPSII and NPQ, these parameters need to be measured. This can be done by measuring the 

chlorophyll fluorescence of PSII (Murchie & Lawson, 2013). In a set-up with dark adapted plants and 

actinic light (light that drives photochemistry), several parameters of fluorescence can be measured. 

The first is the maximum quantum efficiency of PSII photochemistry, Fv/Fm. Fm is the maximum 

fluorescence value in a dark-adapted leaf, where all LHCs are open, so no NPQ is taking place. Fv is the 

difference between the minimum fluorescence value (Fo) and the maximum fluorescence (Fm). This 

maximum value is obtained by exciting the leaf with a saturating pulse, which ensures all reaction 

centres in PSII are closed, but no electron transport takes place. The then measured fluorescence is 

Fm, which is visible as a vertical line figure 2A.  

Then turning on the actinic light allows for measuring the fluorescence in light adapted leaves. At first 

there is an initial spike in fluorescence just as high as the dark-adapted state, but quenches (seen as a 

curve in figure 2B) as NPQ activates until it reaches a steady state fluorescence in a light-adapted state, 

called Fp. Giving the leaf again a saturating pulse, gives us the maximal fluorescence in a light adapted 

leaf (Fmp). With the parameters Fm, Fp and Fmp φPSII, φNO, φNPQ and NPQ can be calculated using 

the following equations. 

𝐹𝑚𝑝−𝐹𝑝

𝐹𝑚𝑝
= φPSII    (Eq. 1) 

𝐹𝑝

𝐹𝑚
= φNO     (Eq. 2) 
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(
𝐹𝑝

𝐹𝑚𝑝
) − (

𝐹𝑝

𝐹𝑚
) = φNPQ   (Eq. 3) 

(
𝐹𝑚

𝐹𝑚𝑝
) − 1 = 𝑁𝑃𝑄    (Eq. 4) 

As seen in figure 2C, it takes 20-30 minutes before NPQ is relaxed and the plant is in optimal 

photosynthesis conditions. It is known that the decreased rate of photosynthesis due to NPQ relates 

to crop productivity through stomatal conductance and carbon assimilation rates (Kaiser et al., 2017; 

Kromdijk & Walter, 2023; Murchie & Ruban, 2020). And it has been shown that improving NPQ 

relaxation can have a positive effect on plant performance in fluctuating light conditions (Kromdijk & 

Walter, 2023). 

Earlier research in improving the relaxation time of NPQ showed that up-regulating violaxanthin de-

epoxidase (VDE), PSII subunit S (PsbS), and Zeaxanthin Epoxidase (ZEP) (together also known as the 

VPZ construct), significantly increased NPQ relaxation (De Souza et al. (2022); Kromdijk et al. (2016)). 

This improvement relies on improving the energy dependent quenching (qE), but there are more 

aspects to improving NPQ relaxation. Like improving quenching caused by state transitions (qT) and 

photoinhibitory quenching (qI). 

 

 

Figure 2: Graph explaining the fluorescence parameters of photosynthesis. In the dark-adapted state of a plant, a measuring 
beam is turned which is strong enough to elicit fluorescence, but low enough to not induce electron transport. The measured 
fluorescence in this state is Fo. Then a saturating pulse of light is given, closing all reaction centres. This is gives the maximum 
fluorescence of an un-quenched plant, Fm. The difference between Fm and Fo is Fv. Then the actinic light is turned on, resulting 
in a spike of fluorescence, which then quenches to a steady state fluorescence in a light adapted plant, called Fp. Again giving 
a saturated pulse in the light adapted state gives Fmp, the maximum fluorescence in a light adapted state. This is noticeably 
lower than the dark-adapted state, which is un-quenched by NPQ. After turning of the light, it takes 20-30 minutes before the 
plant is back in an un-quenched state. (Adapted from Murchie and Lawson (2013))  
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This research focuses on obtaining a better understanding of the photosynthetic efficiency and 

relaxation of NPQ in Arabidopsis, and builds upon an earlier experiment by Bos Calderó (2022). Bos 

Calderó (2022) identified candidate genes involved in the variation of photosynthetic efficiency after 

fluctuating light in the Dutch population of Arabidopsis thaliana, DartMap (Dutch Arabidopsis thaliana 

Map)(Wijfjes et al., 2021).  

A. thaliana is a model organism for genotypic research mostly due to its relatively small chromosome 

size and having only 5 chromosomes. Combined with a short generation time and self-pollination, it 

proved to be well-suited for genetic and molecular research (Koornneef & Meinke, 2010). The 

genotypic data for DartMap was obtained by Wijfjes et al. (2021). Wijfjes et al. (2021) performed 

Genome Wide Association Studies (GWAS) using this Dutch population of A. thaliana to study traits 

such as flowering time and response of photosynthesis efficiency to iron deficiency.  

GWAS connects phenotype to genotype by comparing phenotypic variance to genotypic variance 

within a population, with which specific genes or Quantitative Trait Loci (QTLs) can be identified. 

Having high genetic variance can increase effect size (measure of phenotypic difference of two alleles 

at a locus) of the associated genotype, however high variance also increases the chance for 

heterogeneity. Heterogeneity occurs when two different genetic mechanisms result in a similar 

phenotype. This causes the effect size to decrease, because the correlation between the phenotype 

and any of the variants is weakened (Korte & Farlow, 2013). Small effect size poses a problem for GWAS, 

because GWAS depends on the phenotypic variance explained by the genotypic variance. For this 

reason, rare variants are also a problem when performing genome wide association analyses. If a 

variant is found in only one individual in the population, many other SNPs exclusive to that individual 

are also associated with the trait.  

Increasing sample size by having higher variance counteracts the problem of rare variants, but again 

increases heterogeneity. One way to counter heterogeneity is to densely sample a local population, 

which is exactly what Wijfjes et al. (2021) did with DartMap. Even though there is low diversity in 

environmental conditions in the Netherlands, they still found a high genetic variance. The mild 

environmental cline allows for identification of smaller differences in phenotypes. 

When doing GWAS it is also important to take into account relatedness of individuals among the 

population (Korte et al., 2012), and population stratification (Price et al., 2010). Population 

stratification means that there is a systematic difference in allele frequencies between subpopulations 

within a population (Huang, 2022, December 02). With a LMM these factors can be taken into account.  

Previous research 
Previously two similar fluctuating light (FL) experiments were performed by Bos Calderó (2022) and 

Dr. Nguyen, where they had the phenovator II (a high-throughput phenotyping machine) measure Fv, 

Fm, Fv/Fm, projected leaf area (PLA), Fp and Fmp, of the Dutch A. thaliana population. 

The experiment by Bos Calderó (2022) will be referred to as NWO22_01, and the experiment by Dr. 

Nguyen will be referred to as NWO22_03. 

The protocol for NWO22_01 starts with the plants being treated with a period of fast fluctuating light 

followed by a period of slow fluctuating light (Figure 3). NWO22_03 is the exact same experiment but 

the two FL treatments reversed, doing the slow FL treatment first, followed by the fast FL treatment 

(Figure 4). The goal of these experiments is to identify QTLs associated with the acclimation of 

photosynthetic efficiency to fluctuations in light intensity. The reason for performing the second, 

reversed experiment is to confirm or deny any variation in photosynthetic efficiency due to 
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developmental stage of the plants, rather than the FL treatments. All conditions except the light 

treatments are the same for both experiments.  

Aim of this research 
The focus of this research is to process the data obtained from NWO22_03 and identify QTLs that share 

the same or similar functions as those identified in NWO22_01. The aim is to locate significant QTLs in 

both experiments and examine the function of the associated QTLs. QTLs found significant at the same 

time point in both experiments but not corresponding with the same treatment may be involved in 

plant development rather than fluctuating light response, whereas QTLs that correspond with the 

same treatments and have similar functions are likely involved in the fluctuating light response.  

The leading question throughout the experiment is: Which QTLs in the Arabidopsis thaliana genome 

are involved in the acclimation of photosynthetic efficiency to fluctuating light?  

To answer this question, I will try to answer the following questions: 

• Which QTLs are found significant in both experiments, and do these correspond with the same 

treatment? 

• What function do the identified QTLs have in A. thaliana? 

My expectation is that there will be QTLs found significant for the same treatment in both experiments. 

However, I think there will also be many QTLs which correspond to developmental stage of the plant.  

To further explore the effect of plant development and light treatment on photosynthetic efficiency, I 

will make use of individual leaf data. Jurado-Ruiz et al. (2022) developed an algorithm for tracking 

individual leaves in a phenotyping experiment. This algorithm was used during NWO22_01 to track 

Fv/Fm and φPSII for each individual leaf of a plant. This data will give higher resolution of the results 

because leaf age and order might influence the photosynthetic efficiency. By focusing on only select 

leaves a more complete image of the photosynthetic efficiency could be obtained. My expectation is 

that QTLs significantly associated with both the leaf data and the whole plant data of NWO22_01, are 

QTLs actually involved in acclimation of photosynthetic efficiency. The QTLs that are only significant in 

the whole plant data are likely developmental QTLs. 
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Materials & Method 
All analyses mentioned as being done using R, were performed using R statistical Software (v4.2.2; R 

Core Team (2022)). 

Dutch Arabidopsis population 
For this experiment, the aforementioned DartMap population by Wijfjes et al. (2021) was used. From 

this population a total of 169 accessions was used in both experiments (appendix 1). However, both 

experiments did not use the same set of accessions, because some seeds got lost in between both 

experiments. Only two accessions are different, NWO22_01 has accession number 736 which 

NWO22_03 does not include, and NWO22_03 has accession number 1 which NWO22_01 does not 

include.  

Experiment data 
The light protocol for NWO22_01 is depicted in figure 3, where plants received the first 11 days after 

sowing (DAS) constant light (CL) at 300 μmol.m-2.s-1 (in short μmol). Then from 12 to 15 DAS, they 

received fluctuating light every 15 minutes (FL15), the fast FL treatment. At 16 DAS the plants received 

fluctuating light every 60 minutes (FL60), the slow FL treatment, to assess if the previous fast 

fluctuating treatment influences the response to a slower fluctuating treatment.  

Then the plants received CL for 4 days, to eliminate possible influence of the previous FL15 treatment. 

From 21 to 24 DAS the plants received FL60 followed by 1 day of FL15, also to assess the influence of 

the previous FL treatment. Finally, the plants received one more day of CL (figure 3). Both FL treatments 

fluctuated light intensity was between 100 and 900 µmol. 

 

Figure 3: Light treatment protocol of experiment NWO22_01. Constant light (CL) at 300 μmol.s-1.m-2 (in short μmol), 
fluctuating light every 15 minutes (FL15) changing between 100 and 900 μmol and fluctuating light every 60 minutes (FL60) 
also between 100 and 900 μmol. Red arrows indicate measuring time point of Fv and Fm. Black arrows measuring time point 
of Fp and Fmp. 

NWO22_03 is the exact same experiment as NWO22_01 but with the two FL treatments reversed, 

doing the FL60 treatment from 12 to 15 DAS, and the FL15 treatment from 21 to 24 DAS (figure 4). 
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Figure 4: Light treatment protocol of experiment NWO22_03. Constant light (CL) at 300 μmol.s-1.m-2 (in short μmol), 
fluctuating light every 60 minutes (FL60) changing between 100 and 900 μmol and fluctuating light every 15 minutes (FL15) 
also between 100 and 900 μmol. Red arrows indicate measuring time point of Fv and Fm. Black arrows measuring time point 
of Fp and Fmp. 

For both experiments, after the raw phenotypic data was obtained, some quality treatment was 

performed and a BLUEs (Best Linear Unbiased Estimator) analysis. For each genotype there are 8 

replicates in a complete randomized block design, but instead of just taking the average of all those 

individuals, ignoring any variance due to other factors, like position in the climate room, the BLUE 

estimates the value for that time point based on the estimator with the least variance (Moser, 1996).  

Individual leaf data 
The algorithm by Jurado-Ruiz et al. (2022) was used on the images of NWO22_01, it tracked each leaf 

on a plant and the parameters Fo, Fm, Fp, and Fmp along with the PLA were measured for each 

individual leaf. This also means that for the leaf data only Fv/Fm and φPSII are included.  

To account for leaf age during the experiment I needed to select true leaves (leaf 6 and 7) and retrieve 

the photosynthesis data (Fv/Fm and φPSII) of these leaves from 16 to 25 DAS. The average between 

these 2 leaves were used in downstream analyses. 

Quality control 
For the whole plant data of NWO22_01 and NWO22_03, a quality control was performed visually using 

excel, and by plotting the data in a boxplot. The data was conditionally formatted with a colour 

gradient, to detect outlying data. Accessions which data show abnormal values (very low or very high, 

compared to the rest), were selected as being outliers. This quality control was performed for each 

phenotypic trait individually, so for example in some cases the data of an accession was only removed 

for Fv/Fm. Bos Calderó (2022) also removed the data of two accessions, 1675 and 736, because these 

did not grow properly. In appendix 2 is an overview of exactly which phenotypes of which accessions 

were selected as outliers.  

For the leaf data, quality control had to be performed for filtering out incorrect data due to the 

algorithm making a mistake. The mask overlay, that detects the position of an individual leaf in the 

image, was in many cases incorrectly placed. A mask was considered incorrect if the size of the mask 

was exactly the same for 4 or more timepoints in a row. Using a python script (“remove_duplicates.py”) 

these data points were replaced by NA. A further visual quality control in the same way as with the 

whole plant data was done, a colour gradient to detect abnormal data. For the leaf data the same 

outliers as for NWO22_01 were removed. The complete set of data used in the leaf data analysis is in 

appendix 3. 
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Correlation analysis 
Before comparing the results of NWO22_01 to those of NWO22_03, a correlation analysis was 

performed. In this correlation analysis, the Pearson correlation between the same genotypes for each 

parameter at each timepoint was calculated. However, as mentioned before the experiments did not 

use the exact same set of genotypes, there were two genotypes unique in both experiments. These 

genotypes were not included in the correlation analysis, so only 168 genotypes were used. Also, the 

data of the first day of NWO22_03 was lost, resulting in a timepoint less for NWO22_03. For this 

reason, the first day of NWO22_01 also wasn’t included in the correlation analysis, resulting in only 

using the data from 9 DAS to 26 DAS. The correlation analysis was done using R (appendix 4). 

Heritability 
It is useful to know whether or not the parameters Fv/Fm, φPSII, NPQ, φNPQ and φNO, are actually 

heritable traits. For this reason, the heritability is calculated for each of these traits. The broad sense 

heritability is the ratio between the genetic variance and the total variance in the population (Griffiths 

et al., 2015). The variance components, genotype, tray, blocks, and the residuals are calculated using 

the lme4 package (Bates et al., 2015) in R (appendix 5). Then with equation 5 the broad sense 

heritability for each trait at each timepoint is calculated and visualised in R (appendix 5). 

𝐻2 =
𝑉𝑔

𝑉𝑋
     (Eq. 5) 

 

Pipeline 
After obtaining the data and performing quality control, each dataset will follow the same pipeline for 

the GWA analysis (figure 5). First genotype will be linked to phenotype using the software GEMMA. 

The resulting association files will be used to create QQ plots and Manhattan plots of the p-values 

using R. The p-values from the association files will be converted to a LOD-score by taking the -log10 

of the p-value. Then to visualize the most significant windows, the LOD-scores are plotted in a 

heatmap. Finally, the results of NWO22_01 will be compared to the results of NWO22_03 and the 

individual leaf data of NWO22_01. 
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Figure 5: Pipeline for performing GWA analysis. The blue boxes are input and output for and from the programs that are used 
in the green arrows. The phenotypic and genotypic data are the PLINK format files required to run GEMMA, in which the .fam 
file contains the phenotypic information, and the .bim and .bed files the genotypic information. GEMMA produces association 
files, which are then used for two separate Rscript analyses. The first is analysing the results of the GWAS, by making QQ 
plots and Manhattan plots. In this script the association files are also filtered from very low p-values, to reduce the file size 
and computation time in the next analysis. The reduced association files are used to combine the individual GWAS results in 
a heatmap, and the phenotypic data is used to create boxplots. The heatmap shows which windows are significantly 
associated with one of the traits per time point. The LOD-scores per window, per time point are also saved in the signal file. 
The signal file of each trait is then used in a combined comparison, to show which windows are significantly associated with 
the whole experiment.  
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GEMMA 
The genome-wide efficient mixed model (GEMMA) software by Zhou and Stephens (2014) was used 

for fitting a LMM on the genotype and phenotype data. The input for a LMM using GEMMA is a set of 

4 files: two genotype files in PLINK format, having the .bim and .bed suffixes, a phenotype file also in 

PLINK format, having the .fam suffix, and a relatedness matrix in .cXX file format. The .bim and .bed 

files were provided to me by Dr. Nguyen, the .fam file was made with the phenotypic data, and the 

kinship matrix could be made also using GEMMA (make kinship matrix command).  

To account for rare variants within the population, the minor allele frequency (maf) threshold is set at 

0.05. So, alleles with a frequency lower than 5% will not come up in the results of the analysis.  

To run GEMMA the following command is used as input: 

./gemma-0.98.5-linux-static-AMD64 -bfile [prefix] -maf 0.05 -k 

[filename] -lmm 1 -n 1 -o [prefix] 

Where after “-bfile” the prefix for the genotype and phenotype files is given, after “-k” the filename of 

the relatedness matrix, and after “-o” the prefix of the output file. However, this line would have to 

manually run for each phenotype column in the .fam file, which is indicated with the number after “-

n”. So, to speed up the process I wrote a python script that automatically ran this line for each 

phenotype in the .fam file (appendix 6).  

The output of GEMMA is a file in which for each SNP the p-value of a Wald test is given. The Wald test 

is used to determine if a SNP is significantly associated with a given trait, where the p-value indicates 

the chance that a SNP is associated by chance (Glen, 2020).  

Evaluation of GWAS results 
To evaluate the results of the GWAS performed using GEMMA, QQ plots and Manhattan plots were 

made for each phenotype, at each timepoint. Both these plots were made using the R package qqman 

(Turner, 2018) (appendix 7).  

QQ plots 
QQ plots are a way of evaluating whether or not the resulting p-values from a GWAS are actually 

indicating of causal SNPs. In the QQ plot all p-values are ordered from highest to lowest value and 

plotted against expected p-values from a chi-squared test. In case of no causal SNPs, the observed p-

values are the same as the expected p-values, which results in a straight diagonal line in the QQ plot. 

If the observed p-values are higher than the expected p-values, this might indicate there are causal 

SNPs for that phenotype. However, if the lower observed p-values already differ too much from the 

expected values, it is an indication that the GWAS went wrong. In the ideal situation, the QQ plot is a 

straight line with a tail going up in the end (Ehret, 2010; Lee & Lee, 2021).  

Manhattan plots 
The Manhattan plot is a visual overview of the p-values of each SNP divided over the genome. It is 

literally a scatterplot of the p-values, with on the x-axis the position in the genome. QTLs in the genome 

that are significantly associated with the trait will come up as large peaks in this plot, resembling a 

Manhattan skyline, because the SNPs are in linkage disequilibrium and rise above the rest together 

(Ehret, 2010; Slatkin, 2008).  

Comparing GWAS results 
To see which SNPs are significantly associated with a trait at a certain timepoint, the genome is split 

into windows of 50,000 base pairs (bp).  Then with an R script (appendix 8) the SNP with the highest 
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LOD-score is selected and saved as the LOD-score for that window. With that same R script, a heatmap 

is made, this heatmap shows per timepoint which window in the genome has a score above the LOD-

threshold of 6.0, and higher LOD-scores are presented in red. Combined with this heatmap are 

boxplots of the corresponding trait, showing the distribution of the phenotype at each timepoint.  

The data for these heatmaps is saved in a signal file, a .csv file containing the LOD-score of each window 

that is above the LOD-threshold. These signal files are used to compile the data of each individual trait 

in another heatmap combined with a Manhattan plot, to show the significant windows for the overall 

experiment per trait. To compare two datasets, a similar heatmap and Manhattan plot combination is 

made with the compiled data of each dataset (appendix 9 & 10).  
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Results 

Heritability of the phenotypes of experiment NWO22_03 
The traits φPSII, NPQ, φNPQ and φNO were measured twice a day, once in the morning before the 

light treatment and once in the afternoon after the light treatment, and they showed clear differences 

in expression between those two measurements (figure 6 AB). For φPSII this variation between 

morning and afternoon is consistent throughout the experiment, but for NPQ, φNPQ and φNO the 

variation is greater in the beginning of the experiment, compared to the end of the experiment. The 

overall values for all traits, including Fv/Fm, do increase over time. The phenotypic data of NWO22_01 

show a similar pattern, also increasing over time. (All boxplots are included in appendix 11, with the 

heatmaps) 

The heritability of the traits starts of quite low, but increases as the plants develop, similar to how the 

measured values increase (figure 7). How much each trait is heritable seems to be dependent on the 

height of the measured value. This is confirmed by the fluctuations in heritability between morning 

and afternoon measurements. For example, in figure 6B the measured values of NPQ drop in the 

afternoon after the FL treatment. The same drop is reflected in the heritability of NPQ, the blue line in 

figure 7. And similar to how this variation between morning and afternoon decreases as the 

experiment progresses, the difference in heritability between morning and afternoon decreases as 

A 

B 

Figure 6: Boxplots of φPSII (A) and NPQ (B) measurements. Each boxplot represents measured φPSII or NPQ values of all 
genotypes at that timepoint. NWO22_03 started at 9 days after sowing (DAS), so timepoint am_1 represents the first 
measurement at 9 DAS. ΦPSII and NPQ were measured twice a day, once in the morning before the light treatment and 
once in the afternoon after the light treatment, represented by am and pm. 
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well. From 12 DAS, when the FL60 treatment starts, the heritability of all traits is above 30%. Meaning 

that at least 30% of the phenotypic variation can be explained by genetic variation. 

 

Figure 7: Heritability was calculated for each trait at each timepoint over the course of the experiment from 9 to 26 days after 
sowing. The traits are Fv/Fm (maximum quantum yield of photosystem II), NPQ (non-photochemical quenching), φNO (non-
regulated dissipation of energy), φNPQ (regulated dissipation of energy), and φPSII (quantum yield of photosystem II). Each 
dot represents a measurement. For NPQ, φNO, φNPQ and φPSII there are 2 measurements per day, and for Fv/Fm there is 
only one measurement per day. The y-axis is heritability in percentages. The bar above the graph indicates the light regime 
for each day throughout the experiment. A flat line is constant light, a waving line is slow fluctuating light, and a condensed 
waving line is fast fluctuating light. 

GWAS for phenotypes of experiment NWO22_03 
To identify genetic factors underlying phenotypic variation for photosynthetic traits, genome wide 

association analyses were performed using GEMMA for Fv/Fm, φPSII, NPQ, φNPQ and φNO, on each 

timepoint the parameters were measured. This resulted in over 160 separate GWAS for both 

NWO22_01 and NWO22_03. For most of the QQ plots, that indicate whether or not the GWAS was a 

success, the graph did not show a tail end, meaning there were no causal SNPs. However, several QQ 

plots showed a perfect tail end (figure 8C), indicating there are causal SNPs found at those timepoints.  

On the other hand, the Manhattan plots, which plotted the -10log of the p-values for each SNP in its 

position in the genome, showed a less promising result. The Manhattan plots that correspond to these 

nice QQ plots do not show clear peaks, but rather just a few dots shooting out (figure 8A). So only one 

SNP from that QTL is associated with the trait at that timepoint.  

In some other cases the QQ plot deviated from the expected values quite early (figure 8D), supposedly 

indicating that there are a lot of significant SNPs, which is unlikely. However, looking at the Manhattan 

plot you can see a clear peak at one point (figure 8B). Together with a threshold, the unlikely significant 

SNPs can be filtered out.  
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  Figure 8: A,B) Manhattan plots of the GWAS result of a single timepoint in NWO22_03 and NWO22_01. In the Manhattan 
plot each dot represents the -10log of the p-value of each SNP included in the GWAS. They are ordered on position in the 
genome per chromosome. The horizontal blue line is a LOD-threshold set at 6.5. C,D) QQ plots of the same timepoints as 
the Manhattan plots in A and B. In the QQ plot the -10log of the p-values are ordered from lowest to highest. Because it 
is the -10log of the p-values, lower p-values become higher and vice versa. The observed p-values are plotted against the 
expected p-values. The red line indicates what the plot would look like if the observed values were the same as the 
expected values. If the p-values differ from the expected values it could indicate that there are causal SNPs for the 
phenotype.  
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Compiled results of QTLs for photosynthetic traits from experiment NWO22_03 
The results of each separate GWAS for all traits, were combined in genome windows of 50kbp of which 

the significance is represented by the most significant SNP within that window. These windows were 

used to analyse which QTLs are significantly associated with which treatment. For φPSII there are some 

clear significant windows on chromosomes 1, 4 and 5. The windows on chromosomes 1 and 5 are 

clearly associated with the FL60 treatment, as they are only significantly associated on the days where 

the FL60 treatment was given (figure 9A). The windows on chromosome 4 are more likely associated 

with the FL15 treatment, because the lines showing significant windows, are only there on the later 

days in the experiment. Remember that during NWO22_03 from 12 to 16 DAS the FL15 treatment was 

given, and from 21 to 25 DAS, FL60. Interesting to note is that for NPQ, φNPQ and φNO, most windows 

were only found significant on the timepoints right after the FL period. You can see this in figure 9B for 

NPQ on 15, 16 and 17 DAS on chromosome 2.  

In figure 10 the LOD-scores of each window for each trait at every timepoint is compiled and plotted 

in a Manhattan plot. In this plot you can see which windows are significantly associated with multiple 

traits. A few to point out are several windows in the back end of chromosome 1, here are several 

windows significantly associated with Fv/Fm, φNO and φPSII, as indicated by the larger, light blue dots 

in figure 10. Another one is in the back end of chromosome 4, which has a very high compiled LOD-

score and is significantly associated with φNO and φPSII.   

 

B A 

Figure 9: Boxplots and heatmaps of the GWAS results for φPSII (A) and NPQ (B). Each boxplot represents measured φPSII or 
NPQ values of all genotypes at that timepoint. The heatmaps plot the LOD-score of each window with a LOD-score above the 
threshold of 6.0 The windows are ordered in physical position on the chromosome on the x-axis. 
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Figure 10: Manhattan plot and heatmap of the traits Fv/Fm, NPQ, φNPQ, φNO and φPSII. The Manhattan plot plots the sum 
of all LOD-scores above the threshold of 6.0, of that window. So, if a window has a LOD-score above 6.0 for NPQ and φNO, 
the blue dot is the sum of those scores. If a window is significantly associated with two traits, the dot in the Manhattan plot 
is coloured light blue and larger than the others. The heatmap on the bottom, plots the sum of all LOD-scores above the 
threshold of 6.0 for each window. The windows are ordered in physical position on the chromosome on the x-axis.  

Phenotypic correlation analysis between the two experiments 
Before comparing the results of NWO22_03 to the results of NWO22_01, a correlation analysis 

between NWO22_01 and NWO22_03 was performed to check whether or not the phenotypes are 

influenced by the FL treatments in the same manner. If the data did not correlate, it would not make 

sense to do the comparison. The correlation analysis showed a high correlation between NWO22_01 

and NWO22_03, 70 percent or higher (figure 11). Interesting to note is that the correlation between 

the two experiments increases over time. The correlation of NPQ and φNPQ varies between morning 

and afternoon measurements, where the data is much more correlated in the morning compared to 

the afternoon. This variation pattern is actually the same as in the heritability analysis (figure 7), where  

the heritability also dropped in the afternoon. And again, in this case the correlation increases as the 

values of the traits increase over time.  
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Figure 11: The correlation of the phenotypes NPQ, φNO, φNPQ, φPSII and Fv/Fm, between NWO22_01 and NWO22_03 was 
calculated on each timepoint in the experiment. Each dot represents a measurement. For NPQ, φNO, φNPQ and φPSII there 
are 2 measurements per day, and for Fv/Fm there is only one measurement per day. The graph  includes a smooth line through 
the data points. The bar above the graph indicates whether or not both experiments received the same light treatment. A 
solid line means both experiments received the same light treatment, and a dotted line means the experiments received 
different light treatments, either FL15 or FL60. 

Comparing QTLs identified in NWO22_01 and NWO22_03 
The first comparison between NWO22_01 and NWO22_03, was done with all GWAS results of each 

experiment compiled, with no distinction between the two treatments or phenotype. This comparison 

resulted in quite some windows in the genome that were significantly associated with both 

experiments (figure 12, table 1). However, since this is all data compiled together, no distinction can 

be made on with what trait these QTLs are associated. This comparison mostly shows which QTLs 

might be involved in acclimation after periods of FL, in these experiments. In this comparison there 

were 19 windows significantly associated with both experiments.  
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Figure 12: Manhattan plot and heatmap of the comparison between NWO22_01 and NWO22_03. Each dot in the Manhattan 
plot represents a window that is significantly associated with the traits φPSII, NPQ, φNO, φNPQ, and Fv/Fm, in either 
NWO22_01 or NWO22_03. Larger light blue dots are windows found significant in both experiments.  
The heatmap shows the same windows as the Manhattan plot, but separately for both experiments. The gradient is the sum 
of all LOD-scores above the threshold at that given window. The windows are ordered in physical position on the chromosome 
on the x-axis. 

To detect the light treatment effect on phenotypic variation and thus underlying genetic factors, 

comparison of GWAS output for the phenotypes at each of the light treatments in the two experiments  

were compared. GWAS output from the FL15 period of NWO22_03 (21 to 24 DAS) and that from the 

FL15 period of NWO22_01 (12 to 15 DAS) were compiled in figure 13, showing only 3 windows found 

significant in both experiments under the same FL treatment. 

The same comparison was done, but for FL60, so the data from 12 to 15 DAS from NWO22_01 and 21 

to 24 DAS from NWO22_03. These results were compiled in figure 14 and showed 6 windows 

significantly associated with both experiments under the same FL treatment. Two of which, one on 

chromosome 1 and the other on chromosome 4, were also found significant in the FL15 comparison 

(table 1).  

In total there were 88 windows significant for NWO22_01, and 82 for NWO22_03, 19 of which were 

overlapping in the compiled comparison. However, only 7 of these were actually significantly 

associated with both experiments when the same treatment was applied.  

Additional interesting results are several windows on chromosome 4. In the overall comparison (figure 

12) there were 3 windows significantly associated with both experiments, located in the middle of 

chromosome 4. But when cross referencing those windows with the two treatment comparisons 

(figures 13 &14, table 1), it appears that one of these windows is still significantly associated in both 

FL15 and FL60, while the other two windows are unique to one of the two treatments. However, one 
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of these windows is only 150kbp away from the common window. So, both these SNPs are likely linked 

to the same QTL.  

Looking further into the windows that are significantly associated with the same treatment in both 

experiments will give more insight into what function these QTLs have within the plant. In the window 

chr1:12,000,000-12,050,000 there is the gene AT1G33230, which according to the gene ontology acts 

upstream or within response to light stimulus (Ashburner et al., 2000; Carbon et al., 2008; The Gene 

Ontology Consortium et al., 2023).  

In the window chr4:9,950,000-

10,000,000 a gene is found of which 

the knockout variant is involved in 

photosynthesis enhancement. But, as 

Medeiros et al. (2016) showed in their 

experiment, this change in 

photosynthesis can not be attributed 

to changes in photochemical systems. 

They measured Fv/Fm and φPSII for 

wildtypes and mutants of the gene, 

and there was no change in Fv/Fm 

and φPSII between the wildtype and 

mutant.  

In the windows found significant on 

chromosome 4 and 5, genes could be 

found that are part of the RING/U-box 

superfamily protein. This superfamily 

of proteins is involved in the 

ubiquitination of proteins. In all the 

QTLs that were specific to one of the 

treatments, multiple genes with yet 

unknown functions could be found.  

 

 

Chromosome Window FL15 FL60 Compiled 

1 12,000,000   X X 

1 13,050,000 X X X 

1 17,100,000     X 

1 24,000,000     X 

1 24,050,000     X 

1 24,100,000     X 

1 24,150,000     X 

1 24,200,000     X 

1 24,250,000     X 

1 24,300,000     X 

3 5,850,000     X 

3 12,450,000   X X 

4 900,000     X 

4 4,150,000     X 

4 7,100,000     X 

4 9,950,000   X X 

4 13,400,000 X   X 

4 13,550,000 X X X 

5 18,550,000   X X 

Table 1: Windows containing SNPs that are significantly associated with 
both NWO22_01 and NWO22_03 at  LOD-threshold of 6.0, and a windowsize 
of 50,000. The ‘Compiled’ column indicates which windows are significant 
with all data compiled, disregarding the treatment. The columns ‘FL15’ and 
‘FL60’ indicate which windows are significant in both experiments and the 
same treatment, fast fluctuating light (FL15) or slow fluctuating light (FL60).  
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 Figure 14: Manhattan plot and heatmap of the comparison between NWO22_01 and NWO22_03, but only using the data 
from the timepoints corresponding to the FL60 treatment. Each dot in the Manhattan plot represents a window that is 
significantly associated with the traits φPSII, NPQ, φNO, φNPQ, and Fv/Fm, in either NWO22_01 or NWO22_03. Larger light 
blue dots are windows found significant in both experiments. The heatmap shows the same windows as the Manhattan 
plot, but separately for both experiments. The gradient is the sum of all LOD-scores above the threshold at that given 
window. The windows are ordered in physical position on the chromosome on the x-axis. 

Figure 13: Manhattan plot and heatmap of the comparison between NWO22_01 and NWO22_03, but only using the data 
from the timepoints corresponding to the FL15 treatment. Each dot in the Manhattan plot represents a window that is 
significantly associated with the traits φPSII, NPQ, φNO, φNPQ, and Fv/Fm, in either NWO22_01 or NWO22_03. Larger light 
blue dots are windows found significant in both experiments. The heatmap shows the same windows as the Manhattan 
plot, but separately for both experiments. The gradient is the sum of all LOD-scores above the threshold at that given 
window. The windows are ordered in physical position on the chromosome on the x-axis. 



25 
 

Comparing individual leaf data to whole plant data of NWO22_01 
The variation in plant development is acknowledged in the Dutch population: there is variation in 

flowering time and number of rosette leaves. Plant development is known to have an effect on 

photosynthesis performance. Therefore to minimize the effect of plant development on the 

phenotypic variation observed in the Dutch population, photosynthetic traits for individual leaves were 

obtained for experiment NWO22_01 (Jurado-Ruiz et al., 2022).  

For the GWAS of the individual leaf data, only data corresponding to the FL60 treatment was used (16 

to 25 DAS). This was because in most cases leaf 6 and 7 appeared around 15 DAS, or the leaves were 

too small for the algorithm to recognise the individual leaves. The final day was also removed for this 

analysis, because for most plants leaves 6 and 7 became overlapped nearing the end of the 

experiment. This analysis only included Fv/Fm and φPSII, since only Fv, Fm, Fp and Fmp were recorded 

for the leaf data. 

First of all, the GWAS results of the leaf data showed much less significantly associated windows. Which 

is to be expected as there is much less data for the individual leaves. In total there were 59 windows 

significantly associated with the leaf data, 3 of which were significant for both Fv/Fm and φPSII (figure 

15).  

The leaf data was compared to the overall data of NWO22_01, containing data of both FL15 and FL60, 

and to the data of only the FL60 part of NWO22_01 (21 to 24 DAS). Comparing the leaf data results to 

the FL15 results of NWO22_01 (12 to 15 DAS), resulted in the same windows being significant as the 

Figure 15: Manhattan plot and heatmap of the traits Fv/Fm and φPSII from the individual leaf data. The Manhattan plot, 
plots the sum of all LOD-scores above the threshold of 6.0, of that window. So if a window has a LOD-score above 6.0 for 
Fv/Fm and φPSII, the blue dot is the sum of those scores. If a window is significantly associated with both traits, the dot in 
the Manhattan plot is coloured light blue and larger than the others. The heatmap on the bottom, plots the sum of all LOD-
scores above the threshold of 6.0 for each window. The windows are ordered in physical position on the chromosome on the 
x-axis. 
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comparison with the overall data. Further comparison of the leaf data to NWO22_01 will only be with 

the NWO22_01 data corresponding to the FL60 treatment. 

In total there were 59 windows found significantly associated with the leaf data, 47 of which are unique 

to the leaf data, so 12 windows are significantly associated with both the FL60 data of NWO22_01 and 

the individual leaf data (figure 16). 3 of the 12 windows were also found significant in the comparison 

between NWO22_01 and NWO22_03. These windows were the 3 windows found significant for both 

datasets on chromosome 4, seen in figure 16 as the 3 light blue dots on chromosome 4. 

[chr4:7,100,000-7,150,000], [chr4:9,950,000-10,000,000], and [chr4:13,550,000-13,600,000]. 

However, the most left window [chr4:7,100,000-7,150,000] was only found significant in the overall 

NWO22_01 to NWO22_03 comparison, so not accounting for FL treatment, and most right window 

[chr4:13,550,000-13,600,000] was found significant in both the FL15 and FL60 comparison of 

NWO22_01 with NWO22_03. The middle window [chr4:9,950,000-10,000,000] is also significantly 

associated with the FL60 comparison of NWO22_1 with NWO22_03. This middle window is of interest, 

because the leaf data only contains data from the FL60 treatment.  

  

Figure 16: Manhattan plot and heatmap of the comparison between NWO22_01 and the leaf data of NWO22_01. Each dot 
in the Manhattan plot represents a window that is significantly associated with the traits φPSII, NPQ, φNO, φNPQ, and 
Fv/Fm, in either NWO22_01 or the leaf data. The heatmap shows the same windows as the Manhattan plot. The gradient is 
the sum of all LOD-scores above the threshold at that given window. The windows are ordered in physical position on the 
chromosome on the x-axis. 
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Discussion 
From all these comparisons of GWAS data, the intention is to identify QTLs within the Arabidopsis 

thaliana genome that are involved in the acclimation of photosynthetic efficiency to fluctuating light. 

The goal of comparing two experiments of which the light treatments are swapped, and analysing the 

data of individual leaves, was to rule out or confirm any QTLs that were found to be associated with 

the acclimation to fluctuating light. In analysing the results of this research, a LOD significance 

threshold of 6.0 was used, and the window size in which the SNPs were grouped was set at 50,000 bp. 

The LOD-threshold is based on multiple permutation tests for several phenotypes in the DartMap 

population, done by René Boesten. From these permutation tests a consistent threshold between 6.3 

and 6.8 resulted. Based on this, a threshold of 6.5 was set in the beginning of this research, but I did 

all analyses at LOD-thresholds of 6.5, 6.0 and 5.0. A threshold of 6.5 proved to be too high as almost 

no windows would be significant, but 5.0 was too low because there were too many windows found 

significant. The window size of 50kbp was decided on because in NWO22_01 the LD for some SNPs 

was calculated, which showed that the LD could be greater than 100kbp (Bos Calderó, 2022). With a 

window size of 50kbp enough resolution for these SNPs is given, but it is also not too small, so the 

results are easier to interpret.  

From the phenotypic data (figure 6) could already be seen that development is a key factor in 

determining the rates of the photosynthetic traits. In both experiments the measured values increased 

over time, regardless of the FL treatment that was given. The importance of plant age in photosynthetic 

traits has already been confirmed in a previous research by Bielczynski et al. (2017),  and their advise 

is to consider plant and leaf age when doing research on photosynthetic performance. That is why the 

two experiments were compared and an analysis including individual leaf data was done. 

The expectation of the GWAS analysis was to find QTLs that were significantly associated with both 

experiments, but that most of these are associated with plant development rather than acclimation to 

fluctuating light. This is largely true from what we see in the results from comparing the two 

experiments (figures 12,13,14). There were 19 windows significantly associated for both NWO22_01 

and NWO22_03 in the compiled comparison (table 1), but a comparison between treatments in the 

two experiments resulted in only 7 shared windows. So, 12 of these 19 windows are associated with 

the same developmental stage of the plants, rather than the FL treatment. Because the two datasets 

did correlate (figure 11), it is expected to find common genetic factors. However, that also includes 

QTLs involved in plant development, since it is known (Bielczynski et al., 2017), and shown in the 

phenotypic data (figure 6), that photosynthetic rates change during development. The heritability 

analysis further confirms this. In the plot (figure 7) it can be seen that heritability of the traits increases 

as the plants develop, meaning that in older plants that a greater part of the phenotypic variance can 

be explained by genetic factors (Wray; & Visscher, 2008). The younger plants also react more intense 

to the FL treatment, because in the beginning of both experiments there are great differences in 

measured trait values between morning and afternoon measurements. But this fluctuation in 

measured values between morning and afternoon decreases as the plants develop. The same pattern 

is visible in the correlation plot and the heritability plot.   

So, to narrow down which QTLs are actually involved in the acclimation of photosynthetic efficiency 

after periods of fluctuating light, a GWAS analysis using individual leaves has been done. The vegetative 

state of A. thaliana can be divided into three sections, early juvenile stage, late juvenile stage, and 

adult stage (Clarke et al., 1999). So, the best choice for which leaf to track is a leaf that emerges in the 

adult stage. According to Clarke et al. (1999), around 18 DAS the first adult leaves emerge, which in 

most cases for NWO22_01 is the sixth or seventh leaf.  For this reason, only the data of the sixth and 

seventh leaf were selected to use in the analysis. This also means that for the leaf data, only the data 
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from 16 to 25 DAS were used, as there was no data for most sixth and seventh leaves before 16 DAS 

and after 25DAS. This time frame corresponds to the FL60 treatment of NWO22_01, so the leaf data 

was compared to the FL60 treatment data of the whole plant. 

The expectation from comparing the individual leaf data to the whole plant data of NWO22_01, was 

that almost all significant windows found with the leaf data, would also be significant for the whole 

plant data corresponding to the FL60 treatment. The windows that would be significant for the whole 

plant data, but not for the leaf data would then likely be genes associated with the developmental 

stage. However, the result shows that there is less than 21% overlap between the leaf data and whole 

plant. A reason for this difference could be that the leaf data is much more uniform, having only leaves 

that are in approximately the same developmental stage, where the whole plant data also included 

very young and old leaves. For example, if one accession still produces many young leaves in later 

stages of the experiment, then this accession likely has unique QTLs involved in plant development. 

The whole plant phenotype of this accession would be similar to a young plant even in later stages of 

the experiment, and the phenotype would be much more different than the other plants in this stage 

of the experiment. Then similar to the rare variants principle of GWAS (Korte & Farlow, 2013), the 

unique plant development QTLs of this accession will appear significantly associated with the 

photosynthetic traits, instead of the actual causal QTLs for photosynthetic processes. So, when the 

data of these young leaves is excluded from the analysis, the actual QTLs will be significantly 

associated. This could explain that an almost completely different set of QTLs is found significant for 

the individual leaf data analysis.  

Genetic functions of identified QTLs 
Looking at some of the genes found in the windows that were found significant for the same treatment 

in both experiments (table 1), there is some confirmation that these QTLs are involved in the 

acclimation to fluctuating light. Based on our current knowledge of the A. thaliana genome, most of 

the genes found within the QTLs are involved somewhere in the photosynthetic pathway and not 

necessarily acclimation after fluctuating light. The most interesting genes in these windows are the 

ones of which the function is yet unknown. Seeing as there is still little known on specifically the effect 

of fluctuating light on photosynthetic efficiency (Theeuwen et al., 2022; van Bezouw et al., 2019), these 

genes might be the missing links.  

Another type of gene that was often found within the identified QTLs were genes that are part of a 
protein ubiquitination super family. Protein Ubiquitination is a post translational modification 
mechanism, that serves a variety of functions within cells. The most well-known function of protein 
ubiquitination is protein degradation (Guo et al., 2023). These genes likely came out of the GWAS 
analysis, because of the sudden change from low light to high light in the FL treatments. This high light 
probably still caused damages to the photosystems, in turn upregulating protein ubiquitination genes 
to repair or remove these damaged proteins.  

The results from the comparison of the compiled data (figure 12), are also of interest. There are 12 out 
of 19 QTLs found to be significantly associated with the photosynthetic traits in both experiments, but 
not corresponding to the same treatment (table 1). According to my hypothesis, these genes are 
associated with changes in photosynthetic efficiency due to plant development rather than response 
to light fluctuations. This hypothesis is confirmed by one QTL in the backend of chromosome 1 
[chr1:24,000,000-24,300,000]. Looking into the genes within this QTL, most of the genes are involved 
in the plant defence response, but in some cases there were genes that were involved in ABA signalling, 
which is an important signalling molecule in plant growth and development (Raghavendra et al., 2010).  
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Future research 
In continuation of this research, I advise to perform a more targeted approach to identifying specific 

genes involved in the acclimation to fluctuating light. The 7 QTLs that were identified in the comparison 

between NWO22_01 and NWO22_03, and the 47 QTLs that were significantly associated uniquely with 

the individual leaf data are important to focus on. So instead of a GWAS, I would advise performing 

QTL characterization focusing on the aforementioned QTLs.  

To identify more QTLs to focus on I would advise several things that I was not able to do in this research. 

The GWAS in this research was done using a univariate linear mixed model, implying that the traits 

Fv/Fm, φPSII, NPQ, φNPQ and φNO, are not influenced by each other. However, φPSII is very much 

dependant of the rate of NPQ, and NPQ is the ratio between φNPQ and φNO. So, for GWAS these traits 

should be taken together as variables in a multivariate linear mixed model. I also intended to do GWAS 

using response and recovery of the photosynthetic traits. By response I mean the ratio between the 

afternoon and morning measurements, and recovery the ratio between the morning and the 

afternoon of the previous day. These ratios might be a better representation of the acclimation, 

because a clear difference could be seen in figure 6 between morning and afternoon.  

If another research with similar experiments will be done, I advise to increase the sample size, because 

169 accessions is a rather small sample size for GWAS. That does not mean that these results are of no 

value, it is shown that smaller sample sizes still give significant results (Lee & Lee, 2021). The sample 

size of the leaf data was even smaller, because the algorithm wasn’t perfect yet and not all data could 

be used. Also, to improve the quality of the leaf data, the used algorithm could be improved or the 

method of filtering faulty measurements. The method for filtering used now wasn’t errorproof, 

because not every mask could be individually checked for quality.   

Conclusion 
An important conclusion from this research is that plant age has a great influence on photosynthetic 

traits. Seeing that of the identified QTLs, less than half of them could be involved in acclimation to 

fluctuating light, the rest is likely involved in plant development. So, in any future research on 

photosynthesis, plant age should be taken into account when designing the experiment.  

Minimizing the influence of plant age on the results, by using data of individual leaves or redoing the 

same experiment on plants in a different developmental stage, will give better results. And the 

resulting QTLs that are most likely involved in acclimation of photosynthetic efficiency after periods of 

fluctuating light, are located on chromosomes 1, 3 and 4. On chromosome 1 these are the QTLs 

identified between 12,000,000 and 17,400,000, on chromosome 3 between 12,450,000 and 

16,250,000, and on chromosome 4 the QTLs between 7,100,000 and 13,550,000. Especially the QTL 

within window 13,550,000 is an interesting QTL, since it was found for all three comparisons, FL15 and 

FL60 comparison between NWO22_01 and NWO22_03, and the leaf to whole plant comparison.  
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Appendix 

1) Used DartMap accessions 
NWO22_01 

- 1396 1780 2206 2440 

1060 1400 18 2214 2456 

1070 1434 1869 2231 2458 

1135 1459 1931 2244 2459 

1147 1463 1947 2245 2474 

1166 1466 1959 2251 2479 

1206 1467 1961 2257 249 

1210 1470 1964 2260 27 

1212 1473 1968 2261 32 

1214 1476 1970 2265 325 

1217 1483 1977 2301 332 

1222 1512 1979 2318 335 

1223 1536 1983 2329 340 

1224 1551 1988 2355 40703 

1228 1587 1989 2357 557 

1229 1594 1999 2360 567 

1289 1612 2008 2364 687 

1290 1630 2015 2372 712 

1293 1637 2024 2373 72 

1296 1658 2031 2375 736 

1302 1672 2038 2378 764 

1304 1675 2054 2381 768 

1308 1683 2056 2382 774 

1313 1687 2064 2385 81 

1333 1689 2066 2390 816 

1335 1692 2082 2391 822 

1341 1696 2088 2392 826 

1361 1704 2101 2393 828 

1363 1716 2103 2394 837 

1364 1724 2107 2396 85 

1366 1726 2109 2399 88 

1378 1728 2151 2400 886 

1382 1774 2199 2405 890 

1395 1775 2203 2406 92 
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NWO22_03 

1 1396 1780 2206 2440 

1060 1400 18 2214 2456 

1070 1434 1869 2231 2458 

1135 1459 1931 2244 2459 

1147 1463 1947 2245 2474 

1166 1466 1959 2251 2479 

1206 1467 1961 2257 249 

1210 1470 1964 2260 27 

1212 1473 1968 2261 32 

1214 1476 1970 2265 325 

1217 1483 1977 2301 332 

1222 1512 1979 2318 335 

1223 1536 1983 2329 340 

1224 1551 1988 2355 40703 

1228 1587 1989 2357 557 

1229 1594 1999 2360 567 

1289 1612 2008 2364 687 

1290 1630 2015 2372 712 

1293 1637 2024 2373 72 

1296 1658 2031 2375 - 

1302 1672 2038 2378 764 

1304 1675 2054 2381 768 

1308 1683 2056 2382 774 

1313 1687 2064 2385 81 

1333 1689 2066 2390 816 

1335 1692 2082 2391 822 

1341 1696 2088 2392 826 

1361 1704 2101 2393 828 

1363 1716 2103 2394 837 

1364 1724 2107 2396 85 

1366 1726 2109 2399 88 

1378 1728 2151 2400 886 

1382 1774 2199 2405 890 

1395 1775 2203 2406 92 
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2) Selected outliers 

  NWO22_01 

Accession no. Fv/Fm φPSII NPQ φNPQ φNO 

340 Removed Removed Removed Removed Removed 

736 Removed Removed Removed Removed Removed 

1166 Kept Removed Removed Removed Removed 

1612 Kept Removed Kept Kept Removed 

1675 Removed Removed Removed Removed Removed 

2382 Removed Kept Kept Kept Kept 

  

 
NWO22_03 

Accession no. Fv/Fm φPSII NPQ φNPQ φNO 

340 Removed Removed Removed Removed Removed 

736 
Not in 
experiment 

Not in 
experiment 

Not in 
experiment 

Not in 
experiment 

Not in 
experiment 

1166 Kept Removed Removed Removed Removed 

1612 Kept Removed Kept Kept Removed 

1675 Kept Kept Kept Kept Kept 

2382 Removed Kept Kept Kept Kept 

 

3) Used leaf data 
Look for the file called “leaf_data_used_data.csv” 

4) NWO22_03_correlation.R 
library(Hmisc) 

library(ggplot2) 

library(plotly) 

library(reshape2) 

library(dplyr) 

 

## Read in the data 

NWO22_03_files <- "C:/Users/bwd/OneDrive - Wageningen University & 

Research/MSc thesis/NWO22-03_Bram/Data/Input_files" 

NWO22_01_files <- "C:/Users/bwd/OneDrive - Wageningen University & 

Research/MSc thesis/NWO22-03_Bram/Data/Input_files" 

 

setwd(NWO22_03_files) 

NWO22_03 <- read.csv("NWO22_03_corr.txt", sep="\t", header = F) 

FvFm_03 <- NWO22_03[,6:23] 
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phiPSII_03 <- NWO22_03[,24:59] 

NPQ_03 <- NWO22_03[,60:95] 

phiNO_03 <- NWO22_03[,96:131] 

phiNPQ_03 <- NWO22_03[,132:167] 

 

NWO22_01 <- read.csv("NWO22_01_corr.txt", sep="\t", header =F) 

FvFm_01 <- NWO22_01[,7:24] 

phiPSII_01 <- NWO22_01[,27:62] 

NPQ_01 <- NWO22_01[,65:100] 

phiNPQ_01 <- NWO22_01[,103:138] 

phiNO_01 <- NWO22_01[,141:176] 

 

## Make correlation matrices 

## FvFm 

colnames<-c(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26) 

colnames(FvFm_01)<-colnames 

colnames(FvFm_03)<-colnames 

 

 

cor_matrix_FvFm <- matrix(nrow = 18, ncol = 1) 

rownames(cor_matrix_FvFm)<-colnames 

for (i in 1:18) { 

  cor_matrix_FvFm[i,]<-cor(FvFm_01[,i],FvFm_03[,i]) 

} 

cor_matrix_FvFm <- data.frame(cor_matrix_FvFm) 

cor_matrix_FvFm <- cor_matrix_FvFm %>% slice(rep(1:n(), each = 2)) 

cor_matrix_FvFm$cor_matrix_FvFm[c(FALSE,TRUE)] <- NA 

png("FvFm_corr_Time_original.png",width = 15, height = 10, units = 

'in', res = 300) 

ggplot(data = cor_matrix_FvFm, aes(x=colnames,y=cor_matrix_FvFm,)) +  

  geom_point() +  

  geom_smooth() +  

  labs(x="Time", y="Correlation", title = "Correlation FvFm") +  

  ylim(c(0.65,1)) + 

  scale_x_continuous(breaks = seq(1,18,1)) + 

  theme(axis.text = element_text(face = "bold", size = 15), 

axis.title = element_text(face = "bold", size = 20), title = 

element_text(face = "bold", size = 20)) 

dev.off() 

 

## phiPSII 

colnames<-

c(9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,1

7.5,18,18.5,19,19.5,20,20.5,21,21.5,22,22.5,23,23.5,24,24.5,25,25.5,

26,26.5) 

colnames(phiPSII_01)<-colnames 

colnames(phiPSII_03)<-colnames 

 

 

cor_matrix_phiPSII <- matrix(nrow = 36, ncol = 1) 

for (i in 1:36) { 
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  cor_matrix_phiPSII[i,]<-cor(phiPSII_01[,i],phiPSII_03[,i]) 

} 

cor_matrix_phiPSII <- data.frame(cor_matrix_phiPSII) 

png("phiPSII_corr_Time_original.png",width = 15, height = 10, units 

= 'in', res = 300) 

ggplot(data = cor_matrix_phiPSII, 

aes(x=colnames,y=cor_matrix_phiPSII,)) +  

  geom_point() +  

  geom_smooth() +  

  labs(x="Time", y="Correlation", title = "Correlation phiPSII") +  

  ylim(c(0.65,1)) + 

  scale_x_continuous(breaks = seq(1,36,1)) + 

  theme(axis.text = element_text(face = "bold", size = 15), 

axis.title = element_text(face = "bold", size = 20), title = 

element_text(face = "bold", size = 20)) 

dev.off() 

 

## NPQ 

colnames<-

c(9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,1

7.5,18,18.5,19,19.5,20,20.5,21,21.5,22,22.5,23,23.5,24,24.5,25,25.5,

26,26.5) 

colnames(NPQ_01)<-colnames 

colnames(NPQ_03)<-colnames 

 

cor_matrix_NPQ <- matrix(nrow = 36, ncol = 1) 

for (i in 1:36) { 

  cor_matrix_NPQ[i,]<-cor(NPQ_01[,i],NPQ_03[,i]) 

} 

cor_matrix_NPQ <- data.frame(cor_matrix_NPQ) 

png("NPQ_corr_Time_original.png",width = 15, height = 10, units = 

'in', res = 300) 

ggplot(data = cor_matrix_NPQ, aes(x=colnames,y=cor_matrix_NPQ)) +  

  geom_point() +  

  geom_smooth() +  

  labs(x="Time", y="Correlation", title = "Correlation NPQ") +  

  ylim(c(0.65,1)) + 

  scale_x_continuous(breaks = seq(1,36,1)) + 

  theme(axis.text = element_text(face = "bold", size = 15), 

axis.title = element_text(face = "bold", size = 20), title = 

element_text(face = "bold", size = 20)) 

dev.off() 

 

## phiNPQ 

colnames<-

c(9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,1

7.5,18,18.5,19,19.5,20,20.5,21,21.5,22,22.5,23,23.5,24,24.5,25,25.5,

26,26.5) 

colnames(phiNPQ_01)<-colnames 

colnames(phiNPQ_03)<-colnames 
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cor_matrix_phiNPQ <- matrix(nrow = 36, ncol = 1) 

for (i in 1:36) { 

  cor_matrix_phiNPQ[i,]<-cor(phiNPQ_01[,i],phiNPQ_03[,i]) 

} 

cor_matrix_phiNPQ <- data.frame(cor_matrix_phiNPQ) 

png("phiNPQ_corr_Time_original.png",width = 15, height = 10, units = 

'in', res = 300) 

ggplot(data = cor_matrix_phiNPQ, 

aes(x=colnames,y=cor_matrix_phiNPQ,)) +  

  geom_point() +  

  geom_smooth() +  

  labs(x="Time", y="Correlation", title = "Correlation phiNPQ") +  

  ylim(c(0.65,1)) + 

  scale_x_continuous(breaks = seq(1,36,1)) + 

  theme(axis.text = element_text(face = "bold", size = 15), 

axis.title = element_text(face = "bold", size = 20), title = 

element_text(face = "bold", size = 20)) 

dev.off() 

 

## phiNO 

colnames<-

c(9,9.5,10,10.5,11,11.5,12,12.5,13,13.5,14,14.5,15,15.5,16,16.5,17,1

7.5,18,18.5,19,19.5,20,20.5,21,21.5,22,22.5,23,23.5,24,24.5,25,25.5,

26,26.5) 

colnames(phiNO_01)<-colnames 

colnames(phiNO_03)<-colnames 

 

cor_matrix_phiNO <- matrix(nrow = 36, ncol = 1) 

for (i in 1:36) { 

  cor_matrix_phiNO[i,]<-cor(phiNO_01[,i],phiNO_03[,i]) 

} 

cor_matrix_phiNO <- data.frame(cor_matrix_phiNO) 

png("phiNO_corr_Time_original.png",width = 15, height = 10, units = 

'in', res = 300) 

ggplot(data = cor_matrix_phiNO, aes(x=colnames,y=cor_matrix_phiNO,)) 

+  

  geom_point() +  

  geom_smooth() +  

  labs(x="Time", y="Correlation", title = "Correlation phiNO") +  

  ylim(c(0.65,1)) + 

  scale_x_continuous(breaks = seq(1,36,1)) + 

  theme(axis.text = element_text(face = "bold", size = 15), 

axis.title = element_text(face = "bold", size = 20), title = 

element_text(face = "bold", size = 20)) 

dev.off() 

 

 

## Comparison 

comp_matrix <- 

cbind(cor_matrix_NPQ,cor_matrix_phiNO,cor_matrix_phiNPQ,cor_matrix_p

hiPSII,cor_matrix_FvFm, colnames) 
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comp_matrix <- melt(comp_matrix, id.vars = "colnames") 

png("corr_comp.png",width = 15, height = 10, units = 'in', res = 

300) 

ggplot(data = comp_matrix, aes(x = colnames, y = value, 

col=variable)) +  

  geom_point() +  

  stat_smooth(level = 0) +  

  labs(x="Time (DAS)", y="Correlation") +  

  ylim(c(0.6,1)) + 

  scale_x_continuous(breaks = seq(1,36,1)) + 

  scale_color_discrete(labels = 

c(cor_matrix_NPQ="NPQ",cor_matrix_phiNO="phiNO",cor_matrix_phiNPQ="p

hiNPQ",cor_matrix_phiPSII="phiPSII",cor_matrix_FvFm="FvFm"))+ 

  theme(axis.text = element_text(face = "bold", size = 15), 

axis.title = element_text(face = "bold", size = 20), title = 

element_text(face = "bold", size = 20), legend.position = "bottom", 

legend.title = element_blank(), legend.text = element_text(size = 

20)) 

dev.off() 

 

5) Var_comp.R 
library(lme4) 

 

setwd("C:/Users/bwd/OneDrive - Wageningen University & Research/MSc 

thesis/NWO22-03_Bram/Data/Heritability") 

 

 

###################################heritability_Calculation 

 

data <- 

read.table("NWO22_03_input_for_heritability_outliers_removed.csv", 

sep = ",", header = TRUE)  

data$Block<- factor(data$Block) 

data$X <- factor(data$X) 

data$Y <- factor(data$Y) 

data$Tray_ID <- factor(data$Tray_ID)  

data$Genotype <- factor (data$Genotype) 

 

varcom <- NULL 

count <- 1 

for(n in 8:ncol(data)){ 

  name <- colnames(data)[n] 

  variable <- data[,n] 

   

   

  fitlmer_rand <- lmer(variable ~  (1|Genotype) + (1|Tray_ID) + 

(1|X) + (1|Y) +(1|Block) , data = data, REML = TRUE)  

  sum <- summary(fitlmer_rand) 

  out <- as.data.frame(VarCorr(fitlmer_rand)) 
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  if (count == 1){ 

    header <- out$grp 

    varcom <- rbind(varcom, header) 

  } 

  count <- count + 1 

  varcom <- rbind(varcom, out$vcov) 

  rownames(varcom)[count] <- name 

} 

 

write.csv(varcom,"NWO22_03_VarianceComponents_outliers_removed.csv") 

 

 

##############################plotting_Heritability 

 

library(ggplot2) 

data <- read.csv("NWO22_03_Compiled_Heritability_nosize.csv", 

header=T, check.names = F) 

data$Trait <- as.factor(data$Trait) 

 

# cbPalette <- c("#047d24","#02e840", "#1b30f2","#56B4E9", 

"#000000", "#787777", "#d99702", "#fac348", "#ff0000","#ff5e5e") 

cbPalette <- c("#047d24", "#1b30f2", "#000000", "#d99702", 

"#ff0000") 

 

p1 <- ggplot(data=data, aes(x=DAS, y=H2, fill= Trait)) + 

  geom_point(aes(colour= Trait)) + 

  geom_line(aes(colour= Trait)) + 

  scale_colour_manual(values=cbPalette) + 

  ylab("Heritability") + 

  xlab("Days after sowing") + 

  theme_bw() 

p1 

 

png("NWO22_03_Compiled_Heritability.png", width = 6.5, height = 3.5, 

units = 'in', res = 300) 

plot(p1) 

dev.off() 

 

pdf("NWO22_03_Compiled_Heritability.pdf", height = 10, width = 20, 

useDingbats=FALSE) 

plot(p1) 

dev.off() 

 

6) GEMMA loop script 
#!/usr/bin/env python3 

from sys import argv 

from subprocess import run 

import os.path 

 

""" 
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Author: Bram Duurland 

Date: 23/02/2023 

 

Script: This script automatically runs GEMMA(1) on the commandline 

for an  

association test with a multiple linear mixed model. It repeats the 

test for  

each phenotype specified in the phenotype .fam file.  

 

Options used in GEMMA: 

    -bfile = input files in PLINK format 

    -maf = Minor allele frequency threshold 

    -k = kinship matrix file 

    -lmm = specify frequentist analysis choice (default 1; valid 

value 1-4; 1:  

    Wald test; 2: likelihood ratio test; 3: score test; 4: all 1-3.) 

    -n =  which column to use for phenotype. Default is 1 which 

reads the sixth 

    column of the .fam file 

    -outdir = specify output directory path 

    -o = prefix to use in the output folder 

 

(1): Multivariate linear mixed models 

Xiang Zhou and Matthew Stephens (2014). Efficient multivariate 

linear mixed  

model algo-rithms for genome-wide association studies. Nature 

Methods. 11: 407- 

409. 

 

Update 2.0 

    Added requirement to input the prefix for the output file. This 

way the  

    script is applicable on different phenotype datasets.  

 

Update 2.1 

    Added the option to specify the output directory path. This path 

is based  

    on the output prefix.  

Update 2.1.1  

    Prints the command before executing 

Update 2.1.2 

    Made it possible to specify the output directory in the initial 

command. So 

    an extra input is required for he output directory. 

""" 

 

 

def run_gemma(pheno_file_prefix, kinship_matrix, outdir_path, 

              output_file_prefix, pheno_column): 

    """This function runs GEMMA on the commandline with the 

specified 
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    parameters. 

 

    input 

        pheno_file_prefix: type=string, the prefix of the .bim, .bed 

and .fam 

        files 

        kinship_matrix: type=string, the filename or path to the 

kinship matrix 

        outdir_path: type=string, the path of the output directory 

        output_file_prefix: type=string, the prefix to be used for 

the output 

        file that is created by GEMMA. Do not add the column number 

of the 

        analysed phenotype, that is added by the script. 

        pheno_column: type=integer, the column number of the 

phenotype to be 

        used for the test 

 

    output 

        None 

    """ 

    cmd = "./gemma-0.98.5-linux-static-AMD64 -bfile {} -k {} -maf 

0.05 -lmm 1\ 

     -n {} -outdir {}/{}/ -o {}_{}"\ 

        .format(pheno_file_prefix, kinship_matrix, pheno_column, 

outdir_path, 

                output_file_prefix, output_file_prefix, 

pheno_column) 

    if os.path.exists("{}/{}/{}_{}.assoc.txt".format(outdir_path, 

                                                     

output_file_prefix, 

                                                     

output_file_prefix, 

                                                     pheno_column)): 

        return 

    else: 

        print(cmd) 

        run(cmd, shell=True, check=True) 

    return 

 

 

def count_columns(input_fn): 

    """This function determines from the .fam file how many 

phenotypes need to 

    be analysed. 

 

    input 

        input_fn: type=string, the prefix of the .fam file 

 

    output 

        columns: type=int, total number of columns with phenotype 



45 
 

data 

        in the .fam file 

    """ 

    with open("{}.fam".format(input_fn), "r") as file: 

        line = file.read().splitlines()[0] 

        columns = len(line.split(sep="\t"))-5 

    return columns 

 

 

def main(): 

    """The main function executes all of the above functions. 

 

    input 

        the input is taken from the commandline through argv 

        argv[1] should be the prefix of the PLINK format files 

        argv[2] should be the path to the kinship matrix file 

        argv[3] should be the path of the output directory 

        argv[4] should be the prefix of the output file, without the 

column 

        number of the phenotype. 

 

    output 

        None 

        this script doesn't return anything, but the output of GEMMA 

is stored 

        in the 'output' folder. 

    """ 

    try: 

        pheno_prefix = argv[1] 

        input_km = argv[2] 

        outdirectory = argv[3] 

        output_prefix = argv[4] 

    except IndexError: 

        exit("provide input prefix, kinship matrix file name and 

output prefix" 

             ) 

 

    pheno_columns = count_columns(pheno_prefix) 

    for i in range(pheno_columns): 

        run_gemma(pheno_prefix, input_km, outdirectory, 

output_prefix, i + 1) 

    return 

 

 

if __name__ == "__main__": 

    main() 

7) PtChr_loop_manhattanplots.R 
.libPaths(c('~/MSc_thesis/R_libs',.libPaths())) 

library(qqman) 

 

setwd("/lustre/BIF/nobackup/duurl001/leaf_data_new") 
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number<-1 

 

for(number in 1:30){ 

  name <- paste("leaf_data_new_", number, ".assoc.txt", sep="") 

  data <- read.table(name, sep="", header = TRUE) 

  mylabs <- unique(data$chr) 

  data$chr <- as.numeric(factor(data$chr, levels =  mylabs)) 

 

  new_name<- paste("plots/Manhattan_leaf_data_new_",number,".png", 

sep="") 

  png(new_name, height = 800, width = 1400) 

  manhattan(data, chr="chr", bp="ps", snp="rs", p="p_wald", 

suggestiveline = 6.5, genomewideline = FALSE,  ylim = c(2, 12)) 

  dev.off() 

   

  new_name1<- paste("plots/qqPlot_leaf_data_new_",number,".png", 

sep="")  

  png(new_name1, height = 900, width = 900) 

  qq(data$p_wald) 

  dev.off() 

 

  reduce <- subset(data, data$p_wald < 0.301 & data$chr != "Pt") 

  newfilename <- paste("Reduce_leaf_data_new_", number,".assoc.csv", 

sep="") 

  write.csv(reduce, newfilename, row.names=FALSE) 

 

} 

 

8) Compatible_DutchPop169_Boxplot_multimapper_loop.R 
# .libPaths(c('~/MSc_thesis/R_libs',.libPaths())) 

library(reshape2) 

library(ggplot2) 

library(patchwork) 

 

## load data 

if(Sys.info()["user"] == "bwd"){ 

  raw.dir <- file.path("C:/Users/bwd/OneDrive - Wageningen 

University & Research/MSc thesis/NWO22-

03_Bram/Data/BLUEs_parameters_input/") 

  assoc.dir <- file.path("C:/Users/bwd/OneDrive - Wageningen 

University & Research/MSc 

thesis/SharedData/Bram/leaf_data/assoc_files") 

  out.dir <- file.path("C:/Users/bwd/OneDrive - Wageningen 

University & Research/MSc thesis/SharedData/Bram/leaf_data/plots") 

}  

 

phenotypes <- list("FvFm", "phiPSII", "NPQ", "phiNPQ", "phiNO") 

start_pheno_number <- 1 

for (name in phenotypes) { 
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  ### BOXPLOT #### 

  setwd(raw.dir) 

  data <- read.csv(paste("NWO22-03_BLUEs_", 

name,"_outliers_removed.csv", sep=""), header = T, check.names = F) 

  data <- data[data$Genotype != "Hun" & data$Genotype != "Col",] 

   

  data_long <- melt(data, id.vars="Genotype") 

  colnames(data_long) <- c("Genotype", "Time", name) 

 

  boxplot <- ggplot(data_long, aes(x=Time, y=.data[[name]], 

group=Time)) + 

    geom_boxplot(fill='#A4A4A4', color="black") +  

    theme_bw() + theme(text= element_text(size=15))+ 

    guides(x=guide_axis(n.dodge = 2)) 

  boxplot 

   

  setwd(assoc.dir) 

   

  ########################THESE YOU CAN 

CHANGE############################ 

  start_chr <- 1 

  sliding_size <- 50000 #25000 

  number_of_traits <- ncol(data)-1 

  LOD_threshold <- 6 ### This is something to consider 

  column_with_sign_value <- 12 

   

  ###########HARD CODED; DONT TOUCH BELOW 

HERE############################ 

  window_end <- sliding_size 

  window_size <- sliding_size 

  window_max <- NULL 

  max_in_slide <- NULL 

  sliding_window_max <- NULL 

  sliding_window_collector <- NULL 

   

  trait <- 1 

  for(trait in 

start_pheno_number:(start_pheno_number+number_of_traits-1)){ 

    filename <- paste("Reduce_leaf_data_new_", trait,".assoc.csv", 

sep="") 

    traitname <- paste(trait) 

    data <- read.table(filename, sep = ",", header = TRUE) 

    data[(column_with_sign_value+1)] <- -

log10(data[column_with_sign_value]) 

     

  ##add a row at the bottom!! 

    max_chr_number <- max(as.numeric(data$chr),na.rm=T) 

    data[(nrow(data)+1),1] <- max_chr_number+1 

    data[(nrow(data)),3] <- 1 

    data[(nrow(data)),column_with_sign_value+1] <- 0 

    tail(data) 
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    for(i in 1:nrow(data)){ 

      if(data[i,1] == start_chr){ 

        chr <- data[i,1] 

        pos <- data[i,3] 

        if(pos < window_end){ 

          window_max <- 

cbind(window_max,data[i,column_with_sign_value+1]) 

        } else{ 

          #i <- i - 1 

          #print(i) 

          window_start <- window_end - window_size 

          window_end <- window_end + window_size 

          max_in_slide <- max(window_max) 

          max_in_slide_row <- 

cbind(traitname,chr,window_start,max_in_slide) 

          sliding_window_max <- rbind(sliding_window_max, 

max_in_slide_row) 

          window_max <- NULL 

          window_max <- 

cbind(window_max,data[i,column_with_sign_value+1])    

        }   

      } else { 

        #print(chr) 

        #End of chromosome 

        window_start <- window_end - window_size 

        window_end <- window_end + window_size 

        max_in_slide <- max(window_max) 

        max_in_slide_row <- 

cbind(traitname,chr,window_start,max_in_slide) 

        sliding_window_max <- rbind(sliding_window_max, 

max_in_slide_row) 

        window_max <- NULL 

        window_max <- 

cbind(window_max,data[i,(column_with_sign_value+1)])   

         

         

        start_chr <- start_chr + 1 

        window_end <- sliding_size 

        window_size <- sliding_size 

        window_max <- NULL 

        max_in_slide <- NULL 

      } 

    } 

    sliding_window_collector <- 

rbind(sliding_window_collector,sliding_window_max) 

    update <- paste("Finished with trait #",trait,sep="") 

    print(update) 

    window_end <- sliding_size 

    window_size <- sliding_size 

    window_max <- NULL 

    max_in_slide <- NULL 
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    sliding_window_max <- NULL 

    start_chr <- 1 

     

  } 

   

  setwd(out.dir) 

  test <- sliding_window_collector 

   

  mode(test) = "numeric" 

  raw_LOD_data <- data.frame(test) 

   

  write.csv(raw_LOD_data, paste("Summary_raw_LOD_", name, 

"_",sliding_size,".csv", sep=""), row.names=F) 

  data <- raw_LOD_data 

  for(c in 1:nrow(data)){ 

    LOD <- data[c,4] 

    if(LOD < LOD_threshold){ 

      data[c,4] <- NA 

    }  

  } 

   

  data$chr <- factor(data$chr) 

  data$traitname <- factor(data$traitname) 

  data$LOD <- as.numeric(data$max_in_slide) 

  data$Position <- as.numeric(data$window_start) 

  write.csv(data,  paste("Summary_threshold_LOD_", name,"_", 

sliding_size,".csv", sep=""), row.names=F) 

   

  dd <- seq(min(as.numeric(as.character(data$window_start))), 

max(as.numeric(as.character(data$window_start))), by = 10000000) 

   

  qtl_plot <- ggplot(data=data, aes(x=traitname, y=window_start)) + 

    geom_tile(aes(fill=LOD, width=1)) +  

    facet_grid(vars(chr), scales="free_y", space= "free_y", switch = 

"y") + 

    theme_bw() + theme(panel.grid.major = element_blank(), 

                       panel.grid.minor = element_blank(), axis.line 

= element_line(colour="black"), 

                       axis.text = 

element_text(colour="black"),text= element_text(size=15), 

                       panel.spacing = unit(0, "lines")) +  

    ylab("Position (bp)") + 

    xlab("Time (DAS)") + 

    scale_fill_gradient(low="#22FF00", high="#FF0000", limits 

=c(LOD_threshold, max(data$LOD)), na.value = NA) + 

    scale_y_discrete(breaks=dd, position="right")  

   

  qtl_plot 

  plot(boxplot/qtl_plot + plot_layout(heights = c(1,5))) 

   

  pdf(paste("Compatible_Boxplot_multimapper", name, window_size, 



50 
 

LOD_threshold, "leaf_data_new.pdf", sep="_"), width= 10, height=15, 

useDingbats=FALSE) 

  plot(boxplot/qtl_plot + plot_layout(heights = c(1,5))) 

  dev.off() 

   

  png(paste("Boxplot_multimapper", name, window_size, LOD_threshold, 

"leaf_data_new.png", sep="_"), width = 10, height = 15, units = 

'in', res = 300) 

  plot(boxplot/qtl_plot + plot_layout(heights = c(1,5))) 

  dev.off() 

        

  #Signal averaging script 

  signal_data <- reshape(data=data, 

idvar=c("chr","window_start"),v.names="max_in_slide", 

timevar="traitname",direction="wide") 

  end <- number_of_traits+5-1 

  signal_data[is.na(signal_data)] <- 0 

  signal_data$count <- apply(signal_data[,5:end], 1, function(x) 

length(which(x!="0"))) 

  head(signal_data) 

  signal_data$sum <- rowSums(signal_data[,6:end])   

  signal_new <- ggplot(data=signal_data, aes(x=window_start, y=sum)) 

+ 

    geom_point(aes(color=count)) + 

    scale_colour_continuous(limits =c(0.1, max(signal_data$count)))+ 

    facet_grid(cols = vars(chr),scales = "free_x", space = "free_x", 

switch="y")+ 

    geom_hline( yintercept = 6, linetype="dashed", color="black") + 

    guides(x=guide_axis(n.dodge = 2)) 

 

  signal_new 

  File_Output_name <- 

paste("Select_Promising_Peak_",name,sliding_size,".pdf", sep="") 

  pdf(File_Output_name, height = 10, width = 20, useDingbats=FALSE) 

  signal_new 

  dev.off() 

  signal_new 

  signal_data <- subset(signal_data, select = -c(LOD)) 

  write.csv(signal_data, paste("Signal_",name,"_",LOD_threshold,"_", 

sliding_size,"_leaf_data_new.csv", sep=""), row.names = F) 

  start_pheno_number <- start_pheno_number + number_of_traits 

} 

9) Compiled_turbo_multimapper.R 
library(reshape2) 

library(ggplot2) 

library(patchwork) 

 

setwd("C:/Users/bwd/OneDrive - Wageningen University & Research/MSc 

thesis/SharedData/Bram/NWO22_01_NLpop169_outliers_removed/NWO22_01_6

.0_50000") 
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########################THESE YOU CAN 

CHANGE############################ 

start_chr <- 1 

sliding_size <- 50000 

start_pheno_number <- 1 

number_of_traits <- 2 

LOD_treshold <- 6 

 

###########HARD CODED; DONT TOUCH BELOW 

HERE############################ 

 

window_end <- sliding_size 

window_size <- sliding_size 

window_max <- NULL 

max_in_slide <- NULL 

sliding_window_max <- NULL 

sliding_window_collector <- NULL 

 

 

##NWO22_01 

# 1=fvfm 

# 2=NPQ 

# 3=phiNO 

# 4=phiNPQ 

# 5=phiPSII 

# 6=sizefvfm 

 

 

for(trait in 

start_pheno_number:(start_pheno_number+number_of_traits-1)){ 

  filename <- paste("Signal_", 

trait,"_",LOD_treshold,"_",sliding_size,"_NWO22_01_FL60.csv", 

sep="") 

  traitname <- paste(trait) 

  data <- read.table(filename, header = TRUE, sep=",") 

  data <- data[-2386:-nrow(data),] 

  column_with_sign_value <- ncol(data)  

  data[(column_with_sign_value+1)] <- 

1*(data[column_with_sign_value]) 

  ##add a row at the bottom!! 

  max_chr_number <- max(as.numeric(data$chr),na.rm=T) 

  data[(nrow(data)+1),1] <- max_chr_number+1 

  data[(nrow(data)),3] <- 1 

  data[(nrow(data)),column_with_sign_value+1] <- 0 

  tail(data) 

  i <- 1 

  for(i in 1:nrow(data)){ 

    if(data[i,1] == start_chr){ 

      chr <- data[i,1] 

      pos <- data[i,3] 

      if(pos < window_end){ 
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        window_max <- 

cbind(window_max,data[i,column_with_sign_value+1]) 

      } else{ 

        #i <- i - 1 

        #print(i) 

        window_start <- window_end - window_size 

        window_end <- window_end + window_size 

        max_in_slide <- max(window_max) 

        max_in_slide_row <- 

cbind(traitname,chr,window_start,max_in_slide) 

        sliding_window_max <- rbind(sliding_window_max, 

max_in_slide_row) 

        window_max <- NULL 

        window_max <- 

cbind(window_max,data[i,column_with_sign_value+1])    

      }   

    } else { 

      #print(chr) 

      #End of chromosome 

      window_start <- window_end - window_size 

      window_end <- window_end + window_size 

      max_in_slide <- max(window_max) 

      max_in_slide_row <- 

cbind(traitname,chr,window_start,max_in_slide) 

      sliding_window_max <- rbind(sliding_window_max, 

max_in_slide_row) 

      window_max <- NULL 

      window_max <- 

cbind(window_max,data[i,(column_with_sign_value+1)])   

       

       

      start_chr <- start_chr + 1 

      window_end <- sliding_size 

      window_size <- sliding_size 

      window_max <- NULL 

      max_in_slide <- NULL 

    } 

  } 

  sliding_window_collector <- 

rbind(sliding_window_collector,sliding_window_max) 

  update <- paste("Finished with trait #",trait,sep="") 

  print(update) 

  window_end <- sliding_size 

  window_size <- sliding_size 

  window_max <- NULL 

  max_in_slide <- NULL 

  sliding_window_max <- NULL 

  start_chr <- 1 

 

} 

test <- sliding_window_collector 
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mode(test) = "numeric" 

raw_LOD_data <- data.frame(test) 

 

write.csv(raw_LOD_data, "Summary_LOD.csv") 

data <- subset(raw_LOD_data, select = -c(X)) 

 

for(c in 1:nrow(data)){ 

  LOD <- data[c,4] 

  if(LOD < LOD_treshold){ 

    data[c,4] <- NA 

  }  

} 

 

data$chr <- factor(data$chr) 

data$trait <- factor(data$traitname, labels = 

c("FvFm","NPQ","phiNO","phiNPQ","phiPSII")) 

data$LOD <- as.numeric(data$max_in_slide) 

data$Position <- as.numeric(data$window_start) 

write.csv(data, "Summary_LOD.csv") 

limit_max <- max(data$LOD,na.rm=T) 

new <- ggplot(data=data, aes(x=window_start, y=1, fill = LOD)) + 

  facet_grid(cols = vars(chr), rows= vars(trait),scales = "free_x", 

space = "free_x", switch="y") + 

  scale_fill_gradient(low="green", high="red", limits = 

c(LOD_treshold,limit_max), space = "Lab", na.value = "white", name = 

"Sum") + 

  geom_raster() + 

  theme(axis.title.y=element_blank(), 

        axis.text.y=element_blank(), 

        axis.ticks.y=element_blank(), 

        strip.text.y = element_text(angle = 180))+ 

  guides(x=guide_axis(n.dodge = 2)) +  

  xlab("Chromosome") 

new 

height <- 1*number_of_traits 

File_Output_name <- 

paste("Output_NWO22_01_NLpop169_outliers_removed_FL60_",LOD_treshold

,"_",sliding_size,".pdf", sep="") 

pdf(File_Output_name, height = height, width = 20, 

useDingbats=FALSE) 

new 

dev.off() 

 

#Signal averaging script 

signal_data <- reshape(data=data, 

idvar=c("chr","window_start"),v.names="max_in_slide", 

timevar="traitname",direction="wide") 

end <- number_of_traits+6-1 

signal_data[is.na(signal_data)] <- 0 

signal_data$count <- apply(signal_data[,6:end], 1, function(x) 
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length(which(x!="0"))) 

head(signal_data) 

signal_data$sum <- rowSums(signal_data[,6:end])   

signal_new <- ggplot(data=signal_data, aes(x=window_start, y=sum)) + 

  geom_point(aes(color=count, size=count)) + 

  scale_colour_continuous(limits =c(1, max(signal_data$count)))+ 

  scale_size(range=c(1,2), limits = c(1, max(signal_data$count))) + 

  facet_grid(cols = vars(chr),scales = "free_x", space = "free_x", 

switch="y")+ 

  guides(x=guide_axis(n.dodge = 2))+  

  theme(axis.title.x = element_blank(), 

        legend.title = element_blank()) 

signal_new 

 

File_Output_name <- 

paste("Compiled_Select_Promising_Peak_NWO22_01_NLpop169_outliers_rem

oved_FL60_",LOD_treshold,"_",sliding_size,".pdf", sep="") 

pdf(File_Output_name, height = 10, width = 15, useDingbats=FALSE) 

signal_new/new+plot_layout(heights = c(5,2)) 

dev.off() 

File_Output_name <- 

paste("Compiled_Select_Promising_Peak_NWO22_01_NLpop169_outliers_rem

oved_FL60_",LOD_treshold,"_",sliding_size,".png", sep="") 

png(File_Output_name, height = 10, width = 15,units = "in", res = 

300) 

signal_new/new+plot_layout(heights = c(5,2)) 

dev.off() 

signal_new 

signal_data <- subset(signal_data, select = -c(LOD)) 

write.csv(signal_data,"Compiled_Signal_6_50000_NWO22_01_NLpop169_out

liers_removed_FL60.csv", row.names = F) 

10) Compiled_turbo_multimapper_comparison.R 
library(reshape2) 

library(ggplot2) 

library(patchwork) 

 

setwd("C:/Users/bwd/OneDrive - Wageningen University & Research/MSc 

thesis/Comparison/6.0_50000") 

 

########################THESE YOU CAN 

CHANGE############################ 

start_chr <- 1 

sliding_size <- 50000 

start_pheno_number <- 1 

number_of_traits <- 2 

LOD_treshold <- 6 

 

###########HARD CODED; DONT TOUCH BELOW 

HERE############################ 

 

window_end <- sliding_size 
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window_size <- sliding_size 

window_max <- NULL 

max_in_slide <- NULL 

sliding_window_max <- NULL 

sliding_window_collector <- NULL 

 

for(trait in 

start_pheno_number:(start_pheno_number+number_of_traits-1)){ 

  filename <- 

paste("Compiled_Signal_",LOD_treshold,"_",sliding_size,"_",trait,"_F

L60.csv", sep="") 

  traitname <- paste(trait) 

  data <- read.table(filename, header = TRUE, sep=",") 

  column_with_sign_value <- ncol(data)  

  data[(column_with_sign_value+1)] <- 

1*(data[column_with_sign_value]) 

  ##add a row at the bottom!! 

  max_chr_number <- max(as.numeric(data$chr),na.rm=T) 

  data[(nrow(data)+1),1] <- max_chr_number+1 

  data[(nrow(data)),3] <- 1 

  data[(nrow(data)),column_with_sign_value+1] <- 0 

  tail(data) 

  i <- 1 

  for(i in 1:nrow(data)){ 

    if(data[i,1] == start_chr){ 

      chr <- data[i,1] 

      pos <- data[i,3] 

      if(pos < window_end){ 

        window_max <- 

cbind(window_max,data[i,column_with_sign_value+1]) 

      } else{ 

        #i <- i - 1 

        #print(i) 

        window_start <- window_end - window_size 

        window_end <- window_end + window_size 

        max_in_slide <- max(window_max) 

        max_in_slide_row <- 

cbind(traitname,chr,window_start,max_in_slide) 

        sliding_window_max <- rbind(sliding_window_max, 

max_in_slide_row) 

        window_max <- NULL 

        window_max <- 

cbind(window_max,data[i,column_with_sign_value+1])    

      }   

    } else { 

      #print(chr) 

      #End of chromosome 

      window_start <- window_end - window_size 

      window_end <- window_end + window_size 

      max_in_slide <- max(window_max) 

      max_in_slide_row <- 
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cbind(traitname,chr,window_start,max_in_slide) 

      sliding_window_max <- rbind(sliding_window_max, 

max_in_slide_row) 

      window_max <- NULL 

      window_max <- 

cbind(window_max,data[i,(column_with_sign_value+1)])   

       

       

      start_chr <- start_chr + 1 

      window_end <- sliding_size 

      window_size <- sliding_size 

      window_max <- NULL 

      max_in_slide <- NULL 

    } 

  } 

  sliding_window_collector <- 

rbind(sliding_window_collector,sliding_window_max) 

  update <- paste("Finished with trait #",trait,sep="") 

  print(update) 

  window_end <- sliding_size 

  window_size <- sliding_size 

  window_max <- NULL 

  max_in_slide <- NULL 

  sliding_window_max <- NULL 

  start_chr <- 1 

 

} 

test <- sliding_window_collector 

 

mode(test) = "numeric" 

raw_LOD_data <- data.frame(test) 

 

write.csv(raw_LOD_data, "Summary_LOD.csv") 

data <- raw_LOD_data 

 

for(c in 1:nrow(data)){ 

  LOD <- data[c,4] 

  if(LOD < LOD_treshold){ 

    data[c,4] <- NA 

  }  

} 

 

data$chr <- factor(data$chr) 

data$trait <- factor(data$traitname, labels = c("NWO22_01", 

"leaf_data")) 

data$LOD <- as.numeric(data$max_in_slide) 

data$Position <- as.numeric(data$window_start) 

write.csv(data, "Summary_LOD_comp_leaf_01_FL60.csv") 

data <- read.csv("Summary_LOD_comp.csv") 

data <- subset(data, select = -c(X)) 

limit_max <- max(data$LOD,na.rm=T) 
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new <- ggplot(data=data, aes(x=window_start, y=1, fill = LOD)) + 

  facet_grid(cols = vars(chr), rows= vars(trait),scales = "free_x", 

space = "free_x", switch="y") + 

  scale_fill_gradient(low="green", high="red", limits = 

c(LOD_treshold,limit_max), space = "Lab", na.value = "white", name = 

"Sum") + 

  geom_raster() + 

  theme(axis.title.y=element_blank(), 

        axis.text.y=element_blank(), 

        axis.ticks.y=element_blank(), 

        strip.text.y = element_text(angle = 180)) + 

  guides(x=guide_axis(n.dodge = 2)) +  

  xlab("Chromosome") 

new 

height <- 1*number_of_traits 

File_Output_name <- 

paste("Output_",sliding_size,"_comp_leaf_01_FL15.pdf", sep="") 

pdf(File_Output_name, height = height, width = 20, 

useDingbats=FALSE) 

new 

dev.off() 

 

#Signal averaging script 

signal_data <- reshape(data=data, 

idvar=c("chr","window_start"),v.names="max_in_slide", 

timevar="traitname",direction="wide") 

end <- number_of_traits+6-1 

signal_data[is.na(signal_data)] <- 0 

signal_data$count <- apply(signal_data[,6:end], 1, function(x) 

length(which(x!="0"))) 

head(signal_data) 

signal_data$sum <- rowSums(signal_data[,6:end]) 

signal_data$sum[signal_data$sum == 0] <- NA 

signal_new <- ggplot(data=signal_data, aes(x=window_start, y=sum)) + 

  geom_point(aes(color=count, size=count)) + 

  scale_colour_continuous(limits =c(1, max(signal_data$count)))+ 

  scale_size(range=c(1,2), limits = c(1, max(signal_data$count))) + 

  facet_grid(cols = vars(chr),scales = "free_x", space = "free_x", 

switch="y") +  

  guides(x=guide_axis(n.dodge = 2))+  

  theme(axis.title.x = element_blank(), 

        legend.title = element_blank()) 

signal_new 

 

File_Output_name <- 

paste("Compiled_Select_Promising_Peak_comp_leaf_01_FL60_count_",LOD_

treshold,"_",sliding_size,".pdf", sep="") 

pdf(File_Output_name, height = 10, width = 15, useDingbats=FALSE) 

signal_new/new+plot_layout(heights = c(5,2)) 

dev.off() 

File_Output_name <- 
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paste("Compiled_Select_Promising_Peak_comp_leaf_01_FL60_count_",LOD_

treshold,"_",sliding_size,".png", sep="") 

png(File_Output_name, height = 10, width = 15,units = "in", res = 

300) 

signal_new/new+plot_layout(heights = c(5,2)) 

dev.off() 

signal_new 

write.csv(signal_data,paste("Compiled_Signal_comp_leaf_01_FL60_count

_",LOD_treshold,"_",sliding_size,".csv",sep="")) 
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11) Boxplots and heatmaps 
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